author | mikael |
Tue, 24 Dec 2013 11:48:39 -0800 | |
changeset 22234 | da823d78ad65 |
parent 14626 | 0cf4eccf130f |
child 24424 | 2658d7834c6e |
permissions | -rw-r--r-- |
1 | 1 |
/* |
7397 | 2 |
* Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
1066
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
1066
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
1066
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
7397 | 25 |
#include "precompiled.hpp" |
14626
0cf4eccf130f
8003240: x86: move MacroAssembler into separate file
twisti
parents:
11427
diff
changeset
|
26 |
#include "asm/macroAssembler.hpp" |
7397 | 27 |
#include "memory/resourceArea.hpp" |
28 |
#include "nativeInst_x86.hpp" |
|
29 |
#include "oops/oop.inline.hpp" |
|
30 |
#include "runtime/handles.hpp" |
|
31 |
#include "runtime/sharedRuntime.hpp" |
|
32 |
#include "runtime/stubRoutines.hpp" |
|
33 |
#include "utilities/ostream.hpp" |
|
34 |
#ifdef COMPILER1 |
|
35 |
#include "c1/c1_Runtime1.hpp" |
|
36 |
#endif |
|
1 | 37 |
|
38 |
void NativeInstruction::wrote(int offset) { |
|
39 |
ICache::invalidate_word(addr_at(offset)); |
|
40 |
} |
|
41 |
||
42 |
||
43 |
void NativeCall::verify() { |
|
44 |
// Make sure code pattern is actually a call imm32 instruction. |
|
45 |
int inst = ubyte_at(0); |
|
46 |
if (inst != instruction_code) { |
|
47 |
tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(), |
|
48 |
inst); |
|
49 |
fatal("not a call disp32"); |
|
50 |
} |
|
51 |
} |
|
52 |
||
53 |
address NativeCall::destination() const { |
|
54 |
// Getting the destination of a call isn't safe because that call can |
|
55 |
// be getting patched while you're calling this. There's only special |
|
56 |
// places where this can be called but not automatically verifiable by |
|
57 |
// checking which locks are held. The solution is true atomic patching |
|
58 |
// on x86, nyi. |
|
59 |
return return_address() + displacement(); |
|
60 |
} |
|
61 |
||
62 |
void NativeCall::print() { |
|
63 |
tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT, |
|
64 |
instruction_address(), destination()); |
|
65 |
} |
|
66 |
||
67 |
// Inserts a native call instruction at a given pc |
|
68 |
void NativeCall::insert(address code_pos, address entry) { |
|
69 |
intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4); |
|
70 |
#ifdef AMD64 |
|
71 |
guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset"); |
|
72 |
#endif // AMD64 |
|
73 |
*code_pos = instruction_code; |
|
74 |
*((int32_t *)(code_pos+1)) = (int32_t) disp; |
|
75 |
ICache::invalidate_range(code_pos, instruction_size); |
|
76 |
} |
|
77 |
||
78 |
// MT-safe patching of a call instruction. |
|
79 |
// First patches first word of instruction to two jmp's that jmps to them |
|
80 |
// selfs (spinlock). Then patches the last byte, and then atomicly replaces |
|
81 |
// the jmp's with the first 4 byte of the new instruction. |
|
82 |
void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) { |
|
83 |
assert(Patching_lock->is_locked() || |
|
84 |
SafepointSynchronize::is_at_safepoint(), "concurrent code patching"); |
|
85 |
assert (instr_addr != NULL, "illegal address for code patching"); |
|
86 |
||
87 |
NativeCall* n_call = nativeCall_at (instr_addr); // checking that it is a call |
|
88 |
if (os::is_MP()) { |
|
89 |
guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned"); |
|
90 |
} |
|
91 |
||
92 |
// First patch dummy jmp in place |
|
93 |
unsigned char patch[4]; |
|
94 |
assert(sizeof(patch)==sizeof(jint), "sanity check"); |
|
95 |
patch[0] = 0xEB; // jmp rel8 |
|
96 |
patch[1] = 0xFE; // jmp to self |
|
97 |
patch[2] = 0xEB; |
|
98 |
patch[3] = 0xFE; |
|
99 |
||
100 |
// First patch dummy jmp in place |
|
101 |
*(jint*)instr_addr = *(jint *)patch; |
|
102 |
||
103 |
// Invalidate. Opteron requires a flush after every write. |
|
104 |
n_call->wrote(0); |
|
105 |
||
106 |
// Patch 4th byte |
|
107 |
instr_addr[4] = code_buffer[4]; |
|
108 |
||
109 |
n_call->wrote(4); |
|
110 |
||
111 |
// Patch bytes 0-3 |
|
112 |
*(jint*)instr_addr = *(jint *)code_buffer; |
|
113 |
||
114 |
n_call->wrote(0); |
|
115 |
||
116 |
#ifdef ASSERT |
|
117 |
// verify patching |
|
118 |
for ( int i = 0; i < instruction_size; i++) { |
|
119 |
address ptr = (address)((intptr_t)code_buffer + i); |
|
120 |
int a_byte = (*ptr) & 0xFF; |
|
121 |
assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed"); |
|
122 |
} |
|
123 |
#endif |
|
124 |
||
125 |
} |
|
126 |
||
127 |
||
128 |
// Similar to replace_mt_safe, but just changes the destination. The |
|
129 |
// important thing is that free-running threads are able to execute this |
|
130 |
// call instruction at all times. If the displacement field is aligned |
|
131 |
// we can simply rely on atomicity of 32-bit writes to make sure other threads |
|
132 |
// will see no intermediate states. Otherwise, the first two bytes of the |
|
133 |
// call are guaranteed to be aligned, and can be atomically patched to a |
|
134 |
// self-loop to guard the instruction while we change the other bytes. |
|
135 |
||
136 |
// We cannot rely on locks here, since the free-running threads must run at |
|
137 |
// full speed. |
|
138 |
// |
|
139 |
// Used in the runtime linkage of calls; see class CompiledIC. |
|
140 |
// (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.) |
|
141 |
void NativeCall::set_destination_mt_safe(address dest) { |
|
142 |
debug_only(verify()); |
|
143 |
// Make sure patching code is locked. No two threads can patch at the same |
|
144 |
// time but one may be executing this code. |
|
145 |
assert(Patching_lock->is_locked() || |
|
146 |
SafepointSynchronize::is_at_safepoint(), "concurrent code patching"); |
|
147 |
// Both C1 and C2 should now be generating code which aligns the patched address |
|
148 |
// to be within a single cache line except that C1 does not do the alignment on |
|
149 |
// uniprocessor systems. |
|
150 |
bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size == |
|
151 |
((uintptr_t)displacement_address() + 3) / cache_line_size; |
|
152 |
||
153 |
guarantee(!os::is_MP() || is_aligned, "destination must be aligned"); |
|
154 |
||
155 |
if (is_aligned) { |
|
156 |
// Simple case: The destination lies within a single cache line. |
|
157 |
set_destination(dest); |
|
158 |
} else if ((uintptr_t)instruction_address() / cache_line_size == |
|
159 |
((uintptr_t)instruction_address()+1) / cache_line_size) { |
|
160 |
// Tricky case: The instruction prefix lies within a single cache line. |
|
161 |
intptr_t disp = dest - return_address(); |
|
162 |
#ifdef AMD64 |
|
163 |
guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset"); |
|
164 |
#endif // AMD64 |
|
165 |
||
166 |
int call_opcode = instruction_address()[0]; |
|
167 |
||
168 |
// First patch dummy jump in place: |
|
169 |
{ |
|
170 |
u_char patch_jump[2]; |
|
171 |
patch_jump[0] = 0xEB; // jmp rel8 |
|
172 |
patch_jump[1] = 0xFE; // jmp to self |
|
173 |
||
174 |
assert(sizeof(patch_jump)==sizeof(short), "sanity check"); |
|
175 |
*(short*)instruction_address() = *(short*)patch_jump; |
|
176 |
} |
|
177 |
// Invalidate. Opteron requires a flush after every write. |
|
178 |
wrote(0); |
|
179 |
||
180 |
// (Note: We assume any reader which has already started to read |
|
181 |
// the unpatched call will completely read the whole unpatched call |
|
182 |
// without seeing the next writes we are about to make.) |
|
183 |
||
184 |
// Next, patch the last three bytes: |
|
185 |
u_char patch_disp[5]; |
|
186 |
patch_disp[0] = call_opcode; |
|
187 |
*(int32_t*)&patch_disp[1] = (int32_t)disp; |
|
188 |
assert(sizeof(patch_disp)==instruction_size, "sanity check"); |
|
189 |
for (int i = sizeof(short); i < instruction_size; i++) |
|
190 |
instruction_address()[i] = patch_disp[i]; |
|
191 |
||
192 |
// Invalidate. Opteron requires a flush after every write. |
|
193 |
wrote(sizeof(short)); |
|
194 |
||
195 |
// (Note: We assume that any reader which reads the opcode we are |
|
196 |
// about to repatch will also read the writes we just made.) |
|
197 |
||
198 |
// Finally, overwrite the jump: |
|
199 |
*(short*)instruction_address() = *(short*)patch_disp; |
|
200 |
// Invalidate. Opteron requires a flush after every write. |
|
201 |
wrote(0); |
|
202 |
||
203 |
debug_only(verify()); |
|
204 |
guarantee(destination() == dest, "patch succeeded"); |
|
205 |
} else { |
|
206 |
// Impossible: One or the other must be atomically writable. |
|
207 |
ShouldNotReachHere(); |
|
208 |
} |
|
209 |
} |
|
210 |
||
211 |
||
212 |
void NativeMovConstReg::verify() { |
|
213 |
#ifdef AMD64 |
|
214 |
// make sure code pattern is actually a mov reg64, imm64 instruction |
|
215 |
if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) || |
|
216 |
(ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) { |
|
217 |
print(); |
|
218 |
fatal("not a REX.W[B] mov reg64, imm64"); |
|
219 |
} |
|
220 |
#else |
|
221 |
// make sure code pattern is actually a mov reg, imm32 instruction |
|
222 |
u_char test_byte = *(u_char*)instruction_address(); |
|
223 |
u_char test_byte_2 = test_byte & ( 0xff ^ register_mask); |
|
224 |
if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32"); |
|
225 |
#endif // AMD64 |
|
226 |
} |
|
227 |
||
228 |
||
229 |
void NativeMovConstReg::print() { |
|
230 |
tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT, |
|
231 |
instruction_address(), data()); |
|
232 |
} |
|
233 |
||
234 |
//------------------------------------------------------------------- |
|
235 |
||
1066 | 236 |
int NativeMovRegMem::instruction_start() const { |
237 |
int off = 0; |
|
238 |
u_char instr_0 = ubyte_at(off); |
|
239 |
||
11427 | 240 |
// See comment in Assembler::locate_operand() about VEX prefixes. |
241 |
if (instr_0 == instruction_VEX_prefix_2bytes) { |
|
242 |
assert((UseAVX > 0), "shouldn't have VEX prefix"); |
|
243 |
NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions")); |
|
244 |
return 2; |
|
245 |
} |
|
246 |
if (instr_0 == instruction_VEX_prefix_3bytes) { |
|
247 |
assert((UseAVX > 0), "shouldn't have VEX prefix"); |
|
248 |
NOT_LP64(assert((0xC0 & ubyte_at(1)) == 0xC0, "shouldn't have LDS and LES instructions")); |
|
249 |
return 3; |
|
250 |
} |
|
251 |
||
1066 | 252 |
// First check to see if we have a (prefixed or not) xor |
11427 | 253 |
if (instr_0 >= instruction_prefix_wide_lo && // 0x40 |
254 |
instr_0 <= instruction_prefix_wide_hi) { // 0x4f |
|
1066 | 255 |
off++; |
256 |
instr_0 = ubyte_at(off); |
|
257 |
} |
|
258 |
||
259 |
if (instr_0 == instruction_code_xor) { |
|
260 |
off += 2; |
|
261 |
instr_0 = ubyte_at(off); |
|
262 |
} |
|
263 |
||
264 |
// Now look for the real instruction and the many prefix/size specifiers. |
|
265 |
||
266 |
if (instr_0 == instruction_operandsize_prefix ) { // 0x66 |
|
267 |
off++; // Not SSE instructions |
|
268 |
instr_0 = ubyte_at(off); |
|
269 |
} |
|
1 | 270 |
|
11427 | 271 |
if ( instr_0 == instruction_code_xmm_ss_prefix || // 0xf3 |
1066 | 272 |
instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2 |
273 |
off++; |
|
274 |
instr_0 = ubyte_at(off); |
|
275 |
} |
|
276 |
||
11427 | 277 |
if ( instr_0 >= instruction_prefix_wide_lo && // 0x40 |
1066 | 278 |
instr_0 <= instruction_prefix_wide_hi) { // 0x4f |
279 |
off++; |
|
280 |
instr_0 = ubyte_at(off); |
|
281 |
} |
|
282 |
||
283 |
||
284 |
if (instr_0 == instruction_extended_prefix ) { // 0x0f |
|
285 |
off++; |
|
286 |
} |
|
287 |
||
288 |
return off; |
|
289 |
} |
|
290 |
||
291 |
address NativeMovRegMem::instruction_address() const { |
|
292 |
return addr_at(instruction_start()); |
|
293 |
} |
|
294 |
||
295 |
address NativeMovRegMem::next_instruction_address() const { |
|
296 |
address ret = instruction_address() + instruction_size; |
|
297 |
u_char instr_0 = *(u_char*) instruction_address(); |
|
298 |
switch (instr_0) { |
|
299 |
case instruction_operandsize_prefix: |
|
300 |
||
301 |
fatal("should have skipped instruction_operandsize_prefix"); |
|
302 |
break; |
|
1 | 303 |
|
1066 | 304 |
case instruction_extended_prefix: |
305 |
fatal("should have skipped instruction_extended_prefix"); |
|
306 |
break; |
|
307 |
||
308 |
case instruction_code_mem2reg_movslq: // 0x63 |
|
309 |
case instruction_code_mem2reg_movzxb: // 0xB6 |
|
310 |
case instruction_code_mem2reg_movsxb: // 0xBE |
|
311 |
case instruction_code_mem2reg_movzxw: // 0xB7 |
|
312 |
case instruction_code_mem2reg_movsxw: // 0xBF |
|
313 |
case instruction_code_reg2mem: // 0x89 (q/l) |
|
314 |
case instruction_code_mem2reg: // 0x8B (q/l) |
|
315 |
case instruction_code_reg2memb: // 0x88 |
|
316 |
case instruction_code_mem2regb: // 0x8a |
|
317 |
||
318 |
case instruction_code_float_s: // 0xd9 fld_s a |
|
319 |
case instruction_code_float_d: // 0xdd fld_d a |
|
320 |
||
321 |
case instruction_code_xmm_load: // 0x10 |
|
322 |
case instruction_code_xmm_store: // 0x11 |
|
323 |
case instruction_code_xmm_lpd: // 0x12 |
|
324 |
{ |
|
325 |
// If there is an SIB then instruction is longer than expected |
|
326 |
u_char mod_rm = *(u_char*)(instruction_address() + 1); |
|
327 |
if ((mod_rm & 7) == 0x4) { |
|
328 |
ret++; |
|
329 |
} |
|
330 |
} |
|
331 |
case instruction_code_xor: |
|
332 |
fatal("should have skipped xor lead in"); |
|
333 |
break; |
|
334 |
||
335 |
default: |
|
336 |
fatal("not a NativeMovRegMem"); |
|
1 | 337 |
} |
1066 | 338 |
return ret; |
339 |
||
340 |
} |
|
1 | 341 |
|
1066 | 342 |
int NativeMovRegMem::offset() const{ |
343 |
int off = data_offset + instruction_start(); |
|
344 |
u_char mod_rm = *(u_char*)(instruction_address() + 1); |
|
345 |
// nnnn(r12|rsp) isn't coded as simple mod/rm since that is |
|
346 |
// the encoding to use an SIB byte. Which will have the nnnn |
|
347 |
// field off by one byte |
|
348 |
if ((mod_rm & 7) == 0x4) { |
|
349 |
off++; |
|
1 | 350 |
} |
1066 | 351 |
return int_at(off); |
352 |
} |
|
353 |
||
354 |
void NativeMovRegMem::set_offset(int x) { |
|
355 |
int off = data_offset + instruction_start(); |
|
356 |
u_char mod_rm = *(u_char*)(instruction_address() + 1); |
|
357 |
// nnnn(r12|rsp) isn't coded as simple mod/rm since that is |
|
358 |
// the encoding to use an SIB byte. Which will have the nnnn |
|
359 |
// field off by one byte |
|
360 |
if ((mod_rm & 7) == 0x4) { |
|
361 |
off++; |
|
362 |
} |
|
363 |
set_int_at(off, x); |
|
1 | 364 |
} |
365 |
||
366 |
void NativeMovRegMem::verify() { |
|
367 |
// make sure code pattern is actually a mov [reg+offset], reg instruction |
|
368 |
u_char test_byte = *(u_char*)instruction_address(); |
|
1066 | 369 |
switch (test_byte) { |
370 |
case instruction_code_reg2memb: // 0x88 movb a, r |
|
371 |
case instruction_code_reg2mem: // 0x89 movl a, r (can be movq in 64bit) |
|
372 |
case instruction_code_mem2regb: // 0x8a movb r, a |
|
373 |
case instruction_code_mem2reg: // 0x8b movl r, a (can be movq in 64bit) |
|
374 |
break; |
|
375 |
||
376 |
case instruction_code_mem2reg_movslq: // 0x63 movsql r, a |
|
377 |
case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb) |
|
378 |
case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw) |
|
379 |
case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb) |
|
380 |
case instruction_code_mem2reg_movsxw: // 0xbf movswl r, a (movsxw) |
|
381 |
break; |
|
382 |
||
383 |
case instruction_code_float_s: // 0xd9 fld_s a |
|
384 |
case instruction_code_float_d: // 0xdd fld_d a |
|
385 |
case instruction_code_xmm_load: // 0x10 movsd xmm, a |
|
386 |
case instruction_code_xmm_store: // 0x11 movsd a, xmm |
|
387 |
case instruction_code_xmm_lpd: // 0x12 movlpd xmm, a |
|
388 |
break; |
|
389 |
||
390 |
default: |
|
1 | 391 |
fatal ("not a mov [reg+offs], reg instruction"); |
392 |
} |
|
393 |
} |
|
394 |
||
395 |
||
396 |
void NativeMovRegMem::print() { |
|
397 |
tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset()); |
|
398 |
} |
|
399 |
||
400 |
//------------------------------------------------------------------- |
|
401 |
||
402 |
void NativeLoadAddress::verify() { |
|
403 |
// make sure code pattern is actually a mov [reg+offset], reg instruction |
|
404 |
u_char test_byte = *(u_char*)instruction_address(); |
|
1066 | 405 |
#ifdef _LP64 |
406 |
if ( (test_byte == instruction_prefix_wide || |
|
407 |
test_byte == instruction_prefix_wide_extended) ) { |
|
408 |
test_byte = *(u_char*)(instruction_address() + 1); |
|
409 |
} |
|
410 |
#endif // _LP64 |
|
411 |
if ( ! ((test_byte == lea_instruction_code) |
|
412 |
LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) { |
|
1 | 413 |
fatal ("not a lea reg, [reg+offs] instruction"); |
414 |
} |
|
415 |
} |
|
416 |
||
417 |
||
418 |
void NativeLoadAddress::print() { |
|
419 |
tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset()); |
|
420 |
} |
|
421 |
||
422 |
//-------------------------------------------------------------------------------- |
|
423 |
||
424 |
void NativeJump::verify() { |
|
425 |
if (*(u_char*)instruction_address() != instruction_code) { |
|
426 |
fatal("not a jump instruction"); |
|
427 |
} |
|
428 |
} |
|
429 |
||
430 |
||
431 |
void NativeJump::insert(address code_pos, address entry) { |
|
432 |
intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4); |
|
433 |
#ifdef AMD64 |
|
434 |
guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset"); |
|
435 |
#endif // AMD64 |
|
436 |
||
437 |
*code_pos = instruction_code; |
|
438 |
*((int32_t*)(code_pos + 1)) = (int32_t)disp; |
|
439 |
||
440 |
ICache::invalidate_range(code_pos, instruction_size); |
|
441 |
} |
|
442 |
||
443 |
void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) { |
|
444 |
// Patching to not_entrant can happen while activations of the method are |
|
445 |
// in use. The patching in that instance must happen only when certain |
|
446 |
// alignment restrictions are true. These guarantees check those |
|
447 |
// conditions. |
|
448 |
#ifdef AMD64 |
|
449 |
const int linesize = 64; |
|
450 |
#else |
|
451 |
const int linesize = 32; |
|
452 |
#endif // AMD64 |
|
453 |
||
454 |
// Must be wordSize aligned |
|
455 |
guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0, |
|
456 |
"illegal address for code patching 2"); |
|
457 |
// First 5 bytes must be within the same cache line - 4827828 |
|
458 |
guarantee((uintptr_t) verified_entry / linesize == |
|
459 |
((uintptr_t) verified_entry + 4) / linesize, |
|
460 |
"illegal address for code patching 3"); |
|
461 |
} |
|
462 |
||
463 |
||
464 |
// MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie) |
|
465 |
// The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes. |
|
466 |
// First patches the first word atomically to be a jump to itself. |
|
467 |
// Then patches the last byte and then atomically patches the first word (4-bytes), |
|
468 |
// thus inserting the desired jump |
|
469 |
// This code is mt-safe with the following conditions: entry point is 4 byte aligned, |
|
470 |
// entry point is in same cache line as unverified entry point, and the instruction being |
|
471 |
// patched is >= 5 byte (size of patch). |
|
472 |
// |
|
473 |
// In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit. |
|
474 |
// In C1 the restriction is enforced by CodeEmitter::method_entry |
|
475 |
// |
|
476 |
void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) { |
|
477 |
// complete jump instruction (to be inserted) is in code_buffer; |
|
478 |
unsigned char code_buffer[5]; |
|
479 |
code_buffer[0] = instruction_code; |
|
480 |
intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4); |
|
481 |
#ifdef AMD64 |
|
482 |
guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset"); |
|
483 |
#endif // AMD64 |
|
484 |
*(int32_t*)(code_buffer + 1) = (int32_t)disp; |
|
485 |
||
486 |
check_verified_entry_alignment(entry, verified_entry); |
|
487 |
||
488 |
// Can't call nativeJump_at() because it's asserts jump exists |
|
489 |
NativeJump* n_jump = (NativeJump*) verified_entry; |
|
490 |
||
491 |
//First patch dummy jmp in place |
|
492 |
||
493 |
unsigned char patch[4]; |
|
494 |
assert(sizeof(patch)==sizeof(int32_t), "sanity check"); |
|
495 |
patch[0] = 0xEB; // jmp rel8 |
|
496 |
patch[1] = 0xFE; // jmp to self |
|
497 |
patch[2] = 0xEB; |
|
498 |
patch[3] = 0xFE; |
|
499 |
||
500 |
// First patch dummy jmp in place |
|
501 |
*(int32_t*)verified_entry = *(int32_t *)patch; |
|
502 |
||
503 |
n_jump->wrote(0); |
|
504 |
||
505 |
// Patch 5th byte (from jump instruction) |
|
506 |
verified_entry[4] = code_buffer[4]; |
|
507 |
||
508 |
n_jump->wrote(4); |
|
509 |
||
510 |
// Patch bytes 0-3 (from jump instruction) |
|
511 |
*(int32_t*)verified_entry = *(int32_t *)code_buffer; |
|
512 |
// Invalidate. Opteron requires a flush after every write. |
|
513 |
n_jump->wrote(0); |
|
514 |
||
515 |
} |
|
516 |
||
517 |
void NativePopReg::insert(address code_pos, Register reg) { |
|
518 |
assert(reg->encoding() < 8, "no space for REX"); |
|
519 |
assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update"); |
|
520 |
*code_pos = (u_char)(instruction_code | reg->encoding()); |
|
521 |
ICache::invalidate_range(code_pos, instruction_size); |
|
522 |
} |
|
523 |
||
524 |
||
525 |
void NativeIllegalInstruction::insert(address code_pos) { |
|
526 |
assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update"); |
|
527 |
*(short *)code_pos = instruction_code; |
|
528 |
ICache::invalidate_range(code_pos, instruction_size); |
|
529 |
} |
|
530 |
||
531 |
void NativeGeneralJump::verify() { |
|
532 |
assert(((NativeInstruction *)this)->is_jump() || |
|
533 |
((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction"); |
|
534 |
} |
|
535 |
||
536 |
||
537 |
void NativeGeneralJump::insert_unconditional(address code_pos, address entry) { |
|
538 |
intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4); |
|
539 |
#ifdef AMD64 |
|
540 |
guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset"); |
|
541 |
#endif // AMD64 |
|
542 |
||
543 |
*code_pos = unconditional_long_jump; |
|
544 |
*((int32_t *)(code_pos+1)) = (int32_t) disp; |
|
545 |
ICache::invalidate_range(code_pos, instruction_size); |
|
546 |
} |
|
547 |
||
548 |
||
549 |
// MT-safe patching of a long jump instruction. |
|
550 |
// First patches first word of instruction to two jmp's that jmps to them |
|
551 |
// selfs (spinlock). Then patches the last byte, and then atomicly replaces |
|
552 |
// the jmp's with the first 4 byte of the new instruction. |
|
553 |
void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) { |
|
554 |
assert (instr_addr != NULL, "illegal address for code patching (4)"); |
|
555 |
NativeGeneralJump* n_jump = nativeGeneralJump_at (instr_addr); // checking that it is a jump |
|
556 |
||
557 |
// Temporary code |
|
558 |
unsigned char patch[4]; |
|
559 |
assert(sizeof(patch)==sizeof(int32_t), "sanity check"); |
|
560 |
patch[0] = 0xEB; // jmp rel8 |
|
561 |
patch[1] = 0xFE; // jmp to self |
|
562 |
patch[2] = 0xEB; |
|
563 |
patch[3] = 0xFE; |
|
564 |
||
565 |
// First patch dummy jmp in place |
|
566 |
*(int32_t*)instr_addr = *(int32_t *)patch; |
|
567 |
n_jump->wrote(0); |
|
568 |
||
569 |
// Patch 4th byte |
|
570 |
instr_addr[4] = code_buffer[4]; |
|
571 |
||
572 |
n_jump->wrote(4); |
|
573 |
||
574 |
// Patch bytes 0-3 |
|
575 |
*(jint*)instr_addr = *(jint *)code_buffer; |
|
576 |
||
577 |
n_jump->wrote(0); |
|
578 |
||
579 |
#ifdef ASSERT |
|
580 |
// verify patching |
|
581 |
for ( int i = 0; i < instruction_size; i++) { |
|
582 |
address ptr = (address)((intptr_t)code_buffer + i); |
|
583 |
int a_byte = (*ptr) & 0xFF; |
|
584 |
assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed"); |
|
585 |
} |
|
586 |
#endif |
|
587 |
||
588 |
} |
|
589 |
||
590 |
||
591 |
||
592 |
address NativeGeneralJump::jump_destination() const { |
|
593 |
int op_code = ubyte_at(0); |
|
594 |
bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F); |
|
595 |
int offset = (op_code == 0x0F) ? 2 : 1; |
|
596 |
int length = offset + ((is_rel32off) ? 4 : 1); |
|
597 |
||
598 |
if (is_rel32off) |
|
599 |
return addr_at(0) + length + int_at(offset); |
|
600 |
else |
|
601 |
return addr_at(0) + length + sbyte_at(offset); |
|
602 |
} |
|
363
99d43e8a76ad
6537506: Provide a mechanism for specifying Java-level USDT-like dtrace probes
kamg
parents:
1
diff
changeset
|
603 |
|
99d43e8a76ad
6537506: Provide a mechanism for specifying Java-level USDT-like dtrace probes
kamg
parents:
1
diff
changeset
|
604 |
bool NativeInstruction::is_dtrace_trap() { |
99d43e8a76ad
6537506: Provide a mechanism for specifying Java-level USDT-like dtrace probes
kamg
parents:
1
diff
changeset
|
605 |
return (*(int32_t*)this & 0xff) == 0xcc; |
99d43e8a76ad
6537506: Provide a mechanism for specifying Java-level USDT-like dtrace probes
kamg
parents:
1
diff
changeset
|
606 |
} |