1
|
1 |
/*
|
|
2 |
* Copyright 1997-2005 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// A growable array.
|
|
26 |
|
|
27 |
/*************************************************************************/
|
|
28 |
/* */
|
|
29 |
/* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING */
|
|
30 |
/* */
|
|
31 |
/* Should you use GrowableArrays to contain handles you must be certain */
|
|
32 |
/* the the GrowableArray does not outlive the HandleMark that contains */
|
|
33 |
/* the handles. Since GrowableArrays are typically resource allocated */
|
|
34 |
/* the following is an example of INCORRECT CODE, */
|
|
35 |
/* */
|
|
36 |
/* ResourceMark rm; */
|
|
37 |
/* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size); */
|
|
38 |
/* if (blah) { */
|
|
39 |
/* while (...) { */
|
|
40 |
/* HandleMark hm; */
|
|
41 |
/* ... */
|
|
42 |
/* Handle h(THREAD, some_oop); */
|
|
43 |
/* arr->append(h); */
|
|
44 |
/* } */
|
|
45 |
/* } */
|
|
46 |
/* if (arr->length() != 0 ) { */
|
|
47 |
/* oop bad_oop = arr->at(0)(); // Handle is BAD HERE. */
|
|
48 |
/* ... */
|
|
49 |
/* } */
|
|
50 |
/* */
|
|
51 |
/* If the GrowableArrays you are creating is C_Heap allocated then it */
|
|
52 |
/* hould not old handles since the handles could trivially try and */
|
|
53 |
/* outlive their HandleMark. In some situations you might need to do */
|
|
54 |
/* this and it would be legal but be very careful and see if you can do */
|
|
55 |
/* the code in some other manner. */
|
|
56 |
/* */
|
|
57 |
/*************************************************************************/
|
|
58 |
|
|
59 |
// To call default constructor the placement operator new() is used.
|
|
60 |
// It should be empty (it only returns the passed void* pointer).
|
|
61 |
// The definition of placement operator new(size_t, void*) in the <new>.
|
|
62 |
|
|
63 |
#include <new>
|
|
64 |
|
|
65 |
// Need the correct linkage to call qsort without warnings
|
|
66 |
extern "C" {
|
|
67 |
typedef int (*_sort_Fn)(const void *, const void *);
|
|
68 |
}
|
|
69 |
|
|
70 |
class GenericGrowableArray : public ResourceObj {
|
|
71 |
protected:
|
|
72 |
int _len; // current length
|
|
73 |
int _max; // maximum length
|
|
74 |
Arena* _arena; // Indicates where allocation occurs:
|
|
75 |
// 0 means default ResourceArea
|
|
76 |
// 1 means on C heap
|
|
77 |
// otherwise, allocate in _arena
|
|
78 |
#ifdef ASSERT
|
|
79 |
int _nesting; // resource area nesting at creation
|
|
80 |
void set_nesting();
|
|
81 |
void check_nesting();
|
|
82 |
#else
|
|
83 |
#define set_nesting();
|
|
84 |
#define check_nesting();
|
|
85 |
#endif
|
|
86 |
|
|
87 |
// Where are we going to allocate memory?
|
|
88 |
bool on_C_heap() { return _arena == (Arena*)1; }
|
|
89 |
bool on_stack () { return _arena == NULL; }
|
|
90 |
bool on_arena () { return _arena > (Arena*)1; }
|
|
91 |
|
|
92 |
// This GA will use the resource stack for storage if c_heap==false,
|
|
93 |
// Else it will use the C heap. Use clear_and_deallocate to avoid leaks.
|
|
94 |
GenericGrowableArray(int initial_size, int initial_len, bool c_heap) {
|
|
95 |
_len = initial_len;
|
|
96 |
_max = initial_size;
|
|
97 |
assert(_len >= 0 && _len <= _max, "initial_len too big");
|
|
98 |
_arena = (c_heap ? (Arena*)1 : NULL);
|
|
99 |
set_nesting();
|
|
100 |
assert(!c_heap || allocated_on_C_heap(), "growable array must be on C heap if elements are");
|
|
101 |
}
|
|
102 |
|
|
103 |
// This GA will use the given arena for storage.
|
|
104 |
// Consider using new(arena) GrowableArray<T> to allocate the header.
|
|
105 |
GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
|
|
106 |
_len = initial_len;
|
|
107 |
_max = initial_size;
|
|
108 |
assert(_len >= 0 && _len <= _max, "initial_len too big");
|
|
109 |
_arena = arena;
|
|
110 |
assert(on_arena(), "arena has taken on reserved value 0 or 1");
|
|
111 |
}
|
|
112 |
|
|
113 |
void* raw_allocate(int elementSize);
|
1551
|
114 |
|
|
115 |
// some uses pass the Thread explicitly for speed (4990299 tuning)
|
|
116 |
void* raw_allocate(Thread* thread, int elementSize) {
|
|
117 |
assert(on_stack(), "fast ResourceObj path only");
|
|
118 |
return (void*)resource_allocate_bytes(thread, elementSize * _max);
|
|
119 |
}
|
1
|
120 |
};
|
|
121 |
|
|
122 |
template<class E> class GrowableArray : public GenericGrowableArray {
|
|
123 |
private:
|
|
124 |
E* _data; // data array
|
|
125 |
|
|
126 |
void grow(int j);
|
|
127 |
void raw_at_put_grow(int i, const E& p, const E& fill);
|
|
128 |
void clear_and_deallocate();
|
|
129 |
public:
|
1551
|
130 |
GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
|
|
131 |
_data = (E*)raw_allocate(thread, sizeof(E));
|
|
132 |
for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
|
|
133 |
}
|
|
134 |
|
1
|
135 |
GrowableArray(int initial_size, bool C_heap = false) : GenericGrowableArray(initial_size, 0, C_heap) {
|
|
136 |
_data = (E*)raw_allocate(sizeof(E));
|
|
137 |
for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
|
|
138 |
}
|
|
139 |
|
|
140 |
GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false) : GenericGrowableArray(initial_size, initial_len, C_heap) {
|
|
141 |
_data = (E*)raw_allocate(sizeof(E));
|
|
142 |
int i = 0;
|
|
143 |
for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
|
|
144 |
for (; i < _max; i++) ::new ((void*)&_data[i]) E();
|
|
145 |
}
|
|
146 |
|
|
147 |
GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
|
|
148 |
_data = (E*)raw_allocate(sizeof(E));
|
|
149 |
int i = 0;
|
|
150 |
for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
|
|
151 |
for (; i < _max; i++) ::new ((void*)&_data[i]) E();
|
|
152 |
}
|
|
153 |
|
|
154 |
GrowableArray() : GenericGrowableArray(2, 0, false) {
|
|
155 |
_data = (E*)raw_allocate(sizeof(E));
|
|
156 |
::new ((void*)&_data[0]) E();
|
|
157 |
::new ((void*)&_data[1]) E();
|
|
158 |
}
|
|
159 |
|
|
160 |
// Does nothing for resource and arena objects
|
|
161 |
~GrowableArray() { if (on_C_heap()) clear_and_deallocate(); }
|
|
162 |
|
|
163 |
void clear() { _len = 0; }
|
|
164 |
int length() const { return _len; }
|
|
165 |
void trunc_to(int l) { assert(l <= _len,"cannot increase length"); _len = l; }
|
|
166 |
bool is_empty() const { return _len == 0; }
|
|
167 |
bool is_nonempty() const { return _len != 0; }
|
|
168 |
bool is_full() const { return _len == _max; }
|
|
169 |
DEBUG_ONLY(E* data_addr() const { return _data; })
|
|
170 |
|
|
171 |
void print();
|
|
172 |
|
1551
|
173 |
int append(const E& elem) {
|
1
|
174 |
check_nesting();
|
|
175 |
if (_len == _max) grow(_len);
|
1551
|
176 |
int idx = _len++;
|
|
177 |
_data[idx] = elem;
|
|
178 |
return idx;
|
1
|
179 |
}
|
|
180 |
|
|
181 |
void append_if_missing(const E& elem) {
|
|
182 |
if (!contains(elem)) append(elem);
|
|
183 |
}
|
|
184 |
|
|
185 |
E at(int i) const {
|
|
186 |
assert(0 <= i && i < _len, "illegal index");
|
|
187 |
return _data[i];
|
|
188 |
}
|
|
189 |
|
|
190 |
E* adr_at(int i) const {
|
|
191 |
assert(0 <= i && i < _len, "illegal index");
|
|
192 |
return &_data[i];
|
|
193 |
}
|
|
194 |
|
|
195 |
E first() const {
|
|
196 |
assert(_len > 0, "empty list");
|
|
197 |
return _data[0];
|
|
198 |
}
|
|
199 |
|
|
200 |
E top() const {
|
|
201 |
assert(_len > 0, "empty list");
|
|
202 |
return _data[_len-1];
|
|
203 |
}
|
|
204 |
|
|
205 |
void push(const E& elem) { append(elem); }
|
|
206 |
|
|
207 |
E pop() {
|
|
208 |
assert(_len > 0, "empty list");
|
|
209 |
return _data[--_len];
|
|
210 |
}
|
|
211 |
|
|
212 |
void at_put(int i, const E& elem) {
|
|
213 |
assert(0 <= i && i < _len, "illegal index");
|
|
214 |
_data[i] = elem;
|
|
215 |
}
|
|
216 |
|
|
217 |
E at_grow(int i, const E& fill = E()) {
|
|
218 |
assert(0 <= i, "negative index");
|
|
219 |
check_nesting();
|
|
220 |
if (i >= _len) {
|
|
221 |
if (i >= _max) grow(i);
|
|
222 |
for (int j = _len; j <= i; j++)
|
|
223 |
_data[j] = fill;
|
|
224 |
_len = i+1;
|
|
225 |
}
|
|
226 |
return _data[i];
|
|
227 |
}
|
|
228 |
|
|
229 |
void at_put_grow(int i, const E& elem, const E& fill = E()) {
|
|
230 |
assert(0 <= i, "negative index");
|
|
231 |
check_nesting();
|
|
232 |
raw_at_put_grow(i, elem, fill);
|
|
233 |
}
|
|
234 |
|
|
235 |
bool contains(const E& elem) const {
|
|
236 |
for (int i = 0; i < _len; i++) {
|
|
237 |
if (_data[i] == elem) return true;
|
|
238 |
}
|
|
239 |
return false;
|
|
240 |
}
|
|
241 |
|
|
242 |
int find(const E& elem) const {
|
|
243 |
for (int i = 0; i < _len; i++) {
|
|
244 |
if (_data[i] == elem) return i;
|
|
245 |
}
|
|
246 |
return -1;
|
|
247 |
}
|
|
248 |
|
|
249 |
int find(void* token, bool f(void*, E)) const {
|
|
250 |
for (int i = 0; i < _len; i++) {
|
|
251 |
if (f(token, _data[i])) return i;
|
|
252 |
}
|
|
253 |
return -1;
|
|
254 |
}
|
|
255 |
|
|
256 |
int find_at_end(void* token, bool f(void*, E)) const {
|
|
257 |
// start at the end of the array
|
|
258 |
for (int i = _len-1; i >= 0; i--) {
|
|
259 |
if (f(token, _data[i])) return i;
|
|
260 |
}
|
|
261 |
return -1;
|
|
262 |
}
|
|
263 |
|
|
264 |
void remove(const E& elem) {
|
|
265 |
for (int i = 0; i < _len; i++) {
|
|
266 |
if (_data[i] == elem) {
|
|
267 |
for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
|
|
268 |
_len--;
|
|
269 |
return;
|
|
270 |
}
|
|
271 |
}
|
|
272 |
ShouldNotReachHere();
|
|
273 |
}
|
|
274 |
|
|
275 |
void remove_at(int index) {
|
|
276 |
assert(0 <= index && index < _len, "illegal index");
|
|
277 |
for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
|
|
278 |
_len--;
|
|
279 |
}
|
|
280 |
|
|
281 |
void appendAll(const GrowableArray<E>* l) {
|
|
282 |
for (int i = 0; i < l->_len; i++) {
|
|
283 |
raw_at_put_grow(_len, l->_data[i], 0);
|
|
284 |
}
|
|
285 |
}
|
|
286 |
|
|
287 |
void sort(int f(E*,E*)) {
|
|
288 |
qsort(_data, length(), sizeof(E), (_sort_Fn)f);
|
|
289 |
}
|
|
290 |
// sort by fixed-stride sub arrays:
|
|
291 |
void sort(int f(E*,E*), int stride) {
|
|
292 |
qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
|
|
293 |
}
|
|
294 |
};
|
|
295 |
|
|
296 |
// Global GrowableArray methods (one instance in the library per each 'E' type).
|
|
297 |
|
|
298 |
template<class E> void GrowableArray<E>::grow(int j) {
|
|
299 |
// grow the array by doubling its size (amortized growth)
|
|
300 |
int old_max = _max;
|
|
301 |
if (_max == 0) _max = 1; // prevent endless loop
|
|
302 |
while (j >= _max) _max = _max*2;
|
|
303 |
// j < _max
|
|
304 |
E* newData = (E*)raw_allocate(sizeof(E));
|
|
305 |
int i = 0;
|
|
306 |
for ( ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
|
|
307 |
for ( ; i < _max; i++) ::new ((void*)&newData[i]) E();
|
|
308 |
for (i = 0; i < old_max; i++) _data[i].~E();
|
|
309 |
if (on_C_heap() && _data != NULL) {
|
|
310 |
FreeHeap(_data);
|
|
311 |
}
|
|
312 |
_data = newData;
|
|
313 |
}
|
|
314 |
|
|
315 |
template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
|
|
316 |
if (i >= _len) {
|
|
317 |
if (i >= _max) grow(i);
|
|
318 |
for (int j = _len; j < i; j++)
|
|
319 |
_data[j] = fill;
|
|
320 |
_len = i+1;
|
|
321 |
}
|
|
322 |
_data[i] = p;
|
|
323 |
}
|
|
324 |
|
|
325 |
// This function clears and deallocate the data in the growable array that
|
|
326 |
// has been allocated on the C heap. It's not public - called by the
|
|
327 |
// destructor.
|
|
328 |
template<class E> void GrowableArray<E>::clear_and_deallocate() {
|
|
329 |
assert(on_C_heap(),
|
|
330 |
"clear_and_deallocate should only be called when on C heap");
|
|
331 |
clear();
|
|
332 |
if (_data != NULL) {
|
|
333 |
for (int i = 0; i < _max; i++) _data[i].~E();
|
|
334 |
FreeHeap(_data);
|
|
335 |
_data = NULL;
|
|
336 |
}
|
|
337 |
}
|
|
338 |
|
|
339 |
template<class E> void GrowableArray<E>::print() {
|
|
340 |
tty->print("Growable Array " INTPTR_FORMAT, this);
|
|
341 |
tty->print(": length %ld (_max %ld) { ", _len, _max);
|
|
342 |
for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
|
|
343 |
tty->print("}\n");
|
|
344 |
}
|