1
|
1 |
/*
|
|
2 |
* Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// Low Memory Detection Support
|
|
26 |
// Two memory alarms in the JDK (we called them sensors).
|
|
27 |
// - Heap memory sensor
|
|
28 |
// - Non-heap memory sensor
|
|
29 |
// When the VM detects if the memory usage of a memory pool has reached
|
|
30 |
// or exceeded its threshold, it will trigger the sensor for the type
|
|
31 |
// of the memory pool (heap or nonheap or both).
|
|
32 |
//
|
|
33 |
// If threshold == -1, no low memory detection is supported and
|
|
34 |
// the threshold value is not allowed to be changed.
|
|
35 |
// If threshold == 0, no low memory detection is performed for
|
|
36 |
// that memory pool. The threshold can be set to any non-negative
|
|
37 |
// value.
|
|
38 |
//
|
|
39 |
// The default threshold of the Hotspot memory pools are:
|
|
40 |
// Eden space -1
|
|
41 |
// Survivor space 1 -1
|
|
42 |
// Survivor space 2 -1
|
|
43 |
// Old generation 0
|
|
44 |
// Perm generation 0
|
|
45 |
// CodeCache 0
|
|
46 |
//
|
|
47 |
// For heap memory, detection will be performed when GC finishes
|
|
48 |
// and also in the slow path allocation.
|
|
49 |
// For Code cache, detection will be performed in the allocation
|
|
50 |
// and deallocation.
|
|
51 |
//
|
|
52 |
// May need to deal with hysteresis effect.
|
|
53 |
//
|
|
54 |
|
|
55 |
class LowMemoryDetectorThread;
|
|
56 |
class OopClosure;
|
|
57 |
class MemoryPool;
|
|
58 |
|
|
59 |
class ThresholdSupport : public CHeapObj {
|
|
60 |
private:
|
|
61 |
bool _support_high_threshold;
|
|
62 |
bool _support_low_threshold;
|
|
63 |
size_t _high_threshold;
|
|
64 |
size_t _low_threshold;
|
|
65 |
public:
|
|
66 |
ThresholdSupport(bool support_high, bool support_low) {
|
|
67 |
_support_high_threshold = support_high;
|
|
68 |
_support_low_threshold = support_low;
|
|
69 |
_high_threshold = 0;
|
|
70 |
_low_threshold= 0;
|
|
71 |
}
|
|
72 |
|
|
73 |
size_t high_threshold() const { return _high_threshold; }
|
|
74 |
size_t low_threshold() const { return _low_threshold; }
|
|
75 |
bool is_high_threshold_supported() { return _support_high_threshold; }
|
|
76 |
bool is_low_threshold_supported() { return _support_low_threshold; }
|
|
77 |
|
|
78 |
bool is_high_threshold_crossed(MemoryUsage usage) {
|
|
79 |
if (_support_high_threshold && _high_threshold > 0) {
|
|
80 |
return (usage.used() >= _high_threshold);
|
|
81 |
}
|
|
82 |
return false;
|
|
83 |
}
|
|
84 |
bool is_low_threshold_crossed(MemoryUsage usage) {
|
|
85 |
if (_support_low_threshold && _low_threshold > 0) {
|
|
86 |
return (usage.used() < _low_threshold);
|
|
87 |
}
|
|
88 |
return false;
|
|
89 |
}
|
|
90 |
|
|
91 |
size_t set_high_threshold(size_t new_threshold) {
|
|
92 |
assert(_support_high_threshold, "can only be set if supported");
|
|
93 |
assert(new_threshold >= _low_threshold, "new_threshold must be >= _low_threshold");
|
|
94 |
size_t prev = _high_threshold;
|
|
95 |
_high_threshold = new_threshold;
|
|
96 |
return prev;
|
|
97 |
}
|
|
98 |
|
|
99 |
size_t set_low_threshold(size_t new_threshold) {
|
|
100 |
assert(_support_low_threshold, "can only be set if supported");
|
|
101 |
assert(new_threshold <= _high_threshold, "new_threshold must be <= _high_threshold");
|
|
102 |
size_t prev = _low_threshold;
|
|
103 |
_low_threshold = new_threshold;
|
|
104 |
return prev;
|
|
105 |
}
|
|
106 |
};
|
|
107 |
|
|
108 |
class SensorInfo : public CHeapObj {
|
|
109 |
private:
|
|
110 |
instanceOop _sensor_obj;
|
|
111 |
bool _sensor_on;
|
|
112 |
size_t _sensor_count;
|
|
113 |
|
|
114 |
// before the actual sensor on flag and sensor count are set
|
|
115 |
// we maintain the number of pending triggers and clears.
|
|
116 |
// _pending_trigger_count means the number of pending triggers
|
|
117 |
// and the sensor count should be incremented by the same number.
|
|
118 |
|
|
119 |
int _pending_trigger_count;
|
|
120 |
|
|
121 |
// _pending_clear_count takes precedence if it's > 0 which
|
|
122 |
// indicates the resulting sensor will be off
|
|
123 |
// Sensor trigger requests will reset this clear count to
|
|
124 |
// indicate the resulting flag should be on.
|
|
125 |
|
|
126 |
int _pending_clear_count;
|
|
127 |
|
|
128 |
MemoryUsage _usage;
|
|
129 |
|
|
130 |
void clear(int count, TRAPS);
|
|
131 |
void trigger(int count, TRAPS);
|
|
132 |
public:
|
|
133 |
SensorInfo();
|
|
134 |
void set_sensor(instanceOop sensor) {
|
|
135 |
assert(_sensor_obj == NULL, "Should be set only once");
|
|
136 |
_sensor_obj = sensor;
|
|
137 |
}
|
|
138 |
|
|
139 |
bool has_pending_requests() {
|
|
140 |
return (_pending_trigger_count > 0 || _pending_clear_count > 0);
|
|
141 |
}
|
|
142 |
|
|
143 |
int pending_trigger_count() { return _pending_trigger_count; }
|
|
144 |
int pending_clear_count() { return _pending_clear_count; }
|
|
145 |
|
|
146 |
// When this method is used, the memory usage is monitored
|
|
147 |
// as a gauge attribute. High and low thresholds are designed
|
|
148 |
// to provide a hysteresis mechanism to avoid repeated triggering
|
|
149 |
// of notifications when the attribute value makes small oscillations
|
|
150 |
// around the high or low threshold value.
|
|
151 |
//
|
|
152 |
// The sensor will be triggered if:
|
|
153 |
// (1) the usage is crossing above the high threshold and
|
|
154 |
// the sensor is currently off and no pending
|
|
155 |
// trigger requests; or
|
|
156 |
// (2) the usage is crossing above the high threshold and
|
|
157 |
// the sensor will be off (i.e. sensor is currently on
|
|
158 |
// and has pending clear requests).
|
|
159 |
//
|
|
160 |
// Subsequent crossings of the high threshold value do not cause
|
|
161 |
// any triggers unless the usage becomes less than the low threshold.
|
|
162 |
//
|
|
163 |
// The sensor will be cleared if:
|
|
164 |
// (1) the usage is crossing below the low threshold and
|
|
165 |
// the sensor is currently on and no pending
|
|
166 |
// clear requests; or
|
|
167 |
// (2) the usage is crossing below the low threshold and
|
|
168 |
// the sensor will be on (i.e. sensor is currently off
|
|
169 |
// and has pending trigger requests).
|
|
170 |
//
|
|
171 |
// Subsequent crossings of the low threshold value do not cause
|
|
172 |
// any clears unless the usage becomes greater than or equal
|
|
173 |
// to the high threshold.
|
|
174 |
//
|
|
175 |
// If the current level is between high and low threhsold, no change.
|
|
176 |
//
|
|
177 |
void set_gauge_sensor_level(MemoryUsage usage, ThresholdSupport* high_low_threshold);
|
|
178 |
|
|
179 |
// When this method is used, the memory usage is monitored as a
|
|
180 |
// simple counter attribute. The sensor will be triggered
|
|
181 |
// whenever the usage is crossing the threshold to keep track
|
|
182 |
// of the number of times the VM detects such a condition occurs.
|
|
183 |
//
|
|
184 |
// The sensor will be triggered if:
|
|
185 |
// - the usage is crossing above the high threshold regardless
|
|
186 |
// of the current sensor state.
|
|
187 |
//
|
|
188 |
// The sensor will be cleared if:
|
|
189 |
// (1) the usage is crossing below the low threshold and
|
|
190 |
// the sensor is currently on; or
|
|
191 |
// (2) the usage is crossing below the low threshold and
|
|
192 |
// the sensor will be on (i.e. sensor is currently off
|
|
193 |
// and has pending trigger requests).
|
|
194 |
//
|
|
195 |
void set_counter_sensor_level(MemoryUsage usage, ThresholdSupport* counter_threshold);
|
|
196 |
|
|
197 |
void process_pending_requests(TRAPS);
|
|
198 |
void oops_do(OopClosure* f);
|
|
199 |
|
|
200 |
#ifndef PRODUCT
|
|
201 |
// printing on default output stream;
|
|
202 |
void print();
|
|
203 |
#endif // PRODUCT
|
|
204 |
};
|
|
205 |
|
|
206 |
class LowMemoryDetector : public AllStatic {
|
|
207 |
friend class LowMemoryDetectorDisabler;
|
|
208 |
private:
|
|
209 |
// true if any collected heap has low memory detection enabled
|
|
210 |
static volatile bool _enabled_for_collected_pools;
|
|
211 |
// > 0 if temporary disabed
|
|
212 |
static volatile jint _disabled_count;
|
|
213 |
|
|
214 |
static LowMemoryDetectorThread* _detector_thread;
|
|
215 |
static void low_memory_detector_thread_entry(JavaThread* thread, TRAPS);
|
|
216 |
static void check_memory_usage();
|
|
217 |
static bool has_pending_requests();
|
|
218 |
static bool temporary_disabled() { return _disabled_count > 0; }
|
|
219 |
static void disable() { Atomic::inc(&_disabled_count); }
|
|
220 |
static void enable() { Atomic::dec(&_disabled_count); }
|
|
221 |
|
|
222 |
public:
|
|
223 |
static void initialize();
|
|
224 |
static void detect_low_memory();
|
|
225 |
static void detect_low_memory(MemoryPool* pool);
|
|
226 |
static void detect_after_gc_memory(MemoryPool* pool);
|
|
227 |
|
|
228 |
static bool is_enabled(MemoryPool* pool) {
|
|
229 |
// low memory detection is enabled for collected memory pools
|
|
230 |
// iff one of the collected memory pool has a sensor and the
|
|
231 |
// threshold set non-zero
|
|
232 |
if (pool->usage_sensor() == NULL) {
|
|
233 |
return false;
|
|
234 |
} else {
|
|
235 |
ThresholdSupport* threshold_support = pool->usage_threshold();
|
|
236 |
return (threshold_support->is_high_threshold_supported() ?
|
|
237 |
(threshold_support->high_threshold() > 0) : false);
|
|
238 |
}
|
|
239 |
}
|
|
240 |
|
|
241 |
// indicates if low memory detection is enabled for any collected
|
|
242 |
// memory pools
|
|
243 |
static inline bool is_enabled_for_collected_pools() {
|
|
244 |
return !temporary_disabled() && _enabled_for_collected_pools;
|
|
245 |
}
|
|
246 |
|
|
247 |
// recompute enabled flag
|
|
248 |
static void recompute_enabled_for_collected_pools();
|
|
249 |
|
|
250 |
// low memory detection for collected memory pools.
|
|
251 |
static inline void detect_low_memory_for_collected_pools() {
|
|
252 |
// no-op if low memory detection not enabled
|
|
253 |
if (!is_enabled_for_collected_pools()) {
|
|
254 |
return;
|
|
255 |
}
|
|
256 |
int num_memory_pools = MemoryService::num_memory_pools();
|
|
257 |
for (int i=0; i<num_memory_pools; i++) {
|
|
258 |
MemoryPool* pool = MemoryService::get_memory_pool(i);
|
|
259 |
|
|
260 |
// if low memory detection is enabled then check if the
|
|
261 |
// current used exceeds the high threshold
|
|
262 |
if (pool->is_collected_pool() && is_enabled(pool)) {
|
|
263 |
size_t used = pool->used_in_bytes();
|
|
264 |
size_t high = pool->usage_threshold()->high_threshold();
|
|
265 |
if (used > high) {
|
|
266 |
detect_low_memory(pool);
|
|
267 |
}
|
|
268 |
}
|
|
269 |
}
|
|
270 |
}
|
|
271 |
|
|
272 |
};
|
|
273 |
|
|
274 |
class LowMemoryDetectorDisabler: public StackObj {
|
|
275 |
public:
|
|
276 |
LowMemoryDetectorDisabler()
|
|
277 |
{
|
|
278 |
LowMemoryDetector::disable();
|
|
279 |
}
|
|
280 |
~LowMemoryDetectorDisabler()
|
|
281 |
{
|
|
282 |
assert(LowMemoryDetector::temporary_disabled(), "should be disabled!");
|
|
283 |
LowMemoryDetector::enable();
|
|
284 |
}
|
|
285 |
};
|