2
|
1 |
/*
|
5506
|
2 |
* Copyright (c) 1994, 2006, Oracle and/or its affiliates. All rights reserved.
|
2
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
5506
|
7 |
* published by the Free Software Foundation. Oracle designates this
|
2
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
5506
|
9 |
* by Oracle in the LICENSE file that accompanied this code.
|
2
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
5506
|
21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
22 |
* or visit www.oracle.com if you need additional information or have any
|
|
23 |
* questions.
|
2
|
24 |
*/
|
|
25 |
|
|
26 |
package java.lang;
|
|
27 |
import java.util.Random;
|
|
28 |
|
|
29 |
|
|
30 |
/**
|
|
31 |
* The class {@code Math} contains methods for performing basic
|
|
32 |
* numeric operations such as the elementary exponential, logarithm,
|
|
33 |
* square root, and trigonometric functions.
|
|
34 |
*
|
|
35 |
* <p>Unlike some of the numeric methods of class
|
|
36 |
* {@code StrictMath}, all implementations of the equivalent
|
|
37 |
* functions of class {@code Math} are not defined to return the
|
|
38 |
* bit-for-bit same results. This relaxation permits
|
|
39 |
* better-performing implementations where strict reproducibility is
|
|
40 |
* not required.
|
|
41 |
*
|
|
42 |
* <p>By default many of the {@code Math} methods simply call
|
|
43 |
* the equivalent method in {@code StrictMath} for their
|
|
44 |
* implementation. Code generators are encouraged to use
|
|
45 |
* platform-specific native libraries or microprocessor instructions,
|
|
46 |
* where available, to provide higher-performance implementations of
|
|
47 |
* {@code Math} methods. Such higher-performance
|
|
48 |
* implementations still must conform to the specification for
|
|
49 |
* {@code Math}.
|
|
50 |
*
|
|
51 |
* <p>The quality of implementation specifications concern two
|
|
52 |
* properties, accuracy of the returned result and monotonicity of the
|
|
53 |
* method. Accuracy of the floating-point {@code Math} methods
|
|
54 |
* is measured in terms of <i>ulps</i>, units in the last place. For
|
|
55 |
* a given floating-point format, an ulp of a specific real number
|
|
56 |
* value is the distance between the two floating-point values
|
|
57 |
* bracketing that numerical value. When discussing the accuracy of a
|
|
58 |
* method as a whole rather than at a specific argument, the number of
|
|
59 |
* ulps cited is for the worst-case error at any argument. If a
|
|
60 |
* method always has an error less than 0.5 ulps, the method always
|
|
61 |
* returns the floating-point number nearest the exact result; such a
|
|
62 |
* method is <i>correctly rounded</i>. A correctly rounded method is
|
|
63 |
* generally the best a floating-point approximation can be; however,
|
|
64 |
* it is impractical for many floating-point methods to be correctly
|
|
65 |
* rounded. Instead, for the {@code Math} class, a larger error
|
|
66 |
* bound of 1 or 2 ulps is allowed for certain methods. Informally,
|
|
67 |
* with a 1 ulp error bound, when the exact result is a representable
|
|
68 |
* number, the exact result should be returned as the computed result;
|
|
69 |
* otherwise, either of the two floating-point values which bracket
|
|
70 |
* the exact result may be returned. For exact results large in
|
|
71 |
* magnitude, one of the endpoints of the bracket may be infinite.
|
|
72 |
* Besides accuracy at individual arguments, maintaining proper
|
|
73 |
* relations between the method at different arguments is also
|
|
74 |
* important. Therefore, most methods with more than 0.5 ulp errors
|
|
75 |
* are required to be <i>semi-monotonic</i>: whenever the mathematical
|
|
76 |
* function is non-decreasing, so is the floating-point approximation,
|
|
77 |
* likewise, whenever the mathematical function is non-increasing, so
|
|
78 |
* is the floating-point approximation. Not all approximations that
|
|
79 |
* have 1 ulp accuracy will automatically meet the monotonicity
|
|
80 |
* requirements.
|
|
81 |
*
|
|
82 |
* @author unascribed
|
|
83 |
* @author Joseph D. Darcy
|
|
84 |
* @since JDK1.0
|
|
85 |
*/
|
|
86 |
|
|
87 |
public final class Math {
|
|
88 |
|
|
89 |
/**
|
|
90 |
* Don't let anyone instantiate this class.
|
|
91 |
*/
|
|
92 |
private Math() {}
|
|
93 |
|
|
94 |
/**
|
|
95 |
* The {@code double} value that is closer than any other to
|
|
96 |
* <i>e</i>, the base of the natural logarithms.
|
|
97 |
*/
|
|
98 |
public static final double E = 2.7182818284590452354;
|
|
99 |
|
|
100 |
/**
|
|
101 |
* The {@code double} value that is closer than any other to
|
|
102 |
* <i>pi</i>, the ratio of the circumference of a circle to its
|
|
103 |
* diameter.
|
|
104 |
*/
|
|
105 |
public static final double PI = 3.14159265358979323846;
|
|
106 |
|
|
107 |
/**
|
|
108 |
* Returns the trigonometric sine of an angle. Special cases:
|
|
109 |
* <ul><li>If the argument is NaN or an infinity, then the
|
|
110 |
* result is NaN.
|
|
111 |
* <li>If the argument is zero, then the result is a zero with the
|
|
112 |
* same sign as the argument.</ul>
|
|
113 |
*
|
|
114 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
115 |
* Results must be semi-monotonic.
|
|
116 |
*
|
|
117 |
* @param a an angle, in radians.
|
|
118 |
* @return the sine of the argument.
|
|
119 |
*/
|
|
120 |
public static double sin(double a) {
|
|
121 |
return StrictMath.sin(a); // default impl. delegates to StrictMath
|
|
122 |
}
|
|
123 |
|
|
124 |
/**
|
|
125 |
* Returns the trigonometric cosine of an angle. Special cases:
|
|
126 |
* <ul><li>If the argument is NaN or an infinity, then the
|
|
127 |
* result is NaN.</ul>
|
|
128 |
*
|
|
129 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
130 |
* Results must be semi-monotonic.
|
|
131 |
*
|
|
132 |
* @param a an angle, in radians.
|
|
133 |
* @return the cosine of the argument.
|
|
134 |
*/
|
|
135 |
public static double cos(double a) {
|
|
136 |
return StrictMath.cos(a); // default impl. delegates to StrictMath
|
|
137 |
}
|
|
138 |
|
|
139 |
/**
|
|
140 |
* Returns the trigonometric tangent of an angle. Special cases:
|
|
141 |
* <ul><li>If the argument is NaN or an infinity, then the result
|
|
142 |
* is NaN.
|
|
143 |
* <li>If the argument is zero, then the result is a zero with the
|
|
144 |
* same sign as the argument.</ul>
|
|
145 |
*
|
|
146 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
147 |
* Results must be semi-monotonic.
|
|
148 |
*
|
|
149 |
* @param a an angle, in radians.
|
|
150 |
* @return the tangent of the argument.
|
|
151 |
*/
|
|
152 |
public static double tan(double a) {
|
|
153 |
return StrictMath.tan(a); // default impl. delegates to StrictMath
|
|
154 |
}
|
|
155 |
|
|
156 |
/**
|
|
157 |
* Returns the arc sine of a value; the returned angle is in the
|
|
158 |
* range -<i>pi</i>/2 through <i>pi</i>/2. Special cases:
|
|
159 |
* <ul><li>If the argument is NaN or its absolute value is greater
|
|
160 |
* than 1, then the result is NaN.
|
|
161 |
* <li>If the argument is zero, then the result is a zero with the
|
|
162 |
* same sign as the argument.</ul>
|
|
163 |
*
|
|
164 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
165 |
* Results must be semi-monotonic.
|
|
166 |
*
|
|
167 |
* @param a the value whose arc sine is to be returned.
|
|
168 |
* @return the arc sine of the argument.
|
|
169 |
*/
|
|
170 |
public static double asin(double a) {
|
|
171 |
return StrictMath.asin(a); // default impl. delegates to StrictMath
|
|
172 |
}
|
|
173 |
|
|
174 |
/**
|
|
175 |
* Returns the arc cosine of a value; the returned angle is in the
|
|
176 |
* range 0.0 through <i>pi</i>. Special case:
|
|
177 |
* <ul><li>If the argument is NaN or its absolute value is greater
|
|
178 |
* than 1, then the result is NaN.</ul>
|
|
179 |
*
|
|
180 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
181 |
* Results must be semi-monotonic.
|
|
182 |
*
|
|
183 |
* @param a the value whose arc cosine is to be returned.
|
|
184 |
* @return the arc cosine of the argument.
|
|
185 |
*/
|
|
186 |
public static double acos(double a) {
|
|
187 |
return StrictMath.acos(a); // default impl. delegates to StrictMath
|
|
188 |
}
|
|
189 |
|
|
190 |
/**
|
|
191 |
* Returns the arc tangent of a value; the returned angle is in the
|
|
192 |
* range -<i>pi</i>/2 through <i>pi</i>/2. Special cases:
|
|
193 |
* <ul><li>If the argument is NaN, then the result is NaN.
|
|
194 |
* <li>If the argument is zero, then the result is a zero with the
|
|
195 |
* same sign as the argument.</ul>
|
|
196 |
*
|
|
197 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
198 |
* Results must be semi-monotonic.
|
|
199 |
*
|
|
200 |
* @param a the value whose arc tangent is to be returned.
|
|
201 |
* @return the arc tangent of the argument.
|
|
202 |
*/
|
|
203 |
public static double atan(double a) {
|
|
204 |
return StrictMath.atan(a); // default impl. delegates to StrictMath
|
|
205 |
}
|
|
206 |
|
|
207 |
/**
|
|
208 |
* Converts an angle measured in degrees to an approximately
|
|
209 |
* equivalent angle measured in radians. The conversion from
|
|
210 |
* degrees to radians is generally inexact.
|
|
211 |
*
|
|
212 |
* @param angdeg an angle, in degrees
|
|
213 |
* @return the measurement of the angle {@code angdeg}
|
|
214 |
* in radians.
|
|
215 |
* @since 1.2
|
|
216 |
*/
|
|
217 |
public static double toRadians(double angdeg) {
|
|
218 |
return angdeg / 180.0 * PI;
|
|
219 |
}
|
|
220 |
|
|
221 |
/**
|
|
222 |
* Converts an angle measured in radians to an approximately
|
|
223 |
* equivalent angle measured in degrees. The conversion from
|
|
224 |
* radians to degrees is generally inexact; users should
|
|
225 |
* <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
|
|
226 |
* equal {@code 0.0}.
|
|
227 |
*
|
|
228 |
* @param angrad an angle, in radians
|
|
229 |
* @return the measurement of the angle {@code angrad}
|
|
230 |
* in degrees.
|
|
231 |
* @since 1.2
|
|
232 |
*/
|
|
233 |
public static double toDegrees(double angrad) {
|
|
234 |
return angrad * 180.0 / PI;
|
|
235 |
}
|
|
236 |
|
|
237 |
/**
|
|
238 |
* Returns Euler's number <i>e</i> raised to the power of a
|
|
239 |
* {@code double} value. Special cases:
|
|
240 |
* <ul><li>If the argument is NaN, the result is NaN.
|
|
241 |
* <li>If the argument is positive infinity, then the result is
|
|
242 |
* positive infinity.
|
|
243 |
* <li>If the argument is negative infinity, then the result is
|
|
244 |
* positive zero.</ul>
|
|
245 |
*
|
|
246 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
247 |
* Results must be semi-monotonic.
|
|
248 |
*
|
|
249 |
* @param a the exponent to raise <i>e</i> to.
|
|
250 |
* @return the value <i>e</i><sup>{@code a}</sup>,
|
|
251 |
* where <i>e</i> is the base of the natural logarithms.
|
|
252 |
*/
|
|
253 |
public static double exp(double a) {
|
|
254 |
return StrictMath.exp(a); // default impl. delegates to StrictMath
|
|
255 |
}
|
|
256 |
|
|
257 |
/**
|
|
258 |
* Returns the natural logarithm (base <i>e</i>) of a {@code double}
|
|
259 |
* value. Special cases:
|
|
260 |
* <ul><li>If the argument is NaN or less than zero, then the result
|
|
261 |
* is NaN.
|
|
262 |
* <li>If the argument is positive infinity, then the result is
|
|
263 |
* positive infinity.
|
|
264 |
* <li>If the argument is positive zero or negative zero, then the
|
|
265 |
* result is negative infinity.</ul>
|
|
266 |
*
|
|
267 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
268 |
* Results must be semi-monotonic.
|
|
269 |
*
|
|
270 |
* @param a a value
|
|
271 |
* @return the value ln {@code a}, the natural logarithm of
|
|
272 |
* {@code a}.
|
|
273 |
*/
|
|
274 |
public static double log(double a) {
|
|
275 |
return StrictMath.log(a); // default impl. delegates to StrictMath
|
|
276 |
}
|
|
277 |
|
|
278 |
/**
|
|
279 |
* Returns the base 10 logarithm of a {@code double} value.
|
|
280 |
* Special cases:
|
|
281 |
*
|
|
282 |
* <ul><li>If the argument is NaN or less than zero, then the result
|
|
283 |
* is NaN.
|
|
284 |
* <li>If the argument is positive infinity, then the result is
|
|
285 |
* positive infinity.
|
|
286 |
* <li>If the argument is positive zero or negative zero, then the
|
|
287 |
* result is negative infinity.
|
|
288 |
* <li> If the argument is equal to 10<sup><i>n</i></sup> for
|
|
289 |
* integer <i>n</i>, then the result is <i>n</i>.
|
|
290 |
* </ul>
|
|
291 |
*
|
|
292 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
293 |
* Results must be semi-monotonic.
|
|
294 |
*
|
|
295 |
* @param a a value
|
|
296 |
* @return the base 10 logarithm of {@code a}.
|
|
297 |
* @since 1.5
|
|
298 |
*/
|
|
299 |
public static double log10(double a) {
|
|
300 |
return StrictMath.log10(a); // default impl. delegates to StrictMath
|
|
301 |
}
|
|
302 |
|
|
303 |
/**
|
|
304 |
* Returns the correctly rounded positive square root of a
|
|
305 |
* {@code double} value.
|
|
306 |
* Special cases:
|
|
307 |
* <ul><li>If the argument is NaN or less than zero, then the result
|
|
308 |
* is NaN.
|
|
309 |
* <li>If the argument is positive infinity, then the result is positive
|
|
310 |
* infinity.
|
|
311 |
* <li>If the argument is positive zero or negative zero, then the
|
|
312 |
* result is the same as the argument.</ul>
|
|
313 |
* Otherwise, the result is the {@code double} value closest to
|
|
314 |
* the true mathematical square root of the argument value.
|
|
315 |
*
|
|
316 |
* @param a a value.
|
|
317 |
* @return the positive square root of {@code a}.
|
|
318 |
* If the argument is NaN or less than zero, the result is NaN.
|
|
319 |
*/
|
|
320 |
public static double sqrt(double a) {
|
|
321 |
return StrictMath.sqrt(a); // default impl. delegates to StrictMath
|
|
322 |
// Note that hardware sqrt instructions
|
|
323 |
// frequently can be directly used by JITs
|
|
324 |
// and should be much faster than doing
|
|
325 |
// Math.sqrt in software.
|
|
326 |
}
|
|
327 |
|
|
328 |
|
|
329 |
/**
|
|
330 |
* Returns the cube root of a {@code double} value. For
|
|
331 |
* positive finite {@code x}, {@code cbrt(-x) ==
|
|
332 |
* -cbrt(x)}; that is, the cube root of a negative value is
|
|
333 |
* the negative of the cube root of that value's magnitude.
|
|
334 |
*
|
|
335 |
* Special cases:
|
|
336 |
*
|
|
337 |
* <ul>
|
|
338 |
*
|
|
339 |
* <li>If the argument is NaN, then the result is NaN.
|
|
340 |
*
|
|
341 |
* <li>If the argument is infinite, then the result is an infinity
|
|
342 |
* with the same sign as the argument.
|
|
343 |
*
|
|
344 |
* <li>If the argument is zero, then the result is a zero with the
|
|
345 |
* same sign as the argument.
|
|
346 |
*
|
|
347 |
* </ul>
|
|
348 |
*
|
|
349 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
350 |
*
|
|
351 |
* @param a a value.
|
|
352 |
* @return the cube root of {@code a}.
|
|
353 |
* @since 1.5
|
|
354 |
*/
|
|
355 |
public static double cbrt(double a) {
|
|
356 |
return StrictMath.cbrt(a);
|
|
357 |
}
|
|
358 |
|
|
359 |
/**
|
|
360 |
* Computes the remainder operation on two arguments as prescribed
|
|
361 |
* by the IEEE 754 standard.
|
|
362 |
* The remainder value is mathematically equal to
|
|
363 |
* <code>f1 - f2</code> × <i>n</i>,
|
|
364 |
* where <i>n</i> is the mathematical integer closest to the exact
|
|
365 |
* mathematical value of the quotient {@code f1/f2}, and if two
|
|
366 |
* mathematical integers are equally close to {@code f1/f2},
|
|
367 |
* then <i>n</i> is the integer that is even. If the remainder is
|
|
368 |
* zero, its sign is the same as the sign of the first argument.
|
|
369 |
* Special cases:
|
|
370 |
* <ul><li>If either argument is NaN, or the first argument is infinite,
|
|
371 |
* or the second argument is positive zero or negative zero, then the
|
|
372 |
* result is NaN.
|
|
373 |
* <li>If the first argument is finite and the second argument is
|
|
374 |
* infinite, then the result is the same as the first argument.</ul>
|
|
375 |
*
|
|
376 |
* @param f1 the dividend.
|
|
377 |
* @param f2 the divisor.
|
|
378 |
* @return the remainder when {@code f1} is divided by
|
|
379 |
* {@code f2}.
|
|
380 |
*/
|
|
381 |
public static double IEEEremainder(double f1, double f2) {
|
|
382 |
return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
|
|
383 |
}
|
|
384 |
|
|
385 |
/**
|
|
386 |
* Returns the smallest (closest to negative infinity)
|
|
387 |
* {@code double} value that is greater than or equal to the
|
|
388 |
* argument and is equal to a mathematical integer. Special cases:
|
|
389 |
* <ul><li>If the argument value is already equal to a
|
|
390 |
* mathematical integer, then the result is the same as the
|
|
391 |
* argument. <li>If the argument is NaN or an infinity or
|
|
392 |
* positive zero or negative zero, then the result is the same as
|
|
393 |
* the argument. <li>If the argument value is less than zero but
|
|
394 |
* greater than -1.0, then the result is negative zero.</ul> Note
|
|
395 |
* that the value of {@code Math.ceil(x)} is exactly the
|
|
396 |
* value of {@code -Math.floor(-x)}.
|
|
397 |
*
|
|
398 |
*
|
|
399 |
* @param a a value.
|
|
400 |
* @return the smallest (closest to negative infinity)
|
|
401 |
* floating-point value that is greater than or equal to
|
|
402 |
* the argument and is equal to a mathematical integer.
|
|
403 |
*/
|
|
404 |
public static double ceil(double a) {
|
|
405 |
return StrictMath.ceil(a); // default impl. delegates to StrictMath
|
|
406 |
}
|
|
407 |
|
|
408 |
/**
|
|
409 |
* Returns the largest (closest to positive infinity)
|
|
410 |
* {@code double} value that is less than or equal to the
|
|
411 |
* argument and is equal to a mathematical integer. Special cases:
|
|
412 |
* <ul><li>If the argument value is already equal to a
|
|
413 |
* mathematical integer, then the result is the same as the
|
|
414 |
* argument. <li>If the argument is NaN or an infinity or
|
|
415 |
* positive zero or negative zero, then the result is the same as
|
|
416 |
* the argument.</ul>
|
|
417 |
*
|
|
418 |
* @param a a value.
|
|
419 |
* @return the largest (closest to positive infinity)
|
|
420 |
* floating-point value that less than or equal to the argument
|
|
421 |
* and is equal to a mathematical integer.
|
|
422 |
*/
|
|
423 |
public static double floor(double a) {
|
|
424 |
return StrictMath.floor(a); // default impl. delegates to StrictMath
|
|
425 |
}
|
|
426 |
|
|
427 |
/**
|
|
428 |
* Returns the {@code double} value that is closest in value
|
|
429 |
* to the argument and is equal to a mathematical integer. If two
|
|
430 |
* {@code double} values that are mathematical integers are
|
|
431 |
* equally close, the result is the integer value that is
|
|
432 |
* even. Special cases:
|
|
433 |
* <ul><li>If the argument value is already equal to a mathematical
|
|
434 |
* integer, then the result is the same as the argument.
|
|
435 |
* <li>If the argument is NaN or an infinity or positive zero or negative
|
|
436 |
* zero, then the result is the same as the argument.</ul>
|
|
437 |
*
|
|
438 |
* @param a a {@code double} value.
|
|
439 |
* @return the closest floating-point value to {@code a} that is
|
|
440 |
* equal to a mathematical integer.
|
|
441 |
*/
|
|
442 |
public static double rint(double a) {
|
|
443 |
return StrictMath.rint(a); // default impl. delegates to StrictMath
|
|
444 |
}
|
|
445 |
|
|
446 |
/**
|
|
447 |
* Returns the angle <i>theta</i> from the conversion of rectangular
|
|
448 |
* coordinates ({@code x}, {@code y}) to polar
|
|
449 |
* coordinates (r, <i>theta</i>).
|
|
450 |
* This method computes the phase <i>theta</i> by computing an arc tangent
|
|
451 |
* of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
|
|
452 |
* cases:
|
|
453 |
* <ul><li>If either argument is NaN, then the result is NaN.
|
|
454 |
* <li>If the first argument is positive zero and the second argument
|
|
455 |
* is positive, or the first argument is positive and finite and the
|
|
456 |
* second argument is positive infinity, then the result is positive
|
|
457 |
* zero.
|
|
458 |
* <li>If the first argument is negative zero and the second argument
|
|
459 |
* is positive, or the first argument is negative and finite and the
|
|
460 |
* second argument is positive infinity, then the result is negative zero.
|
|
461 |
* <li>If the first argument is positive zero and the second argument
|
|
462 |
* is negative, or the first argument is positive and finite and the
|
|
463 |
* second argument is negative infinity, then the result is the
|
|
464 |
* {@code double} value closest to <i>pi</i>.
|
|
465 |
* <li>If the first argument is negative zero and the second argument
|
|
466 |
* is negative, or the first argument is negative and finite and the
|
|
467 |
* second argument is negative infinity, then the result is the
|
|
468 |
* {@code double} value closest to -<i>pi</i>.
|
|
469 |
* <li>If the first argument is positive and the second argument is
|
|
470 |
* positive zero or negative zero, or the first argument is positive
|
|
471 |
* infinity and the second argument is finite, then the result is the
|
|
472 |
* {@code double} value closest to <i>pi</i>/2.
|
|
473 |
* <li>If the first argument is negative and the second argument is
|
|
474 |
* positive zero or negative zero, or the first argument is negative
|
|
475 |
* infinity and the second argument is finite, then the result is the
|
|
476 |
* {@code double} value closest to -<i>pi</i>/2.
|
|
477 |
* <li>If both arguments are positive infinity, then the result is the
|
|
478 |
* {@code double} value closest to <i>pi</i>/4.
|
|
479 |
* <li>If the first argument is positive infinity and the second argument
|
|
480 |
* is negative infinity, then the result is the {@code double}
|
|
481 |
* value closest to 3*<i>pi</i>/4.
|
|
482 |
* <li>If the first argument is negative infinity and the second argument
|
|
483 |
* is positive infinity, then the result is the {@code double} value
|
|
484 |
* closest to -<i>pi</i>/4.
|
|
485 |
* <li>If both arguments are negative infinity, then the result is the
|
|
486 |
* {@code double} value closest to -3*<i>pi</i>/4.</ul>
|
|
487 |
*
|
|
488 |
* <p>The computed result must be within 2 ulps of the exact result.
|
|
489 |
* Results must be semi-monotonic.
|
|
490 |
*
|
|
491 |
* @param y the ordinate coordinate
|
|
492 |
* @param x the abscissa coordinate
|
|
493 |
* @return the <i>theta</i> component of the point
|
|
494 |
* (<i>r</i>, <i>theta</i>)
|
|
495 |
* in polar coordinates that corresponds to the point
|
|
496 |
* (<i>x</i>, <i>y</i>) in Cartesian coordinates.
|
|
497 |
*/
|
|
498 |
public static double atan2(double y, double x) {
|
|
499 |
return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
|
|
500 |
}
|
|
501 |
|
|
502 |
/**
|
|
503 |
* Returns the value of the first argument raised to the power of the
|
|
504 |
* second argument. Special cases:
|
|
505 |
*
|
|
506 |
* <ul><li>If the second argument is positive or negative zero, then the
|
|
507 |
* result is 1.0.
|
|
508 |
* <li>If the second argument is 1.0, then the result is the same as the
|
|
509 |
* first argument.
|
|
510 |
* <li>If the second argument is NaN, then the result is NaN.
|
|
511 |
* <li>If the first argument is NaN and the second argument is nonzero,
|
|
512 |
* then the result is NaN.
|
|
513 |
*
|
|
514 |
* <li>If
|
|
515 |
* <ul>
|
|
516 |
* <li>the absolute value of the first argument is greater than 1
|
|
517 |
* and the second argument is positive infinity, or
|
|
518 |
* <li>the absolute value of the first argument is less than 1 and
|
|
519 |
* the second argument is negative infinity,
|
|
520 |
* </ul>
|
|
521 |
* then the result is positive infinity.
|
|
522 |
*
|
|
523 |
* <li>If
|
|
524 |
* <ul>
|
|
525 |
* <li>the absolute value of the first argument is greater than 1 and
|
|
526 |
* the second argument is negative infinity, or
|
|
527 |
* <li>the absolute value of the
|
|
528 |
* first argument is less than 1 and the second argument is positive
|
|
529 |
* infinity,
|
|
530 |
* </ul>
|
|
531 |
* then the result is positive zero.
|
|
532 |
*
|
|
533 |
* <li>If the absolute value of the first argument equals 1 and the
|
|
534 |
* second argument is infinite, then the result is NaN.
|
|
535 |
*
|
|
536 |
* <li>If
|
|
537 |
* <ul>
|
|
538 |
* <li>the first argument is positive zero and the second argument
|
|
539 |
* is greater than zero, or
|
|
540 |
* <li>the first argument is positive infinity and the second
|
|
541 |
* argument is less than zero,
|
|
542 |
* </ul>
|
|
543 |
* then the result is positive zero.
|
|
544 |
*
|
|
545 |
* <li>If
|
|
546 |
* <ul>
|
|
547 |
* <li>the first argument is positive zero and the second argument
|
|
548 |
* is less than zero, or
|
|
549 |
* <li>the first argument is positive infinity and the second
|
|
550 |
* argument is greater than zero,
|
|
551 |
* </ul>
|
|
552 |
* then the result is positive infinity.
|
|
553 |
*
|
|
554 |
* <li>If
|
|
555 |
* <ul>
|
|
556 |
* <li>the first argument is negative zero and the second argument
|
|
557 |
* is greater than zero but not a finite odd integer, or
|
|
558 |
* <li>the first argument is negative infinity and the second
|
|
559 |
* argument is less than zero but not a finite odd integer,
|
|
560 |
* </ul>
|
|
561 |
* then the result is positive zero.
|
|
562 |
*
|
|
563 |
* <li>If
|
|
564 |
* <ul>
|
|
565 |
* <li>the first argument is negative zero and the second argument
|
|
566 |
* is a positive finite odd integer, or
|
|
567 |
* <li>the first argument is negative infinity and the second
|
|
568 |
* argument is a negative finite odd integer,
|
|
569 |
* </ul>
|
|
570 |
* then the result is negative zero.
|
|
571 |
*
|
|
572 |
* <li>If
|
|
573 |
* <ul>
|
|
574 |
* <li>the first argument is negative zero and the second argument
|
|
575 |
* is less than zero but not a finite odd integer, or
|
|
576 |
* <li>the first argument is negative infinity and the second
|
|
577 |
* argument is greater than zero but not a finite odd integer,
|
|
578 |
* </ul>
|
|
579 |
* then the result is positive infinity.
|
|
580 |
*
|
|
581 |
* <li>If
|
|
582 |
* <ul>
|
|
583 |
* <li>the first argument is negative zero and the second argument
|
|
584 |
* is a negative finite odd integer, or
|
|
585 |
* <li>the first argument is negative infinity and the second
|
|
586 |
* argument is a positive finite odd integer,
|
|
587 |
* </ul>
|
|
588 |
* then the result is negative infinity.
|
|
589 |
*
|
|
590 |
* <li>If the first argument is finite and less than zero
|
|
591 |
* <ul>
|
|
592 |
* <li> if the second argument is a finite even integer, the
|
|
593 |
* result is equal to the result of raising the absolute value of
|
|
594 |
* the first argument to the power of the second argument
|
|
595 |
*
|
|
596 |
* <li>if the second argument is a finite odd integer, the result
|
|
597 |
* is equal to the negative of the result of raising the absolute
|
|
598 |
* value of the first argument to the power of the second
|
|
599 |
* argument
|
|
600 |
*
|
|
601 |
* <li>if the second argument is finite and not an integer, then
|
|
602 |
* the result is NaN.
|
|
603 |
* </ul>
|
|
604 |
*
|
|
605 |
* <li>If both arguments are integers, then the result is exactly equal
|
|
606 |
* to the mathematical result of raising the first argument to the power
|
|
607 |
* of the second argument if that result can in fact be represented
|
|
608 |
* exactly as a {@code double} value.</ul>
|
|
609 |
*
|
|
610 |
* <p>(In the foregoing descriptions, a floating-point value is
|
|
611 |
* considered to be an integer if and only if it is finite and a
|
|
612 |
* fixed point of the method {@link #ceil ceil} or,
|
|
613 |
* equivalently, a fixed point of the method {@link #floor
|
|
614 |
* floor}. A value is a fixed point of a one-argument
|
|
615 |
* method if and only if the result of applying the method to the
|
|
616 |
* value is equal to the value.)
|
|
617 |
*
|
|
618 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
619 |
* Results must be semi-monotonic.
|
|
620 |
*
|
|
621 |
* @param a the base.
|
|
622 |
* @param b the exponent.
|
|
623 |
* @return the value {@code a}<sup>{@code b}</sup>.
|
|
624 |
*/
|
|
625 |
public static double pow(double a, double b) {
|
|
626 |
return StrictMath.pow(a, b); // default impl. delegates to StrictMath
|
|
627 |
}
|
|
628 |
|
|
629 |
/**
|
|
630 |
* Returns the closest {@code int} to the argument. The
|
|
631 |
* result is rounded to an integer by adding 1/2, taking the
|
|
632 |
* floor of the result, and casting the result to type {@code int}.
|
|
633 |
* In other words, the result is equal to the value of the expression:
|
|
634 |
* <p>{@code (int)Math.floor(a + 0.5f)}
|
|
635 |
* <p>
|
|
636 |
* Special cases:
|
|
637 |
* <ul><li>If the argument is NaN, the result is 0.
|
|
638 |
* <li>If the argument is negative infinity or any value less than or
|
|
639 |
* equal to the value of {@code Integer.MIN_VALUE}, the result is
|
|
640 |
* equal to the value of {@code Integer.MIN_VALUE}.
|
|
641 |
* <li>If the argument is positive infinity or any value greater than or
|
|
642 |
* equal to the value of {@code Integer.MAX_VALUE}, the result is
|
|
643 |
* equal to the value of {@code Integer.MAX_VALUE}.</ul>
|
|
644 |
*
|
|
645 |
* @param a a floating-point value to be rounded to an integer.
|
|
646 |
* @return the value of the argument rounded to the nearest
|
|
647 |
* {@code int} value.
|
|
648 |
* @see java.lang.Integer#MAX_VALUE
|
|
649 |
* @see java.lang.Integer#MIN_VALUE
|
|
650 |
*/
|
|
651 |
public static int round(float a) {
|
|
652 |
return (int)floor(a + 0.5f);
|
|
653 |
}
|
|
654 |
|
|
655 |
/**
|
|
656 |
* Returns the closest {@code long} to the argument. The result
|
|
657 |
* is rounded to an integer by adding 1/2, taking the floor of the
|
|
658 |
* result, and casting the result to type {@code long}. In other
|
|
659 |
* words, the result is equal to the value of the expression:
|
|
660 |
* <p>{@code (long)Math.floor(a + 0.5d)}
|
|
661 |
* <p>
|
|
662 |
* Special cases:
|
|
663 |
* <ul><li>If the argument is NaN, the result is 0.
|
|
664 |
* <li>If the argument is negative infinity or any value less than or
|
|
665 |
* equal to the value of {@code Long.MIN_VALUE}, the result is
|
|
666 |
* equal to the value of {@code Long.MIN_VALUE}.
|
|
667 |
* <li>If the argument is positive infinity or any value greater than or
|
|
668 |
* equal to the value of {@code Long.MAX_VALUE}, the result is
|
|
669 |
* equal to the value of {@code Long.MAX_VALUE}.</ul>
|
|
670 |
*
|
|
671 |
* @param a a floating-point value to be rounded to a
|
|
672 |
* {@code long}.
|
|
673 |
* @return the value of the argument rounded to the nearest
|
|
674 |
* {@code long} value.
|
|
675 |
* @see java.lang.Long#MAX_VALUE
|
|
676 |
* @see java.lang.Long#MIN_VALUE
|
|
677 |
*/
|
|
678 |
public static long round(double a) {
|
|
679 |
return (long)floor(a + 0.5d);
|
|
680 |
}
|
|
681 |
|
|
682 |
private static Random randomNumberGenerator;
|
|
683 |
|
|
684 |
private static synchronized void initRNG() {
|
|
685 |
if (randomNumberGenerator == null)
|
|
686 |
randomNumberGenerator = new Random();
|
|
687 |
}
|
|
688 |
|
|
689 |
/**
|
|
690 |
* Returns a {@code double} value with a positive sign, greater
|
|
691 |
* than or equal to {@code 0.0} and less than {@code 1.0}.
|
|
692 |
* Returned values are chosen pseudorandomly with (approximately)
|
|
693 |
* uniform distribution from that range.
|
|
694 |
*
|
|
695 |
* <p>When this method is first called, it creates a single new
|
|
696 |
* pseudorandom-number generator, exactly as if by the expression
|
|
697 |
* <blockquote>{@code new java.util.Random}</blockquote> This
|
|
698 |
* new pseudorandom-number generator is used thereafter for all
|
|
699 |
* calls to this method and is used nowhere else.
|
|
700 |
*
|
|
701 |
* <p>This method is properly synchronized to allow correct use by
|
|
702 |
* more than one thread. However, if many threads need to generate
|
|
703 |
* pseudorandom numbers at a great rate, it may reduce contention
|
|
704 |
* for each thread to have its own pseudorandom-number generator.
|
|
705 |
*
|
|
706 |
* @return a pseudorandom {@code double} greater than or equal
|
|
707 |
* to {@code 0.0} and less than {@code 1.0}.
|
|
708 |
* @see java.util.Random#nextDouble()
|
|
709 |
*/
|
|
710 |
public static double random() {
|
|
711 |
if (randomNumberGenerator == null) initRNG();
|
|
712 |
return randomNumberGenerator.nextDouble();
|
|
713 |
}
|
|
714 |
|
|
715 |
/**
|
|
716 |
* Returns the absolute value of an {@code int} value.
|
|
717 |
* If the argument is not negative, the argument is returned.
|
|
718 |
* If the argument is negative, the negation of the argument is returned.
|
|
719 |
*
|
|
720 |
* <p>Note that if the argument is equal to the value of
|
|
721 |
* {@link Integer#MIN_VALUE}, the most negative representable
|
|
722 |
* {@code int} value, the result is that same value, which is
|
|
723 |
* negative.
|
|
724 |
*
|
|
725 |
* @param a the argument whose absolute value is to be determined
|
|
726 |
* @return the absolute value of the argument.
|
|
727 |
*/
|
|
728 |
public static int abs(int a) {
|
|
729 |
return (a < 0) ? -a : a;
|
|
730 |
}
|
|
731 |
|
|
732 |
/**
|
|
733 |
* Returns the absolute value of a {@code long} value.
|
|
734 |
* If the argument is not negative, the argument is returned.
|
|
735 |
* If the argument is negative, the negation of the argument is returned.
|
|
736 |
*
|
|
737 |
* <p>Note that if the argument is equal to the value of
|
|
738 |
* {@link Long#MIN_VALUE}, the most negative representable
|
|
739 |
* {@code long} value, the result is that same value, which
|
|
740 |
* is negative.
|
|
741 |
*
|
|
742 |
* @param a the argument whose absolute value is to be determined
|
|
743 |
* @return the absolute value of the argument.
|
|
744 |
*/
|
|
745 |
public static long abs(long a) {
|
|
746 |
return (a < 0) ? -a : a;
|
|
747 |
}
|
|
748 |
|
|
749 |
/**
|
|
750 |
* Returns the absolute value of a {@code float} value.
|
|
751 |
* If the argument is not negative, the argument is returned.
|
|
752 |
* If the argument is negative, the negation of the argument is returned.
|
|
753 |
* Special cases:
|
|
754 |
* <ul><li>If the argument is positive zero or negative zero, the
|
|
755 |
* result is positive zero.
|
|
756 |
* <li>If the argument is infinite, the result is positive infinity.
|
|
757 |
* <li>If the argument is NaN, the result is NaN.</ul>
|
|
758 |
* In other words, the result is the same as the value of the expression:
|
|
759 |
* <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
|
|
760 |
*
|
|
761 |
* @param a the argument whose absolute value is to be determined
|
|
762 |
* @return the absolute value of the argument.
|
|
763 |
*/
|
|
764 |
public static float abs(float a) {
|
|
765 |
return (a <= 0.0F) ? 0.0F - a : a;
|
|
766 |
}
|
|
767 |
|
|
768 |
/**
|
|
769 |
* Returns the absolute value of a {@code double} value.
|
|
770 |
* If the argument is not negative, the argument is returned.
|
|
771 |
* If the argument is negative, the negation of the argument is returned.
|
|
772 |
* Special cases:
|
|
773 |
* <ul><li>If the argument is positive zero or negative zero, the result
|
|
774 |
* is positive zero.
|
|
775 |
* <li>If the argument is infinite, the result is positive infinity.
|
|
776 |
* <li>If the argument is NaN, the result is NaN.</ul>
|
|
777 |
* In other words, the result is the same as the value of the expression:
|
|
778 |
* <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
|
|
779 |
*
|
|
780 |
* @param a the argument whose absolute value is to be determined
|
|
781 |
* @return the absolute value of the argument.
|
|
782 |
*/
|
|
783 |
public static double abs(double a) {
|
|
784 |
return (a <= 0.0D) ? 0.0D - a : a;
|
|
785 |
}
|
|
786 |
|
|
787 |
/**
|
|
788 |
* Returns the greater of two {@code int} values. That is, the
|
|
789 |
* result is the argument closer to the value of
|
|
790 |
* {@link Integer#MAX_VALUE}. If the arguments have the same value,
|
|
791 |
* the result is that same value.
|
|
792 |
*
|
|
793 |
* @param a an argument.
|
|
794 |
* @param b another argument.
|
|
795 |
* @return the larger of {@code a} and {@code b}.
|
|
796 |
*/
|
|
797 |
public static int max(int a, int b) {
|
|
798 |
return (a >= b) ? a : b;
|
|
799 |
}
|
|
800 |
|
|
801 |
/**
|
|
802 |
* Returns the greater of two {@code long} values. That is, the
|
|
803 |
* result is the argument closer to the value of
|
|
804 |
* {@link Long#MAX_VALUE}. If the arguments have the same value,
|
|
805 |
* the result is that same value.
|
|
806 |
*
|
|
807 |
* @param a an argument.
|
|
808 |
* @param b another argument.
|
|
809 |
* @return the larger of {@code a} and {@code b}.
|
|
810 |
*/
|
|
811 |
public static long max(long a, long b) {
|
|
812 |
return (a >= b) ? a : b;
|
|
813 |
}
|
|
814 |
|
|
815 |
private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
|
|
816 |
private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);
|
|
817 |
|
|
818 |
/**
|
|
819 |
* Returns the greater of two {@code float} values. That is,
|
|
820 |
* the result is the argument closer to positive infinity. If the
|
|
821 |
* arguments have the same value, the result is that same
|
|
822 |
* value. If either value is NaN, then the result is NaN. Unlike
|
|
823 |
* the numerical comparison operators, this method considers
|
|
824 |
* negative zero to be strictly smaller than positive zero. If one
|
|
825 |
* argument is positive zero and the other negative zero, the
|
|
826 |
* result is positive zero.
|
|
827 |
*
|
|
828 |
* @param a an argument.
|
|
829 |
* @param b another argument.
|
|
830 |
* @return the larger of {@code a} and {@code b}.
|
|
831 |
*/
|
|
832 |
public static float max(float a, float b) {
|
|
833 |
if (a != a) return a; // a is NaN
|
|
834 |
if ((a == 0.0f) && (b == 0.0f)
|
|
835 |
&& (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
|
|
836 |
return b;
|
|
837 |
}
|
|
838 |
return (a >= b) ? a : b;
|
|
839 |
}
|
|
840 |
|
|
841 |
/**
|
|
842 |
* Returns the greater of two {@code double} values. That
|
|
843 |
* is, the result is the argument closer to positive infinity. If
|
|
844 |
* the arguments have the same value, the result is that same
|
|
845 |
* value. If either value is NaN, then the result is NaN. Unlike
|
|
846 |
* the numerical comparison operators, this method considers
|
|
847 |
* negative zero to be strictly smaller than positive zero. If one
|
|
848 |
* argument is positive zero and the other negative zero, the
|
|
849 |
* result is positive zero.
|
|
850 |
*
|
|
851 |
* @param a an argument.
|
|
852 |
* @param b another argument.
|
|
853 |
* @return the larger of {@code a} and {@code b}.
|
|
854 |
*/
|
|
855 |
public static double max(double a, double b) {
|
|
856 |
if (a != a) return a; // a is NaN
|
|
857 |
if ((a == 0.0d) && (b == 0.0d)
|
|
858 |
&& (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
|
|
859 |
return b;
|
|
860 |
}
|
|
861 |
return (a >= b) ? a : b;
|
|
862 |
}
|
|
863 |
|
|
864 |
/**
|
|
865 |
* Returns the smaller of two {@code int} values. That is,
|
|
866 |
* the result the argument closer to the value of
|
|
867 |
* {@link Integer#MIN_VALUE}. If the arguments have the same
|
|
868 |
* value, the result is that same value.
|
|
869 |
*
|
|
870 |
* @param a an argument.
|
|
871 |
* @param b another argument.
|
|
872 |
* @return the smaller of {@code a} and {@code b}.
|
|
873 |
*/
|
|
874 |
public static int min(int a, int b) {
|
|
875 |
return (a <= b) ? a : b;
|
|
876 |
}
|
|
877 |
|
|
878 |
/**
|
|
879 |
* Returns the smaller of two {@code long} values. That is,
|
|
880 |
* the result is the argument closer to the value of
|
|
881 |
* {@link Long#MIN_VALUE}. If the arguments have the same
|
|
882 |
* value, the result is that same value.
|
|
883 |
*
|
|
884 |
* @param a an argument.
|
|
885 |
* @param b another argument.
|
|
886 |
* @return the smaller of {@code a} and {@code b}.
|
|
887 |
*/
|
|
888 |
public static long min(long a, long b) {
|
|
889 |
return (a <= b) ? a : b;
|
|
890 |
}
|
|
891 |
|
|
892 |
/**
|
|
893 |
* Returns the smaller of two {@code float} values. That is,
|
|
894 |
* the result is the value closer to negative infinity. If the
|
|
895 |
* arguments have the same value, the result is that same
|
|
896 |
* value. If either value is NaN, then the result is NaN. Unlike
|
|
897 |
* the numerical comparison operators, this method considers
|
|
898 |
* negative zero to be strictly smaller than positive zero. If
|
|
899 |
* one argument is positive zero and the other is negative zero,
|
|
900 |
* the result is negative zero.
|
|
901 |
*
|
|
902 |
* @param a an argument.
|
|
903 |
* @param b another argument.
|
|
904 |
* @return the smaller of {@code a} and {@code b}.
|
|
905 |
*/
|
|
906 |
public static float min(float a, float b) {
|
|
907 |
if (a != a) return a; // a is NaN
|
|
908 |
if ((a == 0.0f) && (b == 0.0f)
|
|
909 |
&& (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
|
|
910 |
return b;
|
|
911 |
}
|
|
912 |
return (a <= b) ? a : b;
|
|
913 |
}
|
|
914 |
|
|
915 |
/**
|
|
916 |
* Returns the smaller of two {@code double} values. That
|
|
917 |
* is, the result is the value closer to negative infinity. If the
|
|
918 |
* arguments have the same value, the result is that same
|
|
919 |
* value. If either value is NaN, then the result is NaN. Unlike
|
|
920 |
* the numerical comparison operators, this method considers
|
|
921 |
* negative zero to be strictly smaller than positive zero. If one
|
|
922 |
* argument is positive zero and the other is negative zero, the
|
|
923 |
* result is negative zero.
|
|
924 |
*
|
|
925 |
* @param a an argument.
|
|
926 |
* @param b another argument.
|
|
927 |
* @return the smaller of {@code a} and {@code b}.
|
|
928 |
*/
|
|
929 |
public static double min(double a, double b) {
|
|
930 |
if (a != a) return a; // a is NaN
|
|
931 |
if ((a == 0.0d) && (b == 0.0d)
|
|
932 |
&& (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
|
|
933 |
return b;
|
|
934 |
}
|
|
935 |
return (a <= b) ? a : b;
|
|
936 |
}
|
|
937 |
|
|
938 |
/**
|
|
939 |
* Returns the size of an ulp of the argument. An ulp of a
|
|
940 |
* {@code double} value is the positive distance between this
|
|
941 |
* floating-point value and the {@code double} value next
|
|
942 |
* larger in magnitude. Note that for non-NaN <i>x</i>,
|
|
943 |
* <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
|
|
944 |
*
|
|
945 |
* <p>Special Cases:
|
|
946 |
* <ul>
|
|
947 |
* <li> If the argument is NaN, then the result is NaN.
|
|
948 |
* <li> If the argument is positive or negative infinity, then the
|
|
949 |
* result is positive infinity.
|
|
950 |
* <li> If the argument is positive or negative zero, then the result is
|
|
951 |
* {@code Double.MIN_VALUE}.
|
|
952 |
* <li> If the argument is ±{@code Double.MAX_VALUE}, then
|
|
953 |
* the result is equal to 2<sup>971</sup>.
|
|
954 |
* </ul>
|
|
955 |
*
|
|
956 |
* @param d the floating-point value whose ulp is to be returned
|
|
957 |
* @return the size of an ulp of the argument
|
|
958 |
* @author Joseph D. Darcy
|
|
959 |
* @since 1.5
|
|
960 |
*/
|
|
961 |
public static double ulp(double d) {
|
|
962 |
return sun.misc.FpUtils.ulp(d);
|
|
963 |
}
|
|
964 |
|
|
965 |
/**
|
|
966 |
* Returns the size of an ulp of the argument. An ulp of a
|
|
967 |
* {@code float} value is the positive distance between this
|
|
968 |
* floating-point value and the {@code float} value next
|
|
969 |
* larger in magnitude. Note that for non-NaN <i>x</i>,
|
|
970 |
* <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
|
|
971 |
*
|
|
972 |
* <p>Special Cases:
|
|
973 |
* <ul>
|
|
974 |
* <li> If the argument is NaN, then the result is NaN.
|
|
975 |
* <li> If the argument is positive or negative infinity, then the
|
|
976 |
* result is positive infinity.
|
|
977 |
* <li> If the argument is positive or negative zero, then the result is
|
|
978 |
* {@code Float.MIN_VALUE}.
|
|
979 |
* <li> If the argument is ±{@code Float.MAX_VALUE}, then
|
|
980 |
* the result is equal to 2<sup>104</sup>.
|
|
981 |
* </ul>
|
|
982 |
*
|
|
983 |
* @param f the floating-point value whose ulp is to be returned
|
|
984 |
* @return the size of an ulp of the argument
|
|
985 |
* @author Joseph D. Darcy
|
|
986 |
* @since 1.5
|
|
987 |
*/
|
|
988 |
public static float ulp(float f) {
|
|
989 |
return sun.misc.FpUtils.ulp(f);
|
|
990 |
}
|
|
991 |
|
|
992 |
/**
|
|
993 |
* Returns the signum function of the argument; zero if the argument
|
|
994 |
* is zero, 1.0 if the argument is greater than zero, -1.0 if the
|
|
995 |
* argument is less than zero.
|
|
996 |
*
|
|
997 |
* <p>Special Cases:
|
|
998 |
* <ul>
|
|
999 |
* <li> If the argument is NaN, then the result is NaN.
|
|
1000 |
* <li> If the argument is positive zero or negative zero, then the
|
|
1001 |
* result is the same as the argument.
|
|
1002 |
* </ul>
|
|
1003 |
*
|
|
1004 |
* @param d the floating-point value whose signum is to be returned
|
|
1005 |
* @return the signum function of the argument
|
|
1006 |
* @author Joseph D. Darcy
|
|
1007 |
* @since 1.5
|
|
1008 |
*/
|
|
1009 |
public static double signum(double d) {
|
|
1010 |
return sun.misc.FpUtils.signum(d);
|
|
1011 |
}
|
|
1012 |
|
|
1013 |
/**
|
|
1014 |
* Returns the signum function of the argument; zero if the argument
|
|
1015 |
* is zero, 1.0f if the argument is greater than zero, -1.0f if the
|
|
1016 |
* argument is less than zero.
|
|
1017 |
*
|
|
1018 |
* <p>Special Cases:
|
|
1019 |
* <ul>
|
|
1020 |
* <li> If the argument is NaN, then the result is NaN.
|
|
1021 |
* <li> If the argument is positive zero or negative zero, then the
|
|
1022 |
* result is the same as the argument.
|
|
1023 |
* </ul>
|
|
1024 |
*
|
|
1025 |
* @param f the floating-point value whose signum is to be returned
|
|
1026 |
* @return the signum function of the argument
|
|
1027 |
* @author Joseph D. Darcy
|
|
1028 |
* @since 1.5
|
|
1029 |
*/
|
|
1030 |
public static float signum(float f) {
|
|
1031 |
return sun.misc.FpUtils.signum(f);
|
|
1032 |
}
|
|
1033 |
|
|
1034 |
/**
|
|
1035 |
* Returns the hyperbolic sine of a {@code double} value.
|
|
1036 |
* The hyperbolic sine of <i>x</i> is defined to be
|
|
1037 |
* (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2
|
|
1038 |
* where <i>e</i> is {@linkplain Math#E Euler's number}.
|
|
1039 |
*
|
|
1040 |
* <p>Special cases:
|
|
1041 |
* <ul>
|
|
1042 |
*
|
|
1043 |
* <li>If the argument is NaN, then the result is NaN.
|
|
1044 |
*
|
|
1045 |
* <li>If the argument is infinite, then the result is an infinity
|
|
1046 |
* with the same sign as the argument.
|
|
1047 |
*
|
|
1048 |
* <li>If the argument is zero, then the result is a zero with the
|
|
1049 |
* same sign as the argument.
|
|
1050 |
*
|
|
1051 |
* </ul>
|
|
1052 |
*
|
|
1053 |
* <p>The computed result must be within 2.5 ulps of the exact result.
|
|
1054 |
*
|
|
1055 |
* @param x The number whose hyperbolic sine is to be returned.
|
|
1056 |
* @return The hyperbolic sine of {@code x}.
|
|
1057 |
* @since 1.5
|
|
1058 |
*/
|
|
1059 |
public static double sinh(double x) {
|
|
1060 |
return StrictMath.sinh(x);
|
|
1061 |
}
|
|
1062 |
|
|
1063 |
/**
|
|
1064 |
* Returns the hyperbolic cosine of a {@code double} value.
|
|
1065 |
* The hyperbolic cosine of <i>x</i> is defined to be
|
|
1066 |
* (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2
|
|
1067 |
* where <i>e</i> is {@linkplain Math#E Euler's number}.
|
|
1068 |
*
|
|
1069 |
* <p>Special cases:
|
|
1070 |
* <ul>
|
|
1071 |
*
|
|
1072 |
* <li>If the argument is NaN, then the result is NaN.
|
|
1073 |
*
|
|
1074 |
* <li>If the argument is infinite, then the result is positive
|
|
1075 |
* infinity.
|
|
1076 |
*
|
|
1077 |
* <li>If the argument is zero, then the result is {@code 1.0}.
|
|
1078 |
*
|
|
1079 |
* </ul>
|
|
1080 |
*
|
|
1081 |
* <p>The computed result must be within 2.5 ulps of the exact result.
|
|
1082 |
*
|
|
1083 |
* @param x The number whose hyperbolic cosine is to be returned.
|
|
1084 |
* @return The hyperbolic cosine of {@code x}.
|
|
1085 |
* @since 1.5
|
|
1086 |
*/
|
|
1087 |
public static double cosh(double x) {
|
|
1088 |
return StrictMath.cosh(x);
|
|
1089 |
}
|
|
1090 |
|
|
1091 |
/**
|
|
1092 |
* Returns the hyperbolic tangent of a {@code double} value.
|
|
1093 |
* The hyperbolic tangent of <i>x</i> is defined to be
|
|
1094 |
* (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>),
|
|
1095 |
* in other words, {@linkplain Math#sinh
|
|
1096 |
* sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note
|
|
1097 |
* that the absolute value of the exact tanh is always less than
|
|
1098 |
* 1.
|
|
1099 |
*
|
|
1100 |
* <p>Special cases:
|
|
1101 |
* <ul>
|
|
1102 |
*
|
|
1103 |
* <li>If the argument is NaN, then the result is NaN.
|
|
1104 |
*
|
|
1105 |
* <li>If the argument is zero, then the result is a zero with the
|
|
1106 |
* same sign as the argument.
|
|
1107 |
*
|
|
1108 |
* <li>If the argument is positive infinity, then the result is
|
|
1109 |
* {@code +1.0}.
|
|
1110 |
*
|
|
1111 |
* <li>If the argument is negative infinity, then the result is
|
|
1112 |
* {@code -1.0}.
|
|
1113 |
*
|
|
1114 |
* </ul>
|
|
1115 |
*
|
|
1116 |
* <p>The computed result must be within 2.5 ulps of the exact result.
|
|
1117 |
* The result of {@code tanh} for any finite input must have
|
|
1118 |
* an absolute value less than or equal to 1. Note that once the
|
|
1119 |
* exact result of tanh is within 1/2 of an ulp of the limit value
|
|
1120 |
* of ±1, correctly signed ±{@code 1.0} should
|
|
1121 |
* be returned.
|
|
1122 |
*
|
|
1123 |
* @param x The number whose hyperbolic tangent is to be returned.
|
|
1124 |
* @return The hyperbolic tangent of {@code x}.
|
|
1125 |
* @since 1.5
|
|
1126 |
*/
|
|
1127 |
public static double tanh(double x) {
|
|
1128 |
return StrictMath.tanh(x);
|
|
1129 |
}
|
|
1130 |
|
|
1131 |
/**
|
|
1132 |
* Returns sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
|
|
1133 |
* without intermediate overflow or underflow.
|
|
1134 |
*
|
|
1135 |
* <p>Special cases:
|
|
1136 |
* <ul>
|
|
1137 |
*
|
|
1138 |
* <li> If either argument is infinite, then the result
|
|
1139 |
* is positive infinity.
|
|
1140 |
*
|
|
1141 |
* <li> If either argument is NaN and neither argument is infinite,
|
|
1142 |
* then the result is NaN.
|
|
1143 |
*
|
|
1144 |
* </ul>
|
|
1145 |
*
|
|
1146 |
* <p>The computed result must be within 1 ulp of the exact
|
|
1147 |
* result. If one parameter is held constant, the results must be
|
|
1148 |
* semi-monotonic in the other parameter.
|
|
1149 |
*
|
|
1150 |
* @param x a value
|
|
1151 |
* @param y a value
|
|
1152 |
* @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
|
|
1153 |
* without intermediate overflow or underflow
|
|
1154 |
* @since 1.5
|
|
1155 |
*/
|
|
1156 |
public static double hypot(double x, double y) {
|
|
1157 |
return StrictMath.hypot(x, y);
|
|
1158 |
}
|
|
1159 |
|
|
1160 |
/**
|
|
1161 |
* Returns <i>e</i><sup>x</sup> -1. Note that for values of
|
|
1162 |
* <i>x</i> near 0, the exact sum of
|
|
1163 |
* {@code expm1(x)} + 1 is much closer to the true
|
|
1164 |
* result of <i>e</i><sup>x</sup> than {@code exp(x)}.
|
|
1165 |
*
|
|
1166 |
* <p>Special cases:
|
|
1167 |
* <ul>
|
|
1168 |
* <li>If the argument is NaN, the result is NaN.
|
|
1169 |
*
|
|
1170 |
* <li>If the argument is positive infinity, then the result is
|
|
1171 |
* positive infinity.
|
|
1172 |
*
|
|
1173 |
* <li>If the argument is negative infinity, then the result is
|
|
1174 |
* -1.0.
|
|
1175 |
*
|
|
1176 |
* <li>If the argument is zero, then the result is a zero with the
|
|
1177 |
* same sign as the argument.
|
|
1178 |
*
|
|
1179 |
* </ul>
|
|
1180 |
*
|
|
1181 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
1182 |
* Results must be semi-monotonic. The result of
|
|
1183 |
* {@code expm1} for any finite input must be greater than or
|
|
1184 |
* equal to {@code -1.0}. Note that once the exact result of
|
|
1185 |
* <i>e</i><sup>{@code x}</sup> - 1 is within 1/2
|
|
1186 |
* ulp of the limit value -1, {@code -1.0} should be
|
|
1187 |
* returned.
|
|
1188 |
*
|
|
1189 |
* @param x the exponent to raise <i>e</i> to in the computation of
|
|
1190 |
* <i>e</i><sup>{@code x}</sup> -1.
|
|
1191 |
* @return the value <i>e</i><sup>{@code x}</sup> - 1.
|
|
1192 |
* @since 1.5
|
|
1193 |
*/
|
|
1194 |
public static double expm1(double x) {
|
|
1195 |
return StrictMath.expm1(x);
|
|
1196 |
}
|
|
1197 |
|
|
1198 |
/**
|
|
1199 |
* Returns the natural logarithm of the sum of the argument and 1.
|
|
1200 |
* Note that for small values {@code x}, the result of
|
|
1201 |
* {@code log1p(x)} is much closer to the true result of ln(1
|
|
1202 |
* + {@code x}) than the floating-point evaluation of
|
|
1203 |
* {@code log(1.0+x)}.
|
|
1204 |
*
|
|
1205 |
* <p>Special cases:
|
|
1206 |
*
|
|
1207 |
* <ul>
|
|
1208 |
*
|
|
1209 |
* <li>If the argument is NaN or less than -1, then the result is
|
|
1210 |
* NaN.
|
|
1211 |
*
|
|
1212 |
* <li>If the argument is positive infinity, then the result is
|
|
1213 |
* positive infinity.
|
|
1214 |
*
|
|
1215 |
* <li>If the argument is negative one, then the result is
|
|
1216 |
* negative infinity.
|
|
1217 |
*
|
|
1218 |
* <li>If the argument is zero, then the result is a zero with the
|
|
1219 |
* same sign as the argument.
|
|
1220 |
*
|
|
1221 |
* </ul>
|
|
1222 |
*
|
|
1223 |
* <p>The computed result must be within 1 ulp of the exact result.
|
|
1224 |
* Results must be semi-monotonic.
|
|
1225 |
*
|
|
1226 |
* @param x a value
|
|
1227 |
* @return the value ln({@code x} + 1), the natural
|
|
1228 |
* log of {@code x} + 1
|
|
1229 |
* @since 1.5
|
|
1230 |
*/
|
|
1231 |
public static double log1p(double x) {
|
|
1232 |
return StrictMath.log1p(x);
|
|
1233 |
}
|
|
1234 |
|
|
1235 |
/**
|
|
1236 |
* Returns the first floating-point argument with the sign of the
|
|
1237 |
* second floating-point argument. Note that unlike the {@link
|
|
1238 |
* StrictMath#copySign(double, double) StrictMath.copySign}
|
|
1239 |
* method, this method does not require NaN {@code sign}
|
|
1240 |
* arguments to be treated as positive values; implementations are
|
|
1241 |
* permitted to treat some NaN arguments as positive and other NaN
|
|
1242 |
* arguments as negative to allow greater performance.
|
|
1243 |
*
|
|
1244 |
* @param magnitude the parameter providing the magnitude of the result
|
|
1245 |
* @param sign the parameter providing the sign of the result
|
|
1246 |
* @return a value with the magnitude of {@code magnitude}
|
|
1247 |
* and the sign of {@code sign}.
|
|
1248 |
* @since 1.6
|
|
1249 |
*/
|
|
1250 |
public static double copySign(double magnitude, double sign) {
|
|
1251 |
return sun.misc.FpUtils.rawCopySign(magnitude, sign);
|
|
1252 |
}
|
|
1253 |
|
|
1254 |
/**
|
|
1255 |
* Returns the first floating-point argument with the sign of the
|
|
1256 |
* second floating-point argument. Note that unlike the {@link
|
|
1257 |
* StrictMath#copySign(float, float) StrictMath.copySign}
|
|
1258 |
* method, this method does not require NaN {@code sign}
|
|
1259 |
* arguments to be treated as positive values; implementations are
|
|
1260 |
* permitted to treat some NaN arguments as positive and other NaN
|
|
1261 |
* arguments as negative to allow greater performance.
|
|
1262 |
*
|
|
1263 |
* @param magnitude the parameter providing the magnitude of the result
|
|
1264 |
* @param sign the parameter providing the sign of the result
|
|
1265 |
* @return a value with the magnitude of {@code magnitude}
|
|
1266 |
* and the sign of {@code sign}.
|
|
1267 |
* @since 1.6
|
|
1268 |
*/
|
|
1269 |
public static float copySign(float magnitude, float sign) {
|
|
1270 |
return sun.misc.FpUtils.rawCopySign(magnitude, sign);
|
|
1271 |
}
|
|
1272 |
|
|
1273 |
/**
|
|
1274 |
* Returns the unbiased exponent used in the representation of a
|
|
1275 |
* {@code float}. Special cases:
|
|
1276 |
*
|
|
1277 |
* <ul>
|
|
1278 |
* <li>If the argument is NaN or infinite, then the result is
|
|
1279 |
* {@link Float#MAX_EXPONENT} + 1.
|
|
1280 |
* <li>If the argument is zero or subnormal, then the result is
|
|
1281 |
* {@link Float#MIN_EXPONENT} -1.
|
|
1282 |
* </ul>
|
|
1283 |
* @param f a {@code float} value
|
|
1284 |
* @return the unbiased exponent of the argument
|
|
1285 |
* @since 1.6
|
|
1286 |
*/
|
|
1287 |
public static int getExponent(float f) {
|
|
1288 |
return sun.misc.FpUtils.getExponent(f);
|
|
1289 |
}
|
|
1290 |
|
|
1291 |
/**
|
|
1292 |
* Returns the unbiased exponent used in the representation of a
|
|
1293 |
* {@code double}. Special cases:
|
|
1294 |
*
|
|
1295 |
* <ul>
|
|
1296 |
* <li>If the argument is NaN or infinite, then the result is
|
|
1297 |
* {@link Double#MAX_EXPONENT} + 1.
|
|
1298 |
* <li>If the argument is zero or subnormal, then the result is
|
|
1299 |
* {@link Double#MIN_EXPONENT} -1.
|
|
1300 |
* </ul>
|
|
1301 |
* @param d a {@code double} value
|
|
1302 |
* @return the unbiased exponent of the argument
|
|
1303 |
* @since 1.6
|
|
1304 |
*/
|
|
1305 |
public static int getExponent(double d) {
|
|
1306 |
return sun.misc.FpUtils.getExponent(d);
|
|
1307 |
}
|
|
1308 |
|
|
1309 |
/**
|
|
1310 |
* Returns the floating-point number adjacent to the first
|
|
1311 |
* argument in the direction of the second argument. If both
|
|
1312 |
* arguments compare as equal the second argument is returned.
|
|
1313 |
*
|
|
1314 |
* <p>
|
|
1315 |
* Special cases:
|
|
1316 |
* <ul>
|
|
1317 |
* <li> If either argument is a NaN, then NaN is returned.
|
|
1318 |
*
|
|
1319 |
* <li> If both arguments are signed zeros, {@code direction}
|
|
1320 |
* is returned unchanged (as implied by the requirement of
|
|
1321 |
* returning the second argument if the arguments compare as
|
|
1322 |
* equal).
|
|
1323 |
*
|
|
1324 |
* <li> If {@code start} is
|
|
1325 |
* ±{@link Double#MIN_VALUE} and {@code direction}
|
|
1326 |
* has a value such that the result should have a smaller
|
|
1327 |
* magnitude, then a zero with the same sign as {@code start}
|
|
1328 |
* is returned.
|
|
1329 |
*
|
|
1330 |
* <li> If {@code start} is infinite and
|
|
1331 |
* {@code direction} has a value such that the result should
|
|
1332 |
* have a smaller magnitude, {@link Double#MAX_VALUE} with the
|
|
1333 |
* same sign as {@code start} is returned.
|
|
1334 |
*
|
|
1335 |
* <li> If {@code start} is equal to ±
|
|
1336 |
* {@link Double#MAX_VALUE} and {@code direction} has a
|
|
1337 |
* value such that the result should have a larger magnitude, an
|
|
1338 |
* infinity with same sign as {@code start} is returned.
|
|
1339 |
* </ul>
|
|
1340 |
*
|
|
1341 |
* @param start starting floating-point value
|
|
1342 |
* @param direction value indicating which of
|
|
1343 |
* {@code start}'s neighbors or {@code start} should
|
|
1344 |
* be returned
|
|
1345 |
* @return The floating-point number adjacent to {@code start} in the
|
|
1346 |
* direction of {@code direction}.
|
|
1347 |
* @since 1.6
|
|
1348 |
*/
|
|
1349 |
public static double nextAfter(double start, double direction) {
|
|
1350 |
return sun.misc.FpUtils.nextAfter(start, direction);
|
|
1351 |
}
|
|
1352 |
|
|
1353 |
/**
|
|
1354 |
* Returns the floating-point number adjacent to the first
|
|
1355 |
* argument in the direction of the second argument. If both
|
|
1356 |
* arguments compare as equal a value equivalent to the second argument
|
|
1357 |
* is returned.
|
|
1358 |
*
|
|
1359 |
* <p>
|
|
1360 |
* Special cases:
|
|
1361 |
* <ul>
|
|
1362 |
* <li> If either argument is a NaN, then NaN is returned.
|
|
1363 |
*
|
|
1364 |
* <li> If both arguments are signed zeros, a value equivalent
|
|
1365 |
* to {@code direction} is returned.
|
|
1366 |
*
|
|
1367 |
* <li> If {@code start} is
|
|
1368 |
* ±{@link Float#MIN_VALUE} and {@code direction}
|
|
1369 |
* has a value such that the result should have a smaller
|
|
1370 |
* magnitude, then a zero with the same sign as {@code start}
|
|
1371 |
* is returned.
|
|
1372 |
*
|
|
1373 |
* <li> If {@code start} is infinite and
|
|
1374 |
* {@code direction} has a value such that the result should
|
|
1375 |
* have a smaller magnitude, {@link Float#MAX_VALUE} with the
|
|
1376 |
* same sign as {@code start} is returned.
|
|
1377 |
*
|
|
1378 |
* <li> If {@code start} is equal to ±
|
|
1379 |
* {@link Float#MAX_VALUE} and {@code direction} has a
|
|
1380 |
* value such that the result should have a larger magnitude, an
|
|
1381 |
* infinity with same sign as {@code start} is returned.
|
|
1382 |
* </ul>
|
|
1383 |
*
|
|
1384 |
* @param start starting floating-point value
|
|
1385 |
* @param direction value indicating which of
|
|
1386 |
* {@code start}'s neighbors or {@code start} should
|
|
1387 |
* be returned
|
|
1388 |
* @return The floating-point number adjacent to {@code start} in the
|
|
1389 |
* direction of {@code direction}.
|
|
1390 |
* @since 1.6
|
|
1391 |
*/
|
|
1392 |
public static float nextAfter(float start, double direction) {
|
|
1393 |
return sun.misc.FpUtils.nextAfter(start, direction);
|
|
1394 |
}
|
|
1395 |
|
|
1396 |
/**
|
|
1397 |
* Returns the floating-point value adjacent to {@code d} in
|
|
1398 |
* the direction of positive infinity. This method is
|
|
1399 |
* semantically equivalent to {@code nextAfter(d,
|
|
1400 |
* Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
|
|
1401 |
* implementation may run faster than its equivalent
|
|
1402 |
* {@code nextAfter} call.
|
|
1403 |
*
|
|
1404 |
* <p>Special Cases:
|
|
1405 |
* <ul>
|
|
1406 |
* <li> If the argument is NaN, the result is NaN.
|
|
1407 |
*
|
|
1408 |
* <li> If the argument is positive infinity, the result is
|
|
1409 |
* positive infinity.
|
|
1410 |
*
|
|
1411 |
* <li> If the argument is zero, the result is
|
|
1412 |
* {@link Double#MIN_VALUE}
|
|
1413 |
*
|
|
1414 |
* </ul>
|
|
1415 |
*
|
|
1416 |
* @param d starting floating-point value
|
|
1417 |
* @return The adjacent floating-point value closer to positive
|
|
1418 |
* infinity.
|
|
1419 |
* @since 1.6
|
|
1420 |
*/
|
|
1421 |
public static double nextUp(double d) {
|
|
1422 |
return sun.misc.FpUtils.nextUp(d);
|
|
1423 |
}
|
|
1424 |
|
|
1425 |
/**
|
|
1426 |
* Returns the floating-point value adjacent to {@code f} in
|
|
1427 |
* the direction of positive infinity. This method is
|
|
1428 |
* semantically equivalent to {@code nextAfter(f,
|
|
1429 |
* Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
|
|
1430 |
* implementation may run faster than its equivalent
|
|
1431 |
* {@code nextAfter} call.
|
|
1432 |
*
|
|
1433 |
* <p>Special Cases:
|
|
1434 |
* <ul>
|
|
1435 |
* <li> If the argument is NaN, the result is NaN.
|
|
1436 |
*
|
|
1437 |
* <li> If the argument is positive infinity, the result is
|
|
1438 |
* positive infinity.
|
|
1439 |
*
|
|
1440 |
* <li> If the argument is zero, the result is
|
|
1441 |
* {@link Float#MIN_VALUE}
|
|
1442 |
*
|
|
1443 |
* </ul>
|
|
1444 |
*
|
|
1445 |
* @param f starting floating-point value
|
|
1446 |
* @return The adjacent floating-point value closer to positive
|
|
1447 |
* infinity.
|
|
1448 |
* @since 1.6
|
|
1449 |
*/
|
|
1450 |
public static float nextUp(float f) {
|
|
1451 |
return sun.misc.FpUtils.nextUp(f);
|
|
1452 |
}
|
|
1453 |
|
|
1454 |
|
|
1455 |
/**
|
|
1456 |
* Return {@code d} ×
|
|
1457 |
* 2<sup>{@code scaleFactor}</sup> rounded as if performed
|
|
1458 |
* by a single correctly rounded floating-point multiply to a
|
|
1459 |
* member of the double value set. See the Java
|
|
1460 |
* Language Specification for a discussion of floating-point
|
|
1461 |
* value sets. If the exponent of the result is between {@link
|
|
1462 |
* Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
|
|
1463 |
* answer is calculated exactly. If the exponent of the result
|
|
1464 |
* would be larger than {@code Double.MAX_EXPONENT}, an
|
|
1465 |
* infinity is returned. Note that if the result is subnormal,
|
|
1466 |
* precision may be lost; that is, when {@code scalb(x, n)}
|
|
1467 |
* is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
|
|
1468 |
* <i>x</i>. When the result is non-NaN, the result has the same
|
|
1469 |
* sign as {@code d}.
|
|
1470 |
*
|
|
1471 |
* <p>Special cases:
|
|
1472 |
* <ul>
|
|
1473 |
* <li> If the first argument is NaN, NaN is returned.
|
|
1474 |
* <li> If the first argument is infinite, then an infinity of the
|
|
1475 |
* same sign is returned.
|
|
1476 |
* <li> If the first argument is zero, then a zero of the same
|
|
1477 |
* sign is returned.
|
|
1478 |
* </ul>
|
|
1479 |
*
|
|
1480 |
* @param d number to be scaled by a power of two.
|
|
1481 |
* @param scaleFactor power of 2 used to scale {@code d}
|
|
1482 |
* @return {@code d} × 2<sup>{@code scaleFactor}</sup>
|
|
1483 |
* @since 1.6
|
|
1484 |
*/
|
|
1485 |
public static double scalb(double d, int scaleFactor) {
|
|
1486 |
return sun.misc.FpUtils.scalb(d, scaleFactor);
|
|
1487 |
}
|
|
1488 |
|
|
1489 |
/**
|
|
1490 |
* Return {@code f} ×
|
|
1491 |
* 2<sup>{@code scaleFactor}</sup> rounded as if performed
|
|
1492 |
* by a single correctly rounded floating-point multiply to a
|
|
1493 |
* member of the float value set. See the Java
|
|
1494 |
* Language Specification for a discussion of floating-point
|
|
1495 |
* value sets. If the exponent of the result is between {@link
|
|
1496 |
* Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
|
|
1497 |
* answer is calculated exactly. If the exponent of the result
|
|
1498 |
* would be larger than {@code Float.MAX_EXPONENT}, an
|
|
1499 |
* infinity is returned. Note that if the result is subnormal,
|
|
1500 |
* precision may be lost; that is, when {@code scalb(x, n)}
|
|
1501 |
* is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
|
|
1502 |
* <i>x</i>. When the result is non-NaN, the result has the same
|
|
1503 |
* sign as {@code f}.
|
|
1504 |
*
|
|
1505 |
* <p>Special cases:
|
|
1506 |
* <ul>
|
|
1507 |
* <li> If the first argument is NaN, NaN is returned.
|
|
1508 |
* <li> If the first argument is infinite, then an infinity of the
|
|
1509 |
* same sign is returned.
|
|
1510 |
* <li> If the first argument is zero, then a zero of the same
|
|
1511 |
* sign is returned.
|
|
1512 |
* </ul>
|
|
1513 |
*
|
|
1514 |
* @param f number to be scaled by a power of two.
|
|
1515 |
* @param scaleFactor power of 2 used to scale {@code f}
|
|
1516 |
* @return {@code f} × 2<sup>{@code scaleFactor}</sup>
|
|
1517 |
* @since 1.6
|
|
1518 |
*/
|
|
1519 |
public static float scalb(float f, int scaleFactor) {
|
|
1520 |
return sun.misc.FpUtils.scalb(f, scaleFactor);
|
|
1521 |
}
|
|
1522 |
}
|