author | avstepan |
Thu, 28 Apr 2016 19:35:09 +0300 | |
changeset 38386 | d7e7d592d396 |
parent 25859 | 3317bb8137f4 |
child 39759 | 427916042881 |
permissions | -rw-r--r-- |
2 | 1 |
|
2 |
/* |
|
23010
6dadb192ad81
8029235: Update copyright year to match last edit in jdk8 jdk repository for 2013
lana
parents:
21278
diff
changeset
|
3 |
* Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved. |
2 | 4 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
5 |
* |
|
6 |
* This code is free software; you can redistribute it and/or modify it |
|
7 |
* under the terms of the GNU General Public License version 2 only, as |
|
5506 | 8 |
* published by the Free Software Foundation. Oracle designates this |
2 | 9 |
* particular file as subject to the "Classpath" exception as provided |
5506 | 10 |
* by Oracle in the LICENSE file that accompanied this code. |
2 | 11 |
* |
12 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
13 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
14 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
15 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
16 |
* accompanied this code). |
|
17 |
* |
|
18 |
* You should have received a copy of the GNU General Public License version |
|
19 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
20 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
21 |
* |
|
5506 | 22 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
23 |
* or visit www.oracle.com if you need additional information or have any |
|
24 |
* questions. |
|
2 | 25 |
*/ |
26 |
||
27 |
/* |
|
28 |
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
|
29 |
* double x[],y[]; int e0,nx,prec; int ipio2[]; |
|
30 |
* |
|
31 |
* __kernel_rem_pio2 return the last three digits of N with |
|
32 |
* y = x - N*pi/2 |
|
33 |
* so that |y| < pi/2. |
|
34 |
* |
|
35 |
* The method is to compute the integer (mod 8) and fraction parts of |
|
36 |
* (2/pi)*x without doing the full multiplication. In general we |
|
37 |
* skip the part of the product that are known to be a huge integer ( |
|
38 |
* more accurately, = 0 mod 8 ). Thus the number of operations are |
|
39 |
* independent of the exponent of the input. |
|
40 |
* |
|
41 |
* (2/pi) is represented by an array of 24-bit integers in ipio2[]. |
|
42 |
* |
|
43 |
* Input parameters: |
|
44 |
* x[] The input value (must be positive) is broken into nx |
|
45 |
* pieces of 24-bit integers in double precision format. |
|
46 |
* x[i] will be the i-th 24 bit of x. The scaled exponent |
|
47 |
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 |
|
48 |
* match x's up to 24 bits. |
|
49 |
* |
|
50 |
* Example of breaking a double positive z into x[0]+x[1]+x[2]: |
|
51 |
* e0 = ilogb(z)-23 |
|
52 |
* z = scalbn(z,-e0) |
|
53 |
* for i = 0,1,2 |
|
54 |
* x[i] = floor(z) |
|
55 |
* z = (z-x[i])*2**24 |
|
56 |
* |
|
57 |
* |
|
21278 | 58 |
* y[] output result in an array of double precision numbers. |
2 | 59 |
* The dimension of y[] is: |
60 |
* 24-bit precision 1 |
|
61 |
* 53-bit precision 2 |
|
62 |
* 64-bit precision 2 |
|
63 |
* 113-bit precision 3 |
|
64 |
* The actual value is the sum of them. Thus for 113-bit |
|
65 |
* precison, one may have to do something like: |
|
66 |
* |
|
67 |
* long double t,w,r_head, r_tail; |
|
68 |
* t = (long double)y[2] + (long double)y[1]; |
|
69 |
* w = (long double)y[0]; |
|
70 |
* r_head = t+w; |
|
71 |
* r_tail = w - (r_head - t); |
|
72 |
* |
|
73 |
* e0 The exponent of x[0] |
|
74 |
* |
|
75 |
* nx dimension of x[] |
|
76 |
* |
|
77 |
* prec an integer indicating the precision: |
|
78 |
* 0 24 bits (single) |
|
79 |
* 1 53 bits (double) |
|
80 |
* 2 64 bits (extended) |
|
81 |
* 3 113 bits (quad) |
|
82 |
* |
|
83 |
* ipio2[] |
|
84 |
* integer array, contains the (24*i)-th to (24*i+23)-th |
|
85 |
* bit of 2/pi after binary point. The corresponding |
|
86 |
* floating value is |
|
87 |
* |
|
88 |
* ipio2[i] * 2^(-24(i+1)). |
|
89 |
* |
|
90 |
* External function: |
|
91 |
* double scalbn(), floor(); |
|
92 |
* |
|
93 |
* |
|
94 |
* Here is the description of some local variables: |
|
95 |
* |
|
96 |
* jk jk+1 is the initial number of terms of ipio2[] needed |
|
97 |
* in the computation. The recommended value is 2,3,4, |
|
98 |
* 6 for single, double, extended,and quad. |
|
99 |
* |
|
100 |
* jz local integer variable indicating the number of |
|
101 |
* terms of ipio2[] used. |
|
102 |
* |
|
103 |
* jx nx - 1 |
|
104 |
* |
|
105 |
* jv index for pointing to the suitable ipio2[] for the |
|
106 |
* computation. In general, we want |
|
107 |
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 |
|
108 |
* is an integer. Thus |
|
109 |
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv |
|
110 |
* Hence jv = max(0,(e0-3)/24). |
|
111 |
* |
|
112 |
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk. |
|
113 |
* |
|
114 |
* q[] double array with integral value, representing the |
|
115 |
* 24-bits chunk of the product of x and 2/pi. |
|
116 |
* |
|
117 |
* q0 the corresponding exponent of q[0]. Note that the |
|
118 |
* exponent for q[i] would be q0-24*i. |
|
119 |
* |
|
120 |
* PIo2[] double precision array, obtained by cutting pi/2 |
|
121 |
* into 24 bits chunks. |
|
122 |
* |
|
123 |
* f[] ipio2[] in floating point |
|
124 |
* |
|
125 |
* iq[] integer array by breaking up q[] in 24-bits chunk. |
|
126 |
* |
|
127 |
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk] |
|
128 |
* |
|
129 |
* ih integer. If >0 it indicates q[] is >= 0.5, hence |
|
130 |
* it also indicates the *sign* of the result. |
|
131 |
* |
|
132 |
*/ |
|
133 |
||
134 |
||
135 |
/* |
|
136 |
* Constants: |
|
137 |
* The hexadecimal values are the intended ones for the following |
|
138 |
* constants. The decimal values may be used, provided that the |
|
139 |
* compiler will convert from decimal to binary accurately enough |
|
140 |
* to produce the hexadecimal values shown. |
|
141 |
*/ |
|
142 |
||
143 |
#include "fdlibm.h" |
|
144 |
||
145 |
#ifdef __STDC__ |
|
146 |
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ |
|
147 |
#else |
|
148 |
static int init_jk[] = {2,3,4,6}; |
|
149 |
#endif |
|
150 |
||
151 |
#ifdef __STDC__ |
|
152 |
static const double PIo2[] = { |
|
153 |
#else |
|
154 |
static double PIo2[] = { |
|
155 |
#endif |
|
156 |
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ |
|
157 |
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ |
|
158 |
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ |
|
159 |
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ |
|
160 |
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ |
|
161 |
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ |
|
162 |
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ |
|
163 |
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ |
|
164 |
}; |
|
165 |
||
166 |
#ifdef __STDC__ |
|
167 |
static const double |
|
168 |
#else |
|
169 |
static double |
|
170 |
#endif |
|
171 |
zero = 0.0, |
|
172 |
one = 1.0, |
|
173 |
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ |
|
174 |
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ |
|
175 |
||
176 |
#ifdef __STDC__ |
|
177 |
int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) |
|
178 |
#else |
|
179 |
int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) |
|
180 |
double x[], y[]; int e0,nx,prec; int ipio2[]; |
|
181 |
#endif |
|
182 |
{ |
|
183 |
int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; |
|
184 |
double z,fw,f[20],fq[20],q[20]; |
|
185 |
||
186 |
/* initialize jk*/ |
|
187 |
jk = init_jk[prec]; |
|
188 |
jp = jk; |
|
189 |
||
190 |
/* determine jx,jv,q0, note that 3>q0 */ |
|
191 |
jx = nx-1; |
|
192 |
jv = (e0-3)/24; if(jv<0) jv=0; |
|
193 |
q0 = e0-24*(jv+1); |
|
194 |
||
195 |
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ |
|
196 |
j = jv-jx; m = jx+jk; |
|
197 |
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; |
|
198 |
||
199 |
/* compute q[0],q[1],...q[jk] */ |
|
200 |
for (i=0;i<=jk;i++) { |
|
201 |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; |
|
202 |
} |
|
203 |
||
204 |
jz = jk; |
|
205 |
recompute: |
|
206 |
/* distill q[] into iq[] reversingly */ |
|
207 |
for(i=0,j=jz,z=q[jz];j>0;i++,j--) { |
|
208 |
fw = (double)((int)(twon24* z)); |
|
209 |
iq[i] = (int)(z-two24*fw); |
|
210 |
z = q[j-1]+fw; |
|
211 |
} |
|
212 |
||
213 |
/* compute n */ |
|
214 |
z = scalbn(z,q0); /* actual value of z */ |
|
215 |
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ |
|
216 |
n = (int) z; |
|
217 |
z -= (double)n; |
|
218 |
ih = 0; |
|
219 |
if(q0>0) { /* need iq[jz-1] to determine n */ |
|
220 |
i = (iq[jz-1]>>(24-q0)); n += i; |
|
221 |
iq[jz-1] -= i<<(24-q0); |
|
222 |
ih = iq[jz-1]>>(23-q0); |
|
223 |
} |
|
224 |
else if(q0==0) ih = iq[jz-1]>>23; |
|
225 |
else if(z>=0.5) ih=2; |
|
226 |
||
227 |
if(ih>0) { /* q > 0.5 */ |
|
228 |
n += 1; carry = 0; |
|
229 |
for(i=0;i<jz ;i++) { /* compute 1-q */ |
|
230 |
j = iq[i]; |
|
231 |
if(carry==0) { |
|
232 |
if(j!=0) { |
|
233 |
carry = 1; iq[i] = 0x1000000- j; |
|
234 |
} |
|
235 |
} else iq[i] = 0xffffff - j; |
|
236 |
} |
|
237 |
if(q0>0) { /* rare case: chance is 1 in 12 */ |
|
238 |
switch(q0) { |
|
239 |
case 1: |
|
240 |
iq[jz-1] &= 0x7fffff; break; |
|
241 |
case 2: |
|
242 |
iq[jz-1] &= 0x3fffff; break; |
|
243 |
} |
|
244 |
} |
|
245 |
if(ih==2) { |
|
246 |
z = one - z; |
|
247 |
if(carry!=0) z -= scalbn(one,q0); |
|
248 |
} |
|
249 |
} |
|
250 |
||
251 |
/* check if recomputation is needed */ |
|
252 |
if(z==zero) { |
|
253 |
j = 0; |
|
254 |
for (i=jz-1;i>=jk;i--) j |= iq[i]; |
|
255 |
if(j==0) { /* need recomputation */ |
|
256 |
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ |
|
257 |
||
258 |
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ |
|
259 |
f[jx+i] = (double) ipio2[jv+i]; |
|
260 |
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; |
|
261 |
q[i] = fw; |
|
262 |
} |
|
263 |
jz += k; |
|
264 |
goto recompute; |
|
265 |
} |
|
266 |
} |
|
267 |
||
268 |
/* chop off zero terms */ |
|
269 |
if(z==0.0) { |
|
270 |
jz -= 1; q0 -= 24; |
|
271 |
while(iq[jz]==0) { jz--; q0-=24;} |
|
272 |
} else { /* break z into 24-bit if necessary */ |
|
273 |
z = scalbn(z,-q0); |
|
274 |
if(z>=two24) { |
|
275 |
fw = (double)((int)(twon24*z)); |
|
276 |
iq[jz] = (int)(z-two24*fw); |
|
277 |
jz += 1; q0 += 24; |
|
278 |
iq[jz] = (int) fw; |
|
279 |
} else iq[jz] = (int) z ; |
|
280 |
} |
|
281 |
||
282 |
/* convert integer "bit" chunk to floating-point value */ |
|
283 |
fw = scalbn(one,q0); |
|
284 |
for(i=jz;i>=0;i--) { |
|
285 |
q[i] = fw*(double)iq[i]; fw*=twon24; |
|
286 |
} |
|
287 |
||
288 |
/* compute PIo2[0,...,jp]*q[jz,...,0] */ |
|
289 |
for(i=jz;i>=0;i--) { |
|
290 |
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; |
|
291 |
fq[jz-i] = fw; |
|
292 |
} |
|
293 |
||
294 |
/* compress fq[] into y[] */ |
|
295 |
switch(prec) { |
|
296 |
case 0: |
|
297 |
fw = 0.0; |
|
298 |
for (i=jz;i>=0;i--) fw += fq[i]; |
|
299 |
y[0] = (ih==0)? fw: -fw; |
|
300 |
break; |
|
301 |
case 1: |
|
302 |
case 2: |
|
303 |
fw = 0.0; |
|
304 |
for (i=jz;i>=0;i--) fw += fq[i]; |
|
305 |
y[0] = (ih==0)? fw: -fw; |
|
306 |
fw = fq[0]-fw; |
|
307 |
for (i=1;i<=jz;i++) fw += fq[i]; |
|
308 |
y[1] = (ih==0)? fw: -fw; |
|
309 |
break; |
|
310 |
case 3: /* painful */ |
|
311 |
for (i=jz;i>0;i--) { |
|
312 |
fw = fq[i-1]+fq[i]; |
|
313 |
fq[i] += fq[i-1]-fw; |
|
314 |
fq[i-1] = fw; |
|
315 |
} |
|
316 |
for (i=jz;i>1;i--) { |
|
317 |
fw = fq[i-1]+fq[i]; |
|
318 |
fq[i] += fq[i-1]-fw; |
|
319 |
fq[i-1] = fw; |
|
320 |
} |
|
321 |
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; |
|
322 |
if(ih==0) { |
|
323 |
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; |
|
324 |
} else { |
|
325 |
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; |
|
326 |
} |
|
327 |
} |
|
328 |
return n&7; |
|
329 |
} |