2
|
1 |
/*
|
5506
|
2 |
* Copyright (c) 2001, 2003, Oracle and/or its affiliates. All rights reserved.
|
2
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
5506
|
7 |
* published by the Free Software Foundation. Oracle designates this
|
2
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
5506
|
9 |
* by Oracle in the LICENSE file that accompanied this code.
|
2
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
5506
|
21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
22 |
* or visit www.oracle.com if you need additional information or have any
|
|
23 |
* questions.
|
2
|
24 |
*/
|
|
25 |
|
|
26 |
package java.security.spec;
|
|
27 |
|
|
28 |
import java.math.BigInteger;
|
|
29 |
|
|
30 |
/**
|
|
31 |
* This class specifies an RSA multi-prime private key, as defined in the
|
|
32 |
* PKCS#1 v2.1, using the Chinese Remainder Theorem (CRT) information
|
|
33 |
* values for efficiency.
|
|
34 |
*
|
|
35 |
* @author Valerie Peng
|
|
36 |
*
|
|
37 |
*
|
|
38 |
* @see java.security.Key
|
|
39 |
* @see java.security.KeyFactory
|
|
40 |
* @see KeySpec
|
|
41 |
* @see PKCS8EncodedKeySpec
|
|
42 |
* @see RSAPrivateKeySpec
|
|
43 |
* @see RSAPublicKeySpec
|
|
44 |
* @see RSAOtherPrimeInfo
|
|
45 |
*
|
|
46 |
* @since 1.4
|
|
47 |
*/
|
|
48 |
|
|
49 |
public class RSAMultiPrimePrivateCrtKeySpec extends RSAPrivateKeySpec {
|
|
50 |
|
|
51 |
private final BigInteger publicExponent;
|
|
52 |
private final BigInteger primeP;
|
|
53 |
private final BigInteger primeQ;
|
|
54 |
private final BigInteger primeExponentP;
|
|
55 |
private final BigInteger primeExponentQ;
|
|
56 |
private final BigInteger crtCoefficient;
|
|
57 |
private final RSAOtherPrimeInfo otherPrimeInfo[];
|
|
58 |
|
|
59 |
/**
|
|
60 |
* Creates a new <code>RSAMultiPrimePrivateCrtKeySpec</code>
|
|
61 |
* given the modulus, publicExponent, privateExponent,
|
|
62 |
* primeP, primeQ, primeExponentP, primeExponentQ,
|
|
63 |
* crtCoefficient, and otherPrimeInfo as defined in PKCS#1 v2.1.
|
|
64 |
*
|
|
65 |
* <p>Note that the contents of <code>otherPrimeInfo</code>
|
|
66 |
* are copied to protect against subsequent modification when
|
|
67 |
* constructing this object.
|
|
68 |
*
|
|
69 |
* @param modulus the modulus n.
|
|
70 |
* @param publicExponent the public exponent e.
|
|
71 |
* @param privateExponent the private exponent d.
|
|
72 |
* @param primeP the prime factor p of n.
|
|
73 |
* @param primeQ the prime factor q of n.
|
|
74 |
* @param primeExponentP this is d mod (p-1).
|
|
75 |
* @param primeExponentQ this is d mod (q-1).
|
|
76 |
* @param crtCoefficient the Chinese Remainder Theorem
|
|
77 |
* coefficient q-1 mod p.
|
|
78 |
* @param otherPrimeInfo triplets of the rest of primes, null can be
|
|
79 |
* specified if there are only two prime factors (p and q).
|
|
80 |
* @exception NullPointerException if any of the parameters, i.e.
|
|
81 |
* <code>modulus</code>,
|
|
82 |
* <code>publicExponent</code>, <code>privateExponent</code>,
|
|
83 |
* <code>primeP</code>, <code>primeQ</code>,
|
|
84 |
* <code>primeExponentP</code>, <code>primeExponentQ</code>,
|
|
85 |
* <code>crtCoefficient</code>, is null.
|
|
86 |
* @exception IllegalArgumentException if an empty, i.e. 0-length,
|
|
87 |
* <code>otherPrimeInfo</code> is specified.
|
|
88 |
*/
|
|
89 |
public RSAMultiPrimePrivateCrtKeySpec(BigInteger modulus,
|
|
90 |
BigInteger publicExponent,
|
|
91 |
BigInteger privateExponent,
|
|
92 |
BigInteger primeP,
|
|
93 |
BigInteger primeQ,
|
|
94 |
BigInteger primeExponentP,
|
|
95 |
BigInteger primeExponentQ,
|
|
96 |
BigInteger crtCoefficient,
|
|
97 |
RSAOtherPrimeInfo[] otherPrimeInfo) {
|
|
98 |
super(modulus, privateExponent);
|
|
99 |
if (modulus == null) {
|
|
100 |
throw new NullPointerException("the modulus parameter must be " +
|
|
101 |
"non-null");
|
|
102 |
}
|
|
103 |
if (publicExponent == null) {
|
|
104 |
throw new NullPointerException("the publicExponent parameter " +
|
|
105 |
"must be non-null");
|
|
106 |
}
|
|
107 |
if (privateExponent == null) {
|
|
108 |
throw new NullPointerException("the privateExponent parameter " +
|
|
109 |
"must be non-null");
|
|
110 |
}
|
|
111 |
if (primeP == null) {
|
|
112 |
throw new NullPointerException("the primeP parameter " +
|
|
113 |
"must be non-null");
|
|
114 |
}
|
|
115 |
if (primeQ == null) {
|
|
116 |
throw new NullPointerException("the primeQ parameter " +
|
|
117 |
"must be non-null");
|
|
118 |
}
|
|
119 |
if (primeExponentP == null) {
|
|
120 |
throw new NullPointerException("the primeExponentP parameter " +
|
|
121 |
"must be non-null");
|
|
122 |
}
|
|
123 |
if (primeExponentQ == null) {
|
|
124 |
throw new NullPointerException("the primeExponentQ parameter " +
|
|
125 |
"must be non-null");
|
|
126 |
}
|
|
127 |
if (crtCoefficient == null) {
|
|
128 |
throw new NullPointerException("the crtCoefficient parameter " +
|
|
129 |
"must be non-null");
|
|
130 |
}
|
|
131 |
this.publicExponent = publicExponent;
|
|
132 |
this.primeP = primeP;
|
|
133 |
this.primeQ = primeQ;
|
|
134 |
this.primeExponentP = primeExponentP;
|
|
135 |
this.primeExponentQ = primeExponentQ;
|
|
136 |
this.crtCoefficient = crtCoefficient;
|
|
137 |
if (otherPrimeInfo == null) {
|
|
138 |
this.otherPrimeInfo = null;
|
|
139 |
} else if (otherPrimeInfo.length == 0) {
|
|
140 |
throw new IllegalArgumentException("the otherPrimeInfo " +
|
|
141 |
"parameter must not be empty");
|
|
142 |
} else {
|
|
143 |
this.otherPrimeInfo = otherPrimeInfo.clone();
|
|
144 |
}
|
|
145 |
}
|
|
146 |
|
|
147 |
/**
|
|
148 |
* Returns the public exponent.
|
|
149 |
*
|
|
150 |
* @return the public exponent.
|
|
151 |
*/
|
|
152 |
public BigInteger getPublicExponent() {
|
|
153 |
return this.publicExponent;
|
|
154 |
}
|
|
155 |
|
|
156 |
/**
|
|
157 |
* Returns the primeP.
|
|
158 |
*
|
|
159 |
* @return the primeP.
|
|
160 |
*/
|
|
161 |
public BigInteger getPrimeP() {
|
|
162 |
return this.primeP;
|
|
163 |
}
|
|
164 |
|
|
165 |
/**
|
|
166 |
* Returns the primeQ.
|
|
167 |
*
|
|
168 |
* @return the primeQ.
|
|
169 |
*/
|
|
170 |
public BigInteger getPrimeQ() {
|
|
171 |
return this.primeQ;
|
|
172 |
}
|
|
173 |
|
|
174 |
/**
|
|
175 |
* Returns the primeExponentP.
|
|
176 |
*
|
|
177 |
* @return the primeExponentP.
|
|
178 |
*/
|
|
179 |
public BigInteger getPrimeExponentP() {
|
|
180 |
return this.primeExponentP;
|
|
181 |
}
|
|
182 |
|
|
183 |
/**
|
|
184 |
* Returns the primeExponentQ.
|
|
185 |
*
|
|
186 |
* @return the primeExponentQ.
|
|
187 |
*/
|
|
188 |
public BigInteger getPrimeExponentQ() {
|
|
189 |
return this.primeExponentQ;
|
|
190 |
}
|
|
191 |
|
|
192 |
/**
|
|
193 |
* Returns the crtCoefficient.
|
|
194 |
*
|
|
195 |
* @return the crtCoefficient.
|
|
196 |
*/
|
|
197 |
public BigInteger getCrtCoefficient() {
|
|
198 |
return this.crtCoefficient;
|
|
199 |
}
|
|
200 |
|
|
201 |
/**
|
|
202 |
* Returns a copy of the otherPrimeInfo or null if there are
|
|
203 |
* only two prime factors (p and q).
|
|
204 |
*
|
|
205 |
* @return the otherPrimeInfo. Returns a new array each
|
|
206 |
* time this method is called.
|
|
207 |
*/
|
|
208 |
public RSAOtherPrimeInfo[] getOtherPrimeInfo() {
|
|
209 |
if (otherPrimeInfo == null) return null;
|
|
210 |
return otherPrimeInfo.clone();
|
|
211 |
}
|
|
212 |
}
|