1
|
1 |
/*
|
|
2 |
* Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
# include "incls/_precompiled.incl"
|
|
26 |
# include "incls/_cardTableRS.cpp.incl"
|
|
27 |
|
|
28 |
CardTableRS::CardTableRS(MemRegion whole_heap,
|
|
29 |
int max_covered_regions) :
|
|
30 |
GenRemSet(&_ct_bs),
|
|
31 |
_ct_bs(whole_heap, max_covered_regions),
|
|
32 |
_cur_youngergen_card_val(youngergenP1_card)
|
|
33 |
{
|
|
34 |
_last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
|
|
35 |
if (_last_cur_val_in_gen == NULL) {
|
|
36 |
vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
|
|
37 |
}
|
|
38 |
for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
|
|
39 |
_last_cur_val_in_gen[i] = clean_card_val();
|
|
40 |
}
|
|
41 |
_ct_bs.set_CTRS(this);
|
|
42 |
}
|
|
43 |
|
|
44 |
void CardTableRS::resize_covered_region(MemRegion new_region) {
|
|
45 |
_ct_bs.resize_covered_region(new_region);
|
|
46 |
}
|
|
47 |
|
|
48 |
jbyte CardTableRS::find_unused_youngergenP_card_value() {
|
|
49 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
50 |
for (jbyte v = youngergenP1_card;
|
|
51 |
v < cur_youngergen_and_prev_nonclean_card;
|
|
52 |
v++) {
|
|
53 |
bool seen = false;
|
|
54 |
for (int g = 0; g < gch->n_gens()+1; g++) {
|
|
55 |
if (_last_cur_val_in_gen[g] == v) {
|
|
56 |
seen = true;
|
|
57 |
break;
|
|
58 |
}
|
|
59 |
}
|
|
60 |
if (!seen) return v;
|
|
61 |
}
|
|
62 |
ShouldNotReachHere();
|
|
63 |
return 0;
|
|
64 |
}
|
|
65 |
|
|
66 |
void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
|
|
67 |
// Parallel or sequential, we must always set the prev to equal the
|
|
68 |
// last one written.
|
|
69 |
if (parallel) {
|
|
70 |
// Find a parallel value to be used next.
|
|
71 |
jbyte next_val = find_unused_youngergenP_card_value();
|
|
72 |
set_cur_youngergen_card_val(next_val);
|
|
73 |
|
|
74 |
} else {
|
|
75 |
// In an sequential traversal we will always write youngergen, so that
|
|
76 |
// the inline barrier is correct.
|
|
77 |
set_cur_youngergen_card_val(youngergen_card);
|
|
78 |
}
|
|
79 |
}
|
|
80 |
|
|
81 |
void CardTableRS::younger_refs_iterate(Generation* g,
|
|
82 |
OopsInGenClosure* blk) {
|
|
83 |
_last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
|
|
84 |
g->younger_refs_iterate(blk);
|
|
85 |
}
|
|
86 |
|
|
87 |
class ClearNoncleanCardWrapper: public MemRegionClosure {
|
|
88 |
MemRegionClosure* _dirty_card_closure;
|
|
89 |
CardTableRS* _ct;
|
|
90 |
bool _is_par;
|
|
91 |
private:
|
|
92 |
// Clears the given card, return true if the corresponding card should be
|
|
93 |
// processed.
|
|
94 |
bool clear_card(jbyte* entry) {
|
|
95 |
if (_is_par) {
|
|
96 |
while (true) {
|
|
97 |
// In the parallel case, we may have to do this several times.
|
|
98 |
jbyte entry_val = *entry;
|
|
99 |
assert(entry_val != CardTableRS::clean_card_val(),
|
|
100 |
"We shouldn't be looking at clean cards, and this should "
|
|
101 |
"be the only place they get cleaned.");
|
|
102 |
if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
|
|
103 |
|| _ct->is_prev_youngergen_card_val(entry_val)) {
|
|
104 |
jbyte res =
|
|
105 |
Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
|
|
106 |
if (res == entry_val) {
|
|
107 |
break;
|
|
108 |
} else {
|
|
109 |
assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
|
|
110 |
"The CAS above should only fail if another thread did "
|
|
111 |
"a GC write barrier.");
|
|
112 |
}
|
|
113 |
} else if (entry_val ==
|
|
114 |
CardTableRS::cur_youngergen_and_prev_nonclean_card) {
|
|
115 |
// Parallelism shouldn't matter in this case. Only the thread
|
|
116 |
// assigned to scan the card should change this value.
|
|
117 |
*entry = _ct->cur_youngergen_card_val();
|
|
118 |
break;
|
|
119 |
} else {
|
|
120 |
assert(entry_val == _ct->cur_youngergen_card_val(),
|
|
121 |
"Should be the only possibility.");
|
|
122 |
// In this case, the card was clean before, and become
|
|
123 |
// cur_youngergen only because of processing of a promoted object.
|
|
124 |
// We don't have to look at the card.
|
|
125 |
return false;
|
|
126 |
}
|
|
127 |
}
|
|
128 |
return true;
|
|
129 |
} else {
|
|
130 |
jbyte entry_val = *entry;
|
|
131 |
assert(entry_val != CardTableRS::clean_card_val(),
|
|
132 |
"We shouldn't be looking at clean cards, and this should "
|
|
133 |
"be the only place they get cleaned.");
|
|
134 |
assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
|
|
135 |
"This should be possible in the sequential case.");
|
|
136 |
*entry = CardTableRS::clean_card_val();
|
|
137 |
return true;
|
|
138 |
}
|
|
139 |
}
|
|
140 |
|
|
141 |
public:
|
|
142 |
ClearNoncleanCardWrapper(MemRegionClosure* dirty_card_closure,
|
|
143 |
CardTableRS* ct) :
|
|
144 |
_dirty_card_closure(dirty_card_closure), _ct(ct) {
|
|
145 |
_is_par = (SharedHeap::heap()->n_par_threads() > 0);
|
|
146 |
}
|
|
147 |
void do_MemRegion(MemRegion mr) {
|
|
148 |
// We start at the high end of "mr", walking backwards
|
|
149 |
// while accumulating a contiguous dirty range of cards in
|
|
150 |
// [start_of_non_clean, end_of_non_clean) which we then
|
|
151 |
// process en masse.
|
|
152 |
HeapWord* end_of_non_clean = mr.end();
|
|
153 |
HeapWord* start_of_non_clean = end_of_non_clean;
|
|
154 |
jbyte* entry = _ct->byte_for(mr.last());
|
|
155 |
const jbyte* first_entry = _ct->byte_for(mr.start());
|
|
156 |
while (entry >= first_entry) {
|
|
157 |
HeapWord* cur = _ct->addr_for(entry);
|
|
158 |
if (!clear_card(entry)) {
|
|
159 |
// We hit a clean card; process any non-empty
|
|
160 |
// dirty range accumulated so far.
|
|
161 |
if (start_of_non_clean < end_of_non_clean) {
|
|
162 |
MemRegion mr2(start_of_non_clean, end_of_non_clean);
|
|
163 |
_dirty_card_closure->do_MemRegion(mr2);
|
|
164 |
}
|
|
165 |
// Reset the dirty window while continuing to
|
|
166 |
// look for the next dirty window to process.
|
|
167 |
end_of_non_clean = cur;
|
|
168 |
start_of_non_clean = end_of_non_clean;
|
|
169 |
}
|
|
170 |
// Open the left end of the window one card to the left.
|
|
171 |
start_of_non_clean = cur;
|
|
172 |
// Note that "entry" leads "start_of_non_clean" in
|
|
173 |
// its leftward excursion after this point
|
|
174 |
// in the loop and, when we hit the left end of "mr",
|
|
175 |
// will point off of the left end of the card-table
|
|
176 |
// for "mr".
|
|
177 |
entry--;
|
|
178 |
}
|
|
179 |
// If the first card of "mr" was dirty, we will have
|
|
180 |
// been left with a dirty window, co-initial with "mr",
|
|
181 |
// which we now process.
|
|
182 |
if (start_of_non_clean < end_of_non_clean) {
|
|
183 |
MemRegion mr2(start_of_non_clean, end_of_non_clean);
|
|
184 |
_dirty_card_closure->do_MemRegion(mr2);
|
|
185 |
}
|
|
186 |
}
|
|
187 |
};
|
|
188 |
// clean (by dirty->clean before) ==> cur_younger_gen
|
|
189 |
// dirty ==> cur_youngergen_and_prev_nonclean_card
|
|
190 |
// precleaned ==> cur_youngergen_and_prev_nonclean_card
|
|
191 |
// prev-younger-gen ==> cur_youngergen_and_prev_nonclean_card
|
|
192 |
// cur-younger-gen ==> cur_younger_gen
|
|
193 |
// cur_youngergen_and_prev_nonclean_card ==> no change.
|
|
194 |
void CardTableRS::write_ref_field_gc_par(oop* field, oop new_val) {
|
|
195 |
jbyte* entry = ct_bs()->byte_for(field);
|
|
196 |
do {
|
|
197 |
jbyte entry_val = *entry;
|
|
198 |
// We put this first because it's probably the most common case.
|
|
199 |
if (entry_val == clean_card_val()) {
|
|
200 |
// No threat of contention with cleaning threads.
|
|
201 |
*entry = cur_youngergen_card_val();
|
|
202 |
return;
|
|
203 |
} else if (card_is_dirty_wrt_gen_iter(entry_val)
|
|
204 |
|| is_prev_youngergen_card_val(entry_val)) {
|
|
205 |
// Mark it as both cur and prev youngergen; card cleaning thread will
|
|
206 |
// eventually remove the previous stuff.
|
|
207 |
jbyte new_val = cur_youngergen_and_prev_nonclean_card;
|
|
208 |
jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
|
|
209 |
// Did the CAS succeed?
|
|
210 |
if (res == entry_val) return;
|
|
211 |
// Otherwise, retry, to see the new value.
|
|
212 |
continue;
|
|
213 |
} else {
|
|
214 |
assert(entry_val == cur_youngergen_and_prev_nonclean_card
|
|
215 |
|| entry_val == cur_youngergen_card_val(),
|
|
216 |
"should be only possibilities.");
|
|
217 |
return;
|
|
218 |
}
|
|
219 |
} while (true);
|
|
220 |
}
|
|
221 |
|
|
222 |
void CardTableRS::younger_refs_in_space_iterate(Space* sp,
|
|
223 |
OopsInGenClosure* cl) {
|
|
224 |
DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, _ct_bs.precision(),
|
|
225 |
cl->gen_boundary());
|
|
226 |
ClearNoncleanCardWrapper clear_cl(dcto_cl, this);
|
|
227 |
|
|
228 |
_ct_bs.non_clean_card_iterate(sp, sp->used_region_at_save_marks(),
|
|
229 |
dcto_cl, &clear_cl, false);
|
|
230 |
}
|
|
231 |
|
|
232 |
void CardTableRS::clear_into_younger(Generation* gen, bool clear_perm) {
|
|
233 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
234 |
// Generations younger than gen have been evacuated. We can clear
|
|
235 |
// card table entries for gen (we know that it has no pointers
|
|
236 |
// to younger gens) and for those below. The card tables for
|
|
237 |
// the youngest gen need never be cleared, and those for perm gen
|
|
238 |
// will be cleared based on the parameter clear_perm.
|
|
239 |
// There's a bit of subtlety in the clear() and invalidate()
|
|
240 |
// methods that we exploit here and in invalidate_or_clear()
|
|
241 |
// below to avoid missing cards at the fringes. If clear() or
|
|
242 |
// invalidate() are changed in the future, this code should
|
|
243 |
// be revisited. 20040107.ysr
|
|
244 |
Generation* g = gen;
|
|
245 |
for(Generation* prev_gen = gch->prev_gen(g);
|
|
246 |
prev_gen != NULL;
|
|
247 |
g = prev_gen, prev_gen = gch->prev_gen(g)) {
|
|
248 |
MemRegion to_be_cleared_mr = g->prev_used_region();
|
|
249 |
clear(to_be_cleared_mr);
|
|
250 |
}
|
|
251 |
// Clear perm gen cards if asked to do so.
|
|
252 |
if (clear_perm) {
|
|
253 |
MemRegion to_be_cleared_mr = gch->perm_gen()->prev_used_region();
|
|
254 |
clear(to_be_cleared_mr);
|
|
255 |
}
|
|
256 |
}
|
|
257 |
|
|
258 |
void CardTableRS::invalidate_or_clear(Generation* gen, bool younger,
|
|
259 |
bool perm) {
|
|
260 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
261 |
// For each generation gen (and younger and/or perm)
|
|
262 |
// invalidate the cards for the currently occupied part
|
|
263 |
// of that generation and clear the cards for the
|
|
264 |
// unoccupied part of the generation (if any, making use
|
|
265 |
// of that generation's prev_used_region to determine that
|
|
266 |
// region). No need to do anything for the youngest
|
|
267 |
// generation. Also see note#20040107.ysr above.
|
|
268 |
Generation* g = gen;
|
|
269 |
for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
|
|
270 |
g = prev_gen, prev_gen = gch->prev_gen(g)) {
|
|
271 |
MemRegion used_mr = g->used_region();
|
|
272 |
MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
|
|
273 |
if (!to_be_cleared_mr.is_empty()) {
|
|
274 |
clear(to_be_cleared_mr);
|
|
275 |
}
|
|
276 |
invalidate(used_mr);
|
|
277 |
if (!younger) break;
|
|
278 |
}
|
|
279 |
// Clear perm gen cards if asked to do so.
|
|
280 |
if (perm) {
|
|
281 |
g = gch->perm_gen();
|
|
282 |
MemRegion used_mr = g->used_region();
|
|
283 |
MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
|
|
284 |
if (!to_be_cleared_mr.is_empty()) {
|
|
285 |
clear(to_be_cleared_mr);
|
|
286 |
}
|
|
287 |
invalidate(used_mr);
|
|
288 |
}
|
|
289 |
}
|
|
290 |
|
|
291 |
|
|
292 |
class VerifyCleanCardClosure: public OopClosure {
|
|
293 |
HeapWord* boundary;
|
|
294 |
HeapWord* begin; HeapWord* end;
|
|
295 |
public:
|
|
296 |
void do_oop(oop* p) {
|
|
297 |
HeapWord* jp = (HeapWord*)p;
|
|
298 |
if (jp >= begin && jp < end) {
|
|
299 |
guarantee(*p == NULL || (HeapWord*)p < boundary
|
|
300 |
|| (HeapWord*)(*p) >= boundary,
|
|
301 |
"pointer on clean card crosses boundary");
|
|
302 |
}
|
|
303 |
}
|
|
304 |
VerifyCleanCardClosure(HeapWord* b, HeapWord* _begin, HeapWord* _end) :
|
|
305 |
boundary(b), begin(_begin), end(_end) {}
|
|
306 |
};
|
|
307 |
|
|
308 |
class VerifyCTSpaceClosure: public SpaceClosure {
|
|
309 |
CardTableRS* _ct;
|
|
310 |
HeapWord* _boundary;
|
|
311 |
public:
|
|
312 |
VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
|
|
313 |
_ct(ct), _boundary(boundary) {}
|
|
314 |
void do_space(Space* s) { _ct->verify_space(s, _boundary); }
|
|
315 |
};
|
|
316 |
|
|
317 |
class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
|
|
318 |
CardTableRS* _ct;
|
|
319 |
public:
|
|
320 |
VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
|
|
321 |
void do_generation(Generation* gen) {
|
|
322 |
// Skip the youngest generation.
|
|
323 |
if (gen->level() == 0) return;
|
|
324 |
// Normally, we're interested in pointers to younger generations.
|
|
325 |
VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
|
|
326 |
gen->space_iterate(&blk, true);
|
|
327 |
}
|
|
328 |
};
|
|
329 |
|
|
330 |
void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
|
|
331 |
// We don't need to do young-gen spaces.
|
|
332 |
if (s->end() <= gen_boundary) return;
|
|
333 |
MemRegion used = s->used_region();
|
|
334 |
|
|
335 |
jbyte* cur_entry = byte_for(used.start());
|
|
336 |
jbyte* limit = byte_after(used.last());
|
|
337 |
while (cur_entry < limit) {
|
|
338 |
if (*cur_entry == CardTableModRefBS::clean_card) {
|
|
339 |
jbyte* first_dirty = cur_entry+1;
|
|
340 |
while (first_dirty < limit &&
|
|
341 |
*first_dirty == CardTableModRefBS::clean_card) {
|
|
342 |
first_dirty++;
|
|
343 |
}
|
|
344 |
// If the first object is a regular object, and it has a
|
|
345 |
// young-to-old field, that would mark the previous card.
|
|
346 |
HeapWord* boundary = addr_for(cur_entry);
|
|
347 |
HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
|
|
348 |
HeapWord* boundary_block = s->block_start(boundary);
|
|
349 |
HeapWord* begin = boundary; // Until proven otherwise.
|
|
350 |
HeapWord* start_block = boundary_block; // Until proven otherwise.
|
|
351 |
if (boundary_block < boundary) {
|
|
352 |
if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
|
|
353 |
oop boundary_obj = oop(boundary_block);
|
|
354 |
if (!boundary_obj->is_objArray() &&
|
|
355 |
!boundary_obj->is_typeArray()) {
|
|
356 |
guarantee(cur_entry > byte_for(used.start()),
|
|
357 |
"else boundary would be boundary_block");
|
|
358 |
if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
|
|
359 |
begin = boundary_block + s->block_size(boundary_block);
|
|
360 |
start_block = begin;
|
|
361 |
}
|
|
362 |
}
|
|
363 |
}
|
|
364 |
}
|
|
365 |
// Now traverse objects until end.
|
|
366 |
HeapWord* cur = start_block;
|
|
367 |
VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
|
|
368 |
while (cur < end) {
|
|
369 |
if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
|
|
370 |
oop(cur)->oop_iterate(&verify_blk);
|
|
371 |
}
|
|
372 |
cur += s->block_size(cur);
|
|
373 |
}
|
|
374 |
cur_entry = first_dirty;
|
|
375 |
} else {
|
|
376 |
// We'd normally expect that cur_youngergen_and_prev_nonclean_card
|
|
377 |
// is a transient value, that cannot be in the card table
|
|
378 |
// except during GC, and thus assert that:
|
|
379 |
// guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
|
|
380 |
// "Illegal CT value");
|
|
381 |
// That however, need not hold, as will become clear in the
|
|
382 |
// following...
|
|
383 |
|
|
384 |
// We'd normally expect that if we are in the parallel case,
|
|
385 |
// we can't have left a prev value (which would be different
|
|
386 |
// from the current value) in the card table, and so we'd like to
|
|
387 |
// assert that:
|
|
388 |
// guarantee(cur_youngergen_card_val() == youngergen_card
|
|
389 |
// || !is_prev_youngergen_card_val(*cur_entry),
|
|
390 |
// "Illegal CT value");
|
|
391 |
// That, however, may not hold occasionally, because of
|
|
392 |
// CMS or MSC in the old gen. To wit, consider the
|
|
393 |
// following two simple illustrative scenarios:
|
|
394 |
// (a) CMS: Consider the case where a large object L
|
|
395 |
// spanning several cards is allocated in the old
|
|
396 |
// gen, and has a young gen reference stored in it, dirtying
|
|
397 |
// some interior cards. A young collection scans the card,
|
|
398 |
// finds a young ref and installs a youngergenP_n value.
|
|
399 |
// L then goes dead. Now a CMS collection starts,
|
|
400 |
// finds L dead and sweeps it up. Assume that L is
|
|
401 |
// abutting _unallocated_blk, so _unallocated_blk is
|
|
402 |
// adjusted down to (below) L. Assume further that
|
|
403 |
// no young collection intervenes during this CMS cycle.
|
|
404 |
// The next young gen cycle will not get to look at this
|
|
405 |
// youngergenP_n card since it lies in the unoccupied
|
|
406 |
// part of the space.
|
|
407 |
// Some young collections later the blocks on this
|
|
408 |
// card can be re-allocated either due to direct allocation
|
|
409 |
// or due to absorbing promotions. At this time, the
|
|
410 |
// before-gc verification will fail the above assert.
|
|
411 |
// (b) MSC: In this case, an object L with a young reference
|
|
412 |
// is on a card that (therefore) holds a youngergen_n value.
|
|
413 |
// Suppose also that L lies towards the end of the used
|
|
414 |
// the used space before GC. An MSC collection
|
|
415 |
// occurs that compacts to such an extent that this
|
|
416 |
// card is no longer in the occupied part of the space.
|
|
417 |
// Since current code in MSC does not always clear cards
|
|
418 |
// in the unused part of old gen, this stale youngergen_n
|
|
419 |
// value is left behind and can later be covered by
|
|
420 |
// an object when promotion or direct allocation
|
|
421 |
// re-allocates that part of the heap.
|
|
422 |
//
|
|
423 |
// Fortunately, the presence of such stale card values is
|
|
424 |
// "only" a minor annoyance in that subsequent young collections
|
|
425 |
// might needlessly scan such cards, but would still never corrupt
|
|
426 |
// the heap as a result. However, it's likely not to be a significant
|
|
427 |
// performance inhibitor in practice. For instance,
|
|
428 |
// some recent measurements with unoccupied cards eagerly cleared
|
|
429 |
// out to maintain this invariant, showed next to no
|
|
430 |
// change in young collection times; of course one can construct
|
|
431 |
// degenerate examples where the cost can be significant.)
|
|
432 |
// Note, in particular, that if the "stale" card is modified
|
|
433 |
// after re-allocation, it would be dirty, not "stale". Thus,
|
|
434 |
// we can never have a younger ref in such a card and it is
|
|
435 |
// safe not to scan that card in any collection. [As we see
|
|
436 |
// below, we do some unnecessary scanning
|
|
437 |
// in some cases in the current parallel scanning algorithm.]
|
|
438 |
//
|
|
439 |
// The main point below is that the parallel card scanning code
|
|
440 |
// deals correctly with these stale card values. There are two main
|
|
441 |
// cases to consider where we have a stale "younger gen" value and a
|
|
442 |
// "derivative" case to consider, where we have a stale
|
|
443 |
// "cur_younger_gen_and_prev_non_clean" value, as will become
|
|
444 |
// apparent in the case analysis below.
|
|
445 |
// o Case 1. If the stale value corresponds to a younger_gen_n
|
|
446 |
// value other than the cur_younger_gen value then the code
|
|
447 |
// treats this as being tantamount to a prev_younger_gen
|
|
448 |
// card. This means that the card may be unnecessarily scanned.
|
|
449 |
// There are two sub-cases to consider:
|
|
450 |
// o Case 1a. Let us say that the card is in the occupied part
|
|
451 |
// of the generation at the time the collection begins. In
|
|
452 |
// that case the card will be either cleared when it is scanned
|
|
453 |
// for young pointers, or will be set to cur_younger_gen as a
|
|
454 |
// result of promotion. (We have elided the normal case where
|
|
455 |
// the scanning thread and the promoting thread interleave
|
|
456 |
// possibly resulting in a transient
|
|
457 |
// cur_younger_gen_and_prev_non_clean value before settling
|
|
458 |
// to cur_younger_gen. [End Case 1a.]
|
|
459 |
// o Case 1b. Consider now the case when the card is in the unoccupied
|
|
460 |
// part of the space which becomes occupied because of promotions
|
|
461 |
// into it during the current young GC. In this case the card
|
|
462 |
// will never be scanned for young references. The current
|
|
463 |
// code will set the card value to either
|
|
464 |
// cur_younger_gen_and_prev_non_clean or leave
|
|
465 |
// it with its stale value -- because the promotions didn't
|
|
466 |
// result in any younger refs on that card. Of these two
|
|
467 |
// cases, the latter will be covered in Case 1a during
|
|
468 |
// a subsequent scan. To deal with the former case, we need
|
|
469 |
// to further consider how we deal with a stale value of
|
|
470 |
// cur_younger_gen_and_prev_non_clean in our case analysis
|
|
471 |
// below. This we do in Case 3 below. [End Case 1b]
|
|
472 |
// [End Case 1]
|
|
473 |
// o Case 2. If the stale value corresponds to cur_younger_gen being
|
|
474 |
// a value not necessarily written by a current promotion, the
|
|
475 |
// card will not be scanned by the younger refs scanning code.
|
|
476 |
// (This is OK since as we argued above such cards cannot contain
|
|
477 |
// any younger refs.) The result is that this value will be
|
|
478 |
// treated as a prev_younger_gen value in a subsequent collection,
|
|
479 |
// which is addressed in Case 1 above. [End Case 2]
|
|
480 |
// o Case 3. We here consider the "derivative" case from Case 1b. above
|
|
481 |
// because of which we may find a stale
|
|
482 |
// cur_younger_gen_and_prev_non_clean card value in the table.
|
|
483 |
// Once again, as in Case 1, we consider two subcases, depending
|
|
484 |
// on whether the card lies in the occupied or unoccupied part
|
|
485 |
// of the space at the start of the young collection.
|
|
486 |
// o Case 3a. Let us say the card is in the occupied part of
|
|
487 |
// the old gen at the start of the young collection. In that
|
|
488 |
// case, the card will be scanned by the younger refs scanning
|
|
489 |
// code which will set it to cur_younger_gen. In a subsequent
|
|
490 |
// scan, the card will be considered again and get its final
|
|
491 |
// correct value. [End Case 3a]
|
|
492 |
// o Case 3b. Now consider the case where the card is in the
|
|
493 |
// unoccupied part of the old gen, and is occupied as a result
|
|
494 |
// of promotions during thus young gc. In that case,
|
|
495 |
// the card will not be scanned for younger refs. The presence
|
|
496 |
// of newly promoted objects on the card will then result in
|
|
497 |
// its keeping the value cur_younger_gen_and_prev_non_clean
|
|
498 |
// value, which we have dealt with in Case 3 here. [End Case 3b]
|
|
499 |
// [End Case 3]
|
|
500 |
//
|
|
501 |
// (Please refer to the code in the helper class
|
|
502 |
// ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
|
|
503 |
//
|
|
504 |
// The informal arguments above can be tightened into a formal
|
|
505 |
// correctness proof and it behooves us to write up such a proof,
|
|
506 |
// or to use model checking to prove that there are no lingering
|
|
507 |
// concerns.
|
|
508 |
//
|
|
509 |
// Clearly because of Case 3b one cannot bound the time for
|
|
510 |
// which a card will retain what we have called a "stale" value.
|
|
511 |
// However, one can obtain a Loose upper bound on the redundant
|
|
512 |
// work as a result of such stale values. Note first that any
|
|
513 |
// time a stale card lies in the occupied part of the space at
|
|
514 |
// the start of the collection, it is scanned by younger refs
|
|
515 |
// code and we can define a rank function on card values that
|
|
516 |
// declines when this is so. Note also that when a card does not
|
|
517 |
// lie in the occupied part of the space at the beginning of a
|
|
518 |
// young collection, its rank can either decline or stay unchanged.
|
|
519 |
// In this case, no extra work is done in terms of redundant
|
|
520 |
// younger refs scanning of that card.
|
|
521 |
// Then, the case analysis above reveals that, in the worst case,
|
|
522 |
// any such stale card will be scanned unnecessarily at most twice.
|
|
523 |
//
|
|
524 |
// It is nonethelss advisable to try and get rid of some of this
|
|
525 |
// redundant work in a subsequent (low priority) re-design of
|
|
526 |
// the card-scanning code, if only to simplify the underlying
|
|
527 |
// state machine analysis/proof. ysr 1/28/2002. XXX
|
|
528 |
cur_entry++;
|
|
529 |
}
|
|
530 |
}
|
|
531 |
}
|
|
532 |
|
|
533 |
void CardTableRS::verify() {
|
|
534 |
// At present, we only know how to verify the card table RS for
|
|
535 |
// generational heaps.
|
|
536 |
VerifyCTGenClosure blk(this);
|
|
537 |
CollectedHeap* ch = Universe::heap();
|
|
538 |
// We will do the perm-gen portion of the card table, too.
|
|
539 |
Generation* pg = SharedHeap::heap()->perm_gen();
|
|
540 |
HeapWord* pg_boundary = pg->reserved().start();
|
|
541 |
|
|
542 |
if (ch->kind() == CollectedHeap::GenCollectedHeap) {
|
|
543 |
GenCollectedHeap::heap()->generation_iterate(&blk, false);
|
|
544 |
_ct_bs.verify();
|
|
545 |
|
|
546 |
// If the old gen collections also collect perm, then we are only
|
|
547 |
// interested in perm-to-young pointers, not perm-to-old pointers.
|
|
548 |
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
|
549 |
CollectorPolicy* cp = gch->collector_policy();
|
|
550 |
if (cp->is_mark_sweep_policy() || cp->is_concurrent_mark_sweep_policy()) {
|
|
551 |
pg_boundary = gch->get_gen(1)->reserved().start();
|
|
552 |
}
|
|
553 |
}
|
|
554 |
VerifyCTSpaceClosure perm_space_blk(this, pg_boundary);
|
|
555 |
SharedHeap::heap()->perm_gen()->space_iterate(&perm_space_blk, true);
|
|
556 |
}
|
|
557 |
|
|
558 |
|
|
559 |
void CardTableRS::verify_empty(MemRegion mr) {
|
|
560 |
if (!mr.is_empty()) {
|
|
561 |
jbyte* cur_entry = byte_for(mr.start());
|
|
562 |
jbyte* limit = byte_after(mr.last());
|
|
563 |
for (;cur_entry < limit; cur_entry++) {
|
|
564 |
guarantee(*cur_entry == CardTableModRefBS::clean_card,
|
|
565 |
"Unexpected dirty card found");
|
|
566 |
}
|
|
567 |
}
|
|
568 |
}
|