18450
|
1 |
//package com.polytechnik.utils;
|
|
2 |
/*
|
|
3 |
* (C) Vladislav Malyshkin 2010
|
|
4 |
* This file is under GPL version 3.
|
|
5 |
*
|
|
6 |
*/
|
|
7 |
|
|
8 |
/** Polynomial root.
|
|
9 |
* @version $Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $
|
|
10 |
* @author Vladislav Malyshkin mal@gromco.com
|
|
11 |
*/
|
|
12 |
|
|
13 |
/**
|
|
14 |
* @test
|
|
15 |
* @bug 8005956
|
|
16 |
* @summary C2: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG defined in this block
|
|
17 |
*
|
|
18 |
* @run main PolynomialRoot
|
|
19 |
*/
|
|
20 |
|
|
21 |
public class PolynomialRoot {
|
|
22 |
|
|
23 |
|
|
24 |
public static int findPolynomialRoots(final int n,
|
|
25 |
final double [] p,
|
|
26 |
final double [] re_root,
|
|
27 |
final double [] im_root)
|
|
28 |
{
|
|
29 |
if(n==4)
|
|
30 |
{
|
|
31 |
return root4(p,re_root,im_root);
|
|
32 |
}
|
|
33 |
else if(n==3)
|
|
34 |
{
|
|
35 |
return root3(p,re_root,im_root);
|
|
36 |
}
|
|
37 |
else if(n==2)
|
|
38 |
{
|
|
39 |
return root2(p,re_root,im_root);
|
|
40 |
}
|
|
41 |
else if(n==1)
|
|
42 |
{
|
|
43 |
return root1(p,re_root,im_root);
|
|
44 |
}
|
|
45 |
else
|
|
46 |
{
|
|
47 |
throw new RuntimeException("n="+n+" is not supported yet");
|
|
48 |
}
|
|
49 |
}
|
|
50 |
|
|
51 |
|
|
52 |
|
|
53 |
static final double SQRT3=Math.sqrt(3.0),SQRT2=Math.sqrt(2.0);
|
|
54 |
|
|
55 |
|
|
56 |
private static final boolean PRINT_DEBUG=false;
|
|
57 |
|
|
58 |
public static int root4(final double [] p,final double [] re_root,final double [] im_root)
|
|
59 |
{
|
|
60 |
if(PRINT_DEBUG) System.err.println("=====================root4:p="+java.util.Arrays.toString(p));
|
|
61 |
final double vs=p[4];
|
|
62 |
if(PRINT_DEBUG) System.err.println("p[4]="+p[4]);
|
|
63 |
if(!(Math.abs(vs)>EPS))
|
|
64 |
{
|
|
65 |
re_root[0]=re_root[1]=re_root[2]=re_root[3]=
|
|
66 |
im_root[0]=im_root[1]=im_root[2]=im_root[3]=Double.NaN;
|
|
67 |
return -1;
|
|
68 |
}
|
|
69 |
|
|
70 |
/* zsolve_quartic.c - finds the complex roots of
|
|
71 |
* x^4 + a x^3 + b x^2 + c x + d = 0
|
|
72 |
*/
|
|
73 |
final double a=p[3]/vs,b=p[2]/vs,c=p[1]/vs,d=p[0]/vs;
|
|
74 |
if(PRINT_DEBUG) System.err.println("input a="+a+" b="+b+" c="+c+" d="+d);
|
|
75 |
|
|
76 |
|
|
77 |
final double r4 = 1.0 / 4.0;
|
|
78 |
final double q2 = 1.0 / 2.0, q4 = 1.0 / 4.0, q8 = 1.0 / 8.0;
|
|
79 |
final double q1 = 3.0 / 8.0, q3 = 3.0 / 16.0;
|
|
80 |
final int mt;
|
|
81 |
|
|
82 |
/* Deal easily with the cases where the quartic is degenerate. The
|
|
83 |
* ordering of solutions is done explicitly. */
|
|
84 |
if (0 == b && 0 == c)
|
|
85 |
{
|
|
86 |
if (0 == d)
|
|
87 |
{
|
|
88 |
re_root[0]=-a;
|
|
89 |
im_root[0]=im_root[1]=im_root[2]=im_root[3]=0;
|
|
90 |
re_root[1]=re_root[2]=re_root[3]=0;
|
|
91 |
return 4;
|
|
92 |
}
|
|
93 |
else if (0 == a)
|
|
94 |
{
|
|
95 |
if (d > 0)
|
|
96 |
{
|
|
97 |
final double sq4 = Math.sqrt(Math.sqrt(d));
|
|
98 |
re_root[0]=sq4*SQRT2/2;
|
|
99 |
im_root[0]=re_root[0];
|
|
100 |
re_root[1]=-re_root[0];
|
|
101 |
im_root[1]=re_root[0];
|
|
102 |
re_root[2]=-re_root[0];
|
|
103 |
im_root[2]=-re_root[0];
|
|
104 |
re_root[3]=re_root[0];
|
|
105 |
im_root[3]=-re_root[0];
|
|
106 |
if(PRINT_DEBUG) System.err.println("Path a=0 d>0");
|
|
107 |
}
|
|
108 |
else
|
|
109 |
{
|
|
110 |
final double sq4 = Math.sqrt(Math.sqrt(-d));
|
|
111 |
re_root[0]=sq4;
|
|
112 |
im_root[0]=0;
|
|
113 |
re_root[1]=0;
|
|
114 |
im_root[1]=sq4;
|
|
115 |
re_root[2]=0;
|
|
116 |
im_root[2]=-sq4;
|
|
117 |
re_root[3]=-sq4;
|
|
118 |
im_root[3]=0;
|
|
119 |
if(PRINT_DEBUG) System.err.println("Path a=0 d<0");
|
|
120 |
}
|
|
121 |
return 4;
|
|
122 |
}
|
|
123 |
}
|
|
124 |
|
|
125 |
if (0.0 == c && 0.0 == d)
|
|
126 |
{
|
|
127 |
root2(new double []{p[2],p[3],p[4]},re_root,im_root);
|
|
128 |
re_root[2]=im_root[2]=re_root[3]=im_root[3]=0;
|
|
129 |
return 4;
|
|
130 |
}
|
|
131 |
|
|
132 |
if(PRINT_DEBUG) System.err.println("G Path c="+c+" d="+d);
|
|
133 |
final double [] u=new double[3];
|
|
134 |
|
|
135 |
if(PRINT_DEBUG) System.err.println("Generic Path");
|
|
136 |
/* For non-degenerate solutions, proceed by constructing and
|
|
137 |
* solving the resolvent cubic */
|
|
138 |
final double aa = a * a;
|
|
139 |
final double pp = b - q1 * aa;
|
|
140 |
final double qq = c - q2 * a * (b - q4 * aa);
|
|
141 |
final double rr = d - q4 * a * (c - q4 * a * (b - q3 * aa));
|
|
142 |
final double rc = q2 * pp , rc3 = rc / 3;
|
|
143 |
final double sc = q4 * (q4 * pp * pp - rr);
|
|
144 |
final double tc = -(q8 * qq * q8 * qq);
|
|
145 |
if(PRINT_DEBUG) System.err.println("aa="+aa+" pp="+pp+" qq="+qq+" rr="+rr+" rc="+rc+" sc="+sc+" tc="+tc);
|
|
146 |
final boolean flag_realroots;
|
|
147 |
|
|
148 |
/* This code solves the resolvent cubic in a convenient fashion
|
|
149 |
* for this implementation of the quartic. If there are three real
|
|
150 |
* roots, then they are placed directly into u[]. If two are
|
|
151 |
* complex, then the real root is put into u[0] and the real
|
|
152 |
* and imaginary part of the complex roots are placed into
|
|
153 |
* u[1] and u[2], respectively. */
|
|
154 |
{
|
|
155 |
final double qcub = (rc * rc - 3 * sc);
|
|
156 |
final double rcub = (rc*(2 * rc * rc - 9 * sc) + 27 * tc);
|
|
157 |
|
|
158 |
final double Q = qcub / 9;
|
|
159 |
final double R = rcub / 54;
|
|
160 |
|
|
161 |
final double Q3 = Q * Q * Q;
|
|
162 |
final double R2 = R * R;
|
|
163 |
|
|
164 |
final double CR2 = 729 * rcub * rcub;
|
|
165 |
final double CQ3 = 2916 * qcub * qcub * qcub;
|
|
166 |
|
|
167 |
if(PRINT_DEBUG) System.err.println("CR2="+CR2+" CQ3="+CQ3+" R="+R+" Q="+Q);
|
|
168 |
|
|
169 |
if (0 == R && 0 == Q)
|
|
170 |
{
|
|
171 |
flag_realroots=true;
|
|
172 |
u[0] = -rc3;
|
|
173 |
u[1] = -rc3;
|
|
174 |
u[2] = -rc3;
|
|
175 |
}
|
|
176 |
else if (CR2 == CQ3)
|
|
177 |
{
|
|
178 |
flag_realroots=true;
|
|
179 |
final double sqrtQ = Math.sqrt (Q);
|
|
180 |
if (R > 0)
|
|
181 |
{
|
|
182 |
u[0] = -2 * sqrtQ - rc3;
|
|
183 |
u[1] = sqrtQ - rc3;
|
|
184 |
u[2] = sqrtQ - rc3;
|
|
185 |
}
|
|
186 |
else
|
|
187 |
{
|
|
188 |
u[0] = -sqrtQ - rc3;
|
|
189 |
u[1] = -sqrtQ - rc3;
|
|
190 |
u[2] = 2 * sqrtQ - rc3;
|
|
191 |
}
|
|
192 |
}
|
|
193 |
else if (R2 < Q3)
|
|
194 |
{
|
|
195 |
flag_realroots=true;
|
|
196 |
final double ratio = (R >= 0?1:-1) * Math.sqrt (R2 / Q3);
|
|
197 |
final double theta = Math.acos (ratio);
|
|
198 |
final double norm = -2 * Math.sqrt (Q);
|
|
199 |
|
|
200 |
u[0] = norm * Math.cos (theta / 3) - rc3;
|
|
201 |
u[1] = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - rc3;
|
|
202 |
u[2] = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - rc3;
|
|
203 |
}
|
|
204 |
else
|
|
205 |
{
|
|
206 |
flag_realroots=false;
|
|
207 |
final double A = -(R >= 0?1:-1)*Math.pow(Math.abs(R)+Math.sqrt(R2-Q3),1.0/3.0);
|
|
208 |
final double B = Q / A;
|
|
209 |
|
|
210 |
u[0] = A + B - rc3;
|
|
211 |
u[1] = -0.5 * (A + B) - rc3;
|
|
212 |
u[2] = -(SQRT3*0.5) * Math.abs (A - B);
|
|
213 |
}
|
|
214 |
if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+" u[1]="+u[1]+" u[2]="+u[2]+" qq="+qq+" disc="+((CR2 - CQ3) / 2125764.0));
|
|
215 |
}
|
|
216 |
/* End of solution to resolvent cubic */
|
|
217 |
|
|
218 |
/* Combine the square roots of the roots of the cubic
|
|
219 |
* resolvent appropriately. Also, calculate 'mt' which
|
|
220 |
* designates the nature of the roots:
|
|
221 |
* mt=1 : 4 real roots
|
|
222 |
* mt=2 : 0 real roots
|
|
223 |
* mt=3 : 2 real roots
|
|
224 |
*/
|
|
225 |
|
|
226 |
|
|
227 |
final double w1_re,w1_im,w2_re,w2_im,w3_re,w3_im,mod_w1w2,mod_w1w2_squared;
|
|
228 |
if (flag_realroots)
|
|
229 |
{
|
|
230 |
mod_w1w2=-1;
|
|
231 |
mt = 2;
|
|
232 |
int jmin=0;
|
|
233 |
double vmin=Math.abs(u[jmin]);
|
|
234 |
for(int j=1;j<3;j++)
|
|
235 |
{
|
|
236 |
final double vx=Math.abs(u[j]);
|
|
237 |
if(vx<vmin)
|
|
238 |
{
|
|
239 |
vmin=vx;
|
|
240 |
jmin=j;
|
|
241 |
}
|
|
242 |
}
|
|
243 |
final double u1=u[(jmin+1)%3],u2=u[(jmin+2)%3];
|
|
244 |
mod_w1w2_squared=Math.abs(u1*u2);
|
|
245 |
if(u1>=0)
|
|
246 |
{
|
|
247 |
w1_re=Math.sqrt(u1);
|
|
248 |
w1_im=0;
|
|
249 |
}
|
|
250 |
else
|
|
251 |
{
|
|
252 |
w1_re=0;
|
|
253 |
w1_im=Math.sqrt(-u1);
|
|
254 |
}
|
|
255 |
if(u2>=0)
|
|
256 |
{
|
|
257 |
w2_re=Math.sqrt(u2);
|
|
258 |
w2_im=0;
|
|
259 |
}
|
|
260 |
else
|
|
261 |
{
|
|
262 |
w2_re=0;
|
|
263 |
w2_im=Math.sqrt(-u2);
|
|
264 |
}
|
|
265 |
if(PRINT_DEBUG) System.err.println("u1="+u1+" u2="+u2+" jmin="+jmin);
|
|
266 |
}
|
|
267 |
else
|
|
268 |
{
|
|
269 |
mt = 3;
|
|
270 |
final double w_mod2_sq=u[1]*u[1]+u[2]*u[2],w_mod2=Math.sqrt(w_mod2_sq),w_mod=Math.sqrt(w_mod2);
|
|
271 |
if(w_mod2_sq<=0)
|
|
272 |
{
|
|
273 |
w1_re=w1_im=0;
|
|
274 |
}
|
|
275 |
else
|
|
276 |
{
|
|
277 |
// calculate square root of a complex number (u[1],u[2])
|
|
278 |
// the result is in the (w1_re,w1_im)
|
|
279 |
final double absu1=Math.abs(u[1]),absu2=Math.abs(u[2]),w;
|
|
280 |
if(absu1>=absu2)
|
|
281 |
{
|
|
282 |
final double t=absu2/absu1;
|
|
283 |
w=Math.sqrt(absu1*0.5 * (1.0 + Math.sqrt(1.0 + t * t)));
|
|
284 |
if(PRINT_DEBUG) System.err.println(" Path1 ");
|
|
285 |
}
|
|
286 |
else
|
|
287 |
{
|
|
288 |
final double t=absu1/absu2;
|
|
289 |
w=Math.sqrt(absu2*0.5 * (t + Math.sqrt(1.0 + t * t)));
|
|
290 |
if(PRINT_DEBUG) System.err.println(" Path1a ");
|
|
291 |
}
|
|
292 |
if(u[1]>=0)
|
|
293 |
{
|
|
294 |
w1_re=w;
|
|
295 |
w1_im=u[2]/(2*w);
|
|
296 |
if(PRINT_DEBUG) System.err.println(" Path2 ");
|
|
297 |
}
|
|
298 |
else
|
|
299 |
{
|
|
300 |
final double vi = (u[2] >= 0) ? w : -w;
|
|
301 |
w1_re=u[2]/(2*vi);
|
|
302 |
w1_im=vi;
|
|
303 |
if(PRINT_DEBUG) System.err.println(" Path2a ");
|
|
304 |
}
|
|
305 |
}
|
|
306 |
final double absu0=Math.abs(u[0]);
|
|
307 |
if(w_mod2>=absu0)
|
|
308 |
{
|
|
309 |
mod_w1w2=w_mod2;
|
|
310 |
mod_w1w2_squared=w_mod2_sq;
|
|
311 |
w2_re=w1_re;
|
|
312 |
w2_im=-w1_im;
|
|
313 |
}
|
|
314 |
else
|
|
315 |
{
|
|
316 |
mod_w1w2=-1;
|
|
317 |
mod_w1w2_squared=w_mod2*absu0;
|
|
318 |
if(u[0]>=0)
|
|
319 |
{
|
|
320 |
w2_re=Math.sqrt(absu0);
|
|
321 |
w2_im=0;
|
|
322 |
}
|
|
323 |
else
|
|
324 |
{
|
|
325 |
w2_re=0;
|
|
326 |
w2_im=Math.sqrt(absu0);
|
|
327 |
}
|
|
328 |
}
|
|
329 |
if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+"u[1]="+u[1]+" u[2]="+u[2]+" absu0="+absu0+" w_mod="+w_mod+" w_mod2="+w_mod2);
|
|
330 |
}
|
|
331 |
|
|
332 |
/* Solve the quadratic in order to obtain the roots
|
|
333 |
* to the quartic */
|
|
334 |
if(mod_w1w2>0)
|
|
335 |
{
|
|
336 |
// a shorcut to reduce rounding error
|
|
337 |
w3_re=qq/(-8)/mod_w1w2;
|
|
338 |
w3_im=0;
|
|
339 |
}
|
|
340 |
else if(mod_w1w2_squared>0)
|
|
341 |
{
|
|
342 |
// regular path
|
|
343 |
final double mqq8n=qq/(-8)/mod_w1w2_squared;
|
|
344 |
w3_re=mqq8n*(w1_re*w2_re-w1_im*w2_im);
|
|
345 |
w3_im=-mqq8n*(w1_re*w2_im+w2_re*w1_im);
|
|
346 |
}
|
|
347 |
else
|
|
348 |
{
|
|
349 |
// typically occur when qq==0
|
|
350 |
w3_re=w3_im=0;
|
|
351 |
}
|
|
352 |
|
|
353 |
final double h = r4 * a;
|
|
354 |
if(PRINT_DEBUG) System.err.println("w1_re="+w1_re+" w1_im="+w1_im+" w2_re="+w2_re+" w2_im="+w2_im+" w3_re="+w3_re+" w3_im="+w3_im+" h="+h);
|
|
355 |
|
|
356 |
re_root[0]=w1_re+w2_re+w3_re-h;
|
|
357 |
im_root[0]=w1_im+w2_im+w3_im;
|
|
358 |
re_root[1]=-(w1_re+w2_re)+w3_re-h;
|
|
359 |
im_root[1]=-(w1_im+w2_im)+w3_im;
|
|
360 |
re_root[2]=w2_re-w1_re-w3_re-h;
|
|
361 |
im_root[2]=w2_im-w1_im-w3_im;
|
|
362 |
re_root[3]=w1_re-w2_re-w3_re-h;
|
|
363 |
im_root[3]=w1_im-w2_im-w3_im;
|
|
364 |
|
|
365 |
return 4;
|
|
366 |
}
|
|
367 |
|
|
368 |
|
|
369 |
|
|
370 |
static void setRandomP(final double [] p,final int n,java.util.Random r)
|
|
371 |
{
|
|
372 |
if(r.nextDouble()<0.1)
|
|
373 |
{
|
|
374 |
// integer coefficiens
|
|
375 |
for(int j=0;j<p.length;j++)
|
|
376 |
{
|
|
377 |
if(j<=n)
|
|
378 |
{
|
|
379 |
p[j]=(r.nextInt(2)<=0?-1:1)*r.nextInt(10);
|
|
380 |
}
|
|
381 |
else
|
|
382 |
{
|
|
383 |
p[j]=0;
|
|
384 |
}
|
|
385 |
}
|
|
386 |
}
|
|
387 |
else
|
|
388 |
{
|
|
389 |
// real coefficiens
|
|
390 |
for(int j=0;j<p.length;j++)
|
|
391 |
{
|
|
392 |
if(j<=n)
|
|
393 |
{
|
|
394 |
p[j]=-1+2*r.nextDouble();
|
|
395 |
}
|
|
396 |
else
|
|
397 |
{
|
|
398 |
p[j]=0;
|
|
399 |
}
|
|
400 |
}
|
|
401 |
}
|
|
402 |
if(Math.abs(p[n])<1e-2)
|
|
403 |
{
|
|
404 |
p[n]=(r.nextInt(2)<=0?-1:1)*(0.1+r.nextDouble());
|
|
405 |
}
|
|
406 |
}
|
|
407 |
|
|
408 |
|
|
409 |
static void checkValues(final double [] p,
|
|
410 |
final int n,
|
|
411 |
final double rex,
|
|
412 |
final double imx,
|
|
413 |
final double eps,
|
|
414 |
final String txt)
|
|
415 |
{
|
|
416 |
double res=0,ims=0,sabs=0;
|
|
417 |
final double xabs=Math.abs(rex)+Math.abs(imx);
|
|
418 |
for(int k=n;k>=0;k--)
|
|
419 |
{
|
|
420 |
final double res1=(res*rex-ims*imx)+p[k];
|
|
421 |
final double ims1=(ims*rex+res*imx);
|
|
422 |
res=res1;
|
|
423 |
ims=ims1;
|
|
424 |
sabs+=xabs*sabs+p[k];
|
|
425 |
}
|
|
426 |
sabs=Math.abs(sabs);
|
|
427 |
if(false && sabs>1/eps?
|
|
428 |
(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))
|
|
429 |
:
|
|
430 |
(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps)))
|
|
431 |
{
|
|
432 |
throw new RuntimeException(
|
|
433 |
getPolinomTXT(p)+"\n"+
|
|
434 |
"\t x.r="+rex+" x.i="+imx+"\n"+
|
|
435 |
"res/sabs="+(res/sabs)+" ims/sabs="+(ims/sabs)+
|
|
436 |
" sabs="+sabs+
|
|
437 |
"\nres="+res+" ims="+ims+" n="+n+" eps="+eps+" "+
|
|
438 |
" sabs>1/eps="+(sabs>1/eps)+
|
|
439 |
" f1="+(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))+
|
|
440 |
" f2="+(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps))+
|
|
441 |
" "+txt);
|
|
442 |
}
|
|
443 |
}
|
|
444 |
|
|
445 |
static String getPolinomTXT(final double [] p)
|
|
446 |
{
|
|
447 |
final StringBuilder buf=new StringBuilder();
|
|
448 |
buf.append("order="+(p.length-1)+"\t");
|
|
449 |
for(int k=0;k<p.length;k++)
|
|
450 |
{
|
|
451 |
buf.append("p["+k+"]="+p[k]+";");
|
|
452 |
}
|
|
453 |
return buf.toString();
|
|
454 |
}
|
|
455 |
|
|
456 |
static String getRootsTXT(int nr,final double [] re,final double [] im)
|
|
457 |
{
|
|
458 |
final StringBuilder buf=new StringBuilder();
|
|
459 |
for(int k=0;k<nr;k++)
|
|
460 |
{
|
|
461 |
buf.append("x."+k+"("+re[k]+","+im[k]+")\n");
|
|
462 |
}
|
|
463 |
return buf.toString();
|
|
464 |
}
|
|
465 |
|
|
466 |
static void testRoots(final int n,
|
|
467 |
final int n_tests,
|
|
468 |
final java.util.Random rn,
|
|
469 |
final double eps)
|
|
470 |
{
|
|
471 |
final double [] p=new double [n+1];
|
|
472 |
final double [] rex=new double [n],imx=new double [n];
|
|
473 |
for(int i=0;i<n_tests;i++)
|
|
474 |
{
|
|
475 |
for(int dg=n;dg-->-1;)
|
|
476 |
{
|
|
477 |
for(int dr=3;dr-->0;)
|
|
478 |
{
|
|
479 |
setRandomP(p,n,rn);
|
|
480 |
for(int j=0;j<=dg;j++)
|
|
481 |
{
|
|
482 |
p[j]=0;
|
|
483 |
}
|
|
484 |
if(dr==0)
|
|
485 |
{
|
|
486 |
p[0]=-1+2.0*rn.nextDouble();
|
|
487 |
}
|
|
488 |
else if(dr==1)
|
|
489 |
{
|
|
490 |
p[0]=p[1]=0;
|
|
491 |
}
|
|
492 |
|
|
493 |
findPolynomialRoots(n,p,rex,imx);
|
|
494 |
|
|
495 |
for(int j=0;j<n;j++)
|
|
496 |
{
|
|
497 |
//System.err.println("j="+j);
|
|
498 |
checkValues(p,n,rex[j],imx[j],eps," t="+i);
|
|
499 |
}
|
|
500 |
}
|
|
501 |
}
|
|
502 |
}
|
|
503 |
System.err.println("testRoots(): n_tests="+n_tests+" OK, dim="+n);
|
|
504 |
}
|
|
505 |
|
|
506 |
|
|
507 |
|
|
508 |
|
|
509 |
static final double EPS=0;
|
|
510 |
|
|
511 |
public static int root1(final double [] p,final double [] re_root,final double [] im_root)
|
|
512 |
{
|
|
513 |
if(!(Math.abs(p[1])>EPS))
|
|
514 |
{
|
|
515 |
re_root[0]=im_root[0]=Double.NaN;
|
|
516 |
return -1;
|
|
517 |
}
|
|
518 |
re_root[0]=-p[0]/p[1];
|
|
519 |
im_root[0]=0;
|
|
520 |
return 1;
|
|
521 |
}
|
|
522 |
|
|
523 |
public static int root2(final double [] p,final double [] re_root,final double [] im_root)
|
|
524 |
{
|
|
525 |
if(!(Math.abs(p[2])>EPS))
|
|
526 |
{
|
|
527 |
re_root[0]=re_root[1]=im_root[0]=im_root[1]=Double.NaN;
|
|
528 |
return -1;
|
|
529 |
}
|
|
530 |
final double b2=0.5*(p[1]/p[2]),c=p[0]/p[2],d=b2*b2-c;
|
|
531 |
if(d>=0)
|
|
532 |
{
|
|
533 |
final double sq=Math.sqrt(d);
|
|
534 |
if(b2<0)
|
|
535 |
{
|
|
536 |
re_root[1]=-b2+sq;
|
|
537 |
re_root[0]=c/re_root[1];
|
|
538 |
}
|
|
539 |
else if(b2>0)
|
|
540 |
{
|
|
541 |
re_root[0]=-b2-sq;
|
|
542 |
re_root[1]=c/re_root[0];
|
|
543 |
}
|
|
544 |
else
|
|
545 |
{
|
|
546 |
re_root[0]=-b2-sq;
|
|
547 |
re_root[1]=-b2+sq;
|
|
548 |
}
|
|
549 |
im_root[0]=im_root[1]=0;
|
|
550 |
}
|
|
551 |
else
|
|
552 |
{
|
|
553 |
final double sq=Math.sqrt(-d);
|
|
554 |
re_root[0]=re_root[1]=-b2;
|
|
555 |
im_root[0]=sq;
|
|
556 |
im_root[1]=-sq;
|
|
557 |
}
|
|
558 |
return 2;
|
|
559 |
}
|
|
560 |
|
|
561 |
public static int root3(final double [] p,final double [] re_root,final double [] im_root)
|
|
562 |
{
|
|
563 |
final double vs=p[3];
|
|
564 |
if(!(Math.abs(vs)>EPS))
|
|
565 |
{
|
|
566 |
re_root[0]=re_root[1]=re_root[2]=
|
|
567 |
im_root[0]=im_root[1]=im_root[2]=Double.NaN;
|
|
568 |
return -1;
|
|
569 |
}
|
|
570 |
final double a=p[2]/vs,b=p[1]/vs,c=p[0]/vs;
|
|
571 |
/* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0
|
|
572 |
*/
|
|
573 |
final double q = (a * a - 3 * b);
|
|
574 |
final double r = (a*(2 * a * a - 9 * b) + 27 * c);
|
|
575 |
|
|
576 |
final double Q = q / 9;
|
|
577 |
final double R = r / 54;
|
|
578 |
|
|
579 |
final double Q3 = Q * Q * Q;
|
|
580 |
final double R2 = R * R;
|
|
581 |
|
|
582 |
final double CR2 = 729 * r * r;
|
|
583 |
final double CQ3 = 2916 * q * q * q;
|
|
584 |
final double a3=a/3;
|
|
585 |
|
|
586 |
if (R == 0 && Q == 0)
|
|
587 |
{
|
|
588 |
re_root[0]=re_root[1]=re_root[2]=-a3;
|
|
589 |
im_root[0]=im_root[1]=im_root[2]=0;
|
|
590 |
return 3;
|
|
591 |
}
|
|
592 |
else if (CR2 == CQ3)
|
|
593 |
{
|
|
594 |
/* this test is actually R2 == Q3, written in a form suitable
|
|
595 |
for exact computation with integers */
|
|
596 |
|
|
597 |
/* Due to finite precision some double roots may be missed, and
|
|
598 |
will be considered to be a pair of complex roots z = x +/-
|
|
599 |
epsilon i close to the real axis. */
|
|
600 |
|
|
601 |
final double sqrtQ = Math.sqrt (Q);
|
|
602 |
|
|
603 |
if (R > 0)
|
|
604 |
{
|
|
605 |
re_root[0] = -2 * sqrtQ - a3;
|
|
606 |
re_root[1]=re_root[2]=sqrtQ - a3;
|
|
607 |
im_root[0]=im_root[1]=im_root[2]=0;
|
|
608 |
}
|
|
609 |
else
|
|
610 |
{
|
|
611 |
re_root[0]=re_root[1] = -sqrtQ - a3;
|
|
612 |
re_root[2]=2 * sqrtQ - a3;
|
|
613 |
im_root[0]=im_root[1]=im_root[2]=0;
|
|
614 |
}
|
|
615 |
return 3;
|
|
616 |
}
|
|
617 |
else if (R2 < Q3)
|
|
618 |
{
|
|
619 |
final double sgnR = (R >= 0 ? 1 : -1);
|
|
620 |
final double ratio = sgnR * Math.sqrt (R2 / Q3);
|
|
621 |
final double theta = Math.acos (ratio);
|
|
622 |
final double norm = -2 * Math.sqrt (Q);
|
|
623 |
final double r0 = norm * Math.cos (theta/3) - a3;
|
|
624 |
final double r1 = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - a3;
|
|
625 |
final double r2 = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - a3;
|
|
626 |
|
|
627 |
re_root[0]=r0;
|
|
628 |
re_root[1]=r1;
|
|
629 |
re_root[2]=r2;
|
|
630 |
im_root[0]=im_root[1]=im_root[2]=0;
|
|
631 |
return 3;
|
|
632 |
}
|
|
633 |
else
|
|
634 |
{
|
|
635 |
final double sgnR = (R >= 0 ? 1 : -1);
|
|
636 |
final double A = -sgnR * Math.pow (Math.abs (R) + Math.sqrt (R2 - Q3), 1.0 / 3.0);
|
|
637 |
final double B = Q / A;
|
|
638 |
|
|
639 |
re_root[0]=A + B - a3;
|
|
640 |
im_root[0]=0;
|
|
641 |
re_root[1]=-0.5 * (A + B) - a3;
|
|
642 |
im_root[1]=-(SQRT3*0.5) * Math.abs(A - B);
|
|
643 |
re_root[2]=re_root[1];
|
|
644 |
im_root[2]=-im_root[1];
|
|
645 |
return 3;
|
|
646 |
}
|
|
647 |
|
|
648 |
}
|
|
649 |
|
|
650 |
|
|
651 |
static void root3a(final double [] p,final double [] re_root,final double [] im_root)
|
|
652 |
{
|
|
653 |
if(Math.abs(p[3])>EPS)
|
|
654 |
{
|
|
655 |
final double v=p[3],
|
|
656 |
a=p[2]/v,b=p[1]/v,c=p[0]/v,
|
|
657 |
a3=a/3,a3a=a3*a,
|
|
658 |
pd3=(b-a3a)/3,
|
|
659 |
qd2=a3*(a3a/3-0.5*b)+0.5*c,
|
|
660 |
Q=pd3*pd3*pd3+qd2*qd2;
|
|
661 |
if(Q<0)
|
|
662 |
{
|
|
663 |
// three real roots
|
|
664 |
final double SQ=Math.sqrt(-Q);
|
|
665 |
final double th=Math.atan2(SQ,-qd2);
|
|
666 |
im_root[0]=im_root[1]=im_root[2]=0;
|
|
667 |
final double f=2*Math.sqrt(-pd3);
|
|
668 |
re_root[0]=f*Math.cos(th/3)-a3;
|
|
669 |
re_root[1]=f*Math.cos((th+2*Math.PI)/3)-a3;
|
|
670 |
re_root[2]=f*Math.cos((th+4*Math.PI)/3)-a3;
|
|
671 |
//System.err.println("3r");
|
|
672 |
}
|
|
673 |
else
|
|
674 |
{
|
|
675 |
// one real & two complex roots
|
|
676 |
final double SQ=Math.sqrt(Q);
|
|
677 |
final double r1=-qd2+SQ,r2=-qd2-SQ;
|
|
678 |
final double v1=Math.signum(r1)*Math.pow(Math.abs(r1),1.0/3),
|
|
679 |
v2=Math.signum(r2)*Math.pow(Math.abs(r2),1.0/3),
|
|
680 |
sv=v1+v2;
|
|
681 |
// real root
|
|
682 |
re_root[0]=sv-a3;
|
|
683 |
im_root[0]=0;
|
|
684 |
// complex roots
|
|
685 |
re_root[1]=re_root[2]=-0.5*sv-a3;
|
|
686 |
im_root[1]=(v1-v2)*(SQRT3*0.5);
|
|
687 |
im_root[2]=-im_root[1];
|
|
688 |
//System.err.println("1r2c");
|
|
689 |
}
|
|
690 |
}
|
|
691 |
else
|
|
692 |
{
|
|
693 |
re_root[0]=re_root[1]=re_root[2]=im_root[0]=im_root[1]=im_root[2]=Double.NaN;
|
|
694 |
}
|
|
695 |
}
|
|
696 |
|
|
697 |
|
|
698 |
static void printSpecialValues()
|
|
699 |
{
|
|
700 |
for(int st=0;st<6;st++)
|
|
701 |
{
|
|
702 |
//final double [] p=new double []{8,1,3,3.6,1};
|
|
703 |
final double [] re_root=new double [4],im_root=new double [4];
|
|
704 |
final double [] p;
|
|
705 |
final int n;
|
|
706 |
if(st<=3)
|
|
707 |
{
|
|
708 |
if(st<=0)
|
|
709 |
{
|
|
710 |
p=new double []{2,-4,6,-4,1};
|
|
711 |
//p=new double []{-6,6,-6,8,-2};
|
|
712 |
}
|
|
713 |
else if(st==1)
|
|
714 |
{
|
|
715 |
p=new double []{0,-4,8,3,-9};
|
|
716 |
}
|
|
717 |
else if(st==2)
|
|
718 |
{
|
|
719 |
p=new double []{-1,0,2,0,-1};
|
|
720 |
}
|
|
721 |
else
|
|
722 |
{
|
|
723 |
p=new double []{-5,2,8,-2,-3};
|
|
724 |
}
|
|
725 |
root4(p,re_root,im_root);
|
|
726 |
n=4;
|
|
727 |
}
|
|
728 |
else
|
|
729 |
{
|
|
730 |
p=new double []{0,2,0,1};
|
|
731 |
if(st==4)
|
|
732 |
{
|
|
733 |
p[1]=-p[1];
|
|
734 |
}
|
|
735 |
root3(p,re_root,im_root);
|
|
736 |
n=3;
|
|
737 |
}
|
|
738 |
System.err.println("======== n="+n);
|
|
739 |
for(int i=0;i<=n;i++)
|
|
740 |
{
|
|
741 |
if(i<n)
|
|
742 |
{
|
|
743 |
System.err.println(String.valueOf(i)+"\t"+
|
|
744 |
p[i]+"\t"+
|
|
745 |
re_root[i]+"\t"+
|
|
746 |
im_root[i]);
|
|
747 |
}
|
|
748 |
else
|
|
749 |
{
|
|
750 |
System.err.println(String.valueOf(i)+"\t"+p[i]+"\t");
|
|
751 |
}
|
|
752 |
}
|
|
753 |
}
|
|
754 |
}
|
|
755 |
|
|
756 |
|
|
757 |
|
|
758 |
public static void main(final String [] args)
|
|
759 |
{
|
|
760 |
final long t0=System.currentTimeMillis();
|
|
761 |
final double eps=1e-6;
|
|
762 |
//checkRoots();
|
|
763 |
final java.util.Random r=new java.util.Random(-1381923);
|
|
764 |
printSpecialValues();
|
|
765 |
|
|
766 |
final int n_tests=10000000;
|
|
767 |
//testRoots(2,n_tests,r,eps);
|
|
768 |
//testRoots(3,n_tests,r,eps);
|
|
769 |
testRoots(4,n_tests,r,eps);
|
|
770 |
final long t1=System.currentTimeMillis();
|
|
771 |
System.err.println("PolynomialRoot.main: "+n_tests+" tests OK done in "+(t1-t0)+" milliseconds. ver=$Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $");
|
|
772 |
}
|
|
773 |
|
|
774 |
|
|
775 |
|
|
776 |
}
|