1
|
1 |
/*
|
|
2 |
* Copyright 2003-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
# include "incls/_precompiled.incl"
|
|
26 |
# include "incls/_lowMemoryDetector.cpp.incl"
|
|
27 |
|
|
28 |
LowMemoryDetectorThread* LowMemoryDetector::_detector_thread = NULL;
|
|
29 |
volatile bool LowMemoryDetector::_enabled_for_collected_pools = false;
|
|
30 |
volatile jint LowMemoryDetector::_disabled_count = 0;
|
|
31 |
|
|
32 |
void LowMemoryDetector::initialize() {
|
|
33 |
EXCEPTION_MARK;
|
|
34 |
|
4571
|
35 |
instanceKlassHandle klass (THREAD, SystemDictionary::Thread_klass());
|
1
|
36 |
instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
|
|
37 |
|
|
38 |
const char thread_name[] = "Low Memory Detector";
|
|
39 |
Handle string = java_lang_String::create_from_str(thread_name, CHECK);
|
|
40 |
|
|
41 |
// Initialize thread_oop to put it into the system threadGroup
|
|
42 |
Handle thread_group (THREAD, Universe::system_thread_group());
|
|
43 |
JavaValue result(T_VOID);
|
|
44 |
JavaCalls::call_special(&result, thread_oop,
|
|
45 |
klass,
|
|
46 |
vmSymbolHandles::object_initializer_name(),
|
|
47 |
vmSymbolHandles::threadgroup_string_void_signature(),
|
|
48 |
thread_group,
|
|
49 |
string,
|
|
50 |
CHECK);
|
|
51 |
|
|
52 |
{
|
|
53 |
MutexLocker mu(Threads_lock);
|
|
54 |
_detector_thread = new LowMemoryDetectorThread(&low_memory_detector_thread_entry);
|
|
55 |
|
|
56 |
// At this point it may be possible that no osthread was created for the
|
|
57 |
// JavaThread due to lack of memory. We would have to throw an exception
|
|
58 |
// in that case. However, since this must work and we do not allow
|
|
59 |
// exceptions anyway, check and abort if this fails.
|
|
60 |
if (_detector_thread == NULL || _detector_thread->osthread() == NULL) {
|
|
61 |
vm_exit_during_initialization("java.lang.OutOfMemoryError",
|
|
62 |
"unable to create new native thread");
|
|
63 |
}
|
|
64 |
|
|
65 |
java_lang_Thread::set_thread(thread_oop(), _detector_thread);
|
|
66 |
java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
|
|
67 |
java_lang_Thread::set_daemon(thread_oop());
|
|
68 |
_detector_thread->set_threadObj(thread_oop());
|
|
69 |
|
|
70 |
Threads::add(_detector_thread);
|
|
71 |
Thread::start(_detector_thread);
|
|
72 |
}
|
|
73 |
}
|
|
74 |
|
|
75 |
bool LowMemoryDetector::has_pending_requests() {
|
|
76 |
assert(LowMemory_lock->owned_by_self(), "Must own LowMemory_lock");
|
|
77 |
bool has_requests = false;
|
|
78 |
int num_memory_pools = MemoryService::num_memory_pools();
|
|
79 |
for (int i = 0; i < num_memory_pools; i++) {
|
|
80 |
MemoryPool* pool = MemoryService::get_memory_pool(i);
|
|
81 |
SensorInfo* sensor = pool->usage_sensor();
|
|
82 |
if (sensor != NULL) {
|
|
83 |
has_requests = has_requests || sensor->has_pending_requests();
|
|
84 |
}
|
|
85 |
|
|
86 |
SensorInfo* gc_sensor = pool->gc_usage_sensor();
|
|
87 |
if (gc_sensor != NULL) {
|
|
88 |
has_requests = has_requests || gc_sensor->has_pending_requests();
|
|
89 |
}
|
|
90 |
}
|
|
91 |
return has_requests;
|
|
92 |
}
|
|
93 |
|
|
94 |
void LowMemoryDetector::low_memory_detector_thread_entry(JavaThread* jt, TRAPS) {
|
|
95 |
while (true) {
|
|
96 |
bool sensors_changed = false;
|
|
97 |
|
|
98 |
{
|
|
99 |
// _no_safepoint_check_flag is used here as LowMemory_lock is a
|
|
100 |
// special lock and the VMThread may acquire this lock at safepoint.
|
|
101 |
// Need state transition ThreadBlockInVM so that this thread
|
|
102 |
// will be handled by safepoint correctly when this thread is
|
|
103 |
// notified at a safepoint.
|
|
104 |
|
|
105 |
// This ThreadBlockInVM object is not also considered to be
|
|
106 |
// suspend-equivalent because LowMemoryDetector threads are
|
|
107 |
// not visible to external suspension.
|
|
108 |
|
|
109 |
ThreadBlockInVM tbivm(jt);
|
|
110 |
|
|
111 |
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
|
|
112 |
while (!(sensors_changed = has_pending_requests())) {
|
|
113 |
// wait until one of the sensors has pending requests
|
|
114 |
LowMemory_lock->wait(Mutex::_no_safepoint_check_flag);
|
|
115 |
}
|
|
116 |
}
|
|
117 |
|
|
118 |
{
|
|
119 |
ResourceMark rm(THREAD);
|
|
120 |
HandleMark hm(THREAD);
|
|
121 |
|
|
122 |
// No need to hold LowMemory_lock to call out to Java
|
|
123 |
int num_memory_pools = MemoryService::num_memory_pools();
|
|
124 |
for (int i = 0; i < num_memory_pools; i++) {
|
|
125 |
MemoryPool* pool = MemoryService::get_memory_pool(i);
|
|
126 |
SensorInfo* sensor = pool->usage_sensor();
|
|
127 |
SensorInfo* gc_sensor = pool->gc_usage_sensor();
|
|
128 |
if (sensor != NULL && sensor->has_pending_requests()) {
|
|
129 |
sensor->process_pending_requests(CHECK);
|
|
130 |
}
|
|
131 |
if (gc_sensor != NULL && gc_sensor->has_pending_requests()) {
|
|
132 |
gc_sensor->process_pending_requests(CHECK);
|
|
133 |
}
|
|
134 |
}
|
|
135 |
}
|
|
136 |
}
|
|
137 |
}
|
|
138 |
|
|
139 |
// This method could be called from any Java threads
|
|
140 |
// and also VMThread.
|
|
141 |
void LowMemoryDetector::detect_low_memory() {
|
|
142 |
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
|
|
143 |
|
|
144 |
bool has_pending_requests = false;
|
|
145 |
int num_memory_pools = MemoryService::num_memory_pools();
|
|
146 |
for (int i = 0; i < num_memory_pools; i++) {
|
|
147 |
MemoryPool* pool = MemoryService::get_memory_pool(i);
|
|
148 |
SensorInfo* sensor = pool->usage_sensor();
|
|
149 |
if (sensor != NULL &&
|
|
150 |
pool->usage_threshold()->is_high_threshold_supported() &&
|
|
151 |
pool->usage_threshold()->high_threshold() != 0) {
|
|
152 |
MemoryUsage usage = pool->get_memory_usage();
|
|
153 |
sensor->set_gauge_sensor_level(usage,
|
|
154 |
pool->usage_threshold());
|
|
155 |
has_pending_requests = has_pending_requests || sensor->has_pending_requests();
|
|
156 |
}
|
|
157 |
}
|
|
158 |
|
|
159 |
if (has_pending_requests) {
|
|
160 |
LowMemory_lock->notify_all();
|
|
161 |
}
|
|
162 |
}
|
|
163 |
|
|
164 |
// This method could be called from any Java threads
|
|
165 |
// and also VMThread.
|
|
166 |
void LowMemoryDetector::detect_low_memory(MemoryPool* pool) {
|
|
167 |
SensorInfo* sensor = pool->usage_sensor();
|
|
168 |
if (sensor == NULL ||
|
|
169 |
!pool->usage_threshold()->is_high_threshold_supported() ||
|
|
170 |
pool->usage_threshold()->high_threshold() == 0) {
|
|
171 |
return;
|
|
172 |
}
|
|
173 |
|
|
174 |
{
|
|
175 |
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
|
|
176 |
|
|
177 |
MemoryUsage usage = pool->get_memory_usage();
|
|
178 |
sensor->set_gauge_sensor_level(usage,
|
|
179 |
pool->usage_threshold());
|
|
180 |
if (sensor->has_pending_requests()) {
|
|
181 |
// notify sensor state update
|
|
182 |
LowMemory_lock->notify_all();
|
|
183 |
}
|
|
184 |
}
|
|
185 |
}
|
|
186 |
|
|
187 |
// Only called by VMThread at GC time
|
|
188 |
void LowMemoryDetector::detect_after_gc_memory(MemoryPool* pool) {
|
|
189 |
SensorInfo* sensor = pool->gc_usage_sensor();
|
|
190 |
if (sensor == NULL ||
|
|
191 |
!pool->gc_usage_threshold()->is_high_threshold_supported() ||
|
|
192 |
pool->gc_usage_threshold()->high_threshold() == 0) {
|
|
193 |
return;
|
|
194 |
}
|
|
195 |
|
|
196 |
{
|
|
197 |
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
|
|
198 |
|
|
199 |
MemoryUsage usage = pool->get_last_collection_usage();
|
|
200 |
sensor->set_counter_sensor_level(usage, pool->gc_usage_threshold());
|
|
201 |
|
|
202 |
if (sensor->has_pending_requests()) {
|
|
203 |
// notify sensor state update
|
|
204 |
LowMemory_lock->notify_all();
|
|
205 |
}
|
|
206 |
}
|
|
207 |
}
|
|
208 |
|
|
209 |
// recompute enabled flag
|
|
210 |
void LowMemoryDetector::recompute_enabled_for_collected_pools() {
|
|
211 |
bool enabled = false;
|
|
212 |
int num_memory_pools = MemoryService::num_memory_pools();
|
|
213 |
for (int i=0; i<num_memory_pools; i++) {
|
|
214 |
MemoryPool* pool = MemoryService::get_memory_pool(i);
|
|
215 |
if (pool->is_collected_pool() && is_enabled(pool)) {
|
|
216 |
enabled = true;
|
|
217 |
break;
|
|
218 |
}
|
|
219 |
}
|
|
220 |
_enabled_for_collected_pools = enabled;
|
|
221 |
}
|
|
222 |
|
|
223 |
SensorInfo::SensorInfo() {
|
|
224 |
_sensor_obj = NULL;
|
|
225 |
_sensor_on = false;
|
|
226 |
_sensor_count = 0;
|
|
227 |
_pending_trigger_count = 0;
|
|
228 |
_pending_clear_count = 0;
|
|
229 |
}
|
|
230 |
|
|
231 |
// When this method is used, the memory usage is monitored
|
|
232 |
// as a gauge attribute. Sensor notifications (trigger or
|
|
233 |
// clear) is only emitted at the first time it crosses
|
|
234 |
// a threshold.
|
|
235 |
//
|
|
236 |
// High and low thresholds are designed to provide a
|
|
237 |
// hysteresis mechanism to avoid repeated triggering
|
|
238 |
// of notifications when the attribute value makes small oscillations
|
|
239 |
// around the high or low threshold value.
|
|
240 |
//
|
|
241 |
// The sensor will be triggered if:
|
|
242 |
// (1) the usage is crossing above the high threshold and
|
|
243 |
// the sensor is currently off and no pending
|
|
244 |
// trigger requests; or
|
|
245 |
// (2) the usage is crossing above the high threshold and
|
|
246 |
// the sensor will be off (i.e. sensor is currently on
|
|
247 |
// and has pending clear requests).
|
|
248 |
//
|
|
249 |
// Subsequent crossings of the high threshold value do not cause
|
|
250 |
// any triggers unless the usage becomes less than the low threshold.
|
|
251 |
//
|
|
252 |
// The sensor will be cleared if:
|
|
253 |
// (1) the usage is crossing below the low threshold and
|
|
254 |
// the sensor is currently on and no pending
|
|
255 |
// clear requests; or
|
|
256 |
// (2) the usage is crossing below the low threshold and
|
|
257 |
// the sensor will be on (i.e. sensor is currently off
|
|
258 |
// and has pending trigger requests).
|
|
259 |
//
|
|
260 |
// Subsequent crossings of the low threshold value do not cause
|
|
261 |
// any clears unless the usage becomes greater than or equal
|
|
262 |
// to the high threshold.
|
|
263 |
//
|
|
264 |
// If the current level is between high and low threhsold, no change.
|
|
265 |
//
|
|
266 |
void SensorInfo::set_gauge_sensor_level(MemoryUsage usage, ThresholdSupport* high_low_threshold) {
|
|
267 |
assert(high_low_threshold->is_high_threshold_supported(), "just checking");
|
|
268 |
|
|
269 |
bool is_over_high = high_low_threshold->is_high_threshold_crossed(usage);
|
|
270 |
bool is_below_low = high_low_threshold->is_low_threshold_crossed(usage);
|
|
271 |
|
|
272 |
assert(!(is_over_high && is_below_low), "Can't be both true");
|
|
273 |
|
|
274 |
if (is_over_high &&
|
|
275 |
((!_sensor_on && _pending_trigger_count == 0) ||
|
|
276 |
_pending_clear_count > 0)) {
|
|
277 |
// low memory detected and need to increment the trigger pending count
|
|
278 |
// if the sensor is off or will be off due to _pending_clear_ > 0
|
|
279 |
// Request to trigger the sensor
|
|
280 |
_pending_trigger_count++;
|
|
281 |
_usage = usage;
|
|
282 |
|
|
283 |
if (_pending_clear_count > 0) {
|
|
284 |
// non-zero pending clear requests indicates that there are
|
|
285 |
// pending requests to clear this sensor.
|
|
286 |
// This trigger request needs to clear this clear count
|
|
287 |
// since the resulting sensor flag should be on.
|
|
288 |
_pending_clear_count = 0;
|
|
289 |
}
|
|
290 |
} else if (is_below_low &&
|
|
291 |
((_sensor_on && _pending_clear_count == 0) ||
|
|
292 |
(_pending_trigger_count > 0 && _pending_clear_count == 0))) {
|
|
293 |
// memory usage returns below the threshold
|
|
294 |
// Request to clear the sensor if the sensor is on or will be on due to
|
|
295 |
// _pending_trigger_count > 0 and also no clear request
|
|
296 |
_pending_clear_count++;
|
|
297 |
}
|
|
298 |
}
|
|
299 |
|
|
300 |
// When this method is used, the memory usage is monitored as a
|
|
301 |
// simple counter attribute. The sensor will be triggered
|
|
302 |
// whenever the usage is crossing the threshold to keep track
|
|
303 |
// of the number of times the VM detects such a condition occurs.
|
|
304 |
//
|
|
305 |
// High and low thresholds are designed to provide a
|
|
306 |
// hysteresis mechanism to avoid repeated triggering
|
|
307 |
// of notifications when the attribute value makes small oscillations
|
|
308 |
// around the high or low threshold value.
|
|
309 |
//
|
|
310 |
// The sensor will be triggered if:
|
|
311 |
// - the usage is crossing above the high threshold regardless
|
|
312 |
// of the current sensor state.
|
|
313 |
//
|
|
314 |
// The sensor will be cleared if:
|
|
315 |
// (1) the usage is crossing below the low threshold and
|
|
316 |
// the sensor is currently on; or
|
|
317 |
// (2) the usage is crossing below the low threshold and
|
|
318 |
// the sensor will be on (i.e. sensor is currently off
|
|
319 |
// and has pending trigger requests).
|
|
320 |
void SensorInfo::set_counter_sensor_level(MemoryUsage usage, ThresholdSupport* counter_threshold) {
|
|
321 |
assert(counter_threshold->is_high_threshold_supported(), "just checking");
|
|
322 |
|
|
323 |
bool is_over_high = counter_threshold->is_high_threshold_crossed(usage);
|
|
324 |
bool is_below_low = counter_threshold->is_low_threshold_crossed(usage);
|
|
325 |
|
|
326 |
assert(!(is_over_high && is_below_low), "Can't be both true");
|
|
327 |
|
|
328 |
if (is_over_high) {
|
|
329 |
_pending_trigger_count++;
|
|
330 |
_usage = usage;
|
|
331 |
_pending_clear_count = 0;
|
|
332 |
} else if (is_below_low && (_sensor_on || _pending_trigger_count > 0)) {
|
|
333 |
_pending_clear_count++;
|
|
334 |
}
|
|
335 |
}
|
|
336 |
|
|
337 |
void SensorInfo::oops_do(OopClosure* f) {
|
|
338 |
f->do_oop((oop*) &_sensor_obj);
|
|
339 |
}
|
|
340 |
|
|
341 |
void SensorInfo::process_pending_requests(TRAPS) {
|
|
342 |
if (!has_pending_requests()) {
|
|
343 |
return;
|
|
344 |
}
|
|
345 |
|
|
346 |
int pending_count = pending_trigger_count();
|
|
347 |
if (pending_clear_count() > 0) {
|
|
348 |
clear(pending_count, CHECK);
|
|
349 |
} else {
|
|
350 |
trigger(pending_count, CHECK);
|
|
351 |
}
|
|
352 |
|
|
353 |
}
|
|
354 |
|
|
355 |
void SensorInfo::trigger(int count, TRAPS) {
|
|
356 |
assert(count <= _pending_trigger_count, "just checking");
|
|
357 |
|
|
358 |
if (_sensor_obj != NULL) {
|
|
359 |
klassOop k = Management::sun_management_Sensor_klass(CHECK);
|
|
360 |
instanceKlassHandle sensorKlass (THREAD, k);
|
|
361 |
Handle sensor_h(THREAD, _sensor_obj);
|
|
362 |
Handle usage_h = MemoryService::create_MemoryUsage_obj(_usage, CHECK);
|
|
363 |
|
|
364 |
JavaValue result(T_VOID);
|
|
365 |
JavaCallArguments args(sensor_h);
|
|
366 |
args.push_int((int) count);
|
|
367 |
args.push_oop(usage_h);
|
|
368 |
|
|
369 |
JavaCalls::call_virtual(&result,
|
|
370 |
sensorKlass,
|
|
371 |
vmSymbolHandles::trigger_name(),
|
|
372 |
vmSymbolHandles::trigger_method_signature(),
|
|
373 |
&args,
|
|
374 |
CHECK);
|
|
375 |
}
|
|
376 |
|
|
377 |
{
|
|
378 |
// Holds LowMemory_lock and update the sensor state
|
|
379 |
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
|
|
380 |
_sensor_on = true;
|
|
381 |
_sensor_count += count;
|
|
382 |
_pending_trigger_count = _pending_trigger_count - count;
|
|
383 |
}
|
|
384 |
}
|
|
385 |
|
|
386 |
void SensorInfo::clear(int count, TRAPS) {
|
|
387 |
if (_sensor_obj != NULL) {
|
|
388 |
klassOop k = Management::sun_management_Sensor_klass(CHECK);
|
|
389 |
instanceKlassHandle sensorKlass (THREAD, k);
|
|
390 |
Handle sensor(THREAD, _sensor_obj);
|
|
391 |
|
|
392 |
JavaValue result(T_VOID);
|
|
393 |
JavaCallArguments args(sensor);
|
|
394 |
args.push_int((int) count);
|
|
395 |
JavaCalls::call_virtual(&result,
|
|
396 |
sensorKlass,
|
|
397 |
vmSymbolHandles::clear_name(),
|
|
398 |
vmSymbolHandles::int_void_signature(),
|
|
399 |
&args,
|
|
400 |
CHECK);
|
|
401 |
}
|
|
402 |
|
|
403 |
{
|
|
404 |
// Holds LowMemory_lock and update the sensor state
|
|
405 |
MutexLockerEx ml(LowMemory_lock, Mutex::_no_safepoint_check_flag);
|
|
406 |
_sensor_on = false;
|
|
407 |
_pending_clear_count = 0;
|
|
408 |
_pending_trigger_count = _pending_trigger_count - count;
|
|
409 |
}
|
|
410 |
}
|
|
411 |
|
|
412 |
//--------------------------------------------------------------
|
|
413 |
// Non-product code
|
|
414 |
|
|
415 |
#ifndef PRODUCT
|
|
416 |
void SensorInfo::print() {
|
|
417 |
tty->print_cr("%s count = %ld pending_triggers = %ld pending_clears = %ld",
|
|
418 |
(_sensor_on ? "on" : "off"),
|
|
419 |
_sensor_count, _pending_trigger_count, _pending_clear_count);
|
|
420 |
}
|
|
421 |
|
|
422 |
#endif // PRODUCT
|