13195
|
1 |
/*
|
|
2 |
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include "precompiled.hpp"
|
|
26 |
#include "runtime/mutexLocker.hpp"
|
|
27 |
#include "utilities/decoder.hpp"
|
|
28 |
#include "services/memBaseline.hpp"
|
|
29 |
#include "services/memPtr.hpp"
|
|
30 |
#include "services/memPtrArray.hpp"
|
|
31 |
#include "services/memSnapshot.hpp"
|
|
32 |
#include "services/memTracker.hpp"
|
|
33 |
|
|
34 |
|
|
35 |
// stagging data groups the data of a VM memory range, so we can consolidate
|
|
36 |
// them into one record during the walk
|
|
37 |
bool StagingWalker::consolidate_vm_records(VMMemRegionEx* vm_rec) {
|
|
38 |
MemPointerRecord* cur = (MemPointerRecord*)_itr.current();
|
|
39 |
assert(cur != NULL && cur->is_vm_pointer(), "not a virtual memory pointer");
|
|
40 |
|
|
41 |
jint cur_seq;
|
|
42 |
jint next_seq;
|
|
43 |
|
|
44 |
bool trackCallsite = MemTracker::track_callsite();
|
|
45 |
|
|
46 |
if (trackCallsite) {
|
|
47 |
vm_rec->init((MemPointerRecordEx*)cur);
|
|
48 |
cur_seq = ((SeqMemPointerRecordEx*)cur)->seq();
|
|
49 |
} else {
|
|
50 |
vm_rec->init((MemPointerRecord*)cur);
|
|
51 |
cur_seq = ((SeqMemPointerRecord*)cur)->seq();
|
|
52 |
}
|
|
53 |
|
|
54 |
// only can consolidate when we have allocation record,
|
|
55 |
// which contains virtual memory range
|
|
56 |
if (!cur->is_allocation_record()) {
|
|
57 |
_itr.next();
|
|
58 |
return true;
|
|
59 |
}
|
|
60 |
|
|
61 |
// allocation range
|
|
62 |
address base = cur->addr();
|
|
63 |
address end = base + cur->size();
|
|
64 |
|
|
65 |
MemPointerRecord* next = (MemPointerRecord*)_itr.peek_next();
|
|
66 |
// if the memory range is alive
|
|
67 |
bool live_vm_rec = true;
|
|
68 |
while (next != NULL && next->is_vm_pointer()) {
|
|
69 |
if (next->is_allocation_record()) {
|
|
70 |
assert(next->addr() >= base, "sorting order or overlapping");
|
|
71 |
break;
|
|
72 |
}
|
|
73 |
|
|
74 |
if (trackCallsite) {
|
|
75 |
next_seq = ((SeqMemPointerRecordEx*)next)->seq();
|
|
76 |
} else {
|
|
77 |
next_seq = ((SeqMemPointerRecord*)next)->seq();
|
|
78 |
}
|
|
79 |
|
|
80 |
if (next_seq < cur_seq) {
|
|
81 |
_itr.next();
|
|
82 |
next = (MemPointerRecord*)_itr.peek_next();
|
|
83 |
continue;
|
|
84 |
}
|
|
85 |
|
|
86 |
if (next->is_deallocation_record()) {
|
|
87 |
if (next->addr() == base && next->size() == cur->size()) {
|
|
88 |
// the virtual memory range has been released
|
|
89 |
_itr.next();
|
|
90 |
live_vm_rec = false;
|
|
91 |
break;
|
|
92 |
} else if (next->addr() < end) { // partial release
|
|
93 |
vm_rec->partial_release(next->addr(), next->size());
|
|
94 |
_itr.next();
|
|
95 |
} else {
|
|
96 |
break;
|
|
97 |
}
|
|
98 |
} else if (next->is_commit_record()) {
|
|
99 |
if (next->addr() >= base && next->addr() + next->size() <= end) {
|
|
100 |
vm_rec->commit(next->size());
|
|
101 |
_itr.next();
|
|
102 |
} else {
|
|
103 |
assert(next->addr() >= base, "sorting order or overlapping");
|
|
104 |
break;
|
|
105 |
}
|
|
106 |
} else if (next->is_uncommit_record()) {
|
|
107 |
if (next->addr() >= base && next->addr() + next->size() <= end) {
|
|
108 |
vm_rec->uncommit(next->size());
|
|
109 |
_itr.next();
|
|
110 |
} else {
|
|
111 |
assert(next->addr() >= end, "sorting order or overlapping");
|
|
112 |
break;
|
|
113 |
}
|
|
114 |
} else if (next->is_type_tagging_record()) {
|
|
115 |
if (next->addr() >= base && next->addr() < end ) {
|
|
116 |
vm_rec->tag(next->flags());
|
|
117 |
_itr.next();
|
|
118 |
} else {
|
|
119 |
break;
|
|
120 |
}
|
|
121 |
} else {
|
|
122 |
assert(false, "unknown record type");
|
|
123 |
}
|
|
124 |
next = (MemPointerRecord*)_itr.peek_next();
|
|
125 |
}
|
|
126 |
_itr.next();
|
|
127 |
return live_vm_rec;
|
|
128 |
}
|
|
129 |
|
|
130 |
MemPointer* StagingWalker::next() {
|
|
131 |
MemPointerRecord* cur_p = (MemPointerRecord*)_itr.current();
|
|
132 |
if (cur_p == NULL) {
|
|
133 |
_end_of_array = true;
|
|
134 |
return NULL;
|
|
135 |
}
|
|
136 |
|
|
137 |
MemPointerRecord* next_p;
|
|
138 |
if (cur_p->is_vm_pointer()) {
|
|
139 |
_is_vm_record = true;
|
|
140 |
if (!consolidate_vm_records(&_vm_record)) {
|
|
141 |
return next();
|
|
142 |
}
|
|
143 |
} else { // malloc-ed pointer
|
|
144 |
_is_vm_record = false;
|
|
145 |
next_p = (MemPointerRecord*)_itr.peek_next();
|
|
146 |
if (next_p != NULL && next_p->addr() == cur_p->addr()) {
|
|
147 |
assert(cur_p->is_allocation_record(), "sorting order");
|
|
148 |
assert(!next_p->is_allocation_record(), "sorting order");
|
|
149 |
_itr.next();
|
|
150 |
if (cur_p->seq() < next_p->seq()) {
|
|
151 |
cur_p = next_p;
|
|
152 |
}
|
|
153 |
}
|
|
154 |
if (MemTracker::track_callsite()) {
|
|
155 |
_malloc_record.init((MemPointerRecordEx*)cur_p);
|
|
156 |
} else {
|
|
157 |
_malloc_record.init((MemPointerRecord*)cur_p);
|
|
158 |
}
|
|
159 |
|
|
160 |
_itr.next();
|
|
161 |
}
|
|
162 |
return current();
|
|
163 |
}
|
|
164 |
|
|
165 |
MemSnapshot::MemSnapshot() {
|
|
166 |
if (MemTracker::track_callsite()) {
|
|
167 |
_alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecordEx>();
|
|
168 |
_vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegionEx>(64, true);
|
|
169 |
_staging_area = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
|
|
170 |
} else {
|
|
171 |
_alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecord>();
|
|
172 |
_vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegion>(64, true);
|
|
173 |
_staging_area = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
|
|
174 |
}
|
|
175 |
|
|
176 |
_lock = new (std::nothrow) Mutex(Monitor::native, "memSnapshotLock");
|
|
177 |
NOT_PRODUCT(_untracked_count = 0;)
|
|
178 |
}
|
|
179 |
|
|
180 |
MemSnapshot::~MemSnapshot() {
|
|
181 |
assert(MemTracker::shutdown_in_progress(), "native memory tracking still on");
|
|
182 |
{
|
|
183 |
MutexLockerEx locker(_lock);
|
|
184 |
if (_staging_area != NULL) {
|
|
185 |
delete _staging_area;
|
|
186 |
_staging_area = NULL;
|
|
187 |
}
|
|
188 |
|
|
189 |
if (_alloc_ptrs != NULL) {
|
|
190 |
delete _alloc_ptrs;
|
|
191 |
_alloc_ptrs = NULL;
|
|
192 |
}
|
|
193 |
|
|
194 |
if (_vm_ptrs != NULL) {
|
|
195 |
delete _vm_ptrs;
|
|
196 |
_vm_ptrs = NULL;
|
|
197 |
}
|
|
198 |
}
|
|
199 |
|
|
200 |
if (_lock != NULL) {
|
|
201 |
delete _lock;
|
|
202 |
_lock = NULL;
|
|
203 |
}
|
|
204 |
}
|
|
205 |
|
|
206 |
void MemSnapshot::copy_pointer(MemPointerRecord* dest, const MemPointerRecord* src) {
|
|
207 |
assert(dest != NULL && src != NULL, "Just check");
|
|
208 |
assert(dest->addr() == src->addr(), "Just check");
|
|
209 |
|
|
210 |
MEMFLAGS flags = dest->flags();
|
|
211 |
|
|
212 |
if (MemTracker::track_callsite()) {
|
|
213 |
*(MemPointerRecordEx*)dest = *(MemPointerRecordEx*)src;
|
|
214 |
} else {
|
|
215 |
*dest = *src;
|
|
216 |
}
|
|
217 |
}
|
|
218 |
|
|
219 |
|
|
220 |
// merge a per-thread memory recorder to the staging area
|
|
221 |
bool MemSnapshot::merge(MemRecorder* rec) {
|
|
222 |
assert(rec != NULL && !rec->out_of_memory(), "Just check");
|
|
223 |
|
|
224 |
// out of memory
|
|
225 |
if (_staging_area == NULL || _staging_area->out_of_memory()) {
|
|
226 |
return false;
|
|
227 |
}
|
|
228 |
|
|
229 |
SequencedRecordIterator itr(rec->pointer_itr());
|
|
230 |
|
|
231 |
MutexLockerEx lock(_lock, true);
|
|
232 |
MemPointerIterator staging_itr(_staging_area);
|
|
233 |
MemPointerRecord *p1, *p2;
|
|
234 |
p1 = (MemPointerRecord*) itr.current();
|
|
235 |
while (p1 != NULL) {
|
|
236 |
p2 = (MemPointerRecord*)staging_itr.locate(p1->addr());
|
|
237 |
// we have not seen this memory block, so just add to staging area
|
|
238 |
if (p2 == NULL) {
|
|
239 |
if (!staging_itr.insert(p1)) {
|
|
240 |
return false;
|
|
241 |
}
|
|
242 |
} else if (p1->addr() == p2->addr()) {
|
|
243 |
MemPointerRecord* staging_next = (MemPointerRecord*)staging_itr.peek_next();
|
|
244 |
// a memory block can have many tagging records, find right one to replace or
|
|
245 |
// right position to insert
|
|
246 |
while (staging_next != NULL && staging_next->addr() == p1->addr()) {
|
|
247 |
if ((staging_next->flags() & MemPointerRecord::tag_masks) <=
|
|
248 |
(p1->flags() & MemPointerRecord::tag_masks)) {
|
|
249 |
p2 = (MemPointerRecord*)staging_itr.next();
|
|
250 |
staging_next = (MemPointerRecord*)staging_itr.peek_next();
|
|
251 |
} else {
|
|
252 |
break;
|
|
253 |
}
|
|
254 |
}
|
|
255 |
int df = (p1->flags() & MemPointerRecord::tag_masks) -
|
|
256 |
(p2->flags() & MemPointerRecord::tag_masks);
|
|
257 |
if (df == 0) {
|
|
258 |
assert(p1->seq() > 0, "not sequenced");
|
|
259 |
assert(p2->seq() > 0, "not sequenced");
|
|
260 |
if (p1->seq() > p2->seq()) {
|
|
261 |
copy_pointer(p2, p1);
|
|
262 |
}
|
|
263 |
} else if (df < 0) {
|
|
264 |
if (!staging_itr.insert(p1)) {
|
|
265 |
return false;
|
|
266 |
}
|
|
267 |
} else {
|
|
268 |
if (!staging_itr.insert_after(p1)) {
|
|
269 |
return false;
|
|
270 |
}
|
|
271 |
}
|
|
272 |
} else if (p1->addr() < p2->addr()) {
|
|
273 |
if (!staging_itr.insert(p1)) {
|
|
274 |
return false;
|
|
275 |
}
|
|
276 |
} else {
|
|
277 |
if (!staging_itr.insert_after(p1)) {
|
|
278 |
return false;
|
|
279 |
}
|
|
280 |
}
|
|
281 |
p1 = (MemPointerRecord*)itr.next();
|
|
282 |
}
|
|
283 |
NOT_PRODUCT(void check_staging_data();)
|
|
284 |
return true;
|
|
285 |
}
|
|
286 |
|
|
287 |
|
|
288 |
|
|
289 |
// promote data to next generation
|
|
290 |
void MemSnapshot::promote() {
|
|
291 |
assert(_alloc_ptrs != NULL && _staging_area != NULL && _vm_ptrs != NULL,
|
|
292 |
"Just check");
|
|
293 |
MutexLockerEx lock(_lock, true);
|
|
294 |
StagingWalker walker(_staging_area);
|
|
295 |
MemPointerIterator malloc_itr(_alloc_ptrs);
|
|
296 |
VMMemPointerIterator vm_itr(_vm_ptrs);
|
|
297 |
MemPointer* cur = walker.current();
|
|
298 |
while (cur != NULL) {
|
|
299 |
if (walker.is_vm_record()) {
|
|
300 |
VMMemRegion* cur_vm = (VMMemRegion*)cur;
|
|
301 |
VMMemRegion* p = (VMMemRegion*)vm_itr.locate(cur_vm->addr());
|
|
302 |
cur_vm = (VMMemRegion*)cur;
|
|
303 |
if (p != NULL && (p->contains(cur_vm) || p->base() == cur_vm->base())) {
|
|
304 |
assert(p->is_reserve_record() ||
|
|
305 |
p->is_commit_record(), "wrong vm record type");
|
|
306 |
// resize existing reserved range
|
|
307 |
if (cur_vm->is_reserve_record() && p->base() == cur_vm->base()) {
|
|
308 |
assert(cur_vm->size() >= p->committed_size(), "incorrect resizing");
|
|
309 |
p->set_reserved_size(cur_vm->size());
|
|
310 |
} else if (cur_vm->is_commit_record()) {
|
|
311 |
p->commit(cur_vm->committed_size());
|
|
312 |
} else if (cur_vm->is_uncommit_record()) {
|
|
313 |
p->uncommit(cur_vm->committed_size());
|
|
314 |
if (!p->is_reserve_record() && p->committed_size() == 0) {
|
|
315 |
vm_itr.remove();
|
|
316 |
}
|
|
317 |
} else if (cur_vm->is_type_tagging_record()) {
|
|
318 |
p->tag(cur_vm->flags());
|
|
319 |
} else if (cur_vm->is_release_record()) {
|
|
320 |
if (cur_vm->base() == p->base() && cur_vm->size() == p->size()) {
|
|
321 |
// release the whole range
|
|
322 |
vm_itr.remove();
|
|
323 |
} else {
|
|
324 |
// partial release
|
|
325 |
p->partial_release(cur_vm->base(), cur_vm->size());
|
|
326 |
}
|
|
327 |
} else {
|
|
328 |
// we do see multiple reserver on the same vm range
|
|
329 |
assert((cur_vm->is_commit_record() || cur_vm->is_reserve_record()) &&
|
|
330 |
cur_vm->base() == p->base() && cur_vm->size() == p->size(), "bad record");
|
|
331 |
p->tag(cur_vm->flags());
|
|
332 |
}
|
|
333 |
} else {
|
|
334 |
if(cur_vm->is_reserve_record()) {
|
|
335 |
if (p == NULL || p->base() > cur_vm->base()) {
|
|
336 |
vm_itr.insert(cur_vm);
|
|
337 |
} else {
|
|
338 |
vm_itr.insert_after(cur_vm);
|
|
339 |
}
|
|
340 |
} else {
|
|
341 |
#ifdef ASSERT
|
|
342 |
// In theory, we should assert without conditions. However, in case of native
|
|
343 |
// thread stack, NMT explicitly releases the thread stack in Thread's destructor,
|
|
344 |
// due to platform dependent behaviors. On some platforms, we see uncommit/release
|
|
345 |
// native thread stack, but some, we don't.
|
|
346 |
if (!cur_vm->is_uncommit_record() && !cur_vm->is_deallocation_record()) {
|
|
347 |
ShouldNotReachHere();
|
|
348 |
}
|
|
349 |
#endif
|
|
350 |
}
|
|
351 |
}
|
|
352 |
} else {
|
|
353 |
MemPointerRecord* cur_p = (MemPointerRecord*)cur;
|
|
354 |
MemPointerRecord* p = (MemPointerRecord*)malloc_itr.locate(cur->addr());
|
|
355 |
if (p != NULL && cur_p->addr() == p->addr()) {
|
|
356 |
assert(p->is_allocation_record() || p->is_arena_size_record(), "untracked");
|
|
357 |
if (cur_p->is_allocation_record() || cur_p->is_arena_size_record()) {
|
|
358 |
copy_pointer(p, cur_p);
|
|
359 |
} else { // deallocation record
|
|
360 |
assert(cur_p->is_deallocation_record(), "wrong record type");
|
|
361 |
|
|
362 |
// we are removing an arena record, we also need to remove its 'size'
|
|
363 |
// record behind it
|
|
364 |
if (p->is_arena_record()) {
|
|
365 |
MemPointerRecord* next_p = (MemPointerRecord*)malloc_itr.peek_next();
|
|
366 |
if (next_p->is_arena_size_record()) {
|
|
367 |
assert(next_p->is_size_record_of_arena(p), "arena records dont match");
|
|
368 |
malloc_itr.remove();
|
|
369 |
}
|
|
370 |
}
|
|
371 |
malloc_itr.remove();
|
|
372 |
}
|
|
373 |
} else {
|
|
374 |
if (cur_p->is_arena_size_record()) {
|
|
375 |
MemPointerRecord* prev_p = (MemPointerRecord*)malloc_itr.peek_prev();
|
|
376 |
if (prev_p != NULL &&
|
|
377 |
(!prev_p->is_arena_record() || !cur_p->is_size_record_of_arena(prev_p))) {
|
|
378 |
// arena already deallocated
|
|
379 |
cur_p = NULL;
|
|
380 |
}
|
|
381 |
}
|
|
382 |
if (cur_p != NULL) {
|
|
383 |
if (cur_p->is_allocation_record() || cur_p->is_arena_size_record()) {
|
|
384 |
if (p != NULL && cur_p->addr() > p->addr()) {
|
|
385 |
malloc_itr.insert_after(cur);
|
|
386 |
} else {
|
|
387 |
malloc_itr.insert(cur);
|
|
388 |
}
|
|
389 |
}
|
|
390 |
#ifndef PRODUCT
|
|
391 |
else if (!has_allocation_record(cur_p->addr())){
|
|
392 |
// NMT can not track some startup memory, which allocated before NMT
|
|
393 |
// is enabled
|
|
394 |
_untracked_count ++;
|
|
395 |
}
|
|
396 |
#endif
|
|
397 |
}
|
|
398 |
}
|
|
399 |
}
|
|
400 |
|
|
401 |
cur = walker.next();
|
|
402 |
}
|
|
403 |
NOT_PRODUCT(check_malloc_pointers();)
|
|
404 |
_staging_area->shrink();
|
|
405 |
_staging_area->clear();
|
|
406 |
}
|
|
407 |
|
|
408 |
|
|
409 |
#ifdef ASSERT
|
|
410 |
void MemSnapshot::print_snapshot_stats(outputStream* st) {
|
|
411 |
st->print_cr("Snapshot:");
|
|
412 |
st->print_cr("\tMalloced: %d/%d [%5.2f%%] %dKB", _alloc_ptrs->length(), _alloc_ptrs->capacity(),
|
|
413 |
(100.0 * (float)_alloc_ptrs->length()) / (float)_alloc_ptrs->capacity(), _alloc_ptrs->instance_size()/K);
|
|
414 |
|
|
415 |
st->print_cr("\tVM: %d/%d [%5.2f%%] %dKB", _vm_ptrs->length(), _vm_ptrs->capacity(),
|
|
416 |
(100.0 * (float)_vm_ptrs->length()) / (float)_vm_ptrs->capacity(), _vm_ptrs->instance_size()/K);
|
|
417 |
|
|
418 |
st->print_cr("\tStaging: %d/%d [%5.2f%%] %dKB", _staging_area->length(), _staging_area->capacity(),
|
|
419 |
(100.0 * (float)_staging_area->length()) / (float)_staging_area->capacity(), _staging_area->instance_size()/K);
|
|
420 |
|
|
421 |
st->print_cr("\tUntracked allocation: %d", _untracked_count);
|
|
422 |
}
|
|
423 |
|
|
424 |
void MemSnapshot::check_malloc_pointers() {
|
|
425 |
MemPointerArrayIteratorImpl mItr(_alloc_ptrs);
|
|
426 |
MemPointerRecord* p = (MemPointerRecord*)mItr.current();
|
|
427 |
MemPointerRecord* prev = NULL;
|
|
428 |
while (p != NULL) {
|
|
429 |
if (prev != NULL) {
|
|
430 |
assert(p->addr() >= prev->addr(), "sorting order");
|
|
431 |
}
|
|
432 |
prev = p;
|
|
433 |
p = (MemPointerRecord*)mItr.next();
|
|
434 |
}
|
|
435 |
}
|
|
436 |
|
|
437 |
void MemSnapshot::check_staging_data() {
|
|
438 |
MemPointerArrayIteratorImpl itr(_staging_area);
|
|
439 |
MemPointerRecord* cur = (MemPointerRecord*)itr.current();
|
|
440 |
MemPointerRecord* next = (MemPointerRecord*)itr.next();
|
|
441 |
while (next != NULL) {
|
|
442 |
assert((next->addr() > cur->addr()) ||
|
|
443 |
((next->flags() & MemPointerRecord::tag_masks) >
|
|
444 |
(cur->flags() & MemPointerRecord::tag_masks)),
|
|
445 |
"sorting order");
|
|
446 |
cur = next;
|
|
447 |
next = (MemPointerRecord*)itr.next();
|
|
448 |
}
|
|
449 |
}
|
|
450 |
|
|
451 |
bool MemSnapshot::has_allocation_record(address addr) {
|
|
452 |
MemPointerArrayIteratorImpl itr(_staging_area);
|
|
453 |
MemPointerRecord* cur = (MemPointerRecord*)itr.current();
|
|
454 |
while (cur != NULL) {
|
|
455 |
if (cur->addr() == addr && cur->is_allocation_record()) {
|
|
456 |
return true;
|
|
457 |
}
|
|
458 |
cur = (MemPointerRecord*)itr.next();
|
|
459 |
}
|
|
460 |
return false;
|
|
461 |
}
|
|
462 |
|
|
463 |
#endif
|