1
|
1 |
/*
|
|
2 |
* Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// This kind of "BarrierSet" allows a "CollectedHeap" to detect and
|
|
26 |
// enumerate ref fields that have been modified (since the last
|
|
27 |
// enumeration.)
|
|
28 |
|
|
29 |
# include "incls/_precompiled.incl"
|
|
30 |
# include "incls/_cardTableModRefBS.cpp.incl"
|
|
31 |
|
|
32 |
size_t CardTableModRefBS::cards_required(size_t covered_words)
|
|
33 |
{
|
|
34 |
// Add one for a guard card, used to detect errors.
|
|
35 |
const size_t words = align_size_up(covered_words, card_size_in_words);
|
|
36 |
return words / card_size_in_words + 1;
|
|
37 |
}
|
|
38 |
|
|
39 |
size_t CardTableModRefBS::compute_byte_map_size()
|
|
40 |
{
|
|
41 |
assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
|
|
42 |
"unitialized, check declaration order");
|
|
43 |
assert(_page_size != 0, "unitialized, check declaration order");
|
|
44 |
const size_t granularity = os::vm_allocation_granularity();
|
|
45 |
return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
|
|
46 |
}
|
|
47 |
|
|
48 |
CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
|
|
49 |
int max_covered_regions):
|
|
50 |
ModRefBarrierSet(max_covered_regions),
|
|
51 |
_whole_heap(whole_heap),
|
|
52 |
_guard_index(cards_required(whole_heap.word_size()) - 1),
|
|
53 |
_last_valid_index(_guard_index - 1),
|
194
|
54 |
_page_size(os::vm_page_size()),
|
1
|
55 |
_byte_map_size(compute_byte_map_size())
|
|
56 |
{
|
|
57 |
_kind = BarrierSet::CardTableModRef;
|
|
58 |
|
|
59 |
HeapWord* low_bound = _whole_heap.start();
|
|
60 |
HeapWord* high_bound = _whole_heap.end();
|
|
61 |
assert((uintptr_t(low_bound) & (card_size - 1)) == 0, "heap must start at card boundary");
|
|
62 |
assert((uintptr_t(high_bound) & (card_size - 1)) == 0, "heap must end at card boundary");
|
|
63 |
|
|
64 |
assert(card_size <= 512, "card_size must be less than 512"); // why?
|
|
65 |
|
|
66 |
_covered = new MemRegion[max_covered_regions];
|
|
67 |
_committed = new MemRegion[max_covered_regions];
|
|
68 |
if (_covered == NULL || _committed == NULL)
|
|
69 |
vm_exit_during_initialization("couldn't alloc card table covered region set.");
|
|
70 |
int i;
|
|
71 |
for (i = 0; i < max_covered_regions; i++) {
|
|
72 |
_covered[i].set_word_size(0);
|
|
73 |
_committed[i].set_word_size(0);
|
|
74 |
}
|
|
75 |
_cur_covered_regions = 0;
|
|
76 |
|
|
77 |
const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
|
|
78 |
MAX2(_page_size, (size_t) os::vm_allocation_granularity());
|
|
79 |
ReservedSpace heap_rs(_byte_map_size, rs_align, false);
|
|
80 |
os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
|
|
81 |
_page_size, heap_rs.base(), heap_rs.size());
|
|
82 |
if (!heap_rs.is_reserved()) {
|
|
83 |
vm_exit_during_initialization("Could not reserve enough space for the "
|
|
84 |
"card marking array");
|
|
85 |
}
|
|
86 |
|
|
87 |
// The assember store_check code will do an unsigned shift of the oop,
|
|
88 |
// then add it to byte_map_base, i.e.
|
|
89 |
//
|
|
90 |
// _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
|
|
91 |
_byte_map = (jbyte*) heap_rs.base();
|
|
92 |
byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
|
|
93 |
assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
|
|
94 |
assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
|
|
95 |
|
|
96 |
jbyte* guard_card = &_byte_map[_guard_index];
|
|
97 |
uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
|
|
98 |
_guard_region = MemRegion((HeapWord*)guard_page, _page_size);
|
|
99 |
if (!os::commit_memory((char*)guard_page, _page_size, _page_size)) {
|
|
100 |
// Do better than this for Merlin
|
|
101 |
vm_exit_out_of_memory(_page_size, "card table last card");
|
|
102 |
}
|
|
103 |
*guard_card = last_card;
|
|
104 |
|
|
105 |
_lowest_non_clean =
|
|
106 |
NEW_C_HEAP_ARRAY(CardArr, max_covered_regions);
|
|
107 |
_lowest_non_clean_chunk_size =
|
|
108 |
NEW_C_HEAP_ARRAY(size_t, max_covered_regions);
|
|
109 |
_lowest_non_clean_base_chunk_index =
|
|
110 |
NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions);
|
|
111 |
_last_LNC_resizing_collection =
|
|
112 |
NEW_C_HEAP_ARRAY(int, max_covered_regions);
|
|
113 |
if (_lowest_non_clean == NULL
|
|
114 |
|| _lowest_non_clean_chunk_size == NULL
|
|
115 |
|| _lowest_non_clean_base_chunk_index == NULL
|
|
116 |
|| _last_LNC_resizing_collection == NULL)
|
|
117 |
vm_exit_during_initialization("couldn't allocate an LNC array.");
|
|
118 |
for (i = 0; i < max_covered_regions; i++) {
|
|
119 |
_lowest_non_clean[i] = NULL;
|
|
120 |
_lowest_non_clean_chunk_size[i] = 0;
|
|
121 |
_last_LNC_resizing_collection[i] = -1;
|
|
122 |
}
|
|
123 |
|
|
124 |
if (TraceCardTableModRefBS) {
|
|
125 |
gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
|
|
126 |
gclog_or_tty->print_cr(" "
|
|
127 |
" &_byte_map[0]: " INTPTR_FORMAT
|
|
128 |
" &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
|
|
129 |
&_byte_map[0],
|
|
130 |
&_byte_map[_last_valid_index]);
|
|
131 |
gclog_or_tty->print_cr(" "
|
|
132 |
" byte_map_base: " INTPTR_FORMAT,
|
|
133 |
byte_map_base);
|
|
134 |
}
|
|
135 |
}
|
|
136 |
|
|
137 |
int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
|
|
138 |
int i;
|
|
139 |
for (i = 0; i < _cur_covered_regions; i++) {
|
|
140 |
if (_covered[i].start() == base) return i;
|
|
141 |
if (_covered[i].start() > base) break;
|
|
142 |
}
|
|
143 |
// If we didn't find it, create a new one.
|
|
144 |
assert(_cur_covered_regions < _max_covered_regions,
|
|
145 |
"too many covered regions");
|
|
146 |
// Move the ones above up, to maintain sorted order.
|
|
147 |
for (int j = _cur_covered_regions; j > i; j--) {
|
|
148 |
_covered[j] = _covered[j-1];
|
|
149 |
_committed[j] = _committed[j-1];
|
|
150 |
}
|
|
151 |
int res = i;
|
|
152 |
_cur_covered_regions++;
|
|
153 |
_covered[res].set_start(base);
|
|
154 |
_covered[res].set_word_size(0);
|
|
155 |
jbyte* ct_start = byte_for(base);
|
|
156 |
uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
|
|
157 |
_committed[res].set_start((HeapWord*)ct_start_aligned);
|
|
158 |
_committed[res].set_word_size(0);
|
|
159 |
return res;
|
|
160 |
}
|
|
161 |
|
|
162 |
int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
|
|
163 |
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
164 |
if (_covered[i].contains(addr)) {
|
|
165 |
return i;
|
|
166 |
}
|
|
167 |
}
|
|
168 |
assert(0, "address outside of heap?");
|
|
169 |
return -1;
|
|
170 |
}
|
|
171 |
|
|
172 |
HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
|
|
173 |
HeapWord* max_end = NULL;
|
|
174 |
for (int j = 0; j < ind; j++) {
|
|
175 |
HeapWord* this_end = _committed[j].end();
|
|
176 |
if (this_end > max_end) max_end = this_end;
|
|
177 |
}
|
|
178 |
return max_end;
|
|
179 |
}
|
|
180 |
|
|
181 |
MemRegion CardTableModRefBS::committed_unique_to_self(int self,
|
|
182 |
MemRegion mr) const {
|
|
183 |
MemRegion result = mr;
|
|
184 |
for (int r = 0; r < _cur_covered_regions; r += 1) {
|
|
185 |
if (r != self) {
|
|
186 |
result = result.minus(_committed[r]);
|
|
187 |
}
|
|
188 |
}
|
|
189 |
// Never include the guard page.
|
|
190 |
result = result.minus(_guard_region);
|
|
191 |
return result;
|
|
192 |
}
|
|
193 |
|
|
194 |
void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
|
|
195 |
// We don't change the start of a region, only the end.
|
|
196 |
assert(_whole_heap.contains(new_region),
|
|
197 |
"attempt to cover area not in reserved area");
|
|
198 |
debug_only(verify_guard();)
|
|
199 |
int ind = find_covering_region_by_base(new_region.start());
|
|
200 |
MemRegion old_region = _covered[ind];
|
|
201 |
assert(old_region.start() == new_region.start(), "just checking");
|
|
202 |
if (new_region.word_size() != old_region.word_size()) {
|
|
203 |
// Commit new or uncommit old pages, if necessary.
|
|
204 |
MemRegion cur_committed = _committed[ind];
|
|
205 |
// Extend the end of this _commited region
|
|
206 |
// to cover the end of any lower _committed regions.
|
|
207 |
// This forms overlapping regions, but never interior regions.
|
|
208 |
HeapWord* max_prev_end = largest_prev_committed_end(ind);
|
|
209 |
if (max_prev_end > cur_committed.end()) {
|
|
210 |
cur_committed.set_end(max_prev_end);
|
|
211 |
}
|
|
212 |
// Align the end up to a page size (starts are already aligned).
|
|
213 |
jbyte* new_end = byte_after(new_region.last());
|
|
214 |
HeapWord* new_end_aligned =
|
|
215 |
(HeapWord*)align_size_up((uintptr_t)new_end, _page_size);
|
|
216 |
assert(new_end_aligned >= (HeapWord*) new_end,
|
|
217 |
"align up, but less");
|
|
218 |
// The guard page is always committed and should not be committed over.
|
|
219 |
HeapWord* new_end_for_commit = MIN2(new_end_aligned, _guard_region.start());
|
|
220 |
if (new_end_for_commit > cur_committed.end()) {
|
|
221 |
// Must commit new pages.
|
|
222 |
MemRegion new_committed =
|
|
223 |
MemRegion(cur_committed.end(), new_end_for_commit);
|
|
224 |
|
|
225 |
assert(!new_committed.is_empty(), "Region should not be empty here");
|
|
226 |
if (!os::commit_memory((char*)new_committed.start(),
|
|
227 |
new_committed.byte_size(), _page_size)) {
|
|
228 |
// Do better than this for Merlin
|
|
229 |
vm_exit_out_of_memory(new_committed.byte_size(),
|
|
230 |
"card table expansion");
|
|
231 |
}
|
|
232 |
// Use new_end_aligned (as opposed to new_end_for_commit) because
|
|
233 |
// the cur_committed region may include the guard region.
|
|
234 |
} else if (new_end_aligned < cur_committed.end()) {
|
|
235 |
// Must uncommit pages.
|
|
236 |
MemRegion uncommit_region =
|
|
237 |
committed_unique_to_self(ind, MemRegion(new_end_aligned,
|
|
238 |
cur_committed.end()));
|
|
239 |
if (!uncommit_region.is_empty()) {
|
|
240 |
if (!os::uncommit_memory((char*)uncommit_region.start(),
|
|
241 |
uncommit_region.byte_size())) {
|
|
242 |
// Do better than this for Merlin
|
|
243 |
vm_exit_out_of_memory(uncommit_region.byte_size(),
|
|
244 |
"card table contraction");
|
|
245 |
}
|
|
246 |
}
|
|
247 |
}
|
|
248 |
// In any case, we can reset the end of the current committed entry.
|
|
249 |
_committed[ind].set_end(new_end_aligned);
|
|
250 |
|
|
251 |
// The default of 0 is not necessarily clean cards.
|
|
252 |
jbyte* entry;
|
|
253 |
if (old_region.last() < _whole_heap.start()) {
|
|
254 |
entry = byte_for(_whole_heap.start());
|
|
255 |
} else {
|
|
256 |
entry = byte_after(old_region.last());
|
|
257 |
}
|
|
258 |
assert(index_for(new_region.last()) < (int) _guard_index,
|
|
259 |
"The guard card will be overwritten");
|
|
260 |
jbyte* end = byte_after(new_region.last());
|
|
261 |
// do nothing if we resized downward.
|
|
262 |
if (entry < end) {
|
|
263 |
memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
|
|
264 |
}
|
|
265 |
}
|
|
266 |
// In any case, the covered size changes.
|
|
267 |
_covered[ind].set_word_size(new_region.word_size());
|
|
268 |
if (TraceCardTableModRefBS) {
|
|
269 |
gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
|
|
270 |
gclog_or_tty->print_cr(" "
|
|
271 |
" _covered[%d].start(): " INTPTR_FORMAT
|
|
272 |
" _covered[%d].last(): " INTPTR_FORMAT,
|
|
273 |
ind, _covered[ind].start(),
|
|
274 |
ind, _covered[ind].last());
|
|
275 |
gclog_or_tty->print_cr(" "
|
|
276 |
" _committed[%d].start(): " INTPTR_FORMAT
|
|
277 |
" _committed[%d].last(): " INTPTR_FORMAT,
|
|
278 |
ind, _committed[ind].start(),
|
|
279 |
ind, _committed[ind].last());
|
|
280 |
gclog_or_tty->print_cr(" "
|
|
281 |
" byte_for(start): " INTPTR_FORMAT
|
|
282 |
" byte_for(last): " INTPTR_FORMAT,
|
|
283 |
byte_for(_covered[ind].start()),
|
|
284 |
byte_for(_covered[ind].last()));
|
|
285 |
gclog_or_tty->print_cr(" "
|
|
286 |
" addr_for(start): " INTPTR_FORMAT
|
|
287 |
" addr_for(last): " INTPTR_FORMAT,
|
|
288 |
addr_for((jbyte*) _committed[ind].start()),
|
|
289 |
addr_for((jbyte*) _committed[ind].last()));
|
|
290 |
}
|
|
291 |
debug_only(verify_guard();)
|
|
292 |
}
|
|
293 |
|
|
294 |
// Note that these versions are precise! The scanning code has to handle the
|
|
295 |
// fact that the write barrier may be either precise or imprecise.
|
|
296 |
|
|
297 |
void CardTableModRefBS::write_ref_field_work(oop* field, oop newVal) {
|
|
298 |
inline_write_ref_field(field, newVal);
|
|
299 |
}
|
|
300 |
|
|
301 |
|
|
302 |
void CardTableModRefBS::non_clean_card_iterate(Space* sp,
|
|
303 |
MemRegion mr,
|
|
304 |
DirtyCardToOopClosure* dcto_cl,
|
|
305 |
MemRegionClosure* cl,
|
|
306 |
bool clear) {
|
|
307 |
if (!mr.is_empty()) {
|
|
308 |
int n_threads = SharedHeap::heap()->n_par_threads();
|
|
309 |
if (n_threads > 0) {
|
|
310 |
#ifndef SERIALGC
|
|
311 |
par_non_clean_card_iterate_work(sp, mr, dcto_cl, cl, clear, n_threads);
|
|
312 |
#else // SERIALGC
|
|
313 |
fatal("Parallel gc not supported here.");
|
|
314 |
#endif // SERIALGC
|
|
315 |
} else {
|
|
316 |
non_clean_card_iterate_work(mr, cl, clear);
|
|
317 |
}
|
|
318 |
}
|
|
319 |
}
|
|
320 |
|
|
321 |
// NOTE: For this to work correctly, it is important that
|
|
322 |
// we look for non-clean cards below (so as to catch those
|
|
323 |
// marked precleaned), rather than look explicitly for dirty
|
|
324 |
// cards (and miss those marked precleaned). In that sense,
|
|
325 |
// the name precleaned is currently somewhat of a misnomer.
|
|
326 |
void CardTableModRefBS::non_clean_card_iterate_work(MemRegion mr,
|
|
327 |
MemRegionClosure* cl,
|
|
328 |
bool clear) {
|
|
329 |
// Figure out whether we have to worry about parallelism.
|
|
330 |
bool is_par = (SharedHeap::heap()->n_par_threads() > 1);
|
|
331 |
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
332 |
MemRegion mri = mr.intersection(_covered[i]);
|
|
333 |
if (mri.word_size() > 0) {
|
|
334 |
jbyte* cur_entry = byte_for(mri.last());
|
|
335 |
jbyte* limit = byte_for(mri.start());
|
|
336 |
while (cur_entry >= limit) {
|
|
337 |
jbyte* next_entry = cur_entry - 1;
|
|
338 |
if (*cur_entry != clean_card) {
|
|
339 |
size_t non_clean_cards = 1;
|
|
340 |
// Should the next card be included in this range of dirty cards.
|
|
341 |
while (next_entry >= limit && *next_entry != clean_card) {
|
|
342 |
non_clean_cards++;
|
|
343 |
cur_entry = next_entry;
|
|
344 |
next_entry--;
|
|
345 |
}
|
|
346 |
// The memory region may not be on a card boundary. So that
|
|
347 |
// objects beyond the end of the region are not processed, make
|
|
348 |
// cur_cards precise with regard to the end of the memory region.
|
|
349 |
MemRegion cur_cards(addr_for(cur_entry),
|
|
350 |
non_clean_cards * card_size_in_words);
|
|
351 |
MemRegion dirty_region = cur_cards.intersection(mri);
|
|
352 |
if (clear) {
|
|
353 |
for (size_t i = 0; i < non_clean_cards; i++) {
|
|
354 |
// Clean the dirty cards (but leave the other non-clean
|
|
355 |
// alone.) If parallel, do the cleaning atomically.
|
|
356 |
jbyte cur_entry_val = cur_entry[i];
|
|
357 |
if (card_is_dirty_wrt_gen_iter(cur_entry_val)) {
|
|
358 |
if (is_par) {
|
|
359 |
jbyte res = Atomic::cmpxchg(clean_card, &cur_entry[i], cur_entry_val);
|
|
360 |
assert(res != clean_card,
|
|
361 |
"Dirty card mysteriously cleaned");
|
|
362 |
} else {
|
|
363 |
cur_entry[i] = clean_card;
|
|
364 |
}
|
|
365 |
}
|
|
366 |
}
|
|
367 |
}
|
|
368 |
cl->do_MemRegion(dirty_region);
|
|
369 |
}
|
|
370 |
cur_entry = next_entry;
|
|
371 |
}
|
|
372 |
}
|
|
373 |
}
|
|
374 |
}
|
|
375 |
|
|
376 |
void CardTableModRefBS::mod_oop_in_space_iterate(Space* sp,
|
|
377 |
OopClosure* cl,
|
|
378 |
bool clear,
|
|
379 |
bool before_save_marks) {
|
|
380 |
// Note that dcto_cl is resource-allocated, so there is no
|
|
381 |
// corresponding "delete".
|
|
382 |
DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision());
|
|
383 |
MemRegion used_mr;
|
|
384 |
if (before_save_marks) {
|
|
385 |
used_mr = sp->used_region_at_save_marks();
|
|
386 |
} else {
|
|
387 |
used_mr = sp->used_region();
|
|
388 |
}
|
|
389 |
non_clean_card_iterate(sp, used_mr, dcto_cl, dcto_cl, clear);
|
|
390 |
}
|
|
391 |
|
|
392 |
void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
|
|
393 |
jbyte* cur = byte_for(mr.start());
|
|
394 |
jbyte* last = byte_after(mr.last());
|
|
395 |
while (cur < last) {
|
|
396 |
*cur = dirty_card;
|
|
397 |
cur++;
|
|
398 |
}
|
|
399 |
}
|
|
400 |
|
|
401 |
void CardTableModRefBS::invalidate(MemRegion mr) {
|
|
402 |
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
403 |
MemRegion mri = mr.intersection(_covered[i]);
|
|
404 |
if (!mri.is_empty()) dirty_MemRegion(mri);
|
|
405 |
}
|
|
406 |
}
|
|
407 |
|
|
408 |
void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
|
|
409 |
// Be conservative: only clean cards entirely contained within the
|
|
410 |
// region.
|
|
411 |
jbyte* cur;
|
|
412 |
if (mr.start() == _whole_heap.start()) {
|
|
413 |
cur = byte_for(mr.start());
|
|
414 |
} else {
|
|
415 |
assert(mr.start() > _whole_heap.start(), "mr is not covered.");
|
|
416 |
cur = byte_after(mr.start() - 1);
|
|
417 |
}
|
|
418 |
jbyte* last = byte_after(mr.last());
|
|
419 |
memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
|
|
420 |
}
|
|
421 |
|
|
422 |
void CardTableModRefBS::clear(MemRegion mr) {
|
|
423 |
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
424 |
MemRegion mri = mr.intersection(_covered[i]);
|
|
425 |
if (!mri.is_empty()) clear_MemRegion(mri);
|
|
426 |
}
|
|
427 |
}
|
|
428 |
|
|
429 |
// NOTES:
|
|
430 |
// (1) Unlike mod_oop_in_space_iterate() above, dirty_card_iterate()
|
|
431 |
// iterates over dirty cards ranges in increasing address order.
|
|
432 |
// (2) Unlike, e.g., dirty_card_range_after_preclean() below,
|
|
433 |
// this method does not make the dirty cards prelceaned.
|
|
434 |
void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
|
|
435 |
MemRegionClosure* cl) {
|
|
436 |
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
437 |
MemRegion mri = mr.intersection(_covered[i]);
|
|
438 |
if (!mri.is_empty()) {
|
|
439 |
jbyte *cur_entry, *next_entry, *limit;
|
|
440 |
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
|
441 |
cur_entry <= limit;
|
|
442 |
cur_entry = next_entry) {
|
|
443 |
next_entry = cur_entry + 1;
|
|
444 |
if (*cur_entry == dirty_card) {
|
|
445 |
size_t dirty_cards;
|
|
446 |
// Accumulate maximal dirty card range, starting at cur_entry
|
|
447 |
for (dirty_cards = 1;
|
|
448 |
next_entry <= limit && *next_entry == dirty_card;
|
|
449 |
dirty_cards++, next_entry++);
|
|
450 |
MemRegion cur_cards(addr_for(cur_entry),
|
|
451 |
dirty_cards*card_size_in_words);
|
|
452 |
cl->do_MemRegion(cur_cards);
|
|
453 |
}
|
|
454 |
}
|
|
455 |
}
|
|
456 |
}
|
|
457 |
}
|
|
458 |
|
|
459 |
MemRegion CardTableModRefBS::dirty_card_range_after_preclean(MemRegion mr) {
|
|
460 |
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
461 |
MemRegion mri = mr.intersection(_covered[i]);
|
|
462 |
if (!mri.is_empty()) {
|
|
463 |
jbyte* cur_entry, *next_entry, *limit;
|
|
464 |
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
|
465 |
cur_entry <= limit;
|
|
466 |
cur_entry = next_entry) {
|
|
467 |
next_entry = cur_entry + 1;
|
|
468 |
if (*cur_entry == dirty_card) {
|
|
469 |
size_t dirty_cards;
|
|
470 |
// Accumulate maximal dirty card range, starting at cur_entry
|
|
471 |
for (dirty_cards = 1;
|
|
472 |
next_entry <= limit && *next_entry == dirty_card;
|
|
473 |
dirty_cards++, next_entry++);
|
|
474 |
MemRegion cur_cards(addr_for(cur_entry),
|
|
475 |
dirty_cards*card_size_in_words);
|
|
476 |
for (size_t i = 0; i < dirty_cards; i++) {
|
|
477 |
cur_entry[i] = precleaned_card;
|
|
478 |
}
|
|
479 |
return cur_cards;
|
|
480 |
}
|
|
481 |
}
|
|
482 |
}
|
|
483 |
}
|
|
484 |
return MemRegion(mr.end(), mr.end());
|
|
485 |
}
|
|
486 |
|
|
487 |
// Set all the dirty cards in the given region to "precleaned" state.
|
|
488 |
void CardTableModRefBS::preclean_dirty_cards(MemRegion mr) {
|
|
489 |
for (int i = 0; i < _cur_covered_regions; i++) {
|
|
490 |
MemRegion mri = mr.intersection(_covered[i]);
|
|
491 |
if (!mri.is_empty()) {
|
|
492 |
jbyte *cur_entry, *limit;
|
|
493 |
for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
|
|
494 |
cur_entry <= limit;
|
|
495 |
cur_entry++) {
|
|
496 |
if (*cur_entry == dirty_card) {
|
|
497 |
*cur_entry = precleaned_card;
|
|
498 |
}
|
|
499 |
}
|
|
500 |
}
|
|
501 |
}
|
|
502 |
}
|
|
503 |
|
|
504 |
uintx CardTableModRefBS::ct_max_alignment_constraint() {
|
|
505 |
return card_size * os::vm_page_size();
|
|
506 |
}
|
|
507 |
|
|
508 |
void CardTableModRefBS::verify_guard() {
|
|
509 |
// For product build verification
|
|
510 |
guarantee(_byte_map[_guard_index] == last_card,
|
|
511 |
"card table guard has been modified");
|
|
512 |
}
|
|
513 |
|
|
514 |
void CardTableModRefBS::verify() {
|
|
515 |
verify_guard();
|
|
516 |
}
|
|
517 |
|
|
518 |
#ifndef PRODUCT
|
|
519 |
class GuaranteeNotModClosure: public MemRegionClosure {
|
|
520 |
CardTableModRefBS* _ct;
|
|
521 |
public:
|
|
522 |
GuaranteeNotModClosure(CardTableModRefBS* ct) : _ct(ct) {}
|
|
523 |
void do_MemRegion(MemRegion mr) {
|
|
524 |
jbyte* entry = _ct->byte_for(mr.start());
|
|
525 |
guarantee(*entry != CardTableModRefBS::clean_card,
|
|
526 |
"Dirty card in region that should be clean");
|
|
527 |
}
|
|
528 |
};
|
|
529 |
|
|
530 |
void CardTableModRefBS::verify_clean_region(MemRegion mr) {
|
|
531 |
GuaranteeNotModClosure blk(this);
|
|
532 |
non_clean_card_iterate_work(mr, &blk, false);
|
|
533 |
}
|
|
534 |
#endif
|
|
535 |
|
|
536 |
bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
|
|
537 |
return
|
|
538 |
CardTableModRefBS::card_will_be_scanned(cv) ||
|
|
539 |
_rs->is_prev_nonclean_card_val(cv);
|
|
540 |
};
|
|
541 |
|
|
542 |
bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
|
|
543 |
return
|
|
544 |
cv != clean_card &&
|
|
545 |
(CardTableModRefBS::card_may_have_been_dirty(cv) ||
|
|
546 |
CardTableRS::youngergen_may_have_been_dirty(cv));
|
|
547 |
};
|