42664
|
1 |
/*
|
|
2 |
* Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#ifndef CPU_ARM_VM_NATIVEINST_ARM_32_HPP
|
|
26 |
#define CPU_ARM_VM_NATIVEINST_ARM_32_HPP
|
|
27 |
|
|
28 |
#include "asm/macroAssembler.hpp"
|
|
29 |
#include "code/codeCache.hpp"
|
|
30 |
#include "memory/allocation.hpp"
|
|
31 |
#include "runtime/icache.hpp"
|
|
32 |
#include "runtime/os.hpp"
|
|
33 |
#include "runtime/thread.hpp"
|
|
34 |
#include "register_arm.hpp"
|
|
35 |
|
|
36 |
// -------------------------------------------------------------------
|
|
37 |
|
|
38 |
// Some experimental projects extend the ARM back-end by implementing
|
|
39 |
// what the front-end usually assumes is a single native instruction
|
|
40 |
// with a sequence of instructions.
|
|
41 |
//
|
|
42 |
// The 'Raw' variants are the low level initial code (usually one
|
|
43 |
// instruction wide but some of them were already composed
|
|
44 |
// instructions). They should be used only by the back-end.
|
|
45 |
//
|
|
46 |
// The non-raw classes are the front-end entry point, hiding potential
|
|
47 |
// back-end extensions or the actual instructions size.
|
|
48 |
class NativeInstruction;
|
|
49 |
|
|
50 |
class RawNativeInstruction VALUE_OBJ_CLASS_SPEC {
|
|
51 |
public:
|
|
52 |
|
|
53 |
enum ARM_specific {
|
|
54 |
instruction_size = Assembler::InstructionSize
|
|
55 |
};
|
|
56 |
|
|
57 |
enum InstructionKind {
|
|
58 |
instr_ldr_str = 0x50,
|
|
59 |
instr_ldrh_strh = 0x10,
|
|
60 |
instr_fld_fst = 0xd0
|
|
61 |
};
|
|
62 |
|
|
63 |
// illegal instruction used by NativeJump::patch_verified_entry
|
|
64 |
// permanently undefined (UDF): 0xe << 28 | 0b1111111 << 20 | 0b1111 << 4
|
|
65 |
static const int zombie_illegal_instruction = 0xe7f000f0;
|
|
66 |
|
|
67 |
static int decode_rotated_imm12(int encoding) {
|
|
68 |
int base = encoding & 0xff;
|
|
69 |
int right_rotation = (encoding & 0xf00) >> 7;
|
|
70 |
int left_rotation = 32 - right_rotation;
|
|
71 |
int val = (base >> right_rotation) | (base << left_rotation);
|
|
72 |
return val;
|
|
73 |
}
|
|
74 |
|
|
75 |
address addr_at(int offset) const { return (address)this + offset; }
|
|
76 |
address instruction_address() const { return addr_at(0); }
|
|
77 |
address next_raw_instruction_address() const { return addr_at(instruction_size); }
|
|
78 |
|
|
79 |
static RawNativeInstruction* at(address address) {
|
|
80 |
return (RawNativeInstruction*)address;
|
|
81 |
}
|
|
82 |
RawNativeInstruction* next_raw() const {
|
|
83 |
return at(next_raw_instruction_address());
|
|
84 |
}
|
|
85 |
|
|
86 |
public:
|
|
87 |
int encoding() const { return *(int*)this; }
|
|
88 |
|
|
89 |
void set_encoding(int value) {
|
|
90 |
int old = *(int*)this;
|
|
91 |
if (old != value) {
|
|
92 |
*(int*)this = value;
|
|
93 |
ICache::invalidate_word((address)this);
|
|
94 |
}
|
|
95 |
}
|
|
96 |
|
|
97 |
InstructionKind kind() const {
|
|
98 |
return (InstructionKind) ((encoding() >> 20) & 0xf2);
|
|
99 |
}
|
|
100 |
|
|
101 |
bool is_nop() const { return encoding() == (int)0xe1a00000; }
|
|
102 |
bool is_b() const { return (encoding() & 0x0f000000) == 0x0a000000; }
|
|
103 |
bool is_bx() const { return (encoding() & 0x0ffffff0) == 0x012fff10; }
|
|
104 |
bool is_bl() const { return (encoding() & 0x0f000000) == 0x0b000000; }
|
|
105 |
bool is_blx() const { return (encoding() & 0x0ffffff0) == 0x012fff30; }
|
|
106 |
bool is_fat_call() const {
|
|
107 |
return (is_add_lr() && next_raw()->is_jump());
|
|
108 |
}
|
|
109 |
bool is_ldr_call() const {
|
|
110 |
return (is_add_lr() && next_raw()->is_ldr_pc());
|
|
111 |
}
|
|
112 |
bool is_jump() const { return is_b() || is_ldr_pc(); }
|
|
113 |
bool is_call() const { return is_bl() || is_fat_call(); }
|
|
114 |
bool is_branch() const { return is_b() || is_bl(); }
|
|
115 |
bool is_far_branch() const { return is_movw() || is_ldr_literal(); }
|
|
116 |
bool is_ldr_literal() const {
|
|
117 |
// ldr Rx, [PC, #offset] for positive or negative offsets
|
|
118 |
return (encoding() & 0x0f7f0000) == 0x051f0000;
|
|
119 |
}
|
|
120 |
bool is_ldr() const {
|
|
121 |
// ldr Rd, [Rn, #offset] for positive or negative offsets
|
|
122 |
return (encoding() & 0x0f700000) == 0x05100000;
|
|
123 |
}
|
|
124 |
int ldr_offset() const {
|
|
125 |
assert(is_ldr(), "must be");
|
|
126 |
int offset = encoding() & 0xfff;
|
|
127 |
if (encoding() & (1 << 23)) {
|
|
128 |
// positive offset
|
|
129 |
} else {
|
|
130 |
// negative offset
|
|
131 |
offset = -offset;
|
|
132 |
}
|
|
133 |
return offset;
|
|
134 |
}
|
|
135 |
// is_ldr_pc: ldr PC, PC, #offset
|
|
136 |
bool is_ldr_pc() const { return (encoding() & 0x0f7ff000) == 0x051ff000; }
|
|
137 |
// is_setting_pc(): ldr PC, Rxx, #offset
|
|
138 |
bool is_setting_pc() const { return (encoding() & 0x0f70f000) == 0x0510f000; }
|
|
139 |
bool is_add_lr() const { return (encoding() & 0x0ffff000) == 0x028fe000; }
|
|
140 |
bool is_add_pc() const { return (encoding() & 0x0fff0000) == 0x028f0000; }
|
|
141 |
bool is_sub_pc() const { return (encoding() & 0x0fff0000) == 0x024f0000; }
|
|
142 |
bool is_pc_rel() const { return is_add_pc() || is_sub_pc(); }
|
|
143 |
bool is_movw() const { return (encoding() & 0x0ff00000) == 0x03000000; }
|
|
144 |
bool is_movt() const { return (encoding() & 0x0ff00000) == 0x03400000; }
|
|
145 |
// c2 doesn't use fixed registers for safepoint poll address
|
|
146 |
bool is_safepoint_poll() const { return (encoding() & 0xfff0ffff) == 0xe590c000; }
|
|
147 |
// For unit tests
|
|
148 |
static void test() {}
|
|
149 |
|
|
150 |
};
|
|
151 |
|
|
152 |
inline RawNativeInstruction* rawNativeInstruction_at(address address) {
|
|
153 |
return (RawNativeInstruction*)address;
|
|
154 |
}
|
|
155 |
|
|
156 |
// Base class exported to the front-end
|
|
157 |
class NativeInstruction: public RawNativeInstruction {
|
|
158 |
public:
|
|
159 |
static NativeInstruction* at(address address) {
|
|
160 |
return (NativeInstruction*)address;
|
|
161 |
}
|
|
162 |
|
|
163 |
public:
|
|
164 |
// No need to consider indirections while parsing NativeInstruction
|
|
165 |
address next_instruction_address() const {
|
|
166 |
return next_raw_instruction_address();
|
|
167 |
}
|
|
168 |
|
|
169 |
// next() is no longer defined to avoid confusion.
|
|
170 |
//
|
|
171 |
// The front end and most classes except for those defined in nativeInst_arm
|
|
172 |
// or relocInfo_arm should only use next_instruction_address(), skipping
|
|
173 |
// over composed instruction and ignoring back-end extensions.
|
|
174 |
//
|
|
175 |
// The back-end can use next_raw() when it knows the instruction sequence
|
|
176 |
// and only wants to skip a single native instruction.
|
|
177 |
};
|
|
178 |
|
|
179 |
inline NativeInstruction* nativeInstruction_at(address address) {
|
|
180 |
return (NativeInstruction*)address;
|
|
181 |
}
|
|
182 |
|
|
183 |
// -------------------------------------------------------------------
|
|
184 |
// Raw b() or bl() instructions, not used by the front-end.
|
|
185 |
class RawNativeBranch: public RawNativeInstruction {
|
|
186 |
public:
|
|
187 |
|
|
188 |
address destination(int adj = 0) const {
|
|
189 |
return instruction_address() + (encoding() << 8 >> 6) + 8 + adj;
|
|
190 |
}
|
|
191 |
|
|
192 |
void set_destination(address dest) {
|
|
193 |
int new_offset = (int)(dest - instruction_address() - 8);
|
|
194 |
assert(new_offset < 0x2000000 && new_offset > -0x2000000, "encoding constraint");
|
|
195 |
set_encoding((encoding() & 0xff000000) | ((unsigned int)new_offset << 6 >> 8));
|
|
196 |
}
|
|
197 |
};
|
|
198 |
|
|
199 |
inline RawNativeBranch* rawNativeBranch_at(address address) {
|
|
200 |
assert(rawNativeInstruction_at(address)->is_branch(), "must be");
|
|
201 |
return (RawNativeBranch*)address;
|
|
202 |
}
|
|
203 |
|
|
204 |
class NativeBranch: public RawNativeBranch {
|
|
205 |
};
|
|
206 |
|
|
207 |
inline NativeBranch* nativeBranch_at(address address) {
|
|
208 |
return (NativeBranch *) rawNativeBranch_at(address);
|
|
209 |
}
|
|
210 |
|
|
211 |
// -------------------------------------------------------------------
|
|
212 |
// NativeGeneralJump is for patchable internal (near) jumps
|
|
213 |
// It is used directly by the front-end and must be a single instruction wide
|
|
214 |
// (to support patching to other kind of instructions).
|
|
215 |
class NativeGeneralJump: public RawNativeInstruction {
|
|
216 |
public:
|
|
217 |
|
|
218 |
address jump_destination() const {
|
|
219 |
return rawNativeBranch_at(instruction_address())->destination();
|
|
220 |
}
|
|
221 |
|
|
222 |
void set_jump_destination(address dest) {
|
|
223 |
return rawNativeBranch_at(instruction_address())->set_destination(dest);
|
|
224 |
}
|
|
225 |
|
|
226 |
static void insert_unconditional(address code_pos, address entry);
|
|
227 |
|
|
228 |
static void replace_mt_safe(address instr_addr, address code_buffer) {
|
|
229 |
assert(((int)instr_addr & 3) == 0 && ((int)code_buffer & 3) == 0, "must be aligned");
|
|
230 |
// Writing a word is atomic on ARM, so no MT-safe tricks are needed
|
|
231 |
rawNativeInstruction_at(instr_addr)->set_encoding(*(int*)code_buffer);
|
|
232 |
}
|
|
233 |
};
|
|
234 |
|
|
235 |
inline NativeGeneralJump* nativeGeneralJump_at(address address) {
|
|
236 |
assert(rawNativeInstruction_at(address)->is_jump(), "must be");
|
|
237 |
return (NativeGeneralJump*)address;
|
|
238 |
}
|
|
239 |
|
|
240 |
// -------------------------------------------------------------------
|
|
241 |
class RawNativeJump: public NativeInstruction {
|
|
242 |
public:
|
|
243 |
|
|
244 |
address jump_destination(int adj = 0) const {
|
|
245 |
address a;
|
|
246 |
if (is_b()) {
|
|
247 |
a = rawNativeBranch_at(instruction_address())->destination(adj);
|
|
248 |
// Jump destination -1 is encoded as a jump to self
|
|
249 |
if (a == instruction_address()) {
|
|
250 |
return (address)-1;
|
|
251 |
}
|
|
252 |
} else {
|
|
253 |
assert(is_ldr_pc(), "must be");
|
|
254 |
int offset = this->ldr_offset();
|
|
255 |
a = *(address*)(instruction_address() + 8 + offset);
|
|
256 |
}
|
|
257 |
return a;
|
|
258 |
}
|
|
259 |
|
|
260 |
void set_jump_destination(address dest) {
|
|
261 |
address a;
|
|
262 |
if (is_b()) {
|
|
263 |
// Jump destination -1 is encoded as a jump to self
|
|
264 |
if (dest == (address)-1) {
|
|
265 |
dest = instruction_address();
|
|
266 |
}
|
|
267 |
rawNativeBranch_at(instruction_address())->set_destination(dest);
|
|
268 |
} else {
|
|
269 |
assert(is_ldr_pc(), "must be");
|
|
270 |
int offset = this->ldr_offset();
|
|
271 |
*(address*)(instruction_address() + 8 + offset) = dest;
|
|
272 |
OrderAccess::storeload(); // overkill if caller holds lock?
|
|
273 |
}
|
|
274 |
}
|
|
275 |
|
|
276 |
static void check_verified_entry_alignment(address entry, address verified_entry);
|
|
277 |
|
|
278 |
static void patch_verified_entry(address entry, address verified_entry, address dest);
|
|
279 |
|
|
280 |
};
|
|
281 |
|
|
282 |
inline RawNativeJump* rawNativeJump_at(address address) {
|
|
283 |
assert(rawNativeInstruction_at(address)->is_jump(), "must be");
|
|
284 |
return (RawNativeJump*)address;
|
|
285 |
}
|
|
286 |
|
|
287 |
// -------------------------------------------------------------------
|
|
288 |
class RawNativeCall: public NativeInstruction {
|
|
289 |
// See IC calls in LIR_Assembler::ic_call(): ARM v5/v6 doesn't use a
|
|
290 |
// single bl for IC calls.
|
|
291 |
|
|
292 |
public:
|
|
293 |
|
|
294 |
address return_address() const {
|
|
295 |
if (is_bl()) {
|
|
296 |
return addr_at(instruction_size);
|
|
297 |
} else {
|
|
298 |
assert(is_fat_call(), "must be");
|
|
299 |
int offset = encoding() & 0xff;
|
|
300 |
return addr_at(offset + 8);
|
|
301 |
}
|
|
302 |
}
|
|
303 |
|
|
304 |
address destination(int adj = 0) const {
|
|
305 |
if (is_bl()) {
|
|
306 |
return rawNativeBranch_at(instruction_address())->destination(adj);
|
|
307 |
} else {
|
|
308 |
assert(is_add_lr(), "must be"); // fat_call
|
|
309 |
RawNativeJump *next = rawNativeJump_at(next_raw_instruction_address());
|
|
310 |
return next->jump_destination(adj);
|
|
311 |
}
|
|
312 |
}
|
|
313 |
|
|
314 |
void set_destination(address dest) {
|
|
315 |
if (is_bl()) {
|
|
316 |
return rawNativeBranch_at(instruction_address())->set_destination(dest);
|
|
317 |
} else {
|
|
318 |
assert(is_add_lr(), "must be"); // fat_call
|
|
319 |
RawNativeJump *next = rawNativeJump_at(next_raw_instruction_address());
|
|
320 |
return next->set_jump_destination(dest);
|
|
321 |
}
|
|
322 |
}
|
|
323 |
|
|
324 |
void set_destination_mt_safe(address dest) {
|
|
325 |
assert(CodeCache::contains(dest), "external destination might be too far");
|
|
326 |
set_destination(dest);
|
|
327 |
}
|
|
328 |
|
|
329 |
void verify() {
|
|
330 |
assert(RawNativeInstruction::is_call() || (!VM_Version::supports_movw() && RawNativeInstruction::is_jump()), "must be");
|
|
331 |
}
|
|
332 |
|
|
333 |
void verify_alignment() {
|
|
334 |
// Nothing to do on ARM
|
|
335 |
}
|
|
336 |
|
|
337 |
static bool is_call_before(address return_address);
|
|
338 |
};
|
|
339 |
|
|
340 |
inline RawNativeCall* rawNativeCall_at(address address) {
|
|
341 |
assert(rawNativeInstruction_at(address)->is_call(), "must be");
|
|
342 |
return (RawNativeCall*)address;
|
|
343 |
}
|
|
344 |
|
|
345 |
NativeCall* rawNativeCall_before(address return_address);
|
|
346 |
|
|
347 |
// -------------------------------------------------------------------
|
|
348 |
// NativeMovRegMem need not be extended with indirection support.
|
|
349 |
// (field access patching is handled differently in that case)
|
|
350 |
class NativeMovRegMem: public NativeInstruction {
|
|
351 |
public:
|
|
352 |
|
|
353 |
int offset() const;
|
|
354 |
void set_offset(int x);
|
|
355 |
|
|
356 |
void add_offset_in_bytes(int add_offset) {
|
|
357 |
set_offset(offset() + add_offset);
|
|
358 |
}
|
|
359 |
|
|
360 |
};
|
|
361 |
|
|
362 |
inline NativeMovRegMem* nativeMovRegMem_at(address address) {
|
|
363 |
NativeMovRegMem* instr = (NativeMovRegMem*)address;
|
|
364 |
assert(instr->kind() == NativeInstruction::instr_ldr_str ||
|
|
365 |
instr->kind() == NativeInstruction::instr_ldrh_strh ||
|
|
366 |
instr->kind() == NativeInstruction::instr_fld_fst, "must be");
|
|
367 |
return instr;
|
|
368 |
}
|
|
369 |
|
|
370 |
// -------------------------------------------------------------------
|
|
371 |
// NativeMovConstReg is primarily for loading oops and metadata
|
|
372 |
class NativeMovConstReg: public NativeInstruction {
|
|
373 |
public:
|
|
374 |
|
|
375 |
intptr_t data() const;
|
|
376 |
void set_data(intptr_t x, address pc = 0);
|
|
377 |
bool is_pc_relative() {
|
|
378 |
return !is_movw();
|
|
379 |
}
|
|
380 |
void set_pc_relative_offset(address addr, address pc);
|
|
381 |
address next_instruction_address() const {
|
|
382 |
// NOTE: CompiledStaticCall::set_to_interpreted() calls this but
|
|
383 |
// are restricted to single-instruction ldr. No need to jump over
|
|
384 |
// several instructions.
|
|
385 |
assert(is_ldr_literal(), "Should only use single-instructions load");
|
|
386 |
return next_raw_instruction_address();
|
|
387 |
}
|
|
388 |
};
|
|
389 |
|
|
390 |
inline NativeMovConstReg* nativeMovConstReg_at(address address) {
|
|
391 |
NativeInstruction* ni = nativeInstruction_at(address);
|
|
392 |
assert(ni->is_ldr_literal() || ni->is_pc_rel() ||
|
|
393 |
ni->is_movw() && VM_Version::supports_movw(), "must be");
|
|
394 |
return (NativeMovConstReg*)address;
|
|
395 |
}
|
|
396 |
|
|
397 |
// -------------------------------------------------------------------
|
|
398 |
// Front end classes, hiding experimental back-end extensions.
|
|
399 |
|
|
400 |
// Extension to support indirections
|
|
401 |
class NativeJump: public RawNativeJump {
|
|
402 |
public:
|
|
403 |
};
|
|
404 |
|
|
405 |
inline NativeJump* nativeJump_at(address address) {
|
|
406 |
assert(nativeInstruction_at(address)->is_jump(), "must be");
|
|
407 |
return (NativeJump*)address;
|
|
408 |
}
|
|
409 |
|
|
410 |
class NativeCall: public RawNativeCall {
|
|
411 |
public:
|
|
412 |
// NativeCall::next_instruction_address() is used only to define the
|
|
413 |
// range where to look for the relocation information. We need not
|
|
414 |
// walk over composed instructions (as long as the relocation information
|
|
415 |
// is associated to the first instruction).
|
|
416 |
address next_instruction_address() const {
|
|
417 |
return next_raw_instruction_address();
|
|
418 |
}
|
|
419 |
|
|
420 |
};
|
|
421 |
|
|
422 |
inline NativeCall* nativeCall_at(address address) {
|
|
423 |
assert(nativeInstruction_at(address)->is_call() ||
|
|
424 |
(!VM_Version::supports_movw() && nativeInstruction_at(address)->is_jump()), "must be");
|
|
425 |
return (NativeCall*)address;
|
|
426 |
}
|
|
427 |
|
|
428 |
inline NativeCall* nativeCall_before(address return_address) {
|
|
429 |
return (NativeCall *) rawNativeCall_before(return_address);
|
|
430 |
}
|
|
431 |
|
|
432 |
#endif // CPU_ARM_VM_NATIVEINST_ARM_32_HPP
|