1
|
1 |
/*
|
|
2 |
* Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
# include "incls/_precompiled.incl"
|
|
26 |
# include "incls/_parCardTableModRefBS.cpp.incl"
|
|
27 |
|
|
28 |
void CardTableModRefBS::par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
|
|
29 |
DirtyCardToOopClosure* dcto_cl,
|
|
30 |
MemRegionClosure* cl,
|
|
31 |
bool clear,
|
|
32 |
int n_threads) {
|
|
33 |
if (n_threads > 0) {
|
|
34 |
assert(n_threads == (int)ParallelGCThreads, "# worker threads != # requested!");
|
|
35 |
|
|
36 |
// Make sure the LNC array is valid for the space.
|
|
37 |
jbyte** lowest_non_clean;
|
|
38 |
uintptr_t lowest_non_clean_base_chunk_index;
|
|
39 |
size_t lowest_non_clean_chunk_size;
|
|
40 |
get_LNC_array_for_space(sp, lowest_non_clean,
|
|
41 |
lowest_non_clean_base_chunk_index,
|
|
42 |
lowest_non_clean_chunk_size);
|
|
43 |
|
|
44 |
int n_strides = n_threads * StridesPerThread;
|
|
45 |
SequentialSubTasksDone* pst = sp->par_seq_tasks();
|
|
46 |
pst->set_par_threads(n_threads);
|
|
47 |
pst->set_n_tasks(n_strides);
|
|
48 |
|
|
49 |
int stride = 0;
|
|
50 |
while (!pst->is_task_claimed(/* reference */ stride)) {
|
|
51 |
process_stride(sp, mr, stride, n_strides, dcto_cl, cl, clear,
|
|
52 |
lowest_non_clean,
|
|
53 |
lowest_non_clean_base_chunk_index,
|
|
54 |
lowest_non_clean_chunk_size);
|
|
55 |
}
|
|
56 |
if (pst->all_tasks_completed()) {
|
|
57 |
// Clear lowest_non_clean array for next time.
|
|
58 |
intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
|
|
59 |
uintptr_t last_chunk_index = addr_to_chunk_index(mr.last());
|
|
60 |
for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
|
|
61 |
intptr_t ind = ch - lowest_non_clean_base_chunk_index;
|
|
62 |
assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
|
|
63 |
"Bounds error");
|
|
64 |
lowest_non_clean[ind] = NULL;
|
|
65 |
}
|
|
66 |
}
|
|
67 |
}
|
|
68 |
}
|
|
69 |
|
|
70 |
void
|
|
71 |
CardTableModRefBS::
|
|
72 |
process_stride(Space* sp,
|
|
73 |
MemRegion used,
|
|
74 |
jint stride, int n_strides,
|
|
75 |
DirtyCardToOopClosure* dcto_cl,
|
|
76 |
MemRegionClosure* cl,
|
|
77 |
bool clear,
|
|
78 |
jbyte** lowest_non_clean,
|
|
79 |
uintptr_t lowest_non_clean_base_chunk_index,
|
|
80 |
size_t lowest_non_clean_chunk_size) {
|
|
81 |
// We don't have to go downwards here; it wouldn't help anyway,
|
|
82 |
// because of parallelism.
|
|
83 |
|
|
84 |
// Find the first card address of the first chunk in the stride that is
|
|
85 |
// at least "bottom" of the used region.
|
|
86 |
jbyte* start_card = byte_for(used.start());
|
|
87 |
jbyte* end_card = byte_after(used.last());
|
|
88 |
uintptr_t start_chunk = addr_to_chunk_index(used.start());
|
|
89 |
uintptr_t start_chunk_stride_num = start_chunk % n_strides;
|
|
90 |
jbyte* chunk_card_start;
|
|
91 |
|
|
92 |
if ((uintptr_t)stride >= start_chunk_stride_num) {
|
|
93 |
chunk_card_start = (jbyte*)(start_card +
|
|
94 |
(stride - start_chunk_stride_num) *
|
|
95 |
CardsPerStrideChunk);
|
|
96 |
} else {
|
|
97 |
// Go ahead to the next chunk group boundary, then to the requested stride.
|
|
98 |
chunk_card_start = (jbyte*)(start_card +
|
|
99 |
(n_strides - start_chunk_stride_num + stride) *
|
|
100 |
CardsPerStrideChunk);
|
|
101 |
}
|
|
102 |
|
|
103 |
while (chunk_card_start < end_card) {
|
|
104 |
// We don't have to go downwards here; it wouldn't help anyway,
|
|
105 |
// because of parallelism. (We take care with "min_done"; see below.)
|
|
106 |
// Invariant: chunk_mr should be fully contained within the "used" region.
|
|
107 |
jbyte* chunk_card_end = chunk_card_start + CardsPerStrideChunk;
|
|
108 |
MemRegion chunk_mr = MemRegion(addr_for(chunk_card_start),
|
|
109 |
chunk_card_end >= end_card ?
|
|
110 |
used.end() : addr_for(chunk_card_end));
|
|
111 |
assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
|
|
112 |
assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
|
|
113 |
|
|
114 |
// Process the chunk.
|
|
115 |
process_chunk_boundaries(sp,
|
|
116 |
dcto_cl,
|
|
117 |
chunk_mr,
|
|
118 |
used,
|
|
119 |
lowest_non_clean,
|
|
120 |
lowest_non_clean_base_chunk_index,
|
|
121 |
lowest_non_clean_chunk_size);
|
|
122 |
|
|
123 |
non_clean_card_iterate_work(chunk_mr, cl, clear);
|
|
124 |
|
|
125 |
// Find the next chunk of the stride.
|
|
126 |
chunk_card_start += CardsPerStrideChunk * n_strides;
|
|
127 |
}
|
|
128 |
}
|
|
129 |
|
|
130 |
void
|
|
131 |
CardTableModRefBS::
|
|
132 |
process_chunk_boundaries(Space* sp,
|
|
133 |
DirtyCardToOopClosure* dcto_cl,
|
|
134 |
MemRegion chunk_mr,
|
|
135 |
MemRegion used,
|
|
136 |
jbyte** lowest_non_clean,
|
|
137 |
uintptr_t lowest_non_clean_base_chunk_index,
|
|
138 |
size_t lowest_non_clean_chunk_size)
|
|
139 |
{
|
|
140 |
// We must worry about the chunk boundaries.
|
|
141 |
|
|
142 |
// First, set our max_to_do:
|
|
143 |
HeapWord* max_to_do = NULL;
|
|
144 |
uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start());
|
|
145 |
cur_chunk_index = cur_chunk_index - lowest_non_clean_base_chunk_index;
|
|
146 |
|
|
147 |
if (chunk_mr.end() < used.end()) {
|
|
148 |
// This is not the last chunk in the used region. What is the last
|
|
149 |
// object?
|
|
150 |
HeapWord* last_block = sp->block_start(chunk_mr.end());
|
|
151 |
assert(last_block <= chunk_mr.end(), "In case this property changes.");
|
|
152 |
if (last_block == chunk_mr.end()
|
|
153 |
|| !sp->block_is_obj(last_block)) {
|
|
154 |
max_to_do = chunk_mr.end();
|
|
155 |
|
|
156 |
} else {
|
|
157 |
// It is an object and starts before the end of the current chunk.
|
|
158 |
// last_obj_card is the card corresponding to the start of the last object
|
|
159 |
// in the chunk. Note that the last object may not start in
|
|
160 |
// the chunk.
|
|
161 |
jbyte* last_obj_card = byte_for(last_block);
|
|
162 |
if (!card_may_have_been_dirty(*last_obj_card)) {
|
|
163 |
// The card containing the head is not dirty. Any marks in
|
|
164 |
// subsequent cards still in this chunk must have been made
|
|
165 |
// precisely; we can cap processing at the end.
|
|
166 |
max_to_do = chunk_mr.end();
|
|
167 |
} else {
|
|
168 |
// The last object must be considered dirty, and extends onto the
|
|
169 |
// following chunk. Look for a dirty card in that chunk that will
|
|
170 |
// bound our processing.
|
|
171 |
jbyte* limit_card = NULL;
|
|
172 |
size_t last_block_size = sp->block_size(last_block);
|
|
173 |
jbyte* last_card_of_last_obj =
|
|
174 |
byte_for(last_block + last_block_size - 1);
|
|
175 |
jbyte* first_card_of_next_chunk = byte_for(chunk_mr.end());
|
|
176 |
// This search potentially goes a long distance looking
|
|
177 |
// for the next card that will be scanned. For example,
|
|
178 |
// an object that is an array of primitives will not
|
|
179 |
// have any cards covering regions interior to the array
|
|
180 |
// that will need to be scanned. The scan can be terminated
|
|
181 |
// at the last card of the next chunk. That would leave
|
|
182 |
// limit_card as NULL and would result in "max_to_do"
|
|
183 |
// being set with the LNC value or with the end
|
|
184 |
// of the last block.
|
|
185 |
jbyte* last_card_of_next_chunk = first_card_of_next_chunk +
|
|
186 |
CardsPerStrideChunk;
|
|
187 |
assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start())
|
|
188 |
== CardsPerStrideChunk, "last card of next chunk may be wrong");
|
|
189 |
jbyte* last_card_to_check = (jbyte*) MIN2(last_card_of_last_obj,
|
|
190 |
last_card_of_next_chunk);
|
|
191 |
for (jbyte* cur = first_card_of_next_chunk;
|
|
192 |
cur <= last_card_to_check; cur++) {
|
|
193 |
if (card_will_be_scanned(*cur)) {
|
|
194 |
limit_card = cur; break;
|
|
195 |
}
|
|
196 |
}
|
|
197 |
assert(0 <= cur_chunk_index+1 &&
|
|
198 |
cur_chunk_index+1 < lowest_non_clean_chunk_size,
|
|
199 |
"Bounds error.");
|
|
200 |
// LNC for the next chunk
|
|
201 |
jbyte* lnc_card = lowest_non_clean[cur_chunk_index+1];
|
|
202 |
if (limit_card == NULL) {
|
|
203 |
limit_card = lnc_card;
|
|
204 |
}
|
|
205 |
if (limit_card != NULL) {
|
|
206 |
if (lnc_card != NULL) {
|
|
207 |
limit_card = (jbyte*)MIN2((intptr_t)limit_card,
|
|
208 |
(intptr_t)lnc_card);
|
|
209 |
}
|
|
210 |
max_to_do = addr_for(limit_card);
|
|
211 |
} else {
|
|
212 |
max_to_do = last_block + last_block_size;
|
|
213 |
}
|
|
214 |
}
|
|
215 |
}
|
|
216 |
assert(max_to_do != NULL, "OOPS!");
|
|
217 |
} else {
|
|
218 |
max_to_do = used.end();
|
|
219 |
}
|
|
220 |
// Now we can set the closure we're using so it doesn't to beyond
|
|
221 |
// max_to_do.
|
|
222 |
dcto_cl->set_min_done(max_to_do);
|
|
223 |
#ifndef PRODUCT
|
|
224 |
dcto_cl->set_last_bottom(max_to_do);
|
|
225 |
#endif
|
|
226 |
|
|
227 |
// Now we set *our" lowest_non_clean entry.
|
|
228 |
// Find the object that spans our boundary, if one exists.
|
|
229 |
// Nothing to do on the first chunk.
|
|
230 |
if (chunk_mr.start() > used.start()) {
|
|
231 |
// first_block is the block possibly spanning the chunk start
|
|
232 |
HeapWord* first_block = sp->block_start(chunk_mr.start());
|
|
233 |
// Does the block span the start of the chunk and is it
|
|
234 |
// an object?
|
|
235 |
if (first_block < chunk_mr.start() &&
|
|
236 |
sp->block_is_obj(first_block)) {
|
|
237 |
jbyte* first_dirty_card = NULL;
|
|
238 |
jbyte* last_card_of_first_obj =
|
|
239 |
byte_for(first_block + sp->block_size(first_block) - 1);
|
|
240 |
jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
|
|
241 |
jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
|
|
242 |
jbyte* last_card_to_check =
|
|
243 |
(jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
|
|
244 |
(intptr_t) last_card_of_first_obj);
|
|
245 |
for (jbyte* cur = first_card_of_cur_chunk;
|
|
246 |
cur <= last_card_to_check; cur++) {
|
|
247 |
if (card_will_be_scanned(*cur)) {
|
|
248 |
first_dirty_card = cur; break;
|
|
249 |
}
|
|
250 |
}
|
|
251 |
if (first_dirty_card != NULL) {
|
|
252 |
assert(0 <= cur_chunk_index &&
|
|
253 |
cur_chunk_index < lowest_non_clean_chunk_size,
|
|
254 |
"Bounds error.");
|
|
255 |
lowest_non_clean[cur_chunk_index] = first_dirty_card;
|
|
256 |
}
|
|
257 |
}
|
|
258 |
}
|
|
259 |
}
|
|
260 |
|
|
261 |
void
|
|
262 |
CardTableModRefBS::
|
|
263 |
get_LNC_array_for_space(Space* sp,
|
|
264 |
jbyte**& lowest_non_clean,
|
|
265 |
uintptr_t& lowest_non_clean_base_chunk_index,
|
|
266 |
size_t& lowest_non_clean_chunk_size) {
|
|
267 |
|
|
268 |
int i = find_covering_region_containing(sp->bottom());
|
|
269 |
MemRegion covered = _covered[i];
|
|
270 |
size_t n_chunks = chunks_to_cover(covered);
|
|
271 |
|
|
272 |
// Only the first thread to obtain the lock will resize the
|
|
273 |
// LNC array for the covered region. Any later expansion can't affect
|
|
274 |
// the used_at_save_marks region.
|
|
275 |
// (I observed a bug in which the first thread to execute this would
|
|
276 |
// resize, and then it would cause "expand_and_allocates" that would
|
|
277 |
// Increase the number of chunks in the covered region. Then a second
|
|
278 |
// thread would come and execute this, see that the size didn't match,
|
|
279 |
// and free and allocate again. So the first thread would be using a
|
|
280 |
// freed "_lowest_non_clean" array.)
|
|
281 |
|
|
282 |
// Do a dirty read here. If we pass the conditional then take the rare
|
|
283 |
// event lock and do the read again in case some other thread had already
|
|
284 |
// succeeded and done the resize.
|
|
285 |
int cur_collection = Universe::heap()->total_collections();
|
|
286 |
if (_last_LNC_resizing_collection[i] != cur_collection) {
|
|
287 |
MutexLocker x(ParGCRareEvent_lock);
|
|
288 |
if (_last_LNC_resizing_collection[i] != cur_collection) {
|
|
289 |
if (_lowest_non_clean[i] == NULL ||
|
|
290 |
n_chunks != _lowest_non_clean_chunk_size[i]) {
|
|
291 |
|
|
292 |
// Should we delete the old?
|
|
293 |
if (_lowest_non_clean[i] != NULL) {
|
|
294 |
assert(n_chunks != _lowest_non_clean_chunk_size[i],
|
|
295 |
"logical consequence");
|
|
296 |
FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
|
|
297 |
_lowest_non_clean[i] = NULL;
|
|
298 |
}
|
|
299 |
// Now allocate a new one if necessary.
|
|
300 |
if (_lowest_non_clean[i] == NULL) {
|
|
301 |
_lowest_non_clean[i] = NEW_C_HEAP_ARRAY(CardPtr, n_chunks);
|
|
302 |
_lowest_non_clean_chunk_size[i] = n_chunks;
|
|
303 |
_lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
|
|
304 |
for (int j = 0; j < (int)n_chunks; j++)
|
|
305 |
_lowest_non_clean[i][j] = NULL;
|
|
306 |
}
|
|
307 |
}
|
|
308 |
_last_LNC_resizing_collection[i] = cur_collection;
|
|
309 |
}
|
|
310 |
}
|
|
311 |
// In any case, now do the initialization.
|
|
312 |
lowest_non_clean = _lowest_non_clean[i];
|
|
313 |
lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
|
|
314 |
lowest_non_clean_chunk_size = _lowest_non_clean_chunk_size[i];
|
|
315 |
}
|