author | stefank |
Tue, 05 Apr 2016 10:35:39 +0200 | |
changeset 37254 | 8631304f255c |
parent 30176 | 90aa2ac76bae |
permissions | -rw-r--r-- |
6762 | 1 |
/* |
13963
e5b53c306fb5
7197424: update copyright year to match last edit in jdk8 hotspot repository
mikael
parents:
13195
diff
changeset
|
2 |
* Copyright (c) 2009, 2012, Oracle and/or its affiliates. All rights reserved. |
6762 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
7397 | 19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 |
* or visit www.oracle.com if you need additional information or have any |
|
21 |
* questions. |
|
6762 | 22 |
* |
23 |
*/ |
|
24 |
||
7397 | 25 |
#ifndef SHARE_VM_UTILITIES_STACK_HPP |
26 |
#define SHARE_VM_UTILITIES_STACK_HPP |
|
27 |
||
13195 | 28 |
#include "memory/allocation.hpp" |
7397 | 29 |
#include "memory/allocation.inline.hpp" |
30 |
||
6762 | 31 |
// Class Stack (below) grows and shrinks by linking together "segments" which |
32 |
// are allocated on demand. Segments are arrays of the element type (E) plus an |
|
33 |
// extra pointer-sized field to store the segment link. Recently emptied |
|
34 |
// segments are kept in a cache and reused. |
|
35 |
// |
|
36 |
// Notes/caveats: |
|
37 |
// |
|
38 |
// The size of an element must either evenly divide the size of a pointer or be |
|
39 |
// a multiple of the size of a pointer. |
|
40 |
// |
|
41 |
// Destructors are not called for elements popped off the stack, so element |
|
42 |
// types which rely on destructors for things like reference counting will not |
|
43 |
// work properly. |
|
44 |
// |
|
45 |
// Class Stack allocates segments from the C heap. However, two protected |
|
46 |
// virtual methods are used to alloc/free memory which subclasses can override: |
|
47 |
// |
|
48 |
// virtual void* alloc(size_t bytes); |
|
49 |
// virtual void free(void* addr, size_t bytes); |
|
50 |
// |
|
51 |
// The alloc() method must return storage aligned for any use. The |
|
52 |
// implementation in class Stack assumes that alloc() will terminate the process |
|
53 |
// if the allocation fails. |
|
54 |
||
13195 | 55 |
template <class E, MEMFLAGS F> class StackIterator; |
6762 | 56 |
|
57 |
// StackBase holds common data/methods that don't depend on the element type, |
|
58 |
// factored out to reduce template code duplication. |
|
13195 | 59 |
template <MEMFLAGS F> class StackBase |
6762 | 60 |
{ |
61 |
public: |
|
62 |
size_t segment_size() const { return _seg_size; } // Elements per segment. |
|
63 |
size_t max_size() const { return _max_size; } // Max elements allowed. |
|
64 |
size_t max_cache_size() const { return _max_cache_size; } // Max segments |
|
65 |
// allowed in cache. |
|
66 |
||
67 |
size_t cache_size() const { return _cache_size; } // Segments in the cache. |
|
68 |
||
69 |
protected: |
|
70 |
// The ctor arguments correspond to the like-named functions above. |
|
71 |
// segment_size: number of items per segment |
|
72 |
// max_cache_size: maxmium number of *segments* to cache |
|
73 |
// max_size: maximum number of items allowed, rounded to a multiple of |
|
74 |
// the segment size (0 == unlimited) |
|
75 |
inline StackBase(size_t segment_size, size_t max_cache_size, size_t max_size); |
|
76 |
||
77 |
// Round max_size to a multiple of the segment size. Treat 0 as unlimited. |
|
78 |
static inline size_t adjust_max_size(size_t max_size, size_t seg_size); |
|
79 |
||
80 |
protected: |
|
81 |
const size_t _seg_size; // Number of items per segment. |
|
82 |
const size_t _max_size; // Maximum number of items allowed in the stack. |
|
83 |
const size_t _max_cache_size; // Maximum number of segments to cache. |
|
84 |
size_t _cur_seg_size; // Number of items in the current segment. |
|
85 |
size_t _full_seg_size; // Number of items in already-filled segments. |
|
86 |
size_t _cache_size; // Number of segments in the cache. |
|
87 |
}; |
|
88 |
||
89 |
#ifdef __GNUC__ |
|
90 |
#define inline |
|
91 |
#endif // __GNUC__ |
|
92 |
||
13195 | 93 |
template <class E, MEMFLAGS F> |
94 |
class Stack: public StackBase<F> |
|
6762 | 95 |
{ |
96 |
public: |
|
13195 | 97 |
friend class StackIterator<E, F>; |
6762 | 98 |
|
30176 | 99 |
// Number of elements that fit in 4K bytes minus the size of two pointers |
100 |
// (link field and malloc header). |
|
101 |
static const size_t _default_segment_size = (4096 - 2 * sizeof(E*)) / sizeof(E); |
|
102 |
static size_t default_segment_size() { return _default_segment_size; } |
|
103 |
||
6762 | 104 |
// segment_size: number of items per segment |
105 |
// max_cache_size: maxmium number of *segments* to cache |
|
106 |
// max_size: maximum number of items allowed, rounded to a multiple of |
|
107 |
// the segment size (0 == unlimited) |
|
30176 | 108 |
inline Stack(size_t segment_size = _default_segment_size, |
6762 | 109 |
size_t max_cache_size = 4, size_t max_size = 0); |
110 |
inline ~Stack() { clear(true); } |
|
111 |
||
13195 | 112 |
inline bool is_empty() const { return this->_cur_seg == NULL; } |
113 |
inline bool is_full() const { return this->_full_seg_size >= this->max_size(); } |
|
6762 | 114 |
|
115 |
// Performance sensitive code should use is_empty() instead of size() == 0 and |
|
116 |
// is_full() instead of size() == max_size(). Using a conditional here allows |
|
117 |
// just one var to be updated when pushing/popping elements instead of two; |
|
118 |
// _full_seg_size is updated only when pushing/popping segments. |
|
119 |
inline size_t size() const { |
|
13195 | 120 |
return is_empty() ? 0 : this->_full_seg_size + this->_cur_seg_size; |
6762 | 121 |
} |
122 |
||
123 |
inline void push(E elem); |
|
124 |
inline E pop(); |
|
125 |
||
126 |
// Clear everything from the stack, releasing the associated memory. If |
|
127 |
// clear_cache is true, also release any cached segments. |
|
128 |
void clear(bool clear_cache = false); |
|
129 |
||
130 |
protected: |
|
131 |
// Each segment includes space for _seg_size elements followed by a link |
|
132 |
// (pointer) to the previous segment; the space is allocated as a single block |
|
133 |
// of size segment_bytes(). _seg_size is rounded up if necessary so the link |
|
134 |
// is properly aligned. The C struct for the layout would be: |
|
135 |
// |
|
136 |
// struct segment { |
|
137 |
// E elements[_seg_size]; |
|
138 |
// E* link; |
|
139 |
// }; |
|
140 |
||
141 |
// Round up seg_size to keep the link field aligned. |
|
142 |
static inline size_t adjust_segment_size(size_t seg_size); |
|
143 |
||
144 |
// Methods for allocation size and getting/setting the link. |
|
145 |
inline size_t link_offset() const; // Byte offset of link field. |
|
146 |
inline size_t segment_bytes() const; // Segment size in bytes. |
|
147 |
inline E** link_addr(E* seg) const; // Address of the link field. |
|
148 |
inline E* get_link(E* seg) const; // Extract the link from seg. |
|
149 |
inline E* set_link(E* new_seg, E* old_seg); // new_seg.link = old_seg. |
|
150 |
||
151 |
virtual E* alloc(size_t bytes); |
|
152 |
virtual void free(E* addr, size_t bytes); |
|
153 |
||
154 |
void push_segment(); |
|
155 |
void pop_segment(); |
|
156 |
||
157 |
void free_segments(E* seg); // Free all segments in the list. |
|
158 |
inline void reset(bool reset_cache); // Reset all data fields. |
|
159 |
||
160 |
DEBUG_ONLY(void verify(bool at_empty_transition) const;) |
|
161 |
DEBUG_ONLY(void zap_segment(E* seg, bool zap_link_field) const;) |
|
162 |
||
163 |
private: |
|
164 |
E* _cur_seg; // Current segment. |
|
165 |
E* _cache; // Segment cache to avoid ping-ponging. |
|
166 |
}; |
|
167 |
||
13195 | 168 |
template <class E, MEMFLAGS F> class ResourceStack: public Stack<E, F>, public ResourceObj |
6762 | 169 |
{ |
170 |
public: |
|
171 |
// If this class becomes widely used, it may make sense to save the Thread |
|
172 |
// and use it when allocating segments. |
|
13195 | 173 |
// ResourceStack(size_t segment_size = Stack<E, F>::default_segment_size()): |
174 |
ResourceStack(size_t segment_size): Stack<E, F>(segment_size, max_uintx) |
|
6762 | 175 |
{ } |
176 |
||
177 |
// Set the segment pointers to NULL so the parent dtor does not free them; |
|
178 |
// that must be done by the ResourceMark code. |
|
13195 | 179 |
~ResourceStack() { Stack<E, F>::reset(true); } |
6762 | 180 |
|
181 |
protected: |
|
182 |
virtual E* alloc(size_t bytes); |
|
183 |
virtual void free(E* addr, size_t bytes); |
|
184 |
||
185 |
private: |
|
186 |
void clear(bool clear_cache = false); |
|
187 |
}; |
|
188 |
||
13195 | 189 |
template <class E, MEMFLAGS F> |
6762 | 190 |
class StackIterator: public StackObj |
191 |
{ |
|
192 |
public: |
|
13195 | 193 |
StackIterator(Stack<E, F>& stack): _stack(stack) { sync(); } |
6762 | 194 |
|
13195 | 195 |
Stack<E, F>& stack() const { return _stack; } |
6762 | 196 |
|
197 |
bool is_empty() const { return _cur_seg == NULL; } |
|
198 |
||
199 |
E next() { return *next_addr(); } |
|
200 |
E* next_addr(); |
|
201 |
||
202 |
void sync(); // Sync the iterator's state to the stack's current state. |
|
203 |
||
204 |
private: |
|
13195 | 205 |
Stack<E, F>& _stack; |
6762 | 206 |
size_t _cur_seg_size; |
207 |
E* _cur_seg; |
|
208 |
size_t _full_seg_size; |
|
209 |
}; |
|
210 |
||
211 |
#ifdef __GNUC__ |
|
212 |
#undef inline |
|
213 |
#endif // __GNUC__ |
|
7397 | 214 |
|
215 |
#endif // SHARE_VM_UTILITIES_STACK_HPP |