1
|
1 |
/*
|
|
2 |
* Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// The CollectedHeap type requires subtypes to implement a method
|
|
26 |
// "block_start". For some subtypes, notably generational
|
|
27 |
// systems using card-table-based write barriers, the efficiency of this
|
|
28 |
// operation may be important. Implementations of the "BlockOffsetArray"
|
|
29 |
// class may be useful in providing such efficient implementations.
|
|
30 |
//
|
|
31 |
// BlockOffsetTable (abstract)
|
|
32 |
// - BlockOffsetArray (abstract)
|
|
33 |
// - BlockOffsetArrayNonContigSpace
|
|
34 |
// - BlockOffsetArrayContigSpace
|
|
35 |
//
|
|
36 |
|
|
37 |
class ContiguousSpace;
|
|
38 |
class SerializeOopClosure;
|
|
39 |
|
|
40 |
//////////////////////////////////////////////////////////////////////////
|
|
41 |
// The BlockOffsetTable "interface"
|
|
42 |
//////////////////////////////////////////////////////////////////////////
|
|
43 |
class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
|
|
44 |
friend class VMStructs;
|
|
45 |
protected:
|
|
46 |
// These members describe the region covered by the table.
|
|
47 |
|
|
48 |
// The space this table is covering.
|
|
49 |
HeapWord* _bottom; // == reserved.start
|
|
50 |
HeapWord* _end; // End of currently allocated region.
|
|
51 |
|
|
52 |
public:
|
|
53 |
// Initialize the table to cover the given space.
|
|
54 |
// The contents of the initial table are undefined.
|
|
55 |
BlockOffsetTable(HeapWord* bottom, HeapWord* end):
|
|
56 |
_bottom(bottom), _end(end) {
|
|
57 |
assert(_bottom <= _end, "arguments out of order");
|
|
58 |
}
|
|
59 |
|
|
60 |
// Note that the committed size of the covered space may have changed,
|
|
61 |
// so the table size might also wish to change.
|
|
62 |
virtual void resize(size_t new_word_size) = 0;
|
|
63 |
|
|
64 |
virtual void set_bottom(HeapWord* new_bottom) {
|
|
65 |
assert(new_bottom <= _end, "new_bottom > _end");
|
|
66 |
_bottom = new_bottom;
|
|
67 |
resize(pointer_delta(_end, _bottom));
|
|
68 |
}
|
|
69 |
|
|
70 |
// Requires "addr" to be contained by a block, and returns the address of
|
|
71 |
// the start of that block.
|
|
72 |
virtual HeapWord* block_start_unsafe(const void* addr) const = 0;
|
|
73 |
|
|
74 |
// Returns the address of the start of the block containing "addr", or
|
|
75 |
// else "null" if it is covered by no block.
|
|
76 |
HeapWord* block_start(const void* addr) const;
|
|
77 |
};
|
|
78 |
|
|
79 |
//////////////////////////////////////////////////////////////////////////
|
|
80 |
// One implementation of "BlockOffsetTable," the BlockOffsetArray,
|
|
81 |
// divides the covered region into "N"-word subregions (where
|
|
82 |
// "N" = 2^"LogN". An array with an entry for each such subregion
|
|
83 |
// indicates how far back one must go to find the start of the
|
|
84 |
// chunk that includes the first word of the subregion.
|
|
85 |
//
|
|
86 |
// Each BlockOffsetArray is owned by a Space. However, the actual array
|
|
87 |
// may be shared by several BlockOffsetArrays; this is useful
|
|
88 |
// when a single resizable area (such as a generation) is divided up into
|
|
89 |
// several spaces in which contiguous allocation takes place. (Consider,
|
|
90 |
// for example, the garbage-first generation.)
|
|
91 |
|
|
92 |
// Here is the shared array type.
|
|
93 |
//////////////////////////////////////////////////////////////////////////
|
|
94 |
// BlockOffsetSharedArray
|
|
95 |
//////////////////////////////////////////////////////////////////////////
|
|
96 |
class BlockOffsetSharedArray: public CHeapObj {
|
|
97 |
friend class BlockOffsetArray;
|
|
98 |
friend class BlockOffsetArrayNonContigSpace;
|
|
99 |
friend class BlockOffsetArrayContigSpace;
|
|
100 |
friend class VMStructs;
|
|
101 |
|
|
102 |
private:
|
|
103 |
enum SomePrivateConstants {
|
|
104 |
LogN = 9,
|
|
105 |
LogN_words = LogN - LogHeapWordSize,
|
|
106 |
N_bytes = 1 << LogN,
|
|
107 |
N_words = 1 << LogN_words
|
|
108 |
};
|
|
109 |
|
|
110 |
// The reserved region covered by the shared array.
|
|
111 |
MemRegion _reserved;
|
|
112 |
|
|
113 |
// End of the current committed region.
|
|
114 |
HeapWord* _end;
|
|
115 |
|
|
116 |
// Array for keeping offsets for retrieving object start fast given an
|
|
117 |
// address.
|
|
118 |
VirtualSpace _vs;
|
|
119 |
u_char* _offset_array; // byte array keeping backwards offsets
|
|
120 |
|
|
121 |
protected:
|
|
122 |
// Bounds checking accessors:
|
|
123 |
// For performance these have to devolve to array accesses in product builds.
|
|
124 |
u_char offset_array(size_t index) const {
|
|
125 |
assert(index < _vs.committed_size(), "index out of range");
|
|
126 |
return _offset_array[index];
|
|
127 |
}
|
|
128 |
void set_offset_array(size_t index, u_char offset) {
|
|
129 |
assert(index < _vs.committed_size(), "index out of range");
|
|
130 |
_offset_array[index] = offset;
|
|
131 |
}
|
|
132 |
void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
|
|
133 |
assert(index < _vs.committed_size(), "index out of range");
|
|
134 |
assert(high >= low, "addresses out of order");
|
|
135 |
assert(pointer_delta(high, low) <= N_words, "offset too large");
|
|
136 |
_offset_array[index] = (u_char)pointer_delta(high, low);
|
|
137 |
}
|
|
138 |
void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
|
|
139 |
assert(index_for(right - 1) < _vs.committed_size(),
|
|
140 |
"right address out of range");
|
|
141 |
assert(left < right, "Heap addresses out of order");
|
|
142 |
size_t num_cards = pointer_delta(right, left) >> LogN_words;
|
|
143 |
memset(&_offset_array[index_for(left)], offset, num_cards);
|
|
144 |
}
|
|
145 |
|
|
146 |
void set_offset_array(size_t left, size_t right, u_char offset) {
|
|
147 |
assert(right < _vs.committed_size(), "right address out of range");
|
|
148 |
assert(left <= right, "indexes out of order");
|
|
149 |
size_t num_cards = right - left + 1;
|
|
150 |
memset(&_offset_array[left], offset, num_cards);
|
|
151 |
}
|
|
152 |
|
|
153 |
void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
|
|
154 |
assert(index < _vs.committed_size(), "index out of range");
|
|
155 |
assert(high >= low, "addresses out of order");
|
|
156 |
assert(pointer_delta(high, low) <= N_words, "offset too large");
|
|
157 |
assert(_offset_array[index] == pointer_delta(high, low),
|
|
158 |
"Wrong offset");
|
|
159 |
}
|
|
160 |
|
|
161 |
bool is_card_boundary(HeapWord* p) const;
|
|
162 |
|
|
163 |
// Return the number of slots needed for an offset array
|
|
164 |
// that covers mem_region_words words.
|
|
165 |
// We always add an extra slot because if an object
|
|
166 |
// ends on a card boundary we put a 0 in the next
|
|
167 |
// offset array slot, so we want that slot always
|
|
168 |
// to be reserved.
|
|
169 |
|
|
170 |
size_t compute_size(size_t mem_region_words) {
|
|
171 |
size_t number_of_slots = (mem_region_words / N_words) + 1;
|
|
172 |
return ReservedSpace::allocation_align_size_up(number_of_slots);
|
|
173 |
}
|
|
174 |
|
|
175 |
public:
|
|
176 |
// Initialize the table to cover from "base" to (at least)
|
|
177 |
// "base + init_word_size". In the future, the table may be expanded
|
|
178 |
// (see "resize" below) up to the size of "_reserved" (which must be at
|
|
179 |
// least "init_word_size".) The contents of the initial table are
|
|
180 |
// undefined; it is the responsibility of the constituent
|
|
181 |
// BlockOffsetTable(s) to initialize cards.
|
|
182 |
BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
|
|
183 |
|
|
184 |
// Notes a change in the committed size of the region covered by the
|
|
185 |
// table. The "new_word_size" may not be larger than the size of the
|
|
186 |
// reserved region this table covers.
|
|
187 |
void resize(size_t new_word_size);
|
|
188 |
|
|
189 |
void set_bottom(HeapWord* new_bottom);
|
|
190 |
|
|
191 |
// Updates all the BlockOffsetArray's sharing this shared array to
|
|
192 |
// reflect the current "top"'s of their spaces.
|
|
193 |
void update_offset_arrays(); // Not yet implemented!
|
|
194 |
|
|
195 |
// Return the appropriate index into "_offset_array" for "p".
|
|
196 |
size_t index_for(const void* p) const;
|
|
197 |
|
|
198 |
// Return the address indicating the start of the region corresponding to
|
|
199 |
// "index" in "_offset_array".
|
|
200 |
HeapWord* address_for_index(size_t index) const;
|
|
201 |
|
|
202 |
// Shared space support
|
|
203 |
void serialize(SerializeOopClosure* soc, HeapWord* start, HeapWord* end);
|
|
204 |
};
|
|
205 |
|
|
206 |
//////////////////////////////////////////////////////////////////////////
|
|
207 |
// The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
|
|
208 |
//////////////////////////////////////////////////////////////////////////
|
|
209 |
class BlockOffsetArray: public BlockOffsetTable {
|
|
210 |
friend class VMStructs;
|
|
211 |
protected:
|
|
212 |
// The following enums are used by do_block_internal() below
|
|
213 |
enum Action {
|
|
214 |
Action_single, // BOT records a single block (see single_block())
|
|
215 |
Action_mark, // BOT marks the start of a block (see mark_block())
|
|
216 |
Action_check // Check that BOT records block correctly
|
|
217 |
// (see verify_single_block()).
|
|
218 |
};
|
|
219 |
|
|
220 |
enum SomePrivateConstants {
|
|
221 |
N_words = BlockOffsetSharedArray::N_words,
|
|
222 |
LogN = BlockOffsetSharedArray::LogN,
|
|
223 |
// entries "e" of at least N_words mean "go back by Base^(e-N_words)."
|
|
224 |
// All entries are less than "N_words + N_powers".
|
|
225 |
LogBase = 4,
|
|
226 |
Base = (1 << LogBase),
|
|
227 |
N_powers = 14
|
|
228 |
};
|
|
229 |
|
|
230 |
static size_t power_to_cards_back(uint i) {
|
|
231 |
return 1 << (LogBase * i);
|
|
232 |
}
|
|
233 |
static size_t power_to_words_back(uint i) {
|
|
234 |
return power_to_cards_back(i) * N_words;
|
|
235 |
}
|
|
236 |
static size_t entry_to_cards_back(u_char entry) {
|
|
237 |
assert(entry >= N_words, "Precondition");
|
|
238 |
return power_to_cards_back(entry - N_words);
|
|
239 |
}
|
|
240 |
static size_t entry_to_words_back(u_char entry) {
|
|
241 |
assert(entry >= N_words, "Precondition");
|
|
242 |
return power_to_words_back(entry - N_words);
|
|
243 |
}
|
|
244 |
|
|
245 |
// The shared array, which is shared with other BlockOffsetArray's
|
|
246 |
// corresponding to different spaces within a generation or span of
|
|
247 |
// memory.
|
|
248 |
BlockOffsetSharedArray* _array;
|
|
249 |
|
|
250 |
// The space that owns this subregion.
|
|
251 |
Space* _sp;
|
|
252 |
|
|
253 |
// If true, array entries are initialized to 0; otherwise, they are
|
|
254 |
// initialized to point backwards to the beginning of the covered region.
|
|
255 |
bool _init_to_zero;
|
|
256 |
|
|
257 |
// Sets the entries
|
|
258 |
// corresponding to the cards starting at "start" and ending at "end"
|
|
259 |
// to point back to the card before "start": the interval [start, end)
|
|
260 |
// is right-open.
|
|
261 |
void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
|
|
262 |
// Same as above, except that the args here are a card _index_ interval
|
|
263 |
// that is closed: [start_index, end_index]
|
|
264 |
void set_remainder_to_point_to_start_incl(size_t start, size_t end);
|
|
265 |
|
|
266 |
// A helper function for BOT adjustment/verification work
|
|
267 |
void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);
|
|
268 |
|
|
269 |
public:
|
|
270 |
// The space may not have its bottom and top set yet, which is why the
|
|
271 |
// region is passed as a parameter. If "init_to_zero" is true, the
|
|
272 |
// elements of the array are initialized to zero. Otherwise, they are
|
|
273 |
// initialized to point backwards to the beginning.
|
|
274 |
BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
|
|
275 |
bool init_to_zero);
|
|
276 |
|
|
277 |
// Note: this ought to be part of the constructor, but that would require
|
|
278 |
// "this" to be passed as a parameter to a member constructor for
|
|
279 |
// the containing concrete subtype of Space.
|
|
280 |
// This would be legal C++, but MS VC++ doesn't allow it.
|
|
281 |
void set_space(Space* sp) { _sp = sp; }
|
|
282 |
|
|
283 |
// Resets the covered region to the given "mr".
|
|
284 |
void set_region(MemRegion mr) {
|
|
285 |
_bottom = mr.start();
|
|
286 |
_end = mr.end();
|
|
287 |
}
|
|
288 |
|
|
289 |
// Note that the committed size of the covered space may have changed,
|
|
290 |
// so the table size might also wish to change.
|
|
291 |
virtual void resize(size_t new_word_size) {
|
|
292 |
HeapWord* new_end = _bottom + new_word_size;
|
|
293 |
if (_end < new_end && !init_to_zero()) {
|
|
294 |
// verify that the old and new boundaries are also card boundaries
|
|
295 |
assert(_array->is_card_boundary(_end),
|
|
296 |
"_end not a card boundary");
|
|
297 |
assert(_array->is_card_boundary(new_end),
|
|
298 |
"new _end would not be a card boundary");
|
|
299 |
// set all the newly added cards
|
|
300 |
_array->set_offset_array(_end, new_end, N_words);
|
|
301 |
}
|
|
302 |
_end = new_end; // update _end
|
|
303 |
}
|
|
304 |
|
|
305 |
// Adjust the BOT to show that it has a single block in the
|
|
306 |
// range [blk_start, blk_start + size). All necessary BOT
|
|
307 |
// cards are adjusted, but _unallocated_block isn't.
|
|
308 |
void single_block(HeapWord* blk_start, HeapWord* blk_end);
|
|
309 |
void single_block(HeapWord* blk, size_t size) {
|
|
310 |
single_block(blk, blk + size);
|
|
311 |
}
|
|
312 |
|
|
313 |
// When the alloc_block() call returns, the block offset table should
|
|
314 |
// have enough information such that any subsequent block_start() call
|
|
315 |
// with an argument equal to an address that is within the range
|
|
316 |
// [blk_start, blk_end) would return the value blk_start, provided
|
|
317 |
// there have been no calls in between that reset this information
|
|
318 |
// (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
|
|
319 |
// for an appropriate range covering the said interval).
|
|
320 |
// These methods expect to be called with [blk_start, blk_end)
|
|
321 |
// representing a block of memory in the heap.
|
|
322 |
virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
|
|
323 |
void alloc_block(HeapWord* blk, size_t size) {
|
|
324 |
alloc_block(blk, blk + size);
|
|
325 |
}
|
|
326 |
|
|
327 |
// If true, initialize array slots with no allocated blocks to zero.
|
|
328 |
// Otherwise, make them point back to the front.
|
|
329 |
bool init_to_zero() { return _init_to_zero; }
|
|
330 |
|
|
331 |
// Debugging
|
|
332 |
// Return the index of the last entry in the "active" region.
|
|
333 |
virtual size_t last_active_index() const = 0;
|
|
334 |
// Verify the block offset table
|
|
335 |
void verify() const;
|
|
336 |
void check_all_cards(size_t left_card, size_t right_card) const;
|
|
337 |
};
|
|
338 |
|
|
339 |
////////////////////////////////////////////////////////////////////////////
|
|
340 |
// A subtype of BlockOffsetArray that takes advantage of the fact
|
|
341 |
// that its underlying space is a NonContiguousSpace, so that some
|
|
342 |
// specialized interfaces can be made available for spaces that
|
|
343 |
// manipulate the table.
|
|
344 |
////////////////////////////////////////////////////////////////////////////
|
|
345 |
class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
|
|
346 |
friend class VMStructs;
|
|
347 |
private:
|
|
348 |
// The portion [_unallocated_block, _sp.end()) of the space that
|
|
349 |
// is a single block known not to contain any objects.
|
|
350 |
// NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
|
|
351 |
HeapWord* _unallocated_block;
|
|
352 |
|
|
353 |
public:
|
|
354 |
BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
|
|
355 |
BlockOffsetArray(array, mr, false),
|
|
356 |
_unallocated_block(_bottom) { }
|
|
357 |
|
|
358 |
// accessor
|
|
359 |
HeapWord* unallocated_block() const {
|
|
360 |
assert(BlockOffsetArrayUseUnallocatedBlock,
|
|
361 |
"_unallocated_block is not being maintained");
|
|
362 |
return _unallocated_block;
|
|
363 |
}
|
|
364 |
|
|
365 |
void set_unallocated_block(HeapWord* block) {
|
|
366 |
assert(BlockOffsetArrayUseUnallocatedBlock,
|
|
367 |
"_unallocated_block is not being maintained");
|
|
368 |
assert(block >= _bottom && block <= _end, "out of range");
|
|
369 |
_unallocated_block = block;
|
|
370 |
}
|
|
371 |
|
|
372 |
// These methods expect to be called with [blk_start, blk_end)
|
|
373 |
// representing a block of memory in the heap.
|
|
374 |
void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
|
|
375 |
void alloc_block(HeapWord* blk, size_t size) {
|
|
376 |
alloc_block(blk, blk + size);
|
|
377 |
}
|
|
378 |
|
|
379 |
// The following methods are useful and optimized for a
|
|
380 |
// non-contiguous space.
|
|
381 |
|
|
382 |
// Given a block [blk_start, blk_start + full_blk_size), and
|
|
383 |
// a left_blk_size < full_blk_size, adjust the BOT to show two
|
|
384 |
// blocks [blk_start, blk_start + left_blk_size) and
|
|
385 |
// [blk_start + left_blk_size, blk_start + full_blk_size).
|
|
386 |
// It is assumed (and verified in the non-product VM) that the
|
|
387 |
// BOT was correct for the original block.
|
|
388 |
void split_block(HeapWord* blk_start, size_t full_blk_size,
|
|
389 |
size_t left_blk_size);
|
|
390 |
|
|
391 |
// Adjust BOT to show that it has a block in the range
|
|
392 |
// [blk_start, blk_start + size). Only the first card
|
|
393 |
// of BOT is touched. It is assumed (and verified in the
|
|
394 |
// non-product VM) that the remaining cards of the block
|
|
395 |
// are correct.
|
|
396 |
void mark_block(HeapWord* blk_start, HeapWord* blk_end);
|
|
397 |
void mark_block(HeapWord* blk, size_t size) {
|
|
398 |
mark_block(blk, blk + size);
|
|
399 |
}
|
|
400 |
|
|
401 |
// Adjust _unallocated_block to indicate that a particular
|
|
402 |
// block has been newly allocated or freed. It is assumed (and
|
|
403 |
// verified in the non-product VM) that the BOT is correct for
|
|
404 |
// the given block.
|
|
405 |
void allocated(HeapWord* blk_start, HeapWord* blk_end) {
|
|
406 |
// Verify that the BOT shows [blk, blk + blk_size) to be one block.
|
|
407 |
verify_single_block(blk_start, blk_end);
|
|
408 |
if (BlockOffsetArrayUseUnallocatedBlock) {
|
|
409 |
_unallocated_block = MAX2(_unallocated_block, blk_end);
|
|
410 |
}
|
|
411 |
}
|
|
412 |
|
|
413 |
void allocated(HeapWord* blk, size_t size) {
|
|
414 |
allocated(blk, blk + size);
|
|
415 |
}
|
|
416 |
|
|
417 |
void freed(HeapWord* blk_start, HeapWord* blk_end);
|
|
418 |
void freed(HeapWord* blk, size_t size) {
|
|
419 |
freed(blk, blk + size);
|
|
420 |
}
|
|
421 |
|
|
422 |
HeapWord* block_start_unsafe(const void* addr) const;
|
|
423 |
|
|
424 |
// Requires "addr" to be the start of a card and returns the
|
|
425 |
// start of the block that contains the given address.
|
|
426 |
HeapWord* block_start_careful(const void* addr) const;
|
|
427 |
|
|
428 |
|
|
429 |
// Verification & debugging: ensure that the offset table reflects
|
|
430 |
// the fact that the block [blk_start, blk_end) or [blk, blk + size)
|
|
431 |
// is a single block of storage. NOTE: can't const this because of
|
|
432 |
// call to non-const do_block_internal() below.
|
|
433 |
void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
|
|
434 |
PRODUCT_RETURN;
|
|
435 |
void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;
|
|
436 |
|
|
437 |
// Verify that the given block is before _unallocated_block
|
|
438 |
void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
|
|
439 |
const PRODUCT_RETURN;
|
|
440 |
void verify_not_unallocated(HeapWord* blk, size_t size)
|
|
441 |
const PRODUCT_RETURN;
|
|
442 |
|
|
443 |
// Debugging support
|
|
444 |
virtual size_t last_active_index() const;
|
|
445 |
};
|
|
446 |
|
|
447 |
////////////////////////////////////////////////////////////////////////////
|
|
448 |
// A subtype of BlockOffsetArray that takes advantage of the fact
|
|
449 |
// that its underlying space is a ContiguousSpace, so that its "active"
|
|
450 |
// region can be more efficiently tracked (than for a non-contiguous space).
|
|
451 |
////////////////////////////////////////////////////////////////////////////
|
|
452 |
class BlockOffsetArrayContigSpace: public BlockOffsetArray {
|
|
453 |
friend class VMStructs;
|
|
454 |
private:
|
|
455 |
// allocation boundary at which offset array must be updated
|
|
456 |
HeapWord* _next_offset_threshold;
|
|
457 |
size_t _next_offset_index; // index corresponding to that boundary
|
|
458 |
|
|
459 |
// Work function when allocation start crosses threshold.
|
|
460 |
void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);
|
|
461 |
|
|
462 |
public:
|
|
463 |
BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
|
|
464 |
BlockOffsetArray(array, mr, true) {
|
|
465 |
_next_offset_threshold = NULL;
|
|
466 |
_next_offset_index = 0;
|
|
467 |
}
|
|
468 |
|
|
469 |
void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }
|
|
470 |
|
|
471 |
// Initialize the threshold for an empty heap.
|
|
472 |
HeapWord* initialize_threshold();
|
|
473 |
// Zero out the entry for _bottom (offset will be zero)
|
|
474 |
void zero_bottom_entry();
|
|
475 |
|
|
476 |
// Return the next threshold, the point at which the table should be
|
|
477 |
// updated.
|
|
478 |
HeapWord* threshold() const { return _next_offset_threshold; }
|
|
479 |
|
|
480 |
// In general, these methods expect to be called with
|
|
481 |
// [blk_start, blk_end) representing a block of memory in the heap.
|
|
482 |
// In this implementation, however, we are OK even if blk_start and/or
|
|
483 |
// blk_end are NULL because NULL is represented as 0, and thus
|
|
484 |
// never exceeds the "_next_offset_threshold".
|
|
485 |
void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
|
|
486 |
if (blk_end > _next_offset_threshold) {
|
|
487 |
alloc_block_work(blk_start, blk_end);
|
|
488 |
}
|
|
489 |
}
|
|
490 |
void alloc_block(HeapWord* blk, size_t size) {
|
|
491 |
alloc_block(blk, blk + size);
|
|
492 |
}
|
|
493 |
|
|
494 |
HeapWord* block_start_unsafe(const void* addr) const;
|
|
495 |
|
|
496 |
void serialize(SerializeOopClosure* soc);
|
|
497 |
|
|
498 |
// Debugging support
|
|
499 |
virtual size_t last_active_index() const;
|
|
500 |
};
|