23221
|
1 |
/*
|
|
2 |
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* Copyright 2013, 2014 SAP AG. All rights reserved.
|
|
4 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
5 |
*
|
|
6 |
* This code is free software; you can redistribute it and/or modify it
|
|
7 |
* under the terms of the GNU General Public License version 2 only, as
|
|
8 |
* published by the Free Software Foundation.
|
|
9 |
*
|
|
10 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
11 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
12 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
13 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
14 |
* accompanied this code).
|
|
15 |
*
|
|
16 |
* You should have received a copy of the GNU General Public License version
|
|
17 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
18 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
19 |
*
|
|
20 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
21 |
* or visit www.oracle.com if you need additional information or have any
|
|
22 |
* questions.
|
|
23 |
*
|
|
24 |
*/
|
|
25 |
|
|
26 |
#include "precompiled.hpp"
|
|
27 |
#ifndef CC_INTERP
|
|
28 |
#include "asm/macroAssembler.inline.hpp"
|
|
29 |
#include "interpreter/bytecodeHistogram.hpp"
|
|
30 |
#include "interpreter/interpreter.hpp"
|
|
31 |
#include "interpreter/interpreterGenerator.hpp"
|
|
32 |
#include "interpreter/interpreterRuntime.hpp"
|
|
33 |
#include "interpreter/templateTable.hpp"
|
|
34 |
#include "oops/arrayOop.hpp"
|
|
35 |
#include "oops/methodData.hpp"
|
|
36 |
#include "oops/method.hpp"
|
|
37 |
#include "oops/oop.inline.hpp"
|
|
38 |
#include "prims/jvmtiExport.hpp"
|
|
39 |
#include "prims/jvmtiThreadState.hpp"
|
|
40 |
#include "runtime/arguments.hpp"
|
|
41 |
#include "runtime/deoptimization.hpp"
|
|
42 |
#include "runtime/frame.inline.hpp"
|
|
43 |
#include "runtime/sharedRuntime.hpp"
|
|
44 |
#include "runtime/stubRoutines.hpp"
|
|
45 |
#include "runtime/synchronizer.hpp"
|
|
46 |
#include "runtime/timer.hpp"
|
|
47 |
#include "runtime/vframeArray.hpp"
|
|
48 |
#include "utilities/debug.hpp"
|
|
49 |
#include "utilities/macros.hpp"
|
|
50 |
|
|
51 |
#undef __
|
|
52 |
#define __ _masm->
|
|
53 |
|
|
54 |
#ifdef PRODUCT
|
|
55 |
#define BLOCK_COMMENT(str) /* nothing */
|
|
56 |
#else
|
|
57 |
#define BLOCK_COMMENT(str) __ block_comment(str)
|
|
58 |
#endif
|
|
59 |
|
|
60 |
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
|
|
61 |
|
|
62 |
//-----------------------------------------------------------------------------
|
|
63 |
|
|
64 |
// Actually we should never reach here since we do stack overflow checks before pushing any frame.
|
|
65 |
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
|
|
66 |
address entry = __ pc();
|
|
67 |
__ unimplemented("generate_StackOverflowError_handler");
|
|
68 |
return entry;
|
|
69 |
}
|
|
70 |
|
|
71 |
address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
|
|
72 |
address entry = __ pc();
|
|
73 |
__ empty_expression_stack();
|
|
74 |
__ load_const_optimized(R4_ARG2, (address) name);
|
|
75 |
// Index is in R17_tos.
|
|
76 |
__ mr(R5_ARG3, R17_tos);
|
|
77 |
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
|
|
78 |
return entry;
|
|
79 |
}
|
|
80 |
|
|
81 |
#if 0
|
|
82 |
// Call special ClassCastException constructor taking object to cast
|
|
83 |
// and target class as arguments.
|
|
84 |
address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler(const char* name) {
|
|
85 |
address entry = __ pc();
|
|
86 |
|
|
87 |
// Target class oop is in register R6_ARG4 by convention!
|
|
88 |
|
|
89 |
// Expression stack must be empty before entering the VM if an
|
|
90 |
// exception happened.
|
|
91 |
__ empty_expression_stack();
|
|
92 |
// Setup parameters.
|
|
93 |
// Thread will be loaded to R3_ARG1.
|
|
94 |
__ load_const_optimized(R4_ARG2, (address) name);
|
|
95 |
__ mr(R5_ARG3, R17_tos);
|
|
96 |
// R6_ARG4 contains specified class.
|
|
97 |
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose));
|
|
98 |
#ifdef ASSERT
|
|
99 |
// Above call must not return here since exception pending.
|
|
100 |
__ should_not_reach_here();
|
|
101 |
#endif
|
|
102 |
return entry;
|
|
103 |
}
|
|
104 |
#endif
|
|
105 |
|
|
106 |
address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
|
|
107 |
address entry = __ pc();
|
|
108 |
// Expression stack must be empty before entering the VM if an
|
|
109 |
// exception happened.
|
|
110 |
__ empty_expression_stack();
|
|
111 |
|
|
112 |
// Load exception object.
|
|
113 |
// Thread will be loaded to R3_ARG1.
|
|
114 |
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
|
|
115 |
#ifdef ASSERT
|
|
116 |
// Above call must not return here since exception pending.
|
|
117 |
__ should_not_reach_here();
|
|
118 |
#endif
|
|
119 |
return entry;
|
|
120 |
}
|
|
121 |
|
|
122 |
address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
|
|
123 |
address entry = __ pc();
|
|
124 |
//__ untested("generate_exception_handler_common");
|
|
125 |
Register Rexception = R17_tos;
|
|
126 |
|
|
127 |
// Expression stack must be empty before entering the VM if an exception happened.
|
|
128 |
__ empty_expression_stack();
|
|
129 |
|
|
130 |
__ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
|
|
131 |
if (pass_oop) {
|
|
132 |
__ mr(R5_ARG3, Rexception);
|
|
133 |
__ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
|
|
134 |
} else {
|
|
135 |
__ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
|
|
136 |
__ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
|
|
137 |
}
|
|
138 |
|
|
139 |
// Throw exception.
|
|
140 |
__ mr(R3_ARG1, Rexception);
|
|
141 |
__ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
|
|
142 |
__ mtctr(R11_scratch1);
|
|
143 |
__ bctr();
|
|
144 |
|
|
145 |
return entry;
|
|
146 |
}
|
|
147 |
|
|
148 |
address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
|
|
149 |
address entry = __ pc();
|
|
150 |
__ unimplemented("generate_continuation_for");
|
|
151 |
return entry;
|
|
152 |
}
|
|
153 |
|
|
154 |
// This entry is returned to when a call returns to the interpreter.
|
|
155 |
// When we arrive here, we expect that the callee stack frame is already popped.
|
|
156 |
address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
|
|
157 |
address entry = __ pc();
|
|
158 |
|
|
159 |
// Move the value out of the return register back to the TOS cache of current frame.
|
|
160 |
switch (state) {
|
|
161 |
case ltos:
|
|
162 |
case btos:
|
|
163 |
case ctos:
|
|
164 |
case stos:
|
|
165 |
case atos:
|
|
166 |
case itos: __ mr(R17_tos, R3_RET); break; // RET -> TOS cache
|
|
167 |
case ftos:
|
|
168 |
case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
|
|
169 |
case vtos: break; // Nothing to do, this was a void return.
|
|
170 |
default : ShouldNotReachHere();
|
|
171 |
}
|
|
172 |
|
|
173 |
__ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
|
|
174 |
__ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
|
|
175 |
__ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
|
|
176 |
|
|
177 |
// Compiled code destroys templateTableBase, reload.
|
|
178 |
__ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
|
|
179 |
|
|
180 |
const Register cache = R11_scratch1;
|
|
181 |
const Register size = R12_scratch2;
|
|
182 |
__ get_cache_and_index_at_bcp(cache, 1, index_size);
|
|
183 |
|
|
184 |
// Big Endian (get least significant byte of 64 bit value):
|
|
185 |
__ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
|
|
186 |
__ sldi(size, size, Interpreter::logStackElementSize);
|
|
187 |
__ add(R15_esp, R15_esp, size);
|
|
188 |
__ dispatch_next(state, step);
|
|
189 |
return entry;
|
|
190 |
}
|
|
191 |
|
|
192 |
address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
|
|
193 |
address entry = __ pc();
|
|
194 |
// If state != vtos, we're returning from a native method, which put it's result
|
|
195 |
// into the result register. So move the value out of the return register back
|
|
196 |
// to the TOS cache of current frame.
|
|
197 |
|
|
198 |
switch (state) {
|
|
199 |
case ltos:
|
|
200 |
case btos:
|
|
201 |
case ctos:
|
|
202 |
case stos:
|
|
203 |
case atos:
|
|
204 |
case itos: __ mr(R17_tos, R3_RET); break; // GR_RET -> TOS cache
|
|
205 |
case ftos:
|
|
206 |
case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
|
|
207 |
case vtos: break; // Nothing to do, this was a void return.
|
|
208 |
default : ShouldNotReachHere();
|
|
209 |
}
|
|
210 |
|
|
211 |
// Load LcpoolCache @@@ should be already set!
|
|
212 |
__ get_constant_pool_cache(R27_constPoolCache);
|
|
213 |
|
|
214 |
// Handle a pending exception, fall through if none.
|
|
215 |
__ check_and_forward_exception(R11_scratch1, R12_scratch2);
|
|
216 |
|
|
217 |
// Start executing bytecodes.
|
|
218 |
__ dispatch_next(state, step);
|
|
219 |
|
|
220 |
return entry;
|
|
221 |
}
|
|
222 |
|
|
223 |
// A result handler converts the native result into java format.
|
|
224 |
// Use the shared code between c++ and template interpreter.
|
|
225 |
address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
|
|
226 |
return AbstractInterpreterGenerator::generate_result_handler_for(type);
|
|
227 |
}
|
|
228 |
|
|
229 |
address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
|
|
230 |
address entry = __ pc();
|
|
231 |
|
|
232 |
__ push(state);
|
|
233 |
__ call_VM(noreg, runtime_entry);
|
|
234 |
__ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
|
|
235 |
|
|
236 |
return entry;
|
|
237 |
}
|
|
238 |
|
|
239 |
// Helpers for commoning out cases in the various type of method entries.
|
|
240 |
|
|
241 |
// Increment invocation count & check for overflow.
|
|
242 |
//
|
|
243 |
// Note: checking for negative value instead of overflow
|
|
244 |
// so we have a 'sticky' overflow test.
|
|
245 |
//
|
|
246 |
void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
|
|
247 |
// Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
|
|
248 |
Register Rscratch1 = R11_scratch1;
|
|
249 |
Register Rscratch2 = R12_scratch2;
|
|
250 |
Register R3_counters = R3_ARG1;
|
|
251 |
Label done;
|
|
252 |
|
|
253 |
if (TieredCompilation) {
|
|
254 |
const int increment = InvocationCounter::count_increment;
|
|
255 |
const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
|
|
256 |
Label no_mdo;
|
|
257 |
if (ProfileInterpreter) {
|
|
258 |
const Register Rmdo = Rscratch1;
|
|
259 |
// If no method data exists, go to profile_continue.
|
|
260 |
__ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
|
|
261 |
__ cmpdi(CCR0, Rmdo, 0);
|
|
262 |
__ beq(CCR0, no_mdo);
|
|
263 |
|
|
264 |
// Increment backedge counter in the MDO.
|
|
265 |
const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
|
|
266 |
__ lwz(Rscratch2, mdo_bc_offs, Rmdo);
|
|
267 |
__ addi(Rscratch2, Rscratch2, increment);
|
|
268 |
__ stw(Rscratch2, mdo_bc_offs, Rmdo);
|
|
269 |
__ load_const_optimized(Rscratch1, mask, R0);
|
|
270 |
__ and_(Rscratch1, Rscratch2, Rscratch1);
|
|
271 |
__ bne(CCR0, done);
|
|
272 |
__ b(*overflow);
|
|
273 |
}
|
|
274 |
|
|
275 |
// Increment counter in MethodCounters*.
|
|
276 |
const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
|
|
277 |
__ bind(no_mdo);
|
|
278 |
__ get_method_counters(R19_method, R3_counters, done);
|
|
279 |
__ lwz(Rscratch2, mo_bc_offs, R3_counters);
|
|
280 |
__ addi(Rscratch2, Rscratch2, increment);
|
|
281 |
__ stw(Rscratch2, mo_bc_offs, R3_counters);
|
|
282 |
__ load_const_optimized(Rscratch1, mask, R0);
|
|
283 |
__ and_(Rscratch1, Rscratch2, Rscratch1);
|
|
284 |
__ beq(CCR0, *overflow);
|
|
285 |
|
|
286 |
__ bind(done);
|
|
287 |
|
|
288 |
} else {
|
|
289 |
|
|
290 |
// Update standard invocation counters.
|
|
291 |
Register Rsum_ivc_bec = R4_ARG2;
|
|
292 |
__ get_method_counters(R19_method, R3_counters, done);
|
|
293 |
__ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
|
|
294 |
// Increment interpreter invocation counter.
|
|
295 |
if (ProfileInterpreter) { // %%% Merge this into methodDataOop.
|
|
296 |
__ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
|
|
297 |
__ addi(R12_scratch2, R12_scratch2, 1);
|
|
298 |
__ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
|
|
299 |
}
|
|
300 |
// Check if we must create a method data obj.
|
|
301 |
if (ProfileInterpreter && profile_method != NULL) {
|
|
302 |
const Register profile_limit = Rscratch1;
|
|
303 |
int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true);
|
|
304 |
__ lwz(profile_limit, pl_offs, profile_limit);
|
|
305 |
// Test to see if we should create a method data oop.
|
|
306 |
__ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
|
|
307 |
__ blt(CCR0, *profile_method_continue);
|
|
308 |
// If no method data exists, go to profile_method.
|
|
309 |
__ test_method_data_pointer(*profile_method);
|
|
310 |
}
|
|
311 |
// Finally check for counter overflow.
|
|
312 |
if (overflow) {
|
|
313 |
const Register invocation_limit = Rscratch1;
|
|
314 |
int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true);
|
|
315 |
__ lwz(invocation_limit, il_offs, invocation_limit);
|
|
316 |
assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size");
|
|
317 |
__ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
|
|
318 |
__ bge(CCR0, *overflow);
|
|
319 |
}
|
|
320 |
|
|
321 |
__ bind(done);
|
|
322 |
}
|
|
323 |
}
|
|
324 |
|
|
325 |
// Generate code to initiate compilation on invocation counter overflow.
|
|
326 |
void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
|
|
327 |
// Generate code to initiate compilation on the counter overflow.
|
|
328 |
|
|
329 |
// InterpreterRuntime::frequency_counter_overflow takes one arguments,
|
|
330 |
// which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
|
|
331 |
// We pass zero in.
|
|
332 |
// The call returns the address of the verified entry point for the method or NULL
|
|
333 |
// if the compilation did not complete (either went background or bailed out).
|
|
334 |
//
|
|
335 |
// Unlike the C++ interpreter above: Check exceptions!
|
|
336 |
// Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
|
|
337 |
// method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
|
|
338 |
|
|
339 |
__ li(R4_ARG2, 0);
|
|
340 |
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
|
|
341 |
|
|
342 |
// Returns verified_entry_point or NULL.
|
|
343 |
// We ignore it in any case.
|
|
344 |
__ b(continue_entry);
|
|
345 |
}
|
|
346 |
|
|
347 |
void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
|
|
348 |
assert_different_registers(Rmem_frame_size, Rscratch1);
|
|
349 |
__ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1);
|
|
350 |
}
|
|
351 |
|
|
352 |
void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) {
|
|
353 |
__ unlock_object(R26_monitor, check_exceptions);
|
|
354 |
}
|
|
355 |
|
|
356 |
// Lock the current method, interpreter register window must be set up!
|
|
357 |
void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
|
|
358 |
const Register Robj_to_lock = Rscratch2;
|
|
359 |
|
|
360 |
{
|
|
361 |
if (!flags_preloaded) {
|
|
362 |
__ lwz(Rflags, method_(access_flags));
|
|
363 |
}
|
|
364 |
|
|
365 |
#ifdef ASSERT
|
|
366 |
// Check if methods needs synchronization.
|
|
367 |
{
|
|
368 |
Label Lok;
|
|
369 |
__ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
|
|
370 |
__ btrue(CCR0,Lok);
|
|
371 |
__ stop("method doesn't need synchronization");
|
|
372 |
__ bind(Lok);
|
|
373 |
}
|
|
374 |
#endif // ASSERT
|
|
375 |
}
|
|
376 |
|
|
377 |
// Get synchronization object to Rscratch2.
|
|
378 |
{
|
|
379 |
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
|
|
380 |
Label Lstatic;
|
|
381 |
Label Ldone;
|
|
382 |
|
|
383 |
__ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
|
|
384 |
__ btrue(CCR0, Lstatic);
|
|
385 |
|
|
386 |
// Non-static case: load receiver obj from stack and we're done.
|
|
387 |
__ ld(Robj_to_lock, R18_locals);
|
|
388 |
__ b(Ldone);
|
|
389 |
|
|
390 |
__ bind(Lstatic); // Static case: Lock the java mirror
|
|
391 |
__ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method);
|
|
392 |
__ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock);
|
|
393 |
__ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock);
|
|
394 |
__ ld(Robj_to_lock, mirror_offset, Robj_to_lock);
|
|
395 |
|
|
396 |
__ bind(Ldone);
|
|
397 |
__ verify_oop(Robj_to_lock);
|
|
398 |
}
|
|
399 |
|
|
400 |
// Got the oop to lock => execute!
|
|
401 |
__ add_monitor_to_stack(true, Rscratch1, R0);
|
|
402 |
|
|
403 |
__ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
|
|
404 |
__ lock_object(R26_monitor, Robj_to_lock);
|
|
405 |
}
|
|
406 |
|
|
407 |
// Generate a fixed interpreter frame for pure interpreter
|
|
408 |
// and I2N native transition frames.
|
|
409 |
//
|
|
410 |
// Before (stack grows downwards):
|
|
411 |
//
|
|
412 |
// | ... |
|
|
413 |
// |------------- |
|
|
414 |
// | java arg0 |
|
|
415 |
// | ... |
|
|
416 |
// | java argn |
|
|
417 |
// | | <- R15_esp
|
|
418 |
// | |
|
|
419 |
// |--------------|
|
|
420 |
// | abi_112 |
|
|
421 |
// | | <- R1_SP
|
|
422 |
// |==============|
|
|
423 |
//
|
|
424 |
//
|
|
425 |
// After:
|
|
426 |
//
|
|
427 |
// | ... |
|
|
428 |
// | java arg0 |<- R18_locals
|
|
429 |
// | ... |
|
|
430 |
// | java argn |
|
|
431 |
// |--------------|
|
|
432 |
// | |
|
|
433 |
// | java locals |
|
|
434 |
// | |
|
|
435 |
// |--------------|
|
|
436 |
// | abi_48 |
|
|
437 |
// |==============|
|
|
438 |
// | |
|
|
439 |
// | istate |
|
|
440 |
// | |
|
|
441 |
// |--------------|
|
|
442 |
// | monitor |<- R26_monitor
|
|
443 |
// |--------------|
|
|
444 |
// | |<- R15_esp
|
|
445 |
// | expression |
|
|
446 |
// | stack |
|
|
447 |
// | |
|
|
448 |
// |--------------|
|
|
449 |
// | |
|
|
450 |
// | abi_112 |<- R1_SP
|
|
451 |
// |==============|
|
|
452 |
//
|
|
453 |
// The top most frame needs an abi space of 112 bytes. This space is needed,
|
|
454 |
// since we call to c. The c function may spill their arguments to the caller
|
|
455 |
// frame. When we call to java, we don't need these spill slots. In order to save
|
|
456 |
// space on the stack, we resize the caller. However, java local reside in
|
|
457 |
// the caller frame and the frame has to be increased. The frame_size for the
|
|
458 |
// current frame was calculated based on max_stack as size for the expression
|
|
459 |
// stack. At the call, just a part of the expression stack might be used.
|
|
460 |
// We don't want to waste this space and cut the frame back accordingly.
|
|
461 |
// The resulting amount for resizing is calculated as follows:
|
|
462 |
// resize = (number_of_locals - number_of_arguments) * slot_size
|
|
463 |
// + (R1_SP - R15_esp) + 48
|
|
464 |
//
|
|
465 |
// The size for the callee frame is calculated:
|
|
466 |
// framesize = 112 + max_stack + monitor + state_size
|
|
467 |
//
|
|
468 |
// maxstack: Max number of slots on the expression stack, loaded from the method.
|
|
469 |
// monitor: We statically reserve room for one monitor object.
|
|
470 |
// state_size: We save the current state of the interpreter to this area.
|
|
471 |
//
|
|
472 |
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
|
|
473 |
Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
|
|
474 |
top_frame_size = R7_ARG5,
|
|
475 |
Rconst_method = R8_ARG6;
|
|
476 |
|
|
477 |
assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
|
|
478 |
|
|
479 |
__ ld(Rconst_method, method_(const));
|
|
480 |
__ lhz(Rsize_of_parameters /* number of params */,
|
|
481 |
in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
|
|
482 |
if (native_call) {
|
|
483 |
// If we're calling a native method, we reserve space for the worst-case signature
|
|
484 |
// handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
|
|
485 |
// We add two slots to the parameter_count, one for the jni
|
|
486 |
// environment and one for a possible native mirror.
|
|
487 |
Label skip_native_calculate_max_stack;
|
|
488 |
__ addi(top_frame_size, Rsize_of_parameters, 2);
|
|
489 |
__ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
|
|
490 |
__ bge(CCR0, skip_native_calculate_max_stack);
|
|
491 |
__ li(top_frame_size, Argument::n_register_parameters);
|
|
492 |
__ bind(skip_native_calculate_max_stack);
|
|
493 |
__ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
|
|
494 |
__ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
|
|
495 |
__ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
|
|
496 |
assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
|
|
497 |
} else {
|
|
498 |
__ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
|
|
499 |
__ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
|
|
500 |
__ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
|
|
501 |
__ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
|
|
502 |
__ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
|
|
503 |
__ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
|
|
504 |
__ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
|
|
505 |
__ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
|
|
506 |
}
|
|
507 |
|
|
508 |
// Compute top frame size.
|
|
509 |
__ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
|
|
510 |
|
|
511 |
// Cut back area between esp and max_stack.
|
|
512 |
__ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
|
|
513 |
|
|
514 |
__ round_to(top_frame_size, frame::alignment_in_bytes);
|
|
515 |
__ round_to(parent_frame_resize, frame::alignment_in_bytes);
|
|
516 |
// parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
|
|
517 |
// Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
|
|
518 |
|
|
519 |
{
|
|
520 |
// --------------------------------------------------------------------------
|
|
521 |
// Stack overflow check
|
|
522 |
|
|
523 |
Label cont;
|
|
524 |
__ add(R11_scratch1, parent_frame_resize, top_frame_size);
|
|
525 |
generate_stack_overflow_check(R11_scratch1, R12_scratch2);
|
|
526 |
}
|
|
527 |
|
|
528 |
// Set up interpreter state registers.
|
|
529 |
|
|
530 |
__ add(R18_locals, R15_esp, Rsize_of_parameters);
|
|
531 |
__ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
|
|
532 |
__ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
|
|
533 |
|
|
534 |
// Set method data pointer.
|
|
535 |
if (ProfileInterpreter) {
|
|
536 |
Label zero_continue;
|
|
537 |
__ ld(R28_mdx, method_(method_data));
|
|
538 |
__ cmpdi(CCR0, R28_mdx, 0);
|
|
539 |
__ beq(CCR0, zero_continue);
|
|
540 |
__ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
|
|
541 |
__ bind(zero_continue);
|
|
542 |
}
|
|
543 |
|
|
544 |
if (native_call) {
|
|
545 |
__ li(R14_bcp, 0); // Must initialize.
|
|
546 |
} else {
|
|
547 |
__ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
|
|
548 |
}
|
|
549 |
|
|
550 |
// Resize parent frame.
|
|
551 |
__ mflr(R12_scratch2);
|
|
552 |
__ neg(parent_frame_resize, parent_frame_resize);
|
|
553 |
__ resize_frame(parent_frame_resize, R11_scratch1);
|
|
554 |
__ std(R12_scratch2, _abi(lr), R1_SP);
|
|
555 |
|
|
556 |
__ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
|
|
557 |
__ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
|
|
558 |
|
|
559 |
// Store values.
|
|
560 |
// R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
|
|
561 |
// in InterpreterMacroAssembler::call_from_interpreter.
|
|
562 |
__ std(R19_method, _ijava_state_neg(method), R1_SP);
|
|
563 |
__ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
|
|
564 |
__ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
|
|
565 |
__ std(R18_locals, _ijava_state_neg(locals), R1_SP);
|
|
566 |
|
|
567 |
// Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
|
|
568 |
// be found in the frame after save_interpreter_state is done. This is always true
|
|
569 |
// for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
|
|
570 |
// because e.g. frame::interpreter_frame_bcp() will not access the correct value
|
|
571 |
// (Enhanced Stack Trace).
|
|
572 |
// The signal handler does not save the interpreter state into the frame.
|
|
573 |
__ li(R0, 0);
|
|
574 |
#ifdef ASSERT
|
|
575 |
// Fill remaining slots with constants.
|
|
576 |
__ load_const_optimized(R11_scratch1, 0x5afe);
|
|
577 |
__ load_const_optimized(R12_scratch2, 0xdead);
|
|
578 |
#endif
|
|
579 |
// We have to initialize some frame slots for native calls (accessed by GC).
|
|
580 |
if (native_call) {
|
|
581 |
__ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
|
|
582 |
__ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
|
|
583 |
if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
|
|
584 |
}
|
|
585 |
#ifdef ASSERT
|
|
586 |
else {
|
|
587 |
__ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
|
|
588 |
__ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
|
|
589 |
__ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
|
|
590 |
}
|
|
591 |
__ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
|
|
592 |
__ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
|
|
593 |
__ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
|
|
594 |
__ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
|
|
595 |
#endif
|
|
596 |
__ subf(R12_scratch2, top_frame_size, R1_SP);
|
|
597 |
__ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
|
|
598 |
__ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
|
|
599 |
|
|
600 |
// Push top frame.
|
|
601 |
__ push_frame(top_frame_size, R11_scratch1);
|
|
602 |
}
|
|
603 |
|
|
604 |
// End of helpers
|
|
605 |
|
|
606 |
// ============================================================================
|
|
607 |
// Various method entries
|
|
608 |
//
|
|
609 |
|
|
610 |
// Empty method, generate a very fast return. We must skip this entry if
|
|
611 |
// someone's debugging, indicated by the flag
|
|
612 |
// "interp_mode" in the Thread obj.
|
|
613 |
// Note: empty methods are generated mostly methods that do assertions, which are
|
|
614 |
// disabled in the "java opt build".
|
|
615 |
address TemplateInterpreterGenerator::generate_empty_entry(void) {
|
|
616 |
if (!UseFastEmptyMethods) {
|
|
617 |
NOT_PRODUCT(__ should_not_reach_here();)
|
|
618 |
return Interpreter::entry_for_kind(Interpreter::zerolocals);
|
|
619 |
}
|
|
620 |
|
|
621 |
Label Lslow_path;
|
|
622 |
const Register Rjvmti_mode = R11_scratch1;
|
|
623 |
address entry = __ pc();
|
|
624 |
|
|
625 |
__ lwz(Rjvmti_mode, thread_(interp_only_mode));
|
|
626 |
__ cmpwi(CCR0, Rjvmti_mode, 0);
|
|
627 |
__ bne(CCR0, Lslow_path); // jvmti_mode!=0
|
|
628 |
|
|
629 |
// Noone's debuggin: Simply return.
|
|
630 |
// Pop c2i arguments (if any) off when we return.
|
|
631 |
#ifdef ASSERT
|
|
632 |
__ ld(R9_ARG7, 0, R1_SP);
|
|
633 |
__ ld(R10_ARG8, 0, R21_sender_SP);
|
|
634 |
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
|
|
635 |
__ asm_assert_eq("backlink", 0x545);
|
|
636 |
#endif // ASSERT
|
|
637 |
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
|
|
638 |
|
|
639 |
// And we're done.
|
|
640 |
__ blr();
|
|
641 |
|
|
642 |
__ bind(Lslow_path);
|
|
643 |
__ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
|
|
644 |
__ flush();
|
|
645 |
|
|
646 |
return entry;
|
|
647 |
}
|
|
648 |
|
|
649 |
// Support abs and sqrt like in compiler.
|
|
650 |
// For others we can use a normal (native) entry.
|
|
651 |
|
|
652 |
inline bool math_entry_available(AbstractInterpreter::MethodKind kind) {
|
|
653 |
// Provide math entry with debugging on demand.
|
|
654 |
// Note: Debugging changes which code will get executed:
|
|
655 |
// Debugging or disabled InlineIntrinsics: java method will get interpreted and performs a native call.
|
|
656 |
// Not debugging and enabled InlineIntrinics: processor instruction will get used.
|
|
657 |
// Result might differ slightly due to rounding etc.
|
|
658 |
if (!InlineIntrinsics && (!FLAG_IS_ERGO(InlineIntrinsics))) return false; // Generate a vanilla entry.
|
|
659 |
|
|
660 |
return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) ||
|
|
661 |
(kind==Interpreter::java_lang_math_abs));
|
|
662 |
}
|
|
663 |
|
|
664 |
address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
|
|
665 |
if (!math_entry_available(kind)) {
|
|
666 |
NOT_PRODUCT(__ should_not_reach_here();)
|
|
667 |
return Interpreter::entry_for_kind(Interpreter::zerolocals);
|
|
668 |
}
|
|
669 |
|
|
670 |
Label Lslow_path;
|
|
671 |
const Register Rjvmti_mode = R11_scratch1;
|
|
672 |
address entry = __ pc();
|
|
673 |
|
|
674 |
// Provide math entry with debugging on demand.
|
|
675 |
__ lwz(Rjvmti_mode, thread_(interp_only_mode));
|
|
676 |
__ cmpwi(CCR0, Rjvmti_mode, 0);
|
|
677 |
__ bne(CCR0, Lslow_path); // jvmti_mode!=0
|
|
678 |
|
|
679 |
__ lfd(F1_RET, Interpreter::stackElementSize, R15_esp);
|
|
680 |
|
|
681 |
// Pop c2i arguments (if any) off when we return.
|
|
682 |
#ifdef ASSERT
|
|
683 |
__ ld(R9_ARG7, 0, R1_SP);
|
|
684 |
__ ld(R10_ARG8, 0, R21_sender_SP);
|
|
685 |
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
|
|
686 |
__ asm_assert_eq("backlink", 0x545);
|
|
687 |
#endif // ASSERT
|
|
688 |
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
|
|
689 |
|
|
690 |
if (kind == Interpreter::java_lang_math_sqrt) {
|
|
691 |
__ fsqrt(F1_RET, F1_RET);
|
|
692 |
} else if (kind == Interpreter::java_lang_math_abs) {
|
|
693 |
__ fabs(F1_RET, F1_RET);
|
|
694 |
} else {
|
|
695 |
ShouldNotReachHere();
|
|
696 |
}
|
|
697 |
|
|
698 |
// And we're done.
|
|
699 |
__ blr();
|
|
700 |
|
|
701 |
// Provide slow path for JVMTI case.
|
|
702 |
__ bind(Lslow_path);
|
|
703 |
__ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R12_scratch2);
|
|
704 |
__ flush();
|
|
705 |
|
|
706 |
return entry;
|
|
707 |
}
|
|
708 |
|
|
709 |
// Interpreter stub for calling a native method. (asm interpreter)
|
|
710 |
// This sets up a somewhat different looking stack for calling the
|
|
711 |
// native method than the typical interpreter frame setup.
|
|
712 |
//
|
|
713 |
// On entry:
|
|
714 |
// R19_method - method
|
|
715 |
// R16_thread - JavaThread*
|
|
716 |
// R15_esp - intptr_t* sender tos
|
|
717 |
//
|
|
718 |
// abstract stack (grows up)
|
|
719 |
// [ IJava (caller of JNI callee) ] <-- ASP
|
|
720 |
// ...
|
|
721 |
address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
|
|
722 |
|
|
723 |
address entry = __ pc();
|
|
724 |
|
|
725 |
const bool inc_counter = UseCompiler || CountCompiledCalls;
|
|
726 |
|
|
727 |
// -----------------------------------------------------------------------------
|
|
728 |
// Allocate a new frame that represents the native callee (i2n frame).
|
|
729 |
// This is not a full-blown interpreter frame, but in particular, the
|
|
730 |
// following registers are valid after this:
|
|
731 |
// - R19_method
|
|
732 |
// - R18_local (points to start of argumuments to native function)
|
|
733 |
//
|
|
734 |
// abstract stack (grows up)
|
|
735 |
// [ IJava (caller of JNI callee) ] <-- ASP
|
|
736 |
// ...
|
|
737 |
|
|
738 |
const Register signature_handler_fd = R11_scratch1;
|
|
739 |
const Register pending_exception = R0;
|
|
740 |
const Register result_handler_addr = R31;
|
|
741 |
const Register native_method_fd = R11_scratch1;
|
|
742 |
const Register access_flags = R22_tmp2;
|
|
743 |
const Register active_handles = R11_scratch1; // R26_monitor saved to state.
|
|
744 |
const Register sync_state = R12_scratch2;
|
|
745 |
const Register sync_state_addr = sync_state; // Address is dead after use.
|
|
746 |
const Register suspend_flags = R11_scratch1;
|
|
747 |
|
|
748 |
//=============================================================================
|
|
749 |
// Allocate new frame and initialize interpreter state.
|
|
750 |
|
|
751 |
Label exception_return;
|
|
752 |
Label exception_return_sync_check;
|
|
753 |
Label stack_overflow_return;
|
|
754 |
|
|
755 |
// Generate new interpreter state and jump to stack_overflow_return in case of
|
|
756 |
// a stack overflow.
|
|
757 |
//generate_compute_interpreter_state(stack_overflow_return);
|
|
758 |
|
|
759 |
Register size_of_parameters = R22_tmp2;
|
|
760 |
|
|
761 |
generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
|
|
762 |
|
|
763 |
//=============================================================================
|
|
764 |
// Increment invocation counter. On overflow, entry to JNI method
|
|
765 |
// will be compiled.
|
|
766 |
Label invocation_counter_overflow, continue_after_compile;
|
|
767 |
if (inc_counter) {
|
|
768 |
if (synchronized) {
|
|
769 |
// Since at this point in the method invocation the exception handler
|
|
770 |
// would try to exit the monitor of synchronized methods which hasn't
|
|
771 |
// been entered yet, we set the thread local variable
|
|
772 |
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
|
|
773 |
// runtime, exception handling i.e. unlock_if_synchronized_method will
|
|
774 |
// check this thread local flag.
|
|
775 |
// This flag has two effects, one is to force an unwind in the topmost
|
|
776 |
// interpreter frame and not perform an unlock while doing so.
|
|
777 |
__ li(R0, 1);
|
|
778 |
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
|
|
779 |
}
|
|
780 |
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
|
|
781 |
|
|
782 |
__ BIND(continue_after_compile);
|
|
783 |
// Reset the _do_not_unlock_if_synchronized flag.
|
|
784 |
if (synchronized) {
|
|
785 |
__ li(R0, 0);
|
|
786 |
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
|
|
787 |
}
|
|
788 |
}
|
|
789 |
|
|
790 |
// access_flags = method->access_flags();
|
|
791 |
// Load access flags.
|
|
792 |
assert(access_flags->is_nonvolatile(),
|
|
793 |
"access_flags must be in a non-volatile register");
|
|
794 |
// Type check.
|
|
795 |
assert(4 == sizeof(AccessFlags), "unexpected field size");
|
|
796 |
__ lwz(access_flags, method_(access_flags));
|
|
797 |
|
|
798 |
// We don't want to reload R19_method and access_flags after calls
|
|
799 |
// to some helper functions.
|
|
800 |
assert(R19_method->is_nonvolatile(),
|
|
801 |
"R19_method must be a non-volatile register");
|
|
802 |
|
|
803 |
// Check for synchronized methods. Must happen AFTER invocation counter
|
|
804 |
// check, so method is not locked if counter overflows.
|
|
805 |
|
|
806 |
if (synchronized) {
|
|
807 |
lock_method(access_flags, R11_scratch1, R12_scratch2, true);
|
|
808 |
|
|
809 |
// Update monitor in state.
|
|
810 |
__ ld(R11_scratch1, 0, R1_SP);
|
|
811 |
__ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
|
|
812 |
}
|
|
813 |
|
|
814 |
// jvmti/jvmpi support
|
|
815 |
__ notify_method_entry();
|
|
816 |
|
|
817 |
//=============================================================================
|
|
818 |
// Get and call the signature handler.
|
|
819 |
|
|
820 |
__ ld(signature_handler_fd, method_(signature_handler));
|
|
821 |
Label call_signature_handler;
|
|
822 |
|
|
823 |
__ cmpdi(CCR0, signature_handler_fd, 0);
|
|
824 |
__ bne(CCR0, call_signature_handler);
|
|
825 |
|
|
826 |
// Method has never been called. Either generate a specialized
|
|
827 |
// handler or point to the slow one.
|
|
828 |
//
|
|
829 |
// Pass parameter 'false' to avoid exception check in call_VM.
|
|
830 |
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
|
|
831 |
|
|
832 |
// Check for an exception while looking up the target method. If we
|
|
833 |
// incurred one, bail.
|
|
834 |
__ ld(pending_exception, thread_(pending_exception));
|
|
835 |
__ cmpdi(CCR0, pending_exception, 0);
|
|
836 |
__ bne(CCR0, exception_return_sync_check); // Has pending exception.
|
|
837 |
|
|
838 |
// Reload signature handler, it may have been created/assigned in the meanwhile.
|
|
839 |
__ ld(signature_handler_fd, method_(signature_handler));
|
|
840 |
__ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
|
|
841 |
|
|
842 |
__ BIND(call_signature_handler);
|
|
843 |
|
|
844 |
// Before we call the signature handler we push a new frame to
|
|
845 |
// protect the interpreter frame volatile registers when we return
|
|
846 |
// from jni but before we can get back to Java.
|
|
847 |
|
|
848 |
// First set the frame anchor while the SP/FP registers are
|
|
849 |
// convenient and the slow signature handler can use this same frame
|
|
850 |
// anchor.
|
|
851 |
|
|
852 |
// We have a TOP_IJAVA_FRAME here, which belongs to us.
|
|
853 |
__ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
|
|
854 |
|
|
855 |
// Now the interpreter frame (and its call chain) have been
|
|
856 |
// invalidated and flushed. We are now protected against eager
|
|
857 |
// being enabled in native code. Even if it goes eager the
|
|
858 |
// registers will be reloaded as clean and we will invalidate after
|
|
859 |
// the call so no spurious flush should be possible.
|
|
860 |
|
|
861 |
// Call signature handler and pass locals address.
|
|
862 |
//
|
|
863 |
// Our signature handlers copy required arguments to the C stack
|
|
864 |
// (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
|
|
865 |
__ mr(R3_ARG1, R18_locals);
|
|
866 |
__ ld(signature_handler_fd, 0, signature_handler_fd);
|
|
867 |
|
|
868 |
__ call_stub(signature_handler_fd);
|
|
869 |
|
|
870 |
// Remove the register parameter varargs slots we allocated in
|
|
871 |
// compute_interpreter_state. SP+16 ends up pointing to the ABI
|
|
872 |
// outgoing argument area.
|
|
873 |
//
|
|
874 |
// Not needed on PPC64.
|
|
875 |
//__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
|
|
876 |
|
|
877 |
assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
|
|
878 |
// Save across call to native method.
|
|
879 |
__ mr(result_handler_addr, R3_RET);
|
|
880 |
|
|
881 |
__ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
|
|
882 |
|
|
883 |
// Set up fixed parameters and call the native method.
|
|
884 |
// If the method is static, get mirror into R4_ARG2.
|
|
885 |
{
|
|
886 |
Label method_is_not_static;
|
|
887 |
// Access_flags is non-volatile and still, no need to restore it.
|
|
888 |
|
|
889 |
// Restore access flags.
|
|
890 |
__ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
|
|
891 |
__ bfalse(CCR0, method_is_not_static);
|
|
892 |
|
|
893 |
// constants = method->constants();
|
|
894 |
__ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
|
|
895 |
__ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
|
|
896 |
// pool_holder = method->constants()->pool_holder();
|
|
897 |
__ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
|
|
898 |
R11_scratch1/*constants*/);
|
|
899 |
|
|
900 |
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
|
|
901 |
|
|
902 |
// mirror = pool_holder->klass_part()->java_mirror();
|
|
903 |
__ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
|
|
904 |
// state->_native_mirror = mirror;
|
|
905 |
|
|
906 |
__ ld(R11_scratch1, 0, R1_SP);
|
|
907 |
__ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
|
|
908 |
// R4_ARG2 = &state->_oop_temp;
|
|
909 |
__ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
|
|
910 |
__ BIND(method_is_not_static);
|
|
911 |
}
|
|
912 |
|
|
913 |
// At this point, arguments have been copied off the stack into
|
|
914 |
// their JNI positions. Oops are boxed in-place on the stack, with
|
|
915 |
// handles copied to arguments. The result handler address is in a
|
|
916 |
// register.
|
|
917 |
|
|
918 |
// Pass JNIEnv address as first parameter.
|
|
919 |
__ addir(R3_ARG1, thread_(jni_environment));
|
|
920 |
|
|
921 |
// Load the native_method entry before we change the thread state.
|
|
922 |
__ ld(native_method_fd, method_(native_function));
|
|
923 |
|
|
924 |
//=============================================================================
|
|
925 |
// Transition from _thread_in_Java to _thread_in_native. As soon as
|
|
926 |
// we make this change the safepoint code needs to be certain that
|
|
927 |
// the last Java frame we established is good. The pc in that frame
|
|
928 |
// just needs to be near here not an actual return address.
|
|
929 |
|
|
930 |
// We use release_store_fence to update values like the thread state, where
|
|
931 |
// we don't want the current thread to continue until all our prior memory
|
|
932 |
// accesses (including the new thread state) are visible to other threads.
|
|
933 |
__ li(R0, _thread_in_native);
|
|
934 |
__ release();
|
|
935 |
|
|
936 |
// TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
|
|
937 |
__ stw(R0, thread_(thread_state));
|
|
938 |
|
|
939 |
if (UseMembar) {
|
|
940 |
__ fence();
|
|
941 |
}
|
|
942 |
|
|
943 |
//=============================================================================
|
|
944 |
// Call the native method. Argument registers must not have been
|
|
945 |
// overwritten since "__ call_stub(signature_handler);" (except for
|
|
946 |
// ARG1 and ARG2 for static methods).
|
|
947 |
__ call_c(native_method_fd);
|
|
948 |
|
|
949 |
__ li(R0, 0);
|
|
950 |
__ ld(R11_scratch1, 0, R1_SP);
|
|
951 |
__ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
|
|
952 |
__ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
|
|
953 |
__ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
|
|
954 |
|
|
955 |
// Note: C++ interpreter needs the following here:
|
|
956 |
// The frame_manager_lr field, which we use for setting the last
|
|
957 |
// java frame, gets overwritten by the signature handler. Restore
|
|
958 |
// it now.
|
|
959 |
//__ get_PC_trash_LR(R11_scratch1);
|
|
960 |
//__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
|
|
961 |
|
|
962 |
// Because of GC R19_method may no longer be valid.
|
|
963 |
|
|
964 |
// Block, if necessary, before resuming in _thread_in_Java state.
|
|
965 |
// In order for GC to work, don't clear the last_Java_sp until after
|
|
966 |
// blocking.
|
|
967 |
|
|
968 |
//=============================================================================
|
|
969 |
// Switch thread to "native transition" state before reading the
|
|
970 |
// synchronization state. This additional state is necessary
|
|
971 |
// because reading and testing the synchronization state is not
|
|
972 |
// atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
|
|
973 |
// in _thread_in_native state, loads _not_synchronized and is
|
|
974 |
// preempted. VM thread changes sync state to synchronizing and
|
|
975 |
// suspends threads for GC. Thread A is resumed to finish this
|
|
976 |
// native method, but doesn't block here since it didn't see any
|
|
977 |
// synchronization in progress, and escapes.
|
|
978 |
|
|
979 |
// We use release_store_fence to update values like the thread state, where
|
|
980 |
// we don't want the current thread to continue until all our prior memory
|
|
981 |
// accesses (including the new thread state) are visible to other threads.
|
|
982 |
__ li(R0/*thread_state*/, _thread_in_native_trans);
|
|
983 |
__ release();
|
|
984 |
__ stw(R0/*thread_state*/, thread_(thread_state));
|
|
985 |
if (UseMembar) {
|
|
986 |
__ fence();
|
|
987 |
}
|
|
988 |
// Write serialization page so that the VM thread can do a pseudo remote
|
|
989 |
// membar. We use the current thread pointer to calculate a thread
|
|
990 |
// specific offset to write to within the page. This minimizes bus
|
|
991 |
// traffic due to cache line collision.
|
|
992 |
else {
|
|
993 |
__ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
|
|
994 |
}
|
|
995 |
|
|
996 |
// Now before we return to java we must look for a current safepoint
|
|
997 |
// (a new safepoint can not start since we entered native_trans).
|
|
998 |
// We must check here because a current safepoint could be modifying
|
|
999 |
// the callers registers right this moment.
|
|
1000 |
|
|
1001 |
// Acquire isn't strictly necessary here because of the fence, but
|
|
1002 |
// sync_state is declared to be volatile, so we do it anyway
|
|
1003 |
// (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
|
|
1004 |
int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
|
|
1005 |
|
|
1006 |
// TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
|
|
1007 |
__ lwz(sync_state, sync_state_offs, sync_state_addr);
|
|
1008 |
|
|
1009 |
// TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
|
|
1010 |
__ lwz(suspend_flags, thread_(suspend_flags));
|
|
1011 |
|
|
1012 |
Label sync_check_done;
|
|
1013 |
Label do_safepoint;
|
|
1014 |
// No synchronization in progress nor yet synchronized.
|
|
1015 |
__ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
|
|
1016 |
// Not suspended.
|
|
1017 |
__ cmpwi(CCR1, suspend_flags, 0);
|
|
1018 |
|
|
1019 |
__ bne(CCR0, do_safepoint);
|
|
1020 |
__ beq(CCR1, sync_check_done);
|
|
1021 |
__ bind(do_safepoint);
|
|
1022 |
__ isync();
|
|
1023 |
// Block. We do the call directly and leave the current
|
|
1024 |
// last_Java_frame setup undisturbed. We must save any possible
|
|
1025 |
// native result across the call. No oop is present.
|
|
1026 |
|
|
1027 |
__ mr(R3_ARG1, R16_thread);
|
|
1028 |
__ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
|
|
1029 |
relocInfo::none);
|
|
1030 |
|
|
1031 |
__ bind(sync_check_done);
|
|
1032 |
|
|
1033 |
//=============================================================================
|
|
1034 |
// <<<<<< Back in Interpreter Frame >>>>>
|
|
1035 |
|
|
1036 |
// We are in thread_in_native_trans here and back in the normal
|
|
1037 |
// interpreter frame. We don't have to do anything special about
|
|
1038 |
// safepoints and we can switch to Java mode anytime we are ready.
|
|
1039 |
|
|
1040 |
// Note: frame::interpreter_frame_result has a dependency on how the
|
|
1041 |
// method result is saved across the call to post_method_exit. For
|
|
1042 |
// native methods it assumes that the non-FPU/non-void result is
|
|
1043 |
// saved in _native_lresult and a FPU result in _native_fresult. If
|
|
1044 |
// this changes then the interpreter_frame_result implementation
|
|
1045 |
// will need to be updated too.
|
|
1046 |
|
|
1047 |
// On PPC64, we have stored the result directly after the native call.
|
|
1048 |
|
|
1049 |
//=============================================================================
|
|
1050 |
// Back in Java
|
|
1051 |
|
|
1052 |
// We use release_store_fence to update values like the thread state, where
|
|
1053 |
// we don't want the current thread to continue until all our prior memory
|
|
1054 |
// accesses (including the new thread state) are visible to other threads.
|
|
1055 |
__ li(R0/*thread_state*/, _thread_in_Java);
|
|
1056 |
__ release();
|
|
1057 |
__ stw(R0/*thread_state*/, thread_(thread_state));
|
|
1058 |
if (UseMembar) {
|
|
1059 |
__ fence();
|
|
1060 |
}
|
|
1061 |
|
|
1062 |
__ reset_last_Java_frame();
|
|
1063 |
|
|
1064 |
// Jvmdi/jvmpi support. Whether we've got an exception pending or
|
|
1065 |
// not, and whether unlocking throws an exception or not, we notify
|
|
1066 |
// on native method exit. If we do have an exception, we'll end up
|
|
1067 |
// in the caller's context to handle it, so if we don't do the
|
|
1068 |
// notify here, we'll drop it on the floor.
|
|
1069 |
__ notify_method_exit(true/*native method*/,
|
|
1070 |
ilgl /*illegal state (not used for native methods)*/,
|
|
1071 |
InterpreterMacroAssembler::NotifyJVMTI,
|
|
1072 |
false /*check_exceptions*/);
|
|
1073 |
|
|
1074 |
//=============================================================================
|
|
1075 |
// Handle exceptions
|
|
1076 |
|
|
1077 |
if (synchronized) {
|
|
1078 |
// Don't check for exceptions since we're still in the i2n frame. Do that
|
|
1079 |
// manually afterwards.
|
|
1080 |
unlock_method(false);
|
|
1081 |
}
|
|
1082 |
|
|
1083 |
// Reset active handles after returning from native.
|
|
1084 |
// thread->active_handles()->clear();
|
|
1085 |
__ ld(active_handles, thread_(active_handles));
|
|
1086 |
// TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
|
|
1087 |
__ li(R0, 0);
|
|
1088 |
__ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
|
|
1089 |
|
|
1090 |
Label exception_return_sync_check_already_unlocked;
|
|
1091 |
__ ld(R0/*pending_exception*/, thread_(pending_exception));
|
|
1092 |
__ cmpdi(CCR0, R0/*pending_exception*/, 0);
|
|
1093 |
__ bne(CCR0, exception_return_sync_check_already_unlocked);
|
|
1094 |
|
|
1095 |
//-----------------------------------------------------------------------------
|
|
1096 |
// No exception pending.
|
|
1097 |
|
|
1098 |
// Move native method result back into proper registers and return.
|
|
1099 |
// Invoke result handler (may unbox/promote).
|
|
1100 |
__ ld(R11_scratch1, 0, R1_SP);
|
|
1101 |
__ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
|
|
1102 |
__ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
|
|
1103 |
__ call_stub(result_handler_addr);
|
|
1104 |
|
|
1105 |
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
|
|
1106 |
|
|
1107 |
// Must use the return pc which was loaded from the caller's frame
|
|
1108 |
// as the VM uses return-pc-patching for deoptimization.
|
|
1109 |
__ mtlr(R0);
|
|
1110 |
__ blr();
|
|
1111 |
|
|
1112 |
//-----------------------------------------------------------------------------
|
|
1113 |
// An exception is pending. We call into the runtime only if the
|
|
1114 |
// caller was not interpreted. If it was interpreted the
|
|
1115 |
// interpreter will do the correct thing. If it isn't interpreted
|
|
1116 |
// (call stub/compiled code) we will change our return and continue.
|
|
1117 |
|
|
1118 |
__ BIND(exception_return_sync_check);
|
|
1119 |
|
|
1120 |
if (synchronized) {
|
|
1121 |
// Don't check for exceptions since we're still in the i2n frame. Do that
|
|
1122 |
// manually afterwards.
|
|
1123 |
unlock_method(false);
|
|
1124 |
}
|
|
1125 |
__ BIND(exception_return_sync_check_already_unlocked);
|
|
1126 |
|
|
1127 |
const Register return_pc = R31;
|
|
1128 |
|
|
1129 |
__ ld(return_pc, 0, R1_SP);
|
|
1130 |
__ ld(return_pc, _abi(lr), return_pc);
|
|
1131 |
|
|
1132 |
// Get the address of the exception handler.
|
|
1133 |
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
|
|
1134 |
R16_thread,
|
|
1135 |
return_pc /* return pc */);
|
|
1136 |
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
|
|
1137 |
|
|
1138 |
// Load the PC of the the exception handler into LR.
|
|
1139 |
__ mtlr(R3_RET);
|
|
1140 |
|
|
1141 |
// Load exception into R3_ARG1 and clear pending exception in thread.
|
|
1142 |
__ ld(R3_ARG1/*exception*/, thread_(pending_exception));
|
|
1143 |
__ li(R4_ARG2, 0);
|
|
1144 |
__ std(R4_ARG2, thread_(pending_exception));
|
|
1145 |
|
|
1146 |
// Load the original return pc into R4_ARG2.
|
|
1147 |
__ mr(R4_ARG2/*issuing_pc*/, return_pc);
|
|
1148 |
|
|
1149 |
// Return to exception handler.
|
|
1150 |
__ blr();
|
|
1151 |
|
|
1152 |
//=============================================================================
|
|
1153 |
// Counter overflow.
|
|
1154 |
|
|
1155 |
if (inc_counter) {
|
|
1156 |
// Handle invocation counter overflow.
|
|
1157 |
__ bind(invocation_counter_overflow);
|
|
1158 |
|
|
1159 |
generate_counter_overflow(continue_after_compile);
|
|
1160 |
}
|
|
1161 |
|
|
1162 |
return entry;
|
|
1163 |
}
|
|
1164 |
|
|
1165 |
// Generic interpreted method entry to (asm) interpreter.
|
|
1166 |
//
|
|
1167 |
address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
|
|
1168 |
bool inc_counter = UseCompiler || CountCompiledCalls;
|
|
1169 |
address entry = __ pc();
|
|
1170 |
// Generate the code to allocate the interpreter stack frame.
|
|
1171 |
Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
|
|
1172 |
Rsize_of_locals = R5_ARG3; // Written by generate_fixed_frame.
|
|
1173 |
|
|
1174 |
generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
|
|
1175 |
|
|
1176 |
#ifdef FAST_DISPATCH
|
|
1177 |
__ unimplemented("Fast dispatch in generate_normal_entry");
|
|
1178 |
#if 0
|
|
1179 |
__ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
|
|
1180 |
// Set bytecode dispatch table base.
|
|
1181 |
#endif
|
|
1182 |
#endif
|
|
1183 |
|
|
1184 |
// --------------------------------------------------------------------------
|
|
1185 |
// Zero out non-parameter locals.
|
|
1186 |
// Note: *Always* zero out non-parameter locals as Sparc does. It's not
|
|
1187 |
// worth to ask the flag, just do it.
|
|
1188 |
Register Rslot_addr = R6_ARG4,
|
|
1189 |
Rnum = R7_ARG5;
|
|
1190 |
Label Lno_locals, Lzero_loop;
|
|
1191 |
|
|
1192 |
// Set up the zeroing loop.
|
|
1193 |
__ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
|
|
1194 |
__ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
|
|
1195 |
__ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
|
|
1196 |
__ beq(CCR0, Lno_locals);
|
|
1197 |
__ li(R0, 0);
|
|
1198 |
__ mtctr(Rnum);
|
|
1199 |
|
|
1200 |
// The zero locals loop.
|
|
1201 |
__ bind(Lzero_loop);
|
|
1202 |
__ std(R0, 0, Rslot_addr);
|
|
1203 |
__ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
|
|
1204 |
__ bdnz(Lzero_loop);
|
|
1205 |
|
|
1206 |
__ bind(Lno_locals);
|
|
1207 |
|
|
1208 |
// --------------------------------------------------------------------------
|
|
1209 |
// Counter increment and overflow check.
|
|
1210 |
Label invocation_counter_overflow,
|
|
1211 |
profile_method,
|
|
1212 |
profile_method_continue;
|
|
1213 |
if (inc_counter || ProfileInterpreter) {
|
|
1214 |
|
|
1215 |
Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
|
|
1216 |
if (synchronized) {
|
|
1217 |
// Since at this point in the method invocation the exception handler
|
|
1218 |
// would try to exit the monitor of synchronized methods which hasn't
|
|
1219 |
// been entered yet, we set the thread local variable
|
|
1220 |
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
|
|
1221 |
// runtime, exception handling i.e. unlock_if_synchronized_method will
|
|
1222 |
// check this thread local flag.
|
|
1223 |
// This flag has two effects, one is to force an unwind in the topmost
|
|
1224 |
// interpreter frame and not perform an unlock while doing so.
|
|
1225 |
__ li(R0, 1);
|
|
1226 |
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
|
|
1227 |
}
|
|
1228 |
// Increment invocation counter and check for overflow.
|
|
1229 |
if (inc_counter) {
|
|
1230 |
generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
|
|
1231 |
}
|
|
1232 |
|
|
1233 |
__ bind(profile_method_continue);
|
|
1234 |
|
|
1235 |
// Reset the _do_not_unlock_if_synchronized flag.
|
|
1236 |
if (synchronized) {
|
|
1237 |
__ li(R0, 0);
|
|
1238 |
__ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
|
|
1239 |
}
|
|
1240 |
}
|
|
1241 |
|
|
1242 |
// --------------------------------------------------------------------------
|
|
1243 |
// Locking of synchronized methods. Must happen AFTER invocation_counter
|
|
1244 |
// check and stack overflow check, so method is not locked if overflows.
|
|
1245 |
if (synchronized) {
|
|
1246 |
lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
|
|
1247 |
}
|
|
1248 |
#ifdef ASSERT
|
|
1249 |
else {
|
|
1250 |
Label Lok;
|
|
1251 |
__ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
|
|
1252 |
__ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
|
|
1253 |
__ asm_assert_eq("method needs synchronization", 0x8521);
|
|
1254 |
__ bind(Lok);
|
|
1255 |
}
|
|
1256 |
#endif // ASSERT
|
|
1257 |
|
|
1258 |
__ verify_thread();
|
|
1259 |
|
|
1260 |
// --------------------------------------------------------------------------
|
|
1261 |
// JVMTI support
|
|
1262 |
__ notify_method_entry();
|
|
1263 |
|
|
1264 |
// --------------------------------------------------------------------------
|
|
1265 |
// Start executing instructions.
|
|
1266 |
__ dispatch_next(vtos);
|
|
1267 |
|
|
1268 |
// --------------------------------------------------------------------------
|
|
1269 |
// Out of line counter overflow and MDO creation code.
|
|
1270 |
if (ProfileInterpreter) {
|
|
1271 |
// We have decided to profile this method in the interpreter.
|
|
1272 |
__ bind(profile_method);
|
|
1273 |
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
|
|
1274 |
__ set_method_data_pointer_for_bcp();
|
|
1275 |
__ b(profile_method_continue);
|
|
1276 |
}
|
|
1277 |
|
|
1278 |
if (inc_counter) {
|
|
1279 |
// Handle invocation counter overflow.
|
|
1280 |
__ bind(invocation_counter_overflow);
|
|
1281 |
generate_counter_overflow(profile_method_continue);
|
|
1282 |
}
|
|
1283 |
return entry;
|
|
1284 |
}
|
|
1285 |
|
|
1286 |
// =============================================================================
|
|
1287 |
// Entry points
|
|
1288 |
|
|
1289 |
address AbstractInterpreterGenerator::generate_method_entry(
|
|
1290 |
AbstractInterpreter::MethodKind kind) {
|
|
1291 |
// Determine code generation flags.
|
|
1292 |
bool synchronized = false;
|
|
1293 |
address entry_point = NULL;
|
|
1294 |
|
|
1295 |
switch (kind) {
|
|
1296 |
case Interpreter::zerolocals : break;
|
|
1297 |
case Interpreter::zerolocals_synchronized: synchronized = true; break;
|
|
1298 |
case Interpreter::native : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break;
|
|
1299 |
case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true); break;
|
|
1300 |
case Interpreter::empty : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry(); break;
|
|
1301 |
case Interpreter::accessor : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry(); break;
|
|
1302 |
case Interpreter::abstract : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry(); break;
|
|
1303 |
|
|
1304 |
case Interpreter::java_lang_math_sin : // fall thru
|
|
1305 |
case Interpreter::java_lang_math_cos : // fall thru
|
|
1306 |
case Interpreter::java_lang_math_tan : // fall thru
|
|
1307 |
case Interpreter::java_lang_math_abs : // fall thru
|
|
1308 |
case Interpreter::java_lang_math_log : // fall thru
|
|
1309 |
case Interpreter::java_lang_math_log10 : // fall thru
|
|
1310 |
case Interpreter::java_lang_math_sqrt : // fall thru
|
|
1311 |
case Interpreter::java_lang_math_pow : // fall thru
|
|
1312 |
case Interpreter::java_lang_math_exp : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind); break;
|
|
1313 |
case Interpreter::java_lang_ref_reference_get
|
|
1314 |
: entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
|
|
1315 |
default : ShouldNotReachHere(); break;
|
|
1316 |
}
|
|
1317 |
|
|
1318 |
if (entry_point) {
|
|
1319 |
return entry_point;
|
|
1320 |
}
|
|
1321 |
|
|
1322 |
return ((InterpreterGenerator*) this)->generate_normal_entry(synchronized);
|
|
1323 |
}
|
|
1324 |
|
|
1325 |
// These should never be compiled since the interpreter will prefer
|
|
1326 |
// the compiled version to the intrinsic version.
|
|
1327 |
bool AbstractInterpreter::can_be_compiled(methodHandle m) {
|
|
1328 |
return !math_entry_available(method_kind(m));
|
|
1329 |
}
|
|
1330 |
|
|
1331 |
// How much stack a method activation needs in stack slots.
|
|
1332 |
// We must calc this exactly like in generate_fixed_frame.
|
|
1333 |
// Note: This returns the conservative size assuming maximum alignment.
|
|
1334 |
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
|
|
1335 |
const int max_alignment_size = 2;
|
|
1336 |
const int abi_scratch = frame::abi_reg_args_size;
|
|
1337 |
return method->max_locals() + method->max_stack() + frame::interpreter_frame_monitor_size() + max_alignment_size + abi_scratch;
|
|
1338 |
}
|
|
1339 |
|
|
1340 |
// Fills a sceletal interpreter frame generated during deoptimizations
|
|
1341 |
// and returns the frame size in slots.
|
|
1342 |
//
|
|
1343 |
// Parameters:
|
|
1344 |
//
|
|
1345 |
// interpreter_frame == NULL:
|
|
1346 |
// Only calculate the size of an interpreter activation, no actual layout.
|
|
1347 |
// Note: This calculation must exactly parallel the frame setup
|
|
1348 |
// in TemplateInterpreter::generate_normal_entry. But it does not
|
|
1349 |
// account for the SP alignment, that might further enhance the
|
|
1350 |
// frame size, depending on FP.
|
|
1351 |
//
|
|
1352 |
// interpreter_frame != NULL:
|
|
1353 |
// set up the method, locals, and monitors.
|
|
1354 |
// The frame interpreter_frame, if not NULL, is guaranteed to be the
|
|
1355 |
// right size, as determined by a previous call to this method.
|
|
1356 |
// It is also guaranteed to be walkable even though it is in a skeletal state
|
|
1357 |
//
|
|
1358 |
// is_top_frame == true:
|
|
1359 |
// We're processing the *oldest* interpreter frame!
|
|
1360 |
//
|
|
1361 |
// pop_frame_extra_args:
|
|
1362 |
// If this is != 0 we are returning to a deoptimized frame by popping
|
|
1363 |
// off the callee frame. We want to re-execute the call that called the
|
|
1364 |
// callee interpreted, but since the return to the interpreter would pop
|
|
1365 |
// the arguments off advance the esp by dummy popframe_extra_args slots.
|
|
1366 |
// Popping off those will establish the stack layout as it was before the call.
|
|
1367 |
//
|
|
1368 |
int AbstractInterpreter::layout_activation(Method* method,
|
|
1369 |
int tempcount,
|
|
1370 |
int popframe_extra_args,
|
|
1371 |
int moncount,
|
|
1372 |
int caller_actual_parameters,
|
|
1373 |
int callee_param_count,
|
|
1374 |
int callee_locals,
|
|
1375 |
frame* caller,
|
|
1376 |
frame* interpreter_frame,
|
|
1377 |
bool is_top_frame,
|
|
1378 |
bool is_bottom_frame) {
|
|
1379 |
|
|
1380 |
const int max_alignment_space = 2;
|
|
1381 |
const int abi_scratch = is_top_frame ? (frame::abi_reg_args_size / Interpreter::stackElementSize) :
|
|
1382 |
(frame::abi_minframe_size / Interpreter::stackElementSize) ;
|
|
1383 |
const int conservative_framesize_in_slots =
|
|
1384 |
method->max_stack() + callee_locals - callee_param_count +
|
|
1385 |
(moncount * frame::interpreter_frame_monitor_size()) + max_alignment_space +
|
|
1386 |
abi_scratch + frame::ijava_state_size / Interpreter::stackElementSize;
|
|
1387 |
|
|
1388 |
assert(!is_top_frame || conservative_framesize_in_slots * 8 > frame::abi_reg_args_size + frame::ijava_state_size, "frame too small");
|
|
1389 |
|
|
1390 |
if (interpreter_frame == NULL) {
|
|
1391 |
// Since we don't know the exact alignment, we return the conservative size.
|
|
1392 |
return (conservative_framesize_in_slots & -2);
|
|
1393 |
} else {
|
|
1394 |
// Now we know our caller, calc the exact frame layout and size.
|
|
1395 |
intptr_t* locals_base = (caller->is_interpreted_frame()) ?
|
|
1396 |
caller->interpreter_frame_esp() + caller_actual_parameters :
|
|
1397 |
caller->sp() + method->max_locals() - 1 + (frame::abi_minframe_size / Interpreter::stackElementSize) ;
|
|
1398 |
|
|
1399 |
intptr_t* monitor_base = caller->sp() - frame::ijava_state_size / Interpreter::stackElementSize ;
|
|
1400 |
intptr_t* monitor = monitor_base - (moncount * frame::interpreter_frame_monitor_size());
|
|
1401 |
intptr_t* esp_base = monitor - 1;
|
|
1402 |
intptr_t* esp = esp_base - tempcount - popframe_extra_args;
|
|
1403 |
intptr_t* sp = (intptr_t *) (((intptr_t) (esp_base- callee_locals + callee_param_count - method->max_stack()- abi_scratch)) & -StackAlignmentInBytes);
|
|
1404 |
intptr_t* sender_sp = caller->sp() + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
|
|
1405 |
intptr_t* top_frame_sp = is_top_frame ? sp : sp + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
|
|
1406 |
|
|
1407 |
interpreter_frame->interpreter_frame_set_method(method);
|
|
1408 |
interpreter_frame->interpreter_frame_set_locals(locals_base);
|
|
1409 |
interpreter_frame->interpreter_frame_set_cpcache(method->constants()->cache());
|
|
1410 |
interpreter_frame->interpreter_frame_set_esp(esp);
|
|
1411 |
interpreter_frame->interpreter_frame_set_monitor_end((BasicObjectLock *)monitor);
|
|
1412 |
interpreter_frame->interpreter_frame_set_top_frame_sp(top_frame_sp);
|
|
1413 |
if (!is_bottom_frame) {
|
|
1414 |
interpreter_frame->interpreter_frame_set_sender_sp(sender_sp);
|
|
1415 |
}
|
|
1416 |
|
|
1417 |
int framesize_in_slots = caller->sp() - sp;
|
|
1418 |
assert(!is_top_frame ||framesize_in_slots >= (frame::abi_reg_args_size / Interpreter::stackElementSize) + frame::ijava_state_size / Interpreter::stackElementSize, "frame too small");
|
|
1419 |
assert(framesize_in_slots <= conservative_framesize_in_slots, "exact frame size must be smaller than the convervative size!");
|
|
1420 |
return framesize_in_slots;
|
|
1421 |
}
|
|
1422 |
}
|
|
1423 |
|
|
1424 |
// =============================================================================
|
|
1425 |
// Exceptions
|
|
1426 |
|
|
1427 |
void TemplateInterpreterGenerator::generate_throw_exception() {
|
|
1428 |
Register Rexception = R17_tos,
|
|
1429 |
Rcontinuation = R3_RET;
|
|
1430 |
|
|
1431 |
// --------------------------------------------------------------------------
|
|
1432 |
// Entry point if an method returns with a pending exception (rethrow).
|
|
1433 |
Interpreter::_rethrow_exception_entry = __ pc();
|
|
1434 |
{
|
|
1435 |
__ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
|
|
1436 |
__ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
|
|
1437 |
__ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
|
|
1438 |
|
|
1439 |
// Compiled code destroys templateTableBase, reload.
|
|
1440 |
__ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
|
|
1441 |
}
|
|
1442 |
|
|
1443 |
// Entry point if a interpreted method throws an exception (throw).
|
|
1444 |
Interpreter::_throw_exception_entry = __ pc();
|
|
1445 |
{
|
|
1446 |
__ mr(Rexception, R3_RET);
|
|
1447 |
|
|
1448 |
__ verify_thread();
|
|
1449 |
__ verify_oop(Rexception);
|
|
1450 |
|
|
1451 |
// Expression stack must be empty before entering the VM in case of an exception.
|
|
1452 |
__ empty_expression_stack();
|
|
1453 |
// Find exception handler address and preserve exception oop.
|
|
1454 |
// Call C routine to find handler and jump to it.
|
|
1455 |
__ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
|
|
1456 |
__ mtctr(Rcontinuation);
|
|
1457 |
// Push exception for exception handler bytecodes.
|
|
1458 |
__ push_ptr(Rexception);
|
|
1459 |
|
|
1460 |
// Jump to exception handler (may be remove activation entry!).
|
|
1461 |
__ bctr();
|
|
1462 |
}
|
|
1463 |
|
|
1464 |
// If the exception is not handled in the current frame the frame is
|
|
1465 |
// removed and the exception is rethrown (i.e. exception
|
|
1466 |
// continuation is _rethrow_exception).
|
|
1467 |
//
|
|
1468 |
// Note: At this point the bci is still the bxi for the instruction
|
|
1469 |
// which caused the exception and the expression stack is
|
|
1470 |
// empty. Thus, for any VM calls at this point, GC will find a legal
|
|
1471 |
// oop map (with empty expression stack).
|
|
1472 |
|
|
1473 |
// In current activation
|
|
1474 |
// tos: exception
|
|
1475 |
// bcp: exception bcp
|
|
1476 |
|
|
1477 |
// --------------------------------------------------------------------------
|
|
1478 |
// JVMTI PopFrame support
|
|
1479 |
|
|
1480 |
Interpreter::_remove_activation_preserving_args_entry = __ pc();
|
|
1481 |
{
|
|
1482 |
// Set the popframe_processing bit in popframe_condition indicating that we are
|
|
1483 |
// currently handling popframe, so that call_VMs that may happen later do not
|
|
1484 |
// trigger new popframe handling cycles.
|
|
1485 |
__ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
|
|
1486 |
__ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
|
|
1487 |
__ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
|
|
1488 |
|
|
1489 |
// Empty the expression stack, as in normal exception handling.
|
|
1490 |
__ empty_expression_stack();
|
|
1491 |
__ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
|
|
1492 |
|
|
1493 |
// Check to see whether we are returning to a deoptimized frame.
|
|
1494 |
// (The PopFrame call ensures that the caller of the popped frame is
|
|
1495 |
// either interpreted or compiled and deoptimizes it if compiled.)
|
|
1496 |
// Note that we don't compare the return PC against the
|
|
1497 |
// deoptimization blob's unpack entry because of the presence of
|
|
1498 |
// adapter frames in C2.
|
|
1499 |
Label Lcaller_not_deoptimized;
|
|
1500 |
Register return_pc = R3_ARG1;
|
|
1501 |
__ ld(return_pc, 0, R1_SP);
|
|
1502 |
__ ld(return_pc, _abi(lr), return_pc);
|
|
1503 |
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
|
|
1504 |
__ cmpdi(CCR0, R3_RET, 0);
|
|
1505 |
__ bne(CCR0, Lcaller_not_deoptimized);
|
|
1506 |
|
|
1507 |
// The deoptimized case.
|
|
1508 |
// In this case, we can't call dispatch_next() after the frame is
|
|
1509 |
// popped, but instead must save the incoming arguments and restore
|
|
1510 |
// them after deoptimization has occurred.
|
|
1511 |
__ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
|
|
1512 |
__ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
|
|
1513 |
__ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
|
|
1514 |
__ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
|
|
1515 |
__ subf(R5_ARG3, R4_ARG2, R5_ARG3);
|
|
1516 |
// Save these arguments.
|
|
1517 |
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
|
|
1518 |
|
|
1519 |
// Inform deoptimization that it is responsible for restoring these arguments.
|
|
1520 |
__ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
|
|
1521 |
__ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
|
|
1522 |
|
|
1523 |
// Return from the current method into the deoptimization blob. Will eventually
|
|
1524 |
// end up in the deopt interpeter entry, deoptimization prepared everything that
|
|
1525 |
// we will reexecute the call that called us.
|
|
1526 |
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
|
|
1527 |
__ mtlr(return_pc);
|
|
1528 |
__ blr();
|
|
1529 |
|
|
1530 |
// The non-deoptimized case.
|
|
1531 |
__ bind(Lcaller_not_deoptimized);
|
|
1532 |
|
|
1533 |
// Clear the popframe condition flag.
|
|
1534 |
__ li(R0, 0);
|
|
1535 |
__ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
|
|
1536 |
|
|
1537 |
// Get out of the current method and re-execute the call that called us.
|
|
1538 |
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ return_pc, R11_scratch1, R12_scratch2);
|
|
1539 |
__ restore_interpreter_state(R11_scratch1);
|
|
1540 |
__ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
|
|
1541 |
__ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
|
|
1542 |
__ mtlr(return_pc);
|
|
1543 |
if (ProfileInterpreter) {
|
|
1544 |
__ set_method_data_pointer_for_bcp();
|
|
1545 |
}
|
|
1546 |
__ dispatch_next(vtos);
|
|
1547 |
}
|
|
1548 |
// end of JVMTI PopFrame support
|
|
1549 |
|
|
1550 |
// --------------------------------------------------------------------------
|
|
1551 |
// Remove activation exception entry.
|
|
1552 |
// This is jumped to if an interpreted method can't handle an exception itself
|
|
1553 |
// (we come from the throw/rethrow exception entry above). We're going to call
|
|
1554 |
// into the VM to find the exception handler in the caller, pop the current
|
|
1555 |
// frame and return the handler we calculated.
|
|
1556 |
Interpreter::_remove_activation_entry = __ pc();
|
|
1557 |
{
|
|
1558 |
__ pop_ptr(Rexception);
|
|
1559 |
__ verify_thread();
|
|
1560 |
__ verify_oop(Rexception);
|
|
1561 |
__ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
|
|
1562 |
|
|
1563 |
__ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
|
|
1564 |
__ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
|
|
1565 |
|
|
1566 |
__ get_vm_result(Rexception);
|
|
1567 |
|
|
1568 |
// We are done with this activation frame; find out where to go next.
|
|
1569 |
// The continuation point will be an exception handler, which expects
|
|
1570 |
// the following registers set up:
|
|
1571 |
//
|
|
1572 |
// RET: exception oop
|
|
1573 |
// ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
|
|
1574 |
|
|
1575 |
Register return_pc = R31; // Needs to survive the runtime call.
|
|
1576 |
__ ld(return_pc, 0, R1_SP);
|
|
1577 |
__ ld(return_pc, _abi(lr), return_pc);
|
|
1578 |
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
|
|
1579 |
|
|
1580 |
// Remove the current activation.
|
|
1581 |
__ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
|
|
1582 |
|
|
1583 |
__ mr(R4_ARG2, return_pc);
|
|
1584 |
__ mtlr(R3_RET);
|
|
1585 |
__ mr(R3_RET, Rexception);
|
|
1586 |
__ blr();
|
|
1587 |
}
|
|
1588 |
}
|
|
1589 |
|
|
1590 |
// JVMTI ForceEarlyReturn support.
|
|
1591 |
// Returns "in the middle" of a method with a "fake" return value.
|
|
1592 |
address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
|
|
1593 |
|
|
1594 |
Register Rscratch1 = R11_scratch1,
|
|
1595 |
Rscratch2 = R12_scratch2;
|
|
1596 |
|
|
1597 |
address entry = __ pc();
|
|
1598 |
__ empty_expression_stack();
|
|
1599 |
|
|
1600 |
__ load_earlyret_value(state, Rscratch1);
|
|
1601 |
|
|
1602 |
__ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
|
|
1603 |
// Clear the earlyret state.
|
|
1604 |
__ li(R0, 0);
|
|
1605 |
__ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
|
|
1606 |
|
|
1607 |
__ remove_activation(state, false, false);
|
|
1608 |
// Copied from TemplateTable::_return.
|
|
1609 |
// Restoration of lr done by remove_activation.
|
|
1610 |
switch (state) {
|
|
1611 |
case ltos:
|
|
1612 |
case btos:
|
|
1613 |
case ctos:
|
|
1614 |
case stos:
|
|
1615 |
case atos:
|
|
1616 |
case itos: __ mr(R3_RET, R17_tos); break;
|
|
1617 |
case ftos:
|
|
1618 |
case dtos: __ fmr(F1_RET, F15_ftos); break;
|
|
1619 |
case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
|
|
1620 |
// to get visible before the reference to the object gets stored anywhere.
|
|
1621 |
__ membar(Assembler::StoreStore); break;
|
|
1622 |
default : ShouldNotReachHere();
|
|
1623 |
}
|
|
1624 |
__ blr();
|
|
1625 |
|
|
1626 |
return entry;
|
|
1627 |
} // end of ForceEarlyReturn support
|
|
1628 |
|
|
1629 |
//-----------------------------------------------------------------------------
|
|
1630 |
// Helper for vtos entry point generation
|
|
1631 |
|
|
1632 |
void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
|
|
1633 |
address& bep,
|
|
1634 |
address& cep,
|
|
1635 |
address& sep,
|
|
1636 |
address& aep,
|
|
1637 |
address& iep,
|
|
1638 |
address& lep,
|
|
1639 |
address& fep,
|
|
1640 |
address& dep,
|
|
1641 |
address& vep) {
|
|
1642 |
assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
|
|
1643 |
Label L;
|
|
1644 |
|
|
1645 |
aep = __ pc(); __ push_ptr(); __ b(L);
|
|
1646 |
fep = __ pc(); __ push_f(); __ b(L);
|
|
1647 |
dep = __ pc(); __ push_d(); __ b(L);
|
|
1648 |
lep = __ pc(); __ push_l(); __ b(L);
|
|
1649 |
__ align(32, 12, 24); // align L
|
|
1650 |
bep = cep = sep =
|
|
1651 |
iep = __ pc(); __ push_i();
|
|
1652 |
vep = __ pc();
|
|
1653 |
__ bind(L);
|
|
1654 |
generate_and_dispatch(t);
|
|
1655 |
}
|
|
1656 |
|
|
1657 |
//-----------------------------------------------------------------------------
|
|
1658 |
// Generation of individual instructions
|
|
1659 |
|
|
1660 |
// helpers for generate_and_dispatch
|
|
1661 |
|
|
1662 |
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
|
|
1663 |
: TemplateInterpreterGenerator(code) {
|
|
1664 |
generate_all(); // Down here so it can be "virtual".
|
|
1665 |
}
|
|
1666 |
|
|
1667 |
//-----------------------------------------------------------------------------
|
|
1668 |
|
|
1669 |
// Non-product code
|
|
1670 |
#ifndef PRODUCT
|
|
1671 |
address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
|
|
1672 |
//__ flush_bundle();
|
|
1673 |
address entry = __ pc();
|
|
1674 |
|
|
1675 |
char *bname = NULL;
|
|
1676 |
uint tsize = 0;
|
|
1677 |
switch(state) {
|
|
1678 |
case ftos:
|
|
1679 |
bname = "trace_code_ftos {";
|
|
1680 |
tsize = 2;
|
|
1681 |
break;
|
|
1682 |
case btos:
|
|
1683 |
bname = "trace_code_btos {";
|
|
1684 |
tsize = 2;
|
|
1685 |
break;
|
|
1686 |
case ctos:
|
|
1687 |
bname = "trace_code_ctos {";
|
|
1688 |
tsize = 2;
|
|
1689 |
break;
|
|
1690 |
case stos:
|
|
1691 |
bname = "trace_code_stos {";
|
|
1692 |
tsize = 2;
|
|
1693 |
break;
|
|
1694 |
case itos:
|
|
1695 |
bname = "trace_code_itos {";
|
|
1696 |
tsize = 2;
|
|
1697 |
break;
|
|
1698 |
case ltos:
|
|
1699 |
bname = "trace_code_ltos {";
|
|
1700 |
tsize = 3;
|
|
1701 |
break;
|
|
1702 |
case atos:
|
|
1703 |
bname = "trace_code_atos {";
|
|
1704 |
tsize = 2;
|
|
1705 |
break;
|
|
1706 |
case vtos:
|
|
1707 |
// Note: In case of vtos, the topmost of stack value could be a int or doubl
|
|
1708 |
// In case of a double (2 slots) we won't see the 2nd stack value.
|
|
1709 |
// Maybe we simply should print the topmost 3 stack slots to cope with the problem.
|
|
1710 |
bname = "trace_code_vtos {";
|
|
1711 |
tsize = 2;
|
|
1712 |
|
|
1713 |
break;
|
|
1714 |
case dtos:
|
|
1715 |
bname = "trace_code_dtos {";
|
|
1716 |
tsize = 3;
|
|
1717 |
break;
|
|
1718 |
default:
|
|
1719 |
ShouldNotReachHere();
|
|
1720 |
}
|
|
1721 |
BLOCK_COMMENT(bname);
|
|
1722 |
|
|
1723 |
// Support short-cut for TraceBytecodesAt.
|
|
1724 |
// Don't call into the VM if we don't want to trace to speed up things.
|
|
1725 |
Label Lskip_vm_call;
|
|
1726 |
if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
|
|
1727 |
int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
|
|
1728 |
int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
|
|
1729 |
__ ld(R11_scratch1, offs1, R11_scratch1);
|
|
1730 |
__ lwa(R12_scratch2, offs2, R12_scratch2);
|
|
1731 |
__ cmpd(CCR0, R12_scratch2, R11_scratch1);
|
|
1732 |
__ blt(CCR0, Lskip_vm_call);
|
|
1733 |
}
|
|
1734 |
|
|
1735 |
__ push(state);
|
|
1736 |
// Load 2 topmost expression stack values.
|
|
1737 |
__ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
|
|
1738 |
__ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
|
|
1739 |
__ mflr(R31);
|
|
1740 |
__ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
|
|
1741 |
__ mtlr(R31);
|
|
1742 |
__ pop(state);
|
|
1743 |
|
|
1744 |
if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
|
|
1745 |
__ bind(Lskip_vm_call);
|
|
1746 |
}
|
|
1747 |
__ blr();
|
|
1748 |
BLOCK_COMMENT("} trace_code");
|
|
1749 |
return entry;
|
|
1750 |
}
|
|
1751 |
|
|
1752 |
void TemplateInterpreterGenerator::count_bytecode() {
|
|
1753 |
int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
|
|
1754 |
__ lwz(R12_scratch2, offs, R11_scratch1);
|
|
1755 |
__ addi(R12_scratch2, R12_scratch2, 1);
|
|
1756 |
__ stw(R12_scratch2, offs, R11_scratch1);
|
|
1757 |
}
|
|
1758 |
|
|
1759 |
void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
|
|
1760 |
int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
|
|
1761 |
__ lwz(R12_scratch2, offs, R11_scratch1);
|
|
1762 |
__ addi(R12_scratch2, R12_scratch2, 1);
|
|
1763 |
__ stw(R12_scratch2, offs, R11_scratch1);
|
|
1764 |
}
|
|
1765 |
|
|
1766 |
void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
|
|
1767 |
const Register addr = R11_scratch1,
|
|
1768 |
tmp = R12_scratch2;
|
|
1769 |
// Get index, shift out old bytecode, bring in new bytecode, and store it.
|
|
1770 |
// _index = (_index >> log2_number_of_codes) |
|
|
1771 |
// (bytecode << log2_number_of_codes);
|
|
1772 |
int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
|
|
1773 |
__ lwz(tmp, offs1, addr);
|
|
1774 |
__ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
|
|
1775 |
__ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
|
|
1776 |
__ stw(tmp, offs1, addr);
|
|
1777 |
|
|
1778 |
// Bump bucket contents.
|
|
1779 |
// _counters[_index] ++;
|
|
1780 |
int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
|
|
1781 |
__ sldi(tmp, tmp, LogBytesPerInt);
|
|
1782 |
__ add(addr, tmp, addr);
|
|
1783 |
__ lwz(tmp, offs2, addr);
|
|
1784 |
__ addi(tmp, tmp, 1);
|
|
1785 |
__ stw(tmp, offs2, addr);
|
|
1786 |
}
|
|
1787 |
|
|
1788 |
void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
|
|
1789 |
// Call a little run-time stub to avoid blow-up for each bytecode.
|
|
1790 |
// The run-time runtime saves the right registers, depending on
|
|
1791 |
// the tosca in-state for the given template.
|
|
1792 |
|
|
1793 |
assert(Interpreter::trace_code(t->tos_in()) != NULL,
|
|
1794 |
"entry must have been generated");
|
|
1795 |
|
|
1796 |
// Note: we destroy LR here.
|
|
1797 |
__ bl(Interpreter::trace_code(t->tos_in()));
|
|
1798 |
}
|
|
1799 |
|
|
1800 |
void TemplateInterpreterGenerator::stop_interpreter_at() {
|
|
1801 |
Label L;
|
|
1802 |
int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
|
|
1803 |
int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
|
|
1804 |
__ ld(R11_scratch1, offs1, R11_scratch1);
|
|
1805 |
__ lwa(R12_scratch2, offs2, R12_scratch2);
|
|
1806 |
__ cmpd(CCR0, R12_scratch2, R11_scratch1);
|
|
1807 |
__ bne(CCR0, L);
|
|
1808 |
__ illtrap();
|
|
1809 |
__ bind(L);
|
|
1810 |
}
|
|
1811 |
|
|
1812 |
#endif // !PRODUCT
|
|
1813 |
#endif // !CC_INTERP
|