1
|
1 |
/*
|
|
2 |
* Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// do not include precompiled header file
|
|
26 |
# include "incls/_os_solaris_x86.cpp.incl"
|
|
27 |
|
|
28 |
// put OS-includes here
|
|
29 |
# include <sys/types.h>
|
|
30 |
# include <sys/mman.h>
|
|
31 |
# include <pthread.h>
|
|
32 |
# include <signal.h>
|
|
33 |
# include <setjmp.h>
|
|
34 |
# include <errno.h>
|
|
35 |
# include <dlfcn.h>
|
|
36 |
# include <stdio.h>
|
|
37 |
# include <unistd.h>
|
|
38 |
# include <sys/resource.h>
|
|
39 |
# include <thread.h>
|
|
40 |
# include <sys/stat.h>
|
|
41 |
# include <sys/time.h>
|
|
42 |
# include <sys/filio.h>
|
|
43 |
# include <sys/utsname.h>
|
|
44 |
# include <sys/systeminfo.h>
|
|
45 |
# include <sys/socket.h>
|
|
46 |
# include <sys/trap.h>
|
|
47 |
# include <sys/lwp.h>
|
|
48 |
# include <pwd.h>
|
|
49 |
# include <poll.h>
|
|
50 |
# include <sys/lwp.h>
|
|
51 |
# include <procfs.h> // see comment in <sys/procfs.h>
|
|
52 |
|
|
53 |
#ifndef AMD64
|
|
54 |
// QQQ seems useless at this point
|
|
55 |
# define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later
|
|
56 |
#endif // AMD64
|
|
57 |
# include <sys/procfs.h> // see comment in <sys/procfs.h>
|
|
58 |
|
|
59 |
|
|
60 |
#define MAX_PATH (2 * K)
|
|
61 |
|
|
62 |
// Minimum stack size for the VM. It's easier to document a constant value
|
|
63 |
// but it's different for x86 and sparc because the page sizes are different.
|
|
64 |
#ifdef AMD64
|
|
65 |
size_t os::Solaris::min_stack_allowed = 224*K;
|
|
66 |
#define REG_SP REG_RSP
|
|
67 |
#define REG_PC REG_RIP
|
|
68 |
#define REG_FP REG_RBP
|
|
69 |
#else
|
|
70 |
size_t os::Solaris::min_stack_allowed = 64*K;
|
|
71 |
#define REG_SP UESP
|
|
72 |
#define REG_PC EIP
|
|
73 |
#define REG_FP EBP
|
|
74 |
// 4900493 counter to prevent runaway LDTR refresh attempt
|
|
75 |
|
|
76 |
static volatile int ldtr_refresh = 0;
|
|
77 |
// the libthread instruction that faults because of the stale LDTR
|
|
78 |
|
|
79 |
static const unsigned char movlfs[] = { 0x8e, 0xe0 // movl %eax,%fs
|
|
80 |
};
|
|
81 |
#endif // AMD64
|
|
82 |
|
|
83 |
char* os::non_memory_address_word() {
|
|
84 |
// Must never look like an address returned by reserve_memory,
|
|
85 |
// even in its subfields (as defined by the CPU immediate fields,
|
|
86 |
// if the CPU splits constants across multiple instructions).
|
|
87 |
return (char*) -1;
|
|
88 |
}
|
|
89 |
|
|
90 |
//
|
|
91 |
// Validate a ucontext retrieved from walking a uc_link of a ucontext.
|
|
92 |
// There are issues with libthread giving out uc_links for different threads
|
|
93 |
// on the same uc_link chain and bad or circular links.
|
|
94 |
//
|
|
95 |
bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
|
|
96 |
if (valid >= suspect ||
|
|
97 |
valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
|
|
98 |
valid->uc_stack.ss_sp != suspect->uc_stack.ss_sp ||
|
|
99 |
valid->uc_stack.ss_size != suspect->uc_stack.ss_size) {
|
|
100 |
DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
|
|
101 |
return false;
|
|
102 |
}
|
|
103 |
|
|
104 |
if (thread->is_Java_thread()) {
|
|
105 |
if (!valid_stack_address(thread, (address)suspect)) {
|
|
106 |
DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
|
|
107 |
return false;
|
|
108 |
}
|
|
109 |
if (!valid_stack_address(thread, (address) suspect->uc_mcontext.gregs[REG_SP])) {
|
|
110 |
DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
|
|
111 |
return false;
|
|
112 |
}
|
|
113 |
}
|
|
114 |
return true;
|
|
115 |
}
|
|
116 |
|
|
117 |
// We will only follow one level of uc_link since there are libthread
|
|
118 |
// issues with ucontext linking and it is better to be safe and just
|
|
119 |
// let caller retry later.
|
|
120 |
ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
|
|
121 |
ucontext_t *uc) {
|
|
122 |
|
|
123 |
ucontext_t *retuc = NULL;
|
|
124 |
|
|
125 |
if (uc != NULL) {
|
|
126 |
if (uc->uc_link == NULL) {
|
|
127 |
// cannot validate without uc_link so accept current ucontext
|
|
128 |
retuc = uc;
|
|
129 |
} else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
|
|
130 |
// first ucontext is valid so try the next one
|
|
131 |
uc = uc->uc_link;
|
|
132 |
if (uc->uc_link == NULL) {
|
|
133 |
// cannot validate without uc_link so accept current ucontext
|
|
134 |
retuc = uc;
|
|
135 |
} else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
|
|
136 |
// the ucontext one level down is also valid so return it
|
|
137 |
retuc = uc;
|
|
138 |
}
|
|
139 |
}
|
|
140 |
}
|
|
141 |
return retuc;
|
|
142 |
}
|
|
143 |
|
|
144 |
// Assumes ucontext is valid
|
|
145 |
ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
|
|
146 |
return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
|
|
147 |
}
|
|
148 |
|
|
149 |
// Assumes ucontext is valid
|
|
150 |
intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
|
|
151 |
return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
|
|
152 |
}
|
|
153 |
|
|
154 |
// Assumes ucontext is valid
|
|
155 |
intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
|
|
156 |
return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
|
|
157 |
}
|
|
158 |
|
|
159 |
// For Forte Analyzer AsyncGetCallTrace profiling support - thread
|
|
160 |
// is currently interrupted by SIGPROF.
|
|
161 |
//
|
|
162 |
// The difference between this and os::fetch_frame_from_context() is that
|
|
163 |
// here we try to skip nested signal frames.
|
|
164 |
ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
|
|
165 |
ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
|
|
166 |
|
|
167 |
assert(thread != NULL, "just checking");
|
|
168 |
assert(ret_sp != NULL, "just checking");
|
|
169 |
assert(ret_fp != NULL, "just checking");
|
|
170 |
|
|
171 |
ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
|
|
172 |
return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
|
|
173 |
}
|
|
174 |
|
|
175 |
ExtendedPC os::fetch_frame_from_context(void* ucVoid,
|
|
176 |
intptr_t** ret_sp, intptr_t** ret_fp) {
|
|
177 |
|
|
178 |
ExtendedPC epc;
|
|
179 |
ucontext_t *uc = (ucontext_t*)ucVoid;
|
|
180 |
|
|
181 |
if (uc != NULL) {
|
|
182 |
epc = os::Solaris::ucontext_get_ExtendedPC(uc);
|
|
183 |
if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
|
|
184 |
if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
|
|
185 |
} else {
|
|
186 |
// construct empty ExtendedPC for return value checking
|
|
187 |
epc = ExtendedPC(NULL);
|
|
188 |
if (ret_sp) *ret_sp = (intptr_t *)NULL;
|
|
189 |
if (ret_fp) *ret_fp = (intptr_t *)NULL;
|
|
190 |
}
|
|
191 |
|
|
192 |
return epc;
|
|
193 |
}
|
|
194 |
|
|
195 |
frame os::fetch_frame_from_context(void* ucVoid) {
|
|
196 |
intptr_t* sp;
|
|
197 |
intptr_t* fp;
|
|
198 |
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
|
|
199 |
return frame(sp, fp, epc.pc());
|
|
200 |
}
|
|
201 |
|
|
202 |
frame os::get_sender_for_C_frame(frame* fr) {
|
|
203 |
return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
|
|
204 |
}
|
|
205 |
|
|
206 |
extern "C" intptr_t *_get_previous_fp(); // in .il file.
|
|
207 |
|
|
208 |
frame os::current_frame() {
|
|
209 |
intptr_t* fp = _get_previous_fp();
|
|
210 |
frame myframe((intptr_t*)os::current_stack_pointer(),
|
|
211 |
(intptr_t*)fp,
|
|
212 |
CAST_FROM_FN_PTR(address, os::current_frame));
|
|
213 |
if (os::is_first_C_frame(&myframe)) {
|
|
214 |
// stack is not walkable
|
|
215 |
return frame(NULL, NULL, NULL);
|
|
216 |
} else {
|
|
217 |
return os::get_sender_for_C_frame(&myframe);
|
|
218 |
}
|
|
219 |
}
|
|
220 |
|
|
221 |
// This is a simple callback that just fetches a PC for an interrupted thread.
|
|
222 |
// The thread need not be suspended and the fetched PC is just a hint.
|
|
223 |
// This one is currently used for profiling the VMThread ONLY!
|
|
224 |
|
|
225 |
// Must be synchronous
|
|
226 |
void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
|
|
227 |
Thread* thread = args->thread();
|
|
228 |
ucontext_t* uc = args->ucontext();
|
|
229 |
intptr_t* sp;
|
|
230 |
|
|
231 |
assert(ProfileVM && thread->is_VM_thread(), "just checking");
|
|
232 |
|
|
233 |
ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
|
|
234 |
_addr = new_addr;
|
|
235 |
}
|
|
236 |
|
|
237 |
static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
|
|
238 |
char lwpstatusfile[PROCFILE_LENGTH];
|
|
239 |
int lwpfd, err;
|
|
240 |
|
|
241 |
if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
|
|
242 |
return (err);
|
|
243 |
if (*flags == TRS_LWPID) {
|
|
244 |
sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
|
|
245 |
*lwp);
|
|
246 |
if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
|
|
247 |
perror("thr_mutator_status: open lwpstatus");
|
|
248 |
return (EINVAL);
|
|
249 |
}
|
|
250 |
if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
|
|
251 |
sizeof (lwpstatus_t)) {
|
|
252 |
perror("thr_mutator_status: read lwpstatus");
|
|
253 |
(void) close(lwpfd);
|
|
254 |
return (EINVAL);
|
|
255 |
}
|
|
256 |
(void) close(lwpfd);
|
|
257 |
}
|
|
258 |
return (0);
|
|
259 |
}
|
|
260 |
|
|
261 |
#ifndef AMD64
|
|
262 |
|
|
263 |
// Detecting SSE support by OS
|
|
264 |
// From solaris_i486.s
|
|
265 |
extern "C" bool sse_check();
|
|
266 |
extern "C" bool sse_unavailable();
|
|
267 |
|
|
268 |
enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
|
|
269 |
static int sse_status = SSE_UNKNOWN;
|
|
270 |
|
|
271 |
|
|
272 |
static void check_for_sse_support() {
|
|
273 |
if (!VM_Version::supports_sse()) {
|
|
274 |
sse_status = SSE_NOT_SUPPORTED;
|
|
275 |
return;
|
|
276 |
}
|
|
277 |
// looking for _sse_hw in libc.so, if it does not exist or
|
|
278 |
// the value (int) is 0, OS has no support for SSE
|
|
279 |
int *sse_hwp;
|
|
280 |
void *h;
|
|
281 |
|
|
282 |
if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
|
|
283 |
//open failed, presume no support for SSE
|
|
284 |
sse_status = SSE_NOT_SUPPORTED;
|
|
285 |
return;
|
|
286 |
}
|
|
287 |
if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
|
|
288 |
sse_status = SSE_NOT_SUPPORTED;
|
|
289 |
} else if (*sse_hwp == 0) {
|
|
290 |
sse_status = SSE_NOT_SUPPORTED;
|
|
291 |
}
|
|
292 |
dlclose(h);
|
|
293 |
|
|
294 |
if (sse_status == SSE_UNKNOWN) {
|
|
295 |
bool (*try_sse)() = (bool (*)())sse_check;
|
|
296 |
sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
|
|
297 |
}
|
|
298 |
|
|
299 |
}
|
|
300 |
|
|
301 |
bool os::supports_sse() {
|
|
302 |
if (sse_status == SSE_UNKNOWN)
|
|
303 |
check_for_sse_support();
|
|
304 |
return sse_status == SSE_SUPPORTED;
|
|
305 |
}
|
|
306 |
|
|
307 |
#endif // AMD64
|
|
308 |
|
|
309 |
bool os::is_allocatable(size_t bytes) {
|
|
310 |
#ifdef AMD64
|
|
311 |
return true;
|
|
312 |
#else
|
|
313 |
|
|
314 |
if (bytes < 2 * G) {
|
|
315 |
return true;
|
|
316 |
}
|
|
317 |
|
|
318 |
char* addr = reserve_memory(bytes, NULL);
|
|
319 |
|
|
320 |
if (addr != NULL) {
|
|
321 |
release_memory(addr, bytes);
|
|
322 |
}
|
|
323 |
|
|
324 |
return addr != NULL;
|
|
325 |
#endif // AMD64
|
|
326 |
|
|
327 |
}
|
|
328 |
|
|
329 |
extern "C" int JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
|
|
330 |
|
|
331 |
extern "C" void Fetch32PFI () ;
|
|
332 |
extern "C" void Fetch32Resume () ;
|
|
333 |
#ifdef AMD64
|
|
334 |
extern "C" void FetchNPFI () ;
|
|
335 |
extern "C" void FetchNResume () ;
|
|
336 |
#endif // AMD64
|
|
337 |
|
|
338 |
int JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) {
|
|
339 |
ucontext_t* uc = (ucontext_t*) ucVoid;
|
|
340 |
|
|
341 |
#ifndef AMD64
|
|
342 |
if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
|
|
343 |
// the SSE instruction faulted. supports_sse() need return false.
|
|
344 |
uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
|
|
345 |
return true;
|
|
346 |
}
|
|
347 |
#endif // !AMD64
|
|
348 |
|
|
349 |
Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
|
|
350 |
|
|
351 |
SignalHandlerMark shm(t);
|
|
352 |
|
|
353 |
if(sig == SIGPIPE || sig == SIGXFSZ) {
|
|
354 |
if (os::Solaris::chained_handler(sig, info, ucVoid)) {
|
|
355 |
return true;
|
|
356 |
} else {
|
|
357 |
if (PrintMiscellaneous && (WizardMode || Verbose)) {
|
|
358 |
char buf[64];
|
|
359 |
warning("Ignoring %s - see 4229104 or 6499219",
|
|
360 |
os::exception_name(sig, buf, sizeof(buf)));
|
|
361 |
|
|
362 |
}
|
|
363 |
return true;
|
|
364 |
}
|
|
365 |
}
|
|
366 |
|
|
367 |
JavaThread* thread = NULL;
|
|
368 |
VMThread* vmthread = NULL;
|
|
369 |
|
|
370 |
if (os::Solaris::signal_handlers_are_installed) {
|
|
371 |
if (t != NULL ){
|
|
372 |
if(t->is_Java_thread()) {
|
|
373 |
thread = (JavaThread*)t;
|
|
374 |
}
|
|
375 |
else if(t->is_VM_thread()){
|
|
376 |
vmthread = (VMThread *)t;
|
|
377 |
}
|
|
378 |
}
|
|
379 |
}
|
|
380 |
|
|
381 |
guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
|
|
382 |
|
|
383 |
if (sig == os::Solaris::SIGasync()) {
|
|
384 |
if(thread){
|
|
385 |
OSThread::InterruptArguments args(thread, uc);
|
|
386 |
thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
|
|
387 |
return true;
|
|
388 |
}
|
|
389 |
else if(vmthread){
|
|
390 |
OSThread::InterruptArguments args(vmthread, uc);
|
|
391 |
vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
|
|
392 |
return true;
|
|
393 |
} else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
|
|
394 |
return true;
|
|
395 |
} else {
|
|
396 |
// If os::Solaris::SIGasync not chained, and this is a non-vm and
|
|
397 |
// non-java thread
|
|
398 |
return true;
|
|
399 |
}
|
|
400 |
}
|
|
401 |
|
|
402 |
if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
|
|
403 |
// can't decode this kind of signal
|
|
404 |
info = NULL;
|
|
405 |
} else {
|
|
406 |
assert(sig == info->si_signo, "bad siginfo");
|
|
407 |
}
|
|
408 |
|
|
409 |
// decide if this trap can be handled by a stub
|
|
410 |
address stub = NULL;
|
|
411 |
|
|
412 |
address pc = NULL;
|
|
413 |
|
|
414 |
//%note os_trap_1
|
|
415 |
if (info != NULL && uc != NULL && thread != NULL) {
|
|
416 |
// factor me: getPCfromContext
|
|
417 |
pc = (address) uc->uc_mcontext.gregs[REG_PC];
|
|
418 |
|
|
419 |
// SafeFetch32() support
|
|
420 |
if (pc == (address) Fetch32PFI) {
|
|
421 |
uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
|
|
422 |
return true ;
|
|
423 |
}
|
|
424 |
#ifdef AMD64
|
|
425 |
if (pc == (address) FetchNPFI) {
|
|
426 |
uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
|
|
427 |
return true ;
|
|
428 |
}
|
|
429 |
#endif // AMD64
|
|
430 |
|
|
431 |
// Handle ALL stack overflow variations here
|
|
432 |
if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
|
|
433 |
address addr = (address) info->si_addr;
|
|
434 |
if (thread->in_stack_yellow_zone(addr)) {
|
|
435 |
thread->disable_stack_yellow_zone();
|
|
436 |
if (thread->thread_state() == _thread_in_Java) {
|
|
437 |
// Throw a stack overflow exception. Guard pages will be reenabled
|
|
438 |
// while unwinding the stack.
|
|
439 |
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
|
|
440 |
} else {
|
|
441 |
// Thread was in the vm or native code. Return and try to finish.
|
|
442 |
return true;
|
|
443 |
}
|
|
444 |
} else if (thread->in_stack_red_zone(addr)) {
|
|
445 |
// Fatal red zone violation. Disable the guard pages and fall through
|
|
446 |
// to handle_unexpected_exception way down below.
|
|
447 |
thread->disable_stack_red_zone();
|
|
448 |
tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
|
|
449 |
}
|
|
450 |
}
|
|
451 |
|
|
452 |
if (thread->thread_state() == _thread_in_vm) {
|
|
453 |
if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
|
|
454 |
stub = StubRoutines::handler_for_unsafe_access();
|
|
455 |
}
|
|
456 |
}
|
|
457 |
|
|
458 |
if (thread->thread_state() == _thread_in_Java) {
|
|
459 |
// Support Safepoint Polling
|
|
460 |
if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
|
|
461 |
stub = SharedRuntime::get_poll_stub(pc);
|
|
462 |
}
|
|
463 |
else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
|
|
464 |
// BugId 4454115: A read from a MappedByteBuffer can fault
|
|
465 |
// here if the underlying file has been truncated.
|
|
466 |
// Do not crash the VM in such a case.
|
|
467 |
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
|
|
468 |
nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
|
|
469 |
if (nm != NULL && nm->has_unsafe_access()) {
|
|
470 |
stub = StubRoutines::handler_for_unsafe_access();
|
|
471 |
}
|
|
472 |
}
|
|
473 |
else
|
|
474 |
if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
|
|
475 |
// integer divide by zero
|
|
476 |
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
|
|
477 |
}
|
|
478 |
#ifndef AMD64
|
|
479 |
else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
|
|
480 |
// floating-point divide by zero
|
|
481 |
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
|
|
482 |
}
|
|
483 |
else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
|
|
484 |
// The encoding of D2I in i486.ad can cause an exception prior
|
|
485 |
// to the fist instruction if there was an invalid operation
|
|
486 |
// pending. We want to dismiss that exception. From the win_32
|
|
487 |
// side it also seems that if it really was the fist causing
|
|
488 |
// the exception that we do the d2i by hand with different
|
|
489 |
// rounding. Seems kind of weird. QQQ TODO
|
|
490 |
// Note that we take the exception at the NEXT floating point instruction.
|
|
491 |
if (pc[0] == 0xDB) {
|
|
492 |
assert(pc[0] == 0xDB, "not a FIST opcode");
|
|
493 |
assert(pc[1] == 0x14, "not a FIST opcode");
|
|
494 |
assert(pc[2] == 0x24, "not a FIST opcode");
|
|
495 |
return true;
|
|
496 |
} else {
|
|
497 |
assert(pc[-3] == 0xDB, "not an flt invalid opcode");
|
|
498 |
assert(pc[-2] == 0x14, "not an flt invalid opcode");
|
|
499 |
assert(pc[-1] == 0x24, "not an flt invalid opcode");
|
|
500 |
}
|
|
501 |
}
|
|
502 |
else if (sig == SIGFPE ) {
|
|
503 |
tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
|
|
504 |
}
|
|
505 |
#endif // !AMD64
|
|
506 |
|
|
507 |
// QQQ It doesn't seem that we need to do this on x86 because we should be able
|
|
508 |
// to return properly from the handler without this extra stuff on the back side.
|
|
509 |
|
|
510 |
else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
|
|
511 |
// Determination of interpreter/vtable stub/compiled code null exception
|
|
512 |
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
|
|
513 |
}
|
|
514 |
}
|
|
515 |
|
|
516 |
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
|
|
517 |
// and the heap gets shrunk before the field access.
|
|
518 |
if ((sig == SIGSEGV) || (sig == SIGBUS)) {
|
|
519 |
address addr = JNI_FastGetField::find_slowcase_pc(pc);
|
|
520 |
if (addr != (address)-1) {
|
|
521 |
stub = addr;
|
|
522 |
}
|
|
523 |
}
|
|
524 |
|
|
525 |
// Check to see if we caught the safepoint code in the
|
|
526 |
// process of write protecting the memory serialization page.
|
|
527 |
// It write enables the page immediately after protecting it
|
|
528 |
// so we can just return to retry the write.
|
|
529 |
if ((sig == SIGSEGV) &&
|
|
530 |
os::is_memory_serialize_page(thread, (address)info->si_addr)) {
|
|
531 |
// Block current thread until the memory serialize page permission restored.
|
|
532 |
os::block_on_serialize_page_trap();
|
|
533 |
return true;
|
|
534 |
}
|
|
535 |
}
|
|
536 |
|
|
537 |
// Execution protection violation
|
|
538 |
//
|
|
539 |
// Preventative code for future versions of Solaris which may
|
|
540 |
// enable execution protection when running the 32-bit VM on AMD64.
|
|
541 |
//
|
|
542 |
// This should be kept as the last step in the triage. We don't
|
|
543 |
// have a dedicated trap number for a no-execute fault, so be
|
|
544 |
// conservative and allow other handlers the first shot.
|
|
545 |
//
|
|
546 |
// Note: We don't test that info->si_code == SEGV_ACCERR here.
|
|
547 |
// this si_code is so generic that it is almost meaningless; and
|
|
548 |
// the si_code for this condition may change in the future.
|
|
549 |
// Furthermore, a false-positive should be harmless.
|
|
550 |
if (UnguardOnExecutionViolation > 0 &&
|
|
551 |
(sig == SIGSEGV || sig == SIGBUS) &&
|
|
552 |
uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) { // page fault
|
|
553 |
int page_size = os::vm_page_size();
|
|
554 |
address addr = (address) info->si_addr;
|
|
555 |
address pc = (address) uc->uc_mcontext.gregs[REG_PC];
|
|
556 |
// Make sure the pc and the faulting address are sane.
|
|
557 |
//
|
|
558 |
// If an instruction spans a page boundary, and the page containing
|
|
559 |
// the beginning of the instruction is executable but the following
|
|
560 |
// page is not, the pc and the faulting address might be slightly
|
|
561 |
// different - we still want to unguard the 2nd page in this case.
|
|
562 |
//
|
|
563 |
// 15 bytes seems to be a (very) safe value for max instruction size.
|
|
564 |
bool pc_is_near_addr =
|
|
565 |
(pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
|
|
566 |
bool instr_spans_page_boundary =
|
|
567 |
(align_size_down((intptr_t) pc ^ (intptr_t) addr,
|
|
568 |
(intptr_t) page_size) > 0);
|
|
569 |
|
|
570 |
if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
|
|
571 |
static volatile address last_addr =
|
|
572 |
(address) os::non_memory_address_word();
|
|
573 |
|
|
574 |
// In conservative mode, don't unguard unless the address is in the VM
|
|
575 |
if (addr != last_addr &&
|
|
576 |
(UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
|
|
577 |
|
|
578 |
// Unguard and retry
|
|
579 |
address page_start =
|
|
580 |
(address) align_size_down((intptr_t) addr, (intptr_t) page_size);
|
|
581 |
bool res = os::unguard_memory((char*) page_start, page_size);
|
|
582 |
|
|
583 |
if (PrintMiscellaneous && Verbose) {
|
|
584 |
char buf[256];
|
|
585 |
jio_snprintf(buf, sizeof(buf), "Execution protection violation "
|
|
586 |
"at " INTPTR_FORMAT
|
|
587 |
", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
|
|
588 |
page_start, (res ? "success" : "failed"), errno);
|
|
589 |
tty->print_raw_cr(buf);
|
|
590 |
}
|
|
591 |
stub = pc;
|
|
592 |
|
|
593 |
// Set last_addr so if we fault again at the same address, we don't end
|
|
594 |
// up in an endless loop.
|
|
595 |
//
|
|
596 |
// There are two potential complications here. Two threads trapping at
|
|
597 |
// the same address at the same time could cause one of the threads to
|
|
598 |
// think it already unguarded, and abort the VM. Likely very rare.
|
|
599 |
//
|
|
600 |
// The other race involves two threads alternately trapping at
|
|
601 |
// different addresses and failing to unguard the page, resulting in
|
|
602 |
// an endless loop. This condition is probably even more unlikely than
|
|
603 |
// the first.
|
|
604 |
//
|
|
605 |
// Although both cases could be avoided by using locks or thread local
|
|
606 |
// last_addr, these solutions are unnecessary complication: this
|
|
607 |
// handler is a best-effort safety net, not a complete solution. It is
|
|
608 |
// disabled by default and should only be used as a workaround in case
|
|
609 |
// we missed any no-execute-unsafe VM code.
|
|
610 |
|
|
611 |
last_addr = addr;
|
|
612 |
}
|
|
613 |
}
|
|
614 |
}
|
|
615 |
|
|
616 |
if (stub != NULL) {
|
|
617 |
// save all thread context in case we need to restore it
|
|
618 |
|
|
619 |
if (thread != NULL) thread->set_saved_exception_pc(pc);
|
|
620 |
// 12/02/99: On Sparc it appears that the full context is also saved
|
|
621 |
// but as yet, no one looks at or restores that saved context
|
|
622 |
// factor me: setPC
|
|
623 |
uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
|
|
624 |
return true;
|
|
625 |
}
|
|
626 |
|
|
627 |
// signal-chaining
|
|
628 |
if (os::Solaris::chained_handler(sig, info, ucVoid)) {
|
|
629 |
return true;
|
|
630 |
}
|
|
631 |
|
|
632 |
#ifndef AMD64
|
|
633 |
// Workaround (bug 4900493) for Solaris kernel bug 4966651.
|
|
634 |
// Handle an undefined selector caused by an attempt to assign
|
|
635 |
// fs in libthread getipriptr(). With the current libthread design every 512
|
|
636 |
// thread creations the LDT for a private thread data structure is extended
|
|
637 |
// and thre is a hazard that and another thread attempting a thread creation
|
|
638 |
// will use a stale LDTR that doesn't reflect the structure's growth,
|
|
639 |
// causing a GP fault.
|
|
640 |
// Enforce the probable limit of passes through here to guard against an
|
|
641 |
// infinite loop if some other move to fs caused the GP fault. Note that
|
|
642 |
// this loop counter is ultimately a heuristic as it is possible for
|
|
643 |
// more than one thread to generate this fault at a time in an MP system.
|
|
644 |
// In the case of the loop count being exceeded or if the poll fails
|
|
645 |
// just fall through to a fatal error.
|
|
646 |
// If there is some other source of T_GPFLT traps and the text at EIP is
|
|
647 |
// unreadable this code will loop infinitely until the stack is exausted.
|
|
648 |
// The key to diagnosis in this case is to look for the bottom signal handler
|
|
649 |
// frame.
|
|
650 |
|
|
651 |
if(! IgnoreLibthreadGPFault) {
|
|
652 |
if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
|
|
653 |
const unsigned char *p =
|
|
654 |
(unsigned const char *) uc->uc_mcontext.gregs[EIP];
|
|
655 |
|
|
656 |
// Expected instruction?
|
|
657 |
|
|
658 |
if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
|
|
659 |
|
|
660 |
Atomic::inc(&ldtr_refresh);
|
|
661 |
|
|
662 |
// Infinite loop?
|
|
663 |
|
|
664 |
if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
|
|
665 |
|
|
666 |
// No, force scheduling to get a fresh view of the LDTR
|
|
667 |
|
|
668 |
if(poll(NULL, 0, 10) == 0) {
|
|
669 |
|
|
670 |
// Retry the move
|
|
671 |
|
|
672 |
return false;
|
|
673 |
}
|
|
674 |
}
|
|
675 |
}
|
|
676 |
}
|
|
677 |
}
|
|
678 |
#endif // !AMD64
|
|
679 |
|
|
680 |
if (!abort_if_unrecognized) {
|
|
681 |
// caller wants another chance, so give it to him
|
|
682 |
return false;
|
|
683 |
}
|
|
684 |
|
|
685 |
if (!os::Solaris::libjsig_is_loaded) {
|
|
686 |
struct sigaction oldAct;
|
|
687 |
sigaction(sig, (struct sigaction *)0, &oldAct);
|
|
688 |
if (oldAct.sa_sigaction != signalHandler) {
|
|
689 |
void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
|
|
690 |
: CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
|
|
691 |
warning("Unexpected Signal %d occured under user-defined signal handler %#lx", sig, (long)sighand);
|
|
692 |
}
|
|
693 |
}
|
|
694 |
|
|
695 |
if (pc == NULL && uc != NULL) {
|
|
696 |
pc = (address) uc->uc_mcontext.gregs[REG_PC];
|
|
697 |
}
|
|
698 |
|
|
699 |
// unmask current signal
|
|
700 |
sigset_t newset;
|
|
701 |
sigemptyset(&newset);
|
|
702 |
sigaddset(&newset, sig);
|
|
703 |
sigprocmask(SIG_UNBLOCK, &newset, NULL);
|
|
704 |
|
|
705 |
VMError err(t, sig, pc, info, ucVoid);
|
|
706 |
err.report_and_die();
|
|
707 |
|
|
708 |
ShouldNotReachHere();
|
|
709 |
}
|
|
710 |
|
|
711 |
void os::print_context(outputStream *st, void *context) {
|
|
712 |
if (context == NULL) return;
|
|
713 |
|
|
714 |
ucontext_t *uc = (ucontext_t*)context;
|
|
715 |
st->print_cr("Registers:");
|
|
716 |
#ifdef AMD64
|
|
717 |
st->print( "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
|
|
718 |
st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
|
|
719 |
st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
|
|
720 |
st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
|
|
721 |
st->cr();
|
|
722 |
st->print( "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
|
|
723 |
st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
|
|
724 |
st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
|
|
725 |
st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
|
|
726 |
st->cr();
|
|
727 |
st->print(", R8=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
|
|
728 |
st->print(", R9=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
|
|
729 |
st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
|
|
730 |
st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
|
|
731 |
st->print(", R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
|
|
732 |
st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
|
|
733 |
st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
|
|
734 |
st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
|
|
735 |
st->cr();
|
|
736 |
st->print( "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
|
|
737 |
st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
|
|
738 |
#else
|
|
739 |
st->print( "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
|
|
740 |
st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
|
|
741 |
st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
|
|
742 |
st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
|
|
743 |
st->cr();
|
|
744 |
st->print( "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
|
|
745 |
st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
|
|
746 |
st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
|
|
747 |
st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
|
|
748 |
st->cr();
|
|
749 |
st->print( "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
|
|
750 |
st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
|
|
751 |
#endif // AMD64
|
|
752 |
st->cr();
|
|
753 |
st->cr();
|
|
754 |
|
|
755 |
intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
|
|
756 |
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
|
|
757 |
print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
|
|
758 |
st->cr();
|
|
759 |
|
|
760 |
// Note: it may be unsafe to inspect memory near pc. For example, pc may
|
|
761 |
// point to garbage if entry point in an nmethod is corrupted. Leave
|
|
762 |
// this at the end, and hope for the best.
|
|
763 |
ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
|
|
764 |
address pc = epc.pc();
|
|
765 |
st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
|
|
766 |
print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
|
|
767 |
}
|
|
768 |
|
|
769 |
#ifdef AMD64
|
|
770 |
void os::Solaris::init_thread_fpu_state(void) {
|
|
771 |
// Nothing to do
|
|
772 |
}
|
|
773 |
#else
|
|
774 |
// From solaris_i486.s
|
|
775 |
extern "C" void fixcw();
|
|
776 |
|
|
777 |
void os::Solaris::init_thread_fpu_state(void) {
|
|
778 |
// Set fpu to 53 bit precision. This happens too early to use a stub.
|
|
779 |
fixcw();
|
|
780 |
}
|
|
781 |
|
|
782 |
// These routines are the initial value of atomic_xchg_entry(),
|
|
783 |
// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
|
|
784 |
// until initialization is complete.
|
|
785 |
// TODO - replace with .il implementation when compiler supports it.
|
|
786 |
|
|
787 |
typedef jint xchg_func_t (jint, volatile jint*);
|
|
788 |
typedef jint cmpxchg_func_t (jint, volatile jint*, jint);
|
|
789 |
typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
|
|
790 |
typedef jint add_func_t (jint, volatile jint*);
|
|
791 |
typedef void fence_func_t ();
|
|
792 |
|
|
793 |
jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
|
|
794 |
// try to use the stub:
|
|
795 |
xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
|
|
796 |
|
|
797 |
if (func != NULL) {
|
|
798 |
os::atomic_xchg_func = func;
|
|
799 |
return (*func)(exchange_value, dest);
|
|
800 |
}
|
|
801 |
assert(Threads::number_of_threads() == 0, "for bootstrap only");
|
|
802 |
|
|
803 |
jint old_value = *dest;
|
|
804 |
*dest = exchange_value;
|
|
805 |
return old_value;
|
|
806 |
}
|
|
807 |
|
|
808 |
jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
|
|
809 |
// try to use the stub:
|
|
810 |
cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
|
|
811 |
|
|
812 |
if (func != NULL) {
|
|
813 |
os::atomic_cmpxchg_func = func;
|
|
814 |
return (*func)(exchange_value, dest, compare_value);
|
|
815 |
}
|
|
816 |
assert(Threads::number_of_threads() == 0, "for bootstrap only");
|
|
817 |
|
|
818 |
jint old_value = *dest;
|
|
819 |
if (old_value == compare_value)
|
|
820 |
*dest = exchange_value;
|
|
821 |
return old_value;
|
|
822 |
}
|
|
823 |
|
|
824 |
jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
|
|
825 |
// try to use the stub:
|
|
826 |
cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
|
|
827 |
|
|
828 |
if (func != NULL) {
|
|
829 |
os::atomic_cmpxchg_long_func = func;
|
|
830 |
return (*func)(exchange_value, dest, compare_value);
|
|
831 |
}
|
|
832 |
assert(Threads::number_of_threads() == 0, "for bootstrap only");
|
|
833 |
|
|
834 |
jlong old_value = *dest;
|
|
835 |
if (old_value == compare_value)
|
|
836 |
*dest = exchange_value;
|
|
837 |
return old_value;
|
|
838 |
}
|
|
839 |
|
|
840 |
jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
|
|
841 |
// try to use the stub:
|
|
842 |
add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
|
|
843 |
|
|
844 |
if (func != NULL) {
|
|
845 |
os::atomic_add_func = func;
|
|
846 |
return (*func)(add_value, dest);
|
|
847 |
}
|
|
848 |
assert(Threads::number_of_threads() == 0, "for bootstrap only");
|
|
849 |
|
|
850 |
return (*dest) += add_value;
|
|
851 |
}
|
|
852 |
|
|
853 |
void os::fence_bootstrap() {
|
|
854 |
// try to use the stub:
|
|
855 |
fence_func_t* func = CAST_TO_FN_PTR(fence_func_t*, StubRoutines::fence_entry());
|
|
856 |
|
|
857 |
if (func != NULL) {
|
|
858 |
os::fence_func = func;
|
|
859 |
(*func)();
|
|
860 |
return;
|
|
861 |
}
|
|
862 |
assert(Threads::number_of_threads() == 0, "for bootstrap only");
|
|
863 |
|
|
864 |
// don't have to do anything for a single thread
|
|
865 |
}
|
|
866 |
|
|
867 |
xchg_func_t* os::atomic_xchg_func = os::atomic_xchg_bootstrap;
|
|
868 |
cmpxchg_func_t* os::atomic_cmpxchg_func = os::atomic_cmpxchg_bootstrap;
|
|
869 |
cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
|
|
870 |
add_func_t* os::atomic_add_func = os::atomic_add_bootstrap;
|
|
871 |
fence_func_t* os::fence_func = os::fence_bootstrap;
|
|
872 |
|
|
873 |
extern "C" _solaris_raw_setup_fpu(address ptr);
|
|
874 |
void os::setup_fpu() {
|
|
875 |
address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
|
|
876 |
_solaris_raw_setup_fpu(fpu_cntrl);
|
|
877 |
}
|
|
878 |
#endif // AMD64
|