author | never |
Wed, 27 Aug 2008 00:21:55 -0700 | |
changeset 1066 | 717c3345024f |
parent 670 | ddf3e9583f2f |
child 3696 | 9e5d9b5e1049 |
permissions | -rw-r--r-- |
1 | 1 |
/* |
670 | 2 |
* Copyright 2000-2008 Sun Microsystems, Inc. All Rights Reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
class BytecodeStream; |
|
26 |
||
27 |
// The MethodData object collects counts and other profile information |
|
28 |
// during zeroth-tier (interpretive) and first-tier execution. |
|
29 |
// The profile is used later by compilation heuristics. Some heuristics |
|
30 |
// enable use of aggressive (or "heroic") optimizations. An aggressive |
|
31 |
// optimization often has a down-side, a corner case that it handles |
|
32 |
// poorly, but which is thought to be rare. The profile provides |
|
33 |
// evidence of this rarity for a given method or even BCI. It allows |
|
34 |
// the compiler to back out of the optimization at places where it |
|
35 |
// has historically been a poor choice. Other heuristics try to use |
|
36 |
// specific information gathered about types observed at a given site. |
|
37 |
// |
|
38 |
// All data in the profile is approximate. It is expected to be accurate |
|
39 |
// on the whole, but the system expects occasional inaccuraces, due to |
|
40 |
// counter overflow, multiprocessor races during data collection, space |
|
41 |
// limitations, missing MDO blocks, etc. Bad or missing data will degrade |
|
42 |
// optimization quality but will not affect correctness. Also, each MDO |
|
43 |
// is marked with its birth-date ("creation_mileage") which can be used |
|
44 |
// to assess the quality ("maturity") of its data. |
|
45 |
// |
|
46 |
// Short (<32-bit) counters are designed to overflow to a known "saturated" |
|
47 |
// state. Also, certain recorded per-BCI events are given one-bit counters |
|
48 |
// which overflow to a saturated state which applied to all counters at |
|
49 |
// that BCI. In other words, there is a small lattice which approximates |
|
50 |
// the ideal of an infinite-precision counter for each event at each BCI, |
|
51 |
// and the lattice quickly "bottoms out" in a state where all counters |
|
52 |
// are taken to be indefinitely large. |
|
53 |
// |
|
54 |
// The reader will find many data races in profile gathering code, starting |
|
55 |
// with invocation counter incrementation. None of these races harm correct |
|
56 |
// execution of the compiled code. |
|
57 |
||
58 |
// DataLayout |
|
59 |
// |
|
60 |
// Overlay for generic profiling data. |
|
61 |
class DataLayout VALUE_OBJ_CLASS_SPEC { |
|
62 |
private: |
|
63 |
// Every data layout begins with a header. This header |
|
64 |
// contains a tag, which is used to indicate the size/layout |
|
65 |
// of the data, 4 bits of flags, which can be used in any way, |
|
66 |
// 4 bits of trap history (none/one reason/many reasons), |
|
67 |
// and a bci, which is used to tie this piece of data to a |
|
68 |
// specific bci in the bytecodes. |
|
69 |
union { |
|
70 |
intptr_t _bits; |
|
71 |
struct { |
|
72 |
u1 _tag; |
|
73 |
u1 _flags; |
|
74 |
u2 _bci; |
|
75 |
} _struct; |
|
76 |
} _header; |
|
77 |
||
78 |
// The data layout has an arbitrary number of cells, each sized |
|
79 |
// to accomodate a pointer or an integer. |
|
80 |
intptr_t _cells[1]; |
|
81 |
||
82 |
// Some types of data layouts need a length field. |
|
83 |
static bool needs_array_len(u1 tag); |
|
84 |
||
85 |
public: |
|
86 |
enum { |
|
87 |
counter_increment = 1 |
|
88 |
}; |
|
89 |
||
90 |
enum { |
|
91 |
cell_size = sizeof(intptr_t) |
|
92 |
}; |
|
93 |
||
94 |
// Tag values |
|
95 |
enum { |
|
96 |
no_tag, |
|
97 |
bit_data_tag, |
|
98 |
counter_data_tag, |
|
99 |
jump_data_tag, |
|
100 |
receiver_type_data_tag, |
|
101 |
virtual_call_data_tag, |
|
102 |
ret_data_tag, |
|
103 |
branch_data_tag, |
|
218
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
104 |
multi_branch_data_tag, |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
105 |
arg_info_data_tag |
1 | 106 |
}; |
107 |
||
108 |
enum { |
|
109 |
// The _struct._flags word is formatted as [trap_state:4 | flags:4]. |
|
110 |
// The trap state breaks down further as [recompile:1 | reason:3]. |
|
111 |
// This further breakdown is defined in deoptimization.cpp. |
|
112 |
// See Deoptimization::trap_state_reason for an assert that |
|
113 |
// trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT. |
|
114 |
// |
|
115 |
// The trap_state is collected only if ProfileTraps is true. |
|
116 |
trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT]. |
|
117 |
trap_shift = BitsPerByte - trap_bits, |
|
118 |
trap_mask = right_n_bits(trap_bits), |
|
119 |
trap_mask_in_place = (trap_mask << trap_shift), |
|
120 |
flag_limit = trap_shift, |
|
121 |
flag_mask = right_n_bits(flag_limit), |
|
122 |
first_flag = 0 |
|
123 |
}; |
|
124 |
||
125 |
// Size computation |
|
126 |
static int header_size_in_bytes() { |
|
127 |
return cell_size; |
|
128 |
} |
|
129 |
static int header_size_in_cells() { |
|
130 |
return 1; |
|
131 |
} |
|
132 |
||
133 |
static int compute_size_in_bytes(int cell_count) { |
|
134 |
return header_size_in_bytes() + cell_count * cell_size; |
|
135 |
} |
|
136 |
||
137 |
// Initialization |
|
138 |
void initialize(u1 tag, u2 bci, int cell_count); |
|
139 |
||
140 |
// Accessors |
|
141 |
u1 tag() { |
|
142 |
return _header._struct._tag; |
|
143 |
} |
|
144 |
||
145 |
// Return a few bits of trap state. Range is [0..trap_mask]. |
|
146 |
// The state tells if traps with zero, one, or many reasons have occurred. |
|
147 |
// It also tells whether zero or many recompilations have occurred. |
|
148 |
// The associated trap histogram in the MDO itself tells whether |
|
149 |
// traps are common or not. If a BCI shows that a trap X has |
|
150 |
// occurred, and the MDO shows N occurrences of X, we make the |
|
151 |
// simplifying assumption that all N occurrences can be blamed |
|
152 |
// on that BCI. |
|
153 |
int trap_state() { |
|
154 |
return ((_header._struct._flags >> trap_shift) & trap_mask); |
|
155 |
} |
|
156 |
||
157 |
void set_trap_state(int new_state) { |
|
158 |
assert(ProfileTraps, "used only under +ProfileTraps"); |
|
159 |
uint old_flags = (_header._struct._flags & flag_mask); |
|
160 |
_header._struct._flags = (new_state << trap_shift) | old_flags; |
|
161 |
} |
|
162 |
||
163 |
u1 flags() { |
|
164 |
return _header._struct._flags; |
|
165 |
} |
|
166 |
||
167 |
u2 bci() { |
|
168 |
return _header._struct._bci; |
|
169 |
} |
|
170 |
||
171 |
void set_header(intptr_t value) { |
|
172 |
_header._bits = value; |
|
173 |
} |
|
174 |
void release_set_header(intptr_t value) { |
|
175 |
OrderAccess::release_store_ptr(&_header._bits, value); |
|
176 |
} |
|
177 |
intptr_t header() { |
|
178 |
return _header._bits; |
|
179 |
} |
|
180 |
void set_cell_at(int index, intptr_t value) { |
|
181 |
_cells[index] = value; |
|
182 |
} |
|
183 |
void release_set_cell_at(int index, intptr_t value) { |
|
184 |
OrderAccess::release_store_ptr(&_cells[index], value); |
|
185 |
} |
|
186 |
intptr_t cell_at(int index) { |
|
187 |
return _cells[index]; |
|
188 |
} |
|
189 |
intptr_t* adr_cell_at(int index) { |
|
190 |
return &_cells[index]; |
|
191 |
} |
|
192 |
oop* adr_oop_at(int index) { |
|
193 |
return (oop*)&(_cells[index]); |
|
194 |
} |
|
195 |
||
196 |
void set_flag_at(int flag_number) { |
|
197 |
assert(flag_number < flag_limit, "oob"); |
|
198 |
_header._struct._flags |= (0x1 << flag_number); |
|
199 |
} |
|
200 |
bool flag_at(int flag_number) { |
|
201 |
assert(flag_number < flag_limit, "oob"); |
|
202 |
return (_header._struct._flags & (0x1 << flag_number)) != 0; |
|
203 |
} |
|
204 |
||
205 |
// Low-level support for code generation. |
|
206 |
static ByteSize header_offset() { |
|
207 |
return byte_offset_of(DataLayout, _header); |
|
208 |
} |
|
209 |
static ByteSize tag_offset() { |
|
210 |
return byte_offset_of(DataLayout, _header._struct._tag); |
|
211 |
} |
|
212 |
static ByteSize flags_offset() { |
|
213 |
return byte_offset_of(DataLayout, _header._struct._flags); |
|
214 |
} |
|
215 |
static ByteSize bci_offset() { |
|
216 |
return byte_offset_of(DataLayout, _header._struct._bci); |
|
217 |
} |
|
218 |
static ByteSize cell_offset(int index) { |
|
219 |
return byte_offset_of(DataLayout, _cells[index]); |
|
220 |
} |
|
221 |
// Return a value which, when or-ed as a byte into _flags, sets the flag. |
|
222 |
static int flag_number_to_byte_constant(int flag_number) { |
|
223 |
assert(0 <= flag_number && flag_number < flag_limit, "oob"); |
|
224 |
DataLayout temp; temp.set_header(0); |
|
225 |
temp.set_flag_at(flag_number); |
|
226 |
return temp._header._struct._flags; |
|
227 |
} |
|
228 |
// Return a value which, when or-ed as a word into _header, sets the flag. |
|
229 |
static intptr_t flag_mask_to_header_mask(int byte_constant) { |
|
230 |
DataLayout temp; temp.set_header(0); |
|
231 |
temp._header._struct._flags = byte_constant; |
|
232 |
return temp._header._bits; |
|
233 |
} |
|
234 |
}; |
|
235 |
||
236 |
||
237 |
// ProfileData class hierarchy |
|
238 |
class ProfileData; |
|
239 |
class BitData; |
|
240 |
class CounterData; |
|
241 |
class ReceiverTypeData; |
|
242 |
class VirtualCallData; |
|
243 |
class RetData; |
|
244 |
class JumpData; |
|
245 |
class BranchData; |
|
246 |
class ArrayData; |
|
247 |
class MultiBranchData; |
|
218
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
248 |
class ArgInfoData; |
1 | 249 |
|
250 |
||
251 |
// ProfileData |
|
252 |
// |
|
253 |
// A ProfileData object is created to refer to a section of profiling |
|
254 |
// data in a structured way. |
|
255 |
class ProfileData : public ResourceObj { |
|
256 |
private: |
|
257 |
#ifndef PRODUCT |
|
258 |
enum { |
|
259 |
tab_width_one = 16, |
|
260 |
tab_width_two = 36 |
|
261 |
}; |
|
262 |
#endif // !PRODUCT |
|
263 |
||
264 |
// This is a pointer to a section of profiling data. |
|
265 |
DataLayout* _data; |
|
266 |
||
267 |
protected: |
|
268 |
DataLayout* data() { return _data; } |
|
269 |
||
270 |
enum { |
|
271 |
cell_size = DataLayout::cell_size |
|
272 |
}; |
|
273 |
||
274 |
public: |
|
275 |
// How many cells are in this? |
|
276 |
virtual int cell_count() { |
|
277 |
ShouldNotReachHere(); |
|
278 |
return -1; |
|
279 |
} |
|
280 |
||
281 |
// Return the size of this data. |
|
282 |
int size_in_bytes() { |
|
283 |
return DataLayout::compute_size_in_bytes(cell_count()); |
|
284 |
} |
|
285 |
||
286 |
protected: |
|
287 |
// Low-level accessors for underlying data |
|
288 |
void set_intptr_at(int index, intptr_t value) { |
|
289 |
assert(0 <= index && index < cell_count(), "oob"); |
|
290 |
data()->set_cell_at(index, value); |
|
291 |
} |
|
292 |
void release_set_intptr_at(int index, intptr_t value) { |
|
293 |
assert(0 <= index && index < cell_count(), "oob"); |
|
294 |
data()->release_set_cell_at(index, value); |
|
295 |
} |
|
296 |
intptr_t intptr_at(int index) { |
|
297 |
assert(0 <= index && index < cell_count(), "oob"); |
|
298 |
return data()->cell_at(index); |
|
299 |
} |
|
300 |
void set_uint_at(int index, uint value) { |
|
301 |
set_intptr_at(index, (intptr_t) value); |
|
302 |
} |
|
303 |
void release_set_uint_at(int index, uint value) { |
|
304 |
release_set_intptr_at(index, (intptr_t) value); |
|
305 |
} |
|
306 |
uint uint_at(int index) { |
|
307 |
return (uint)intptr_at(index); |
|
308 |
} |
|
309 |
void set_int_at(int index, int value) { |
|
310 |
set_intptr_at(index, (intptr_t) value); |
|
311 |
} |
|
312 |
void release_set_int_at(int index, int value) { |
|
313 |
release_set_intptr_at(index, (intptr_t) value); |
|
314 |
} |
|
315 |
int int_at(int index) { |
|
316 |
return (int)intptr_at(index); |
|
317 |
} |
|
318 |
int int_at_unchecked(int index) { |
|
319 |
return (int)data()->cell_at(index); |
|
320 |
} |
|
321 |
void set_oop_at(int index, oop value) { |
|
322 |
set_intptr_at(index, (intptr_t) value); |
|
323 |
} |
|
324 |
oop oop_at(int index) { |
|
325 |
return (oop)intptr_at(index); |
|
326 |
} |
|
327 |
oop* adr_oop_at(int index) { |
|
328 |
assert(0 <= index && index < cell_count(), "oob"); |
|
329 |
return data()->adr_oop_at(index); |
|
330 |
} |
|
331 |
||
332 |
void set_flag_at(int flag_number) { |
|
333 |
data()->set_flag_at(flag_number); |
|
334 |
} |
|
335 |
bool flag_at(int flag_number) { |
|
336 |
return data()->flag_at(flag_number); |
|
337 |
} |
|
338 |
||
339 |
// two convenient imports for use by subclasses: |
|
340 |
static ByteSize cell_offset(int index) { |
|
341 |
return DataLayout::cell_offset(index); |
|
342 |
} |
|
343 |
static int flag_number_to_byte_constant(int flag_number) { |
|
344 |
return DataLayout::flag_number_to_byte_constant(flag_number); |
|
345 |
} |
|
346 |
||
347 |
ProfileData(DataLayout* data) { |
|
348 |
_data = data; |
|
349 |
} |
|
350 |
||
351 |
public: |
|
352 |
// Constructor for invalid ProfileData. |
|
353 |
ProfileData(); |
|
354 |
||
355 |
u2 bci() { |
|
356 |
return data()->bci(); |
|
357 |
} |
|
358 |
||
359 |
address dp() { |
|
360 |
return (address)_data; |
|
361 |
} |
|
362 |
||
363 |
int trap_state() { |
|
364 |
return data()->trap_state(); |
|
365 |
} |
|
366 |
void set_trap_state(int new_state) { |
|
367 |
data()->set_trap_state(new_state); |
|
368 |
} |
|
369 |
||
370 |
// Type checking |
|
371 |
virtual bool is_BitData() { return false; } |
|
372 |
virtual bool is_CounterData() { return false; } |
|
373 |
virtual bool is_JumpData() { return false; } |
|
374 |
virtual bool is_ReceiverTypeData(){ return false; } |
|
375 |
virtual bool is_VirtualCallData() { return false; } |
|
376 |
virtual bool is_RetData() { return false; } |
|
377 |
virtual bool is_BranchData() { return false; } |
|
378 |
virtual bool is_ArrayData() { return false; } |
|
379 |
virtual bool is_MultiBranchData() { return false; } |
|
218
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
380 |
virtual bool is_ArgInfoData() { return false; } |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
381 |
|
1 | 382 |
|
383 |
BitData* as_BitData() { |
|
384 |
assert(is_BitData(), "wrong type"); |
|
385 |
return is_BitData() ? (BitData*) this : NULL; |
|
386 |
} |
|
387 |
CounterData* as_CounterData() { |
|
388 |
assert(is_CounterData(), "wrong type"); |
|
389 |
return is_CounterData() ? (CounterData*) this : NULL; |
|
390 |
} |
|
391 |
JumpData* as_JumpData() { |
|
392 |
assert(is_JumpData(), "wrong type"); |
|
393 |
return is_JumpData() ? (JumpData*) this : NULL; |
|
394 |
} |
|
395 |
ReceiverTypeData* as_ReceiverTypeData() { |
|
396 |
assert(is_ReceiverTypeData(), "wrong type"); |
|
397 |
return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL; |
|
398 |
} |
|
399 |
VirtualCallData* as_VirtualCallData() { |
|
400 |
assert(is_VirtualCallData(), "wrong type"); |
|
401 |
return is_VirtualCallData() ? (VirtualCallData*)this : NULL; |
|
402 |
} |
|
403 |
RetData* as_RetData() { |
|
404 |
assert(is_RetData(), "wrong type"); |
|
405 |
return is_RetData() ? (RetData*) this : NULL; |
|
406 |
} |
|
407 |
BranchData* as_BranchData() { |
|
408 |
assert(is_BranchData(), "wrong type"); |
|
409 |
return is_BranchData() ? (BranchData*) this : NULL; |
|
410 |
} |
|
411 |
ArrayData* as_ArrayData() { |
|
412 |
assert(is_ArrayData(), "wrong type"); |
|
413 |
return is_ArrayData() ? (ArrayData*) this : NULL; |
|
414 |
} |
|
415 |
MultiBranchData* as_MultiBranchData() { |
|
416 |
assert(is_MultiBranchData(), "wrong type"); |
|
417 |
return is_MultiBranchData() ? (MultiBranchData*)this : NULL; |
|
418 |
} |
|
218
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
419 |
ArgInfoData* as_ArgInfoData() { |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
420 |
assert(is_ArgInfoData(), "wrong type"); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
421 |
return is_ArgInfoData() ? (ArgInfoData*)this : NULL; |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
422 |
} |
1 | 423 |
|
424 |
||
425 |
// Subclass specific initialization |
|
426 |
virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {} |
|
427 |
||
428 |
// GC support |
|
429 |
virtual void follow_contents() {} |
|
430 |
virtual void oop_iterate(OopClosure* blk) {} |
|
431 |
virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {} |
|
432 |
virtual void adjust_pointers() {} |
|
433 |
||
434 |
#ifndef SERIALGC |
|
435 |
// Parallel old support |
|
436 |
virtual void follow_contents(ParCompactionManager* cm) {} |
|
437 |
virtual void update_pointers() {} |
|
438 |
virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {} |
|
439 |
#endif // SERIALGC |
|
440 |
||
441 |
// CI translation: ProfileData can represent both MethodDataOop data |
|
442 |
// as well as CIMethodData data. This function is provided for translating |
|
443 |
// an oop in a ProfileData to the ci equivalent. Generally speaking, |
|
444 |
// most ProfileData don't require any translation, so we provide the null |
|
445 |
// translation here, and the required translators are in the ci subclasses. |
|
446 |
virtual void translate_from(ProfileData* data) {} |
|
447 |
||
448 |
virtual void print_data_on(outputStream* st) { |
|
449 |
ShouldNotReachHere(); |
|
450 |
} |
|
451 |
||
452 |
#ifndef PRODUCT |
|
453 |
void print_shared(outputStream* st, const char* name); |
|
454 |
void tab(outputStream* st); |
|
455 |
#endif |
|
456 |
}; |
|
457 |
||
458 |
// BitData |
|
459 |
// |
|
460 |
// A BitData holds a flag or two in its header. |
|
461 |
class BitData : public ProfileData { |
|
462 |
protected: |
|
463 |
enum { |
|
464 |
// null_seen: |
|
465 |
// saw a null operand (cast/aastore/instanceof) |
|
466 |
null_seen_flag = DataLayout::first_flag + 0 |
|
467 |
}; |
|
468 |
enum { bit_cell_count = 0 }; // no additional data fields needed. |
|
469 |
public: |
|
470 |
BitData(DataLayout* layout) : ProfileData(layout) { |
|
471 |
} |
|
472 |
||
473 |
virtual bool is_BitData() { return true; } |
|
474 |
||
475 |
static int static_cell_count() { |
|
476 |
return bit_cell_count; |
|
477 |
} |
|
478 |
||
479 |
virtual int cell_count() { |
|
480 |
return static_cell_count(); |
|
481 |
} |
|
482 |
||
483 |
// Accessor |
|
484 |
||
485 |
// The null_seen flag bit is specially known to the interpreter. |
|
486 |
// Consulting it allows the compiler to avoid setting up null_check traps. |
|
487 |
bool null_seen() { return flag_at(null_seen_flag); } |
|
488 |
void set_null_seen() { set_flag_at(null_seen_flag); } |
|
489 |
||
490 |
||
491 |
// Code generation support |
|
492 |
static int null_seen_byte_constant() { |
|
493 |
return flag_number_to_byte_constant(null_seen_flag); |
|
494 |
} |
|
495 |
||
496 |
static ByteSize bit_data_size() { |
|
497 |
return cell_offset(bit_cell_count); |
|
498 |
} |
|
499 |
||
500 |
#ifndef PRODUCT |
|
501 |
void print_data_on(outputStream* st); |
|
502 |
#endif |
|
503 |
}; |
|
504 |
||
505 |
// CounterData |
|
506 |
// |
|
507 |
// A CounterData corresponds to a simple counter. |
|
508 |
class CounterData : public BitData { |
|
509 |
protected: |
|
510 |
enum { |
|
511 |
count_off, |
|
512 |
counter_cell_count |
|
513 |
}; |
|
514 |
public: |
|
515 |
CounterData(DataLayout* layout) : BitData(layout) {} |
|
516 |
||
517 |
virtual bool is_CounterData() { return true; } |
|
518 |
||
519 |
static int static_cell_count() { |
|
520 |
return counter_cell_count; |
|
521 |
} |
|
522 |
||
523 |
virtual int cell_count() { |
|
524 |
return static_cell_count(); |
|
525 |
} |
|
526 |
||
527 |
// Direct accessor |
|
528 |
uint count() { |
|
529 |
return uint_at(count_off); |
|
530 |
} |
|
531 |
||
532 |
// Code generation support |
|
533 |
static ByteSize count_offset() { |
|
534 |
return cell_offset(count_off); |
|
535 |
} |
|
536 |
static ByteSize counter_data_size() { |
|
537 |
return cell_offset(counter_cell_count); |
|
538 |
} |
|
539 |
||
540 |
#ifndef PRODUCT |
|
541 |
void print_data_on(outputStream* st); |
|
542 |
#endif |
|
543 |
}; |
|
544 |
||
545 |
// JumpData |
|
546 |
// |
|
547 |
// A JumpData is used to access profiling information for a direct |
|
548 |
// branch. It is a counter, used for counting the number of branches, |
|
549 |
// plus a data displacement, used for realigning the data pointer to |
|
550 |
// the corresponding target bci. |
|
551 |
class JumpData : public ProfileData { |
|
552 |
protected: |
|
553 |
enum { |
|
554 |
taken_off_set, |
|
555 |
displacement_off_set, |
|
556 |
jump_cell_count |
|
557 |
}; |
|
558 |
||
559 |
void set_displacement(int displacement) { |
|
560 |
set_int_at(displacement_off_set, displacement); |
|
561 |
} |
|
562 |
||
563 |
public: |
|
564 |
JumpData(DataLayout* layout) : ProfileData(layout) { |
|
565 |
assert(layout->tag() == DataLayout::jump_data_tag || |
|
566 |
layout->tag() == DataLayout::branch_data_tag, "wrong type"); |
|
567 |
} |
|
568 |
||
569 |
virtual bool is_JumpData() { return true; } |
|
570 |
||
571 |
static int static_cell_count() { |
|
572 |
return jump_cell_count; |
|
573 |
} |
|
574 |
||
575 |
virtual int cell_count() { |
|
576 |
return static_cell_count(); |
|
577 |
} |
|
578 |
||
579 |
// Direct accessor |
|
580 |
uint taken() { |
|
581 |
return uint_at(taken_off_set); |
|
582 |
} |
|
583 |
// Saturating counter |
|
584 |
uint inc_taken() { |
|
585 |
uint cnt = taken() + 1; |
|
586 |
// Did we wrap? Will compiler screw us?? |
|
587 |
if (cnt == 0) cnt--; |
|
588 |
set_uint_at(taken_off_set, cnt); |
|
589 |
return cnt; |
|
590 |
} |
|
591 |
||
592 |
int displacement() { |
|
593 |
return int_at(displacement_off_set); |
|
594 |
} |
|
595 |
||
596 |
// Code generation support |
|
597 |
static ByteSize taken_offset() { |
|
598 |
return cell_offset(taken_off_set); |
|
599 |
} |
|
600 |
||
601 |
static ByteSize displacement_offset() { |
|
602 |
return cell_offset(displacement_off_set); |
|
603 |
} |
|
604 |
||
605 |
// Specific initialization. |
|
606 |
void post_initialize(BytecodeStream* stream, methodDataOop mdo); |
|
607 |
||
608 |
#ifndef PRODUCT |
|
609 |
void print_data_on(outputStream* st); |
|
610 |
#endif |
|
611 |
}; |
|
612 |
||
613 |
// ReceiverTypeData |
|
614 |
// |
|
615 |
// A ReceiverTypeData is used to access profiling information about a |
|
616 |
// dynamic type check. It consists of a counter which counts the total times |
|
617 |
// that the check is reached, and a series of (klassOop, count) pairs |
|
618 |
// which are used to store a type profile for the receiver of the check. |
|
619 |
class ReceiverTypeData : public CounterData { |
|
620 |
protected: |
|
621 |
enum { |
|
622 |
receiver0_offset = counter_cell_count, |
|
623 |
count0_offset, |
|
624 |
receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset |
|
625 |
}; |
|
626 |
||
627 |
public: |
|
628 |
ReceiverTypeData(DataLayout* layout) : CounterData(layout) { |
|
629 |
assert(layout->tag() == DataLayout::receiver_type_data_tag || |
|
630 |
layout->tag() == DataLayout::virtual_call_data_tag, "wrong type"); |
|
631 |
} |
|
632 |
||
633 |
virtual bool is_ReceiverTypeData() { return true; } |
|
634 |
||
635 |
static int static_cell_count() { |
|
636 |
return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count; |
|
637 |
} |
|
638 |
||
639 |
virtual int cell_count() { |
|
640 |
return static_cell_count(); |
|
641 |
} |
|
642 |
||
643 |
// Direct accessors |
|
644 |
static uint row_limit() { |
|
645 |
return TypeProfileWidth; |
|
646 |
} |
|
647 |
static int receiver_cell_index(uint row) { |
|
648 |
return receiver0_offset + row * receiver_type_row_cell_count; |
|
649 |
} |
|
650 |
static int receiver_count_cell_index(uint row) { |
|
651 |
return count0_offset + row * receiver_type_row_cell_count; |
|
652 |
} |
|
653 |
||
654 |
// Get the receiver at row. The 'unchecked' version is needed by parallel old |
|
655 |
// gc; it does not assert the receiver is a klass. During compaction of the |
|
656 |
// perm gen, the klass may already have moved, so the is_klass() predicate |
|
657 |
// would fail. The 'normal' version should be used whenever possible. |
|
658 |
klassOop receiver_unchecked(uint row) { |
|
659 |
assert(row < row_limit(), "oob"); |
|
660 |
oop recv = oop_at(receiver_cell_index(row)); |
|
661 |
return (klassOop)recv; |
|
662 |
} |
|
663 |
||
664 |
klassOop receiver(uint row) { |
|
665 |
klassOop recv = receiver_unchecked(row); |
|
666 |
assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type"); |
|
667 |
return recv; |
|
668 |
} |
|
669 |
||
670 |
uint receiver_count(uint row) { |
|
671 |
assert(row < row_limit(), "oob"); |
|
672 |
return uint_at(receiver_count_cell_index(row)); |
|
673 |
} |
|
674 |
||
675 |
// Code generation support |
|
676 |
static ByteSize receiver_offset(uint row) { |
|
677 |
return cell_offset(receiver_cell_index(row)); |
|
678 |
} |
|
679 |
static ByteSize receiver_count_offset(uint row) { |
|
680 |
return cell_offset(receiver_count_cell_index(row)); |
|
681 |
} |
|
682 |
static ByteSize receiver_type_data_size() { |
|
683 |
return cell_offset(static_cell_count()); |
|
684 |
} |
|
685 |
||
686 |
// GC support |
|
687 |
virtual void follow_contents(); |
|
688 |
virtual void oop_iterate(OopClosure* blk); |
|
689 |
virtual void oop_iterate_m(OopClosure* blk, MemRegion mr); |
|
690 |
virtual void adjust_pointers(); |
|
691 |
||
692 |
#ifndef SERIALGC |
|
693 |
// Parallel old support |
|
694 |
virtual void follow_contents(ParCompactionManager* cm); |
|
695 |
virtual void update_pointers(); |
|
696 |
virtual void update_pointers(HeapWord* beg_addr, HeapWord* end_addr); |
|
697 |
#endif // SERIALGC |
|
698 |
||
699 |
oop* adr_receiver(uint row) { |
|
700 |
return adr_oop_at(receiver_cell_index(row)); |
|
701 |
} |
|
702 |
||
703 |
#ifndef PRODUCT |
|
704 |
void print_receiver_data_on(outputStream* st); |
|
705 |
void print_data_on(outputStream* st); |
|
706 |
#endif |
|
707 |
}; |
|
708 |
||
709 |
// VirtualCallData |
|
710 |
// |
|
711 |
// A VirtualCallData is used to access profiling information about a |
|
712 |
// virtual call. For now, it has nothing more than a ReceiverTypeData. |
|
713 |
class VirtualCallData : public ReceiverTypeData { |
|
714 |
public: |
|
715 |
VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) { |
|
716 |
assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type"); |
|
717 |
} |
|
718 |
||
719 |
virtual bool is_VirtualCallData() { return true; } |
|
720 |
||
721 |
static int static_cell_count() { |
|
722 |
// At this point we could add more profile state, e.g., for arguments. |
|
723 |
// But for now it's the same size as the base record type. |
|
724 |
return ReceiverTypeData::static_cell_count(); |
|
725 |
} |
|
726 |
||
727 |
virtual int cell_count() { |
|
728 |
return static_cell_count(); |
|
729 |
} |
|
730 |
||
731 |
// Direct accessors |
|
732 |
static ByteSize virtual_call_data_size() { |
|
733 |
return cell_offset(static_cell_count()); |
|
734 |
} |
|
735 |
||
736 |
#ifndef PRODUCT |
|
737 |
void print_data_on(outputStream* st); |
|
738 |
#endif |
|
739 |
}; |
|
740 |
||
741 |
// RetData |
|
742 |
// |
|
743 |
// A RetData is used to access profiling information for a ret bytecode. |
|
744 |
// It is composed of a count of the number of times that the ret has |
|
745 |
// been executed, followed by a series of triples of the form |
|
746 |
// (bci, count, di) which count the number of times that some bci was the |
|
747 |
// target of the ret and cache a corresponding data displacement. |
|
748 |
class RetData : public CounterData { |
|
749 |
protected: |
|
750 |
enum { |
|
751 |
bci0_offset = counter_cell_count, |
|
752 |
count0_offset, |
|
753 |
displacement0_offset, |
|
754 |
ret_row_cell_count = (displacement0_offset + 1) - bci0_offset |
|
755 |
}; |
|
756 |
||
757 |
void set_bci(uint row, int bci) { |
|
758 |
assert((uint)row < row_limit(), "oob"); |
|
759 |
set_int_at(bci0_offset + row * ret_row_cell_count, bci); |
|
760 |
} |
|
761 |
void release_set_bci(uint row, int bci) { |
|
762 |
assert((uint)row < row_limit(), "oob"); |
|
763 |
// 'release' when setting the bci acts as a valid flag for other |
|
764 |
// threads wrt bci_count and bci_displacement. |
|
765 |
release_set_int_at(bci0_offset + row * ret_row_cell_count, bci); |
|
766 |
} |
|
767 |
void set_bci_count(uint row, uint count) { |
|
768 |
assert((uint)row < row_limit(), "oob"); |
|
769 |
set_uint_at(count0_offset + row * ret_row_cell_count, count); |
|
770 |
} |
|
771 |
void set_bci_displacement(uint row, int disp) { |
|
772 |
set_int_at(displacement0_offset + row * ret_row_cell_count, disp); |
|
773 |
} |
|
774 |
||
775 |
public: |
|
776 |
RetData(DataLayout* layout) : CounterData(layout) { |
|
777 |
assert(layout->tag() == DataLayout::ret_data_tag, "wrong type"); |
|
778 |
} |
|
779 |
||
780 |
virtual bool is_RetData() { return true; } |
|
781 |
||
782 |
enum { |
|
783 |
no_bci = -1 // value of bci when bci1/2 are not in use. |
|
784 |
}; |
|
785 |
||
786 |
static int static_cell_count() { |
|
787 |
return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count; |
|
788 |
} |
|
789 |
||
790 |
virtual int cell_count() { |
|
791 |
return static_cell_count(); |
|
792 |
} |
|
793 |
||
794 |
static uint row_limit() { |
|
795 |
return BciProfileWidth; |
|
796 |
} |
|
797 |
static int bci_cell_index(uint row) { |
|
798 |
return bci0_offset + row * ret_row_cell_count; |
|
799 |
} |
|
800 |
static int bci_count_cell_index(uint row) { |
|
801 |
return count0_offset + row * ret_row_cell_count; |
|
802 |
} |
|
803 |
static int bci_displacement_cell_index(uint row) { |
|
804 |
return displacement0_offset + row * ret_row_cell_count; |
|
805 |
} |
|
806 |
||
807 |
// Direct accessors |
|
808 |
int bci(uint row) { |
|
809 |
return int_at(bci_cell_index(row)); |
|
810 |
} |
|
811 |
uint bci_count(uint row) { |
|
812 |
return uint_at(bci_count_cell_index(row)); |
|
813 |
} |
|
814 |
int bci_displacement(uint row) { |
|
815 |
return int_at(bci_displacement_cell_index(row)); |
|
816 |
} |
|
817 |
||
818 |
// Interpreter Runtime support |
|
819 |
address fixup_ret(int return_bci, methodDataHandle mdo); |
|
820 |
||
821 |
// Code generation support |
|
822 |
static ByteSize bci_offset(uint row) { |
|
823 |
return cell_offset(bci_cell_index(row)); |
|
824 |
} |
|
825 |
static ByteSize bci_count_offset(uint row) { |
|
826 |
return cell_offset(bci_count_cell_index(row)); |
|
827 |
} |
|
828 |
static ByteSize bci_displacement_offset(uint row) { |
|
829 |
return cell_offset(bci_displacement_cell_index(row)); |
|
830 |
} |
|
831 |
||
832 |
// Specific initialization. |
|
833 |
void post_initialize(BytecodeStream* stream, methodDataOop mdo); |
|
834 |
||
835 |
#ifndef PRODUCT |
|
836 |
void print_data_on(outputStream* st); |
|
837 |
#endif |
|
838 |
}; |
|
839 |
||
840 |
// BranchData |
|
841 |
// |
|
842 |
// A BranchData is used to access profiling data for a two-way branch. |
|
843 |
// It consists of taken and not_taken counts as well as a data displacement |
|
844 |
// for the taken case. |
|
845 |
class BranchData : public JumpData { |
|
846 |
protected: |
|
847 |
enum { |
|
848 |
not_taken_off_set = jump_cell_count, |
|
849 |
branch_cell_count |
|
850 |
}; |
|
851 |
||
852 |
void set_displacement(int displacement) { |
|
853 |
set_int_at(displacement_off_set, displacement); |
|
854 |
} |
|
855 |
||
856 |
public: |
|
857 |
BranchData(DataLayout* layout) : JumpData(layout) { |
|
858 |
assert(layout->tag() == DataLayout::branch_data_tag, "wrong type"); |
|
859 |
} |
|
860 |
||
861 |
virtual bool is_BranchData() { return true; } |
|
862 |
||
863 |
static int static_cell_count() { |
|
864 |
return branch_cell_count; |
|
865 |
} |
|
866 |
||
867 |
virtual int cell_count() { |
|
868 |
return static_cell_count(); |
|
869 |
} |
|
870 |
||
871 |
// Direct accessor |
|
872 |
uint not_taken() { |
|
873 |
return uint_at(not_taken_off_set); |
|
874 |
} |
|
875 |
||
876 |
uint inc_not_taken() { |
|
877 |
uint cnt = not_taken() + 1; |
|
878 |
// Did we wrap? Will compiler screw us?? |
|
879 |
if (cnt == 0) cnt--; |
|
880 |
set_uint_at(not_taken_off_set, cnt); |
|
881 |
return cnt; |
|
882 |
} |
|
883 |
||
884 |
// Code generation support |
|
885 |
static ByteSize not_taken_offset() { |
|
886 |
return cell_offset(not_taken_off_set); |
|
887 |
} |
|
888 |
static ByteSize branch_data_size() { |
|
889 |
return cell_offset(branch_cell_count); |
|
890 |
} |
|
891 |
||
892 |
// Specific initialization. |
|
893 |
void post_initialize(BytecodeStream* stream, methodDataOop mdo); |
|
894 |
||
895 |
#ifndef PRODUCT |
|
896 |
void print_data_on(outputStream* st); |
|
897 |
#endif |
|
898 |
}; |
|
899 |
||
900 |
// ArrayData |
|
901 |
// |
|
902 |
// A ArrayData is a base class for accessing profiling data which does |
|
903 |
// not have a statically known size. It consists of an array length |
|
904 |
// and an array start. |
|
905 |
class ArrayData : public ProfileData { |
|
906 |
protected: |
|
907 |
friend class DataLayout; |
|
908 |
||
909 |
enum { |
|
910 |
array_len_off_set, |
|
911 |
array_start_off_set |
|
912 |
}; |
|
913 |
||
914 |
uint array_uint_at(int index) { |
|
915 |
int aindex = index + array_start_off_set; |
|
916 |
return uint_at(aindex); |
|
917 |
} |
|
918 |
int array_int_at(int index) { |
|
919 |
int aindex = index + array_start_off_set; |
|
920 |
return int_at(aindex); |
|
921 |
} |
|
922 |
oop array_oop_at(int index) { |
|
923 |
int aindex = index + array_start_off_set; |
|
924 |
return oop_at(aindex); |
|
925 |
} |
|
926 |
void array_set_int_at(int index, int value) { |
|
927 |
int aindex = index + array_start_off_set; |
|
928 |
set_int_at(aindex, value); |
|
929 |
} |
|
930 |
||
931 |
// Code generation support for subclasses. |
|
932 |
static ByteSize array_element_offset(int index) { |
|
933 |
return cell_offset(array_start_off_set + index); |
|
934 |
} |
|
935 |
||
936 |
public: |
|
937 |
ArrayData(DataLayout* layout) : ProfileData(layout) {} |
|
938 |
||
939 |
virtual bool is_ArrayData() { return true; } |
|
940 |
||
941 |
static int static_cell_count() { |
|
942 |
return -1; |
|
943 |
} |
|
944 |
||
945 |
int array_len() { |
|
946 |
return int_at_unchecked(array_len_off_set); |
|
947 |
} |
|
948 |
||
949 |
virtual int cell_count() { |
|
950 |
return array_len() + 1; |
|
951 |
} |
|
952 |
||
953 |
// Code generation support |
|
954 |
static ByteSize array_len_offset() { |
|
955 |
return cell_offset(array_len_off_set); |
|
956 |
} |
|
957 |
static ByteSize array_start_offset() { |
|
958 |
return cell_offset(array_start_off_set); |
|
959 |
} |
|
960 |
}; |
|
961 |
||
962 |
// MultiBranchData |
|
963 |
// |
|
964 |
// A MultiBranchData is used to access profiling information for |
|
965 |
// a multi-way branch (*switch bytecodes). It consists of a series |
|
966 |
// of (count, displacement) pairs, which count the number of times each |
|
967 |
// case was taken and specify the data displacment for each branch target. |
|
968 |
class MultiBranchData : public ArrayData { |
|
969 |
protected: |
|
970 |
enum { |
|
971 |
default_count_off_set, |
|
972 |
default_disaplacement_off_set, |
|
973 |
case_array_start |
|
974 |
}; |
|
975 |
enum { |
|
976 |
relative_count_off_set, |
|
977 |
relative_displacement_off_set, |
|
978 |
per_case_cell_count |
|
979 |
}; |
|
980 |
||
981 |
void set_default_displacement(int displacement) { |
|
982 |
array_set_int_at(default_disaplacement_off_set, displacement); |
|
983 |
} |
|
984 |
void set_displacement_at(int index, int displacement) { |
|
985 |
array_set_int_at(case_array_start + |
|
986 |
index * per_case_cell_count + |
|
987 |
relative_displacement_off_set, |
|
988 |
displacement); |
|
989 |
} |
|
990 |
||
991 |
public: |
|
992 |
MultiBranchData(DataLayout* layout) : ArrayData(layout) { |
|
993 |
assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type"); |
|
994 |
} |
|
995 |
||
996 |
virtual bool is_MultiBranchData() { return true; } |
|
997 |
||
998 |
static int compute_cell_count(BytecodeStream* stream); |
|
999 |
||
1000 |
int number_of_cases() { |
|
1001 |
int alen = array_len() - 2; // get rid of default case here. |
|
1002 |
assert(alen % per_case_cell_count == 0, "must be even"); |
|
1003 |
return (alen / per_case_cell_count); |
|
1004 |
} |
|
1005 |
||
1006 |
uint default_count() { |
|
1007 |
return array_uint_at(default_count_off_set); |
|
1008 |
} |
|
1009 |
int default_displacement() { |
|
1010 |
return array_int_at(default_disaplacement_off_set); |
|
1011 |
} |
|
1012 |
||
1013 |
uint count_at(int index) { |
|
1014 |
return array_uint_at(case_array_start + |
|
1015 |
index * per_case_cell_count + |
|
1016 |
relative_count_off_set); |
|
1017 |
} |
|
1018 |
int displacement_at(int index) { |
|
1019 |
return array_int_at(case_array_start + |
|
1020 |
index * per_case_cell_count + |
|
1021 |
relative_displacement_off_set); |
|
1022 |
} |
|
1023 |
||
1024 |
// Code generation support |
|
1025 |
static ByteSize default_count_offset() { |
|
1026 |
return array_element_offset(default_count_off_set); |
|
1027 |
} |
|
1028 |
static ByteSize default_displacement_offset() { |
|
1029 |
return array_element_offset(default_disaplacement_off_set); |
|
1030 |
} |
|
1031 |
static ByteSize case_count_offset(int index) { |
|
1032 |
return case_array_offset() + |
|
1033 |
(per_case_size() * index) + |
|
1034 |
relative_count_offset(); |
|
1035 |
} |
|
1036 |
static ByteSize case_array_offset() { |
|
1037 |
return array_element_offset(case_array_start); |
|
1038 |
} |
|
1039 |
static ByteSize per_case_size() { |
|
1040 |
return in_ByteSize(per_case_cell_count) * cell_size; |
|
1041 |
} |
|
1042 |
static ByteSize relative_count_offset() { |
|
1043 |
return in_ByteSize(relative_count_off_set) * cell_size; |
|
1044 |
} |
|
1045 |
static ByteSize relative_displacement_offset() { |
|
1046 |
return in_ByteSize(relative_displacement_off_set) * cell_size; |
|
1047 |
} |
|
1048 |
||
1049 |
// Specific initialization. |
|
1050 |
void post_initialize(BytecodeStream* stream, methodDataOop mdo); |
|
1051 |
||
1052 |
#ifndef PRODUCT |
|
1053 |
void print_data_on(outputStream* st); |
|
1054 |
#endif |
|
1055 |
}; |
|
1056 |
||
218
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1057 |
class ArgInfoData : public ArrayData { |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1058 |
|
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1059 |
public: |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1060 |
ArgInfoData(DataLayout* layout) : ArrayData(layout) { |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1061 |
assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type"); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1062 |
} |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1063 |
|
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1064 |
virtual bool is_ArgInfoData() { return true; } |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1065 |
|
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1066 |
|
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1067 |
int number_of_args() { |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1068 |
return array_len(); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1069 |
} |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1070 |
|
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1071 |
uint arg_modified(int arg) { |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1072 |
return array_uint_at(arg); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1073 |
} |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1074 |
|
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1075 |
void set_arg_modified(int arg, uint val) { |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1076 |
array_set_int_at(arg, val); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1077 |
} |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1078 |
|
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1079 |
#ifndef PRODUCT |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1080 |
void print_data_on(outputStream* st); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1081 |
#endif |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1082 |
}; |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1083 |
|
1 | 1084 |
// methodDataOop |
1085 |
// |
|
1086 |
// A methodDataOop holds information which has been collected about |
|
1087 |
// a method. Its layout looks like this: |
|
1088 |
// |
|
1089 |
// ----------------------------- |
|
1090 |
// | header | |
|
1091 |
// | klass | |
|
1092 |
// ----------------------------- |
|
1093 |
// | method | |
|
1094 |
// | size of the methodDataOop | |
|
1095 |
// ----------------------------- |
|
1096 |
// | Data entries... | |
|
1097 |
// | (variable size) | |
|
1098 |
// | | |
|
1099 |
// . . |
|
1100 |
// . . |
|
1101 |
// . . |
|
1102 |
// | | |
|
1103 |
// ----------------------------- |
|
1104 |
// |
|
1105 |
// The data entry area is a heterogeneous array of DataLayouts. Each |
|
1106 |
// DataLayout in the array corresponds to a specific bytecode in the |
|
1107 |
// method. The entries in the array are sorted by the corresponding |
|
1108 |
// bytecode. Access to the data is via resource-allocated ProfileData, |
|
1109 |
// which point to the underlying blocks of DataLayout structures. |
|
1110 |
// |
|
1111 |
// During interpretation, if profiling in enabled, the interpreter |
|
1112 |
// maintains a method data pointer (mdp), which points at the entry |
|
1113 |
// in the array corresponding to the current bci. In the course of |
|
1114 |
// intepretation, when a bytecode is encountered that has profile data |
|
1115 |
// associated with it, the entry pointed to by mdp is updated, then the |
|
1116 |
// mdp is adjusted to point to the next appropriate DataLayout. If mdp |
|
1117 |
// is NULL to begin with, the interpreter assumes that the current method |
|
1118 |
// is not (yet) being profiled. |
|
1119 |
// |
|
1120 |
// In methodDataOop parlance, "dp" is a "data pointer", the actual address |
|
1121 |
// of a DataLayout element. A "di" is a "data index", the offset in bytes |
|
1122 |
// from the base of the data entry array. A "displacement" is the byte offset |
|
1123 |
// in certain ProfileData objects that indicate the amount the mdp must be |
|
1124 |
// adjusted in the event of a change in control flow. |
|
1125 |
// |
|
1126 |
||
1127 |
class methodDataOopDesc : public oopDesc { |
|
1128 |
friend class VMStructs; |
|
1129 |
private: |
|
1130 |
friend class ProfileData; |
|
1131 |
||
1132 |
// Back pointer to the methodOop |
|
1133 |
methodOop _method; |
|
1134 |
||
1135 |
// Size of this oop in bytes |
|
1136 |
int _size; |
|
1137 |
||
1138 |
// Cached hint for bci_to_dp and bci_to_data |
|
1139 |
int _hint_di; |
|
1140 |
||
1141 |
// Whole-method sticky bits and flags |
|
1142 |
public: |
|
1143 |
enum { |
|
1144 |
_trap_hist_limit = 16, // decoupled from Deoptimization::Reason_LIMIT |
|
1145 |
_trap_hist_mask = max_jubyte, |
|
1146 |
_extra_data_count = 4 // extra DataLayout headers, for trap history |
|
1147 |
}; // Public flag values |
|
1148 |
private: |
|
1149 |
uint _nof_decompiles; // count of all nmethod removals |
|
1150 |
uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits |
|
1151 |
uint _nof_overflow_traps; // trap count, excluding _trap_hist |
|
1152 |
union { |
|
1153 |
intptr_t _align; |
|
1154 |
u1 _array[_trap_hist_limit]; |
|
1155 |
} _trap_hist; |
|
1156 |
||
1157 |
// Support for interprocedural escape analysis, from Thomas Kotzmann. |
|
1158 |
intx _eflags; // flags on escape information |
|
1159 |
intx _arg_local; // bit set of non-escaping arguments |
|
1160 |
intx _arg_stack; // bit set of stack-allocatable arguments |
|
1161 |
intx _arg_returned; // bit set of returned arguments |
|
1162 |
||
1163 |
int _creation_mileage; // method mileage at MDO creation |
|
1164 |
||
1165 |
// Size of _data array in bytes. (Excludes header and extra_data fields.) |
|
1166 |
int _data_size; |
|
1167 |
||
1168 |
// Beginning of the data entries |
|
1169 |
intptr_t _data[1]; |
|
1170 |
||
1171 |
// Helper for size computation |
|
1172 |
static int compute_data_size(BytecodeStream* stream); |
|
1173 |
static int bytecode_cell_count(Bytecodes::Code code); |
|
1174 |
enum { no_profile_data = -1, variable_cell_count = -2 }; |
|
1175 |
||
1176 |
// Helper for initialization |
|
1177 |
DataLayout* data_layout_at(int data_index) { |
|
1178 |
assert(data_index % sizeof(intptr_t) == 0, "unaligned"); |
|
1179 |
return (DataLayout*) (((address)_data) + data_index); |
|
1180 |
} |
|
1181 |
||
1182 |
// Initialize an individual data segment. Returns the size of |
|
1183 |
// the segment in bytes. |
|
1184 |
int initialize_data(BytecodeStream* stream, int data_index); |
|
1185 |
||
1186 |
// Helper for data_at |
|
1187 |
DataLayout* limit_data_position() { |
|
1188 |
return (DataLayout*)((address)data_base() + _data_size); |
|
1189 |
} |
|
1190 |
bool out_of_bounds(int data_index) { |
|
1191 |
return data_index >= data_size(); |
|
1192 |
} |
|
1193 |
||
1194 |
// Give each of the data entries a chance to perform specific |
|
1195 |
// data initialization. |
|
1196 |
void post_initialize(BytecodeStream* stream); |
|
1197 |
||
1198 |
// hint accessors |
|
1199 |
int hint_di() const { return _hint_di; } |
|
1200 |
void set_hint_di(int di) { |
|
1201 |
assert(!out_of_bounds(di), "hint_di out of bounds"); |
|
1202 |
_hint_di = di; |
|
1203 |
} |
|
1204 |
ProfileData* data_before(int bci) { |
|
1205 |
// avoid SEGV on this edge case |
|
1206 |
if (data_size() == 0) |
|
1207 |
return NULL; |
|
1208 |
int hint = hint_di(); |
|
1209 |
if (data_layout_at(hint)->bci() <= bci) |
|
1210 |
return data_at(hint); |
|
1211 |
return first_data(); |
|
1212 |
} |
|
1213 |
||
1214 |
// What is the index of the first data entry? |
|
1215 |
int first_di() { return 0; } |
|
1216 |
||
1217 |
// Find or create an extra ProfileData: |
|
1218 |
ProfileData* bci_to_extra_data(int bci, bool create_if_missing); |
|
1219 |
||
218
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1220 |
// return the argument info cell |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1221 |
ArgInfoData *arg_info(); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1222 |
|
1 | 1223 |
public: |
1224 |
static int header_size() { |
|
1225 |
return sizeof(methodDataOopDesc)/wordSize; |
|
1226 |
} |
|
1227 |
||
1228 |
// Compute the size of a methodDataOop before it is created. |
|
1229 |
static int compute_allocation_size_in_bytes(methodHandle method); |
|
1230 |
static int compute_allocation_size_in_words(methodHandle method); |
|
1231 |
static int compute_extra_data_count(int data_size, int empty_bc_count); |
|
1232 |
||
1233 |
// Determine if a given bytecode can have profile information. |
|
1234 |
static bool bytecode_has_profile(Bytecodes::Code code) { |
|
1235 |
return bytecode_cell_count(code) != no_profile_data; |
|
1236 |
} |
|
1237 |
||
1238 |
// Perform initialization of a new methodDataOop |
|
1239 |
void initialize(methodHandle method); |
|
1240 |
||
1241 |
// My size |
|
1242 |
int object_size_in_bytes() { return _size; } |
|
1243 |
int object_size() { |
|
1244 |
return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); |
|
1245 |
} |
|
1246 |
||
1247 |
int creation_mileage() const { return _creation_mileage; } |
|
1248 |
void set_creation_mileage(int x) { _creation_mileage = x; } |
|
1249 |
bool is_mature() const; // consult mileage and ProfileMaturityPercentage |
|
1250 |
static int mileage_of(methodOop m); |
|
1251 |
||
1252 |
// Support for interprocedural escape analysis, from Thomas Kotzmann. |
|
1253 |
enum EscapeFlag { |
|
1254 |
estimated = 1 << 0, |
|
251
cb2e73f71205
6680665: bytecode Escape Analyzer produces incorrect escape information for methods without oop arguments
kvn
parents:
218
diff
changeset
|
1255 |
return_local = 1 << 1, |
cb2e73f71205
6680665: bytecode Escape Analyzer produces incorrect escape information for methods without oop arguments
kvn
parents:
218
diff
changeset
|
1256 |
return_allocated = 1 << 2, |
cb2e73f71205
6680665: bytecode Escape Analyzer produces incorrect escape information for methods without oop arguments
kvn
parents:
218
diff
changeset
|
1257 |
allocated_escapes = 1 << 3, |
cb2e73f71205
6680665: bytecode Escape Analyzer produces incorrect escape information for methods without oop arguments
kvn
parents:
218
diff
changeset
|
1258 |
unknown_modified = 1 << 4 |
1 | 1259 |
}; |
1260 |
||
1261 |
intx eflags() { return _eflags; } |
|
1262 |
intx arg_local() { return _arg_local; } |
|
1263 |
intx arg_stack() { return _arg_stack; } |
|
1264 |
intx arg_returned() { return _arg_returned; } |
|
218
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1265 |
uint arg_modified(int a) { ArgInfoData *aid = arg_info(); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1266 |
assert(a >= 0 && a < aid->number_of_args(), "valid argument number"); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1267 |
return aid->arg_modified(a); } |
1 | 1268 |
|
1269 |
void set_eflags(intx v) { _eflags = v; } |
|
1270 |
void set_arg_local(intx v) { _arg_local = v; } |
|
1271 |
void set_arg_stack(intx v) { _arg_stack = v; } |
|
1272 |
void set_arg_returned(intx v) { _arg_returned = v; } |
|
218
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1273 |
void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info(); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1274 |
assert(a >= 0 && a < aid->number_of_args(), "valid argument number"); |
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1275 |
|
a0e996680b05
6667615: (Escape Analysis) extend MDO to cache arguments escape state
kvn
parents:
1
diff
changeset
|
1276 |
aid->set_arg_modified(a, v); } |
1 | 1277 |
|
1278 |
void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; } |
|
1279 |
||
1280 |
// Location and size of data area |
|
1281 |
address data_base() const { |
|
1282 |
return (address) _data; |
|
1283 |
} |
|
1284 |
int data_size() { |
|
1285 |
return _data_size; |
|
1286 |
} |
|
1287 |
||
1288 |
// Accessors |
|
1289 |
methodOop method() { return _method; } |
|
1290 |
||
1291 |
// Get the data at an arbitrary (sort of) data index. |
|
1292 |
ProfileData* data_at(int data_index); |
|
1293 |
||
1294 |
// Walk through the data in order. |
|
1295 |
ProfileData* first_data() { return data_at(first_di()); } |
|
1296 |
ProfileData* next_data(ProfileData* current); |
|
1297 |
bool is_valid(ProfileData* current) { return current != NULL; } |
|
1298 |
||
1299 |
// Convert a dp (data pointer) to a di (data index). |
|
1300 |
int dp_to_di(address dp) { |
|
1301 |
return dp - ((address)_data); |
|
1302 |
} |
|
1303 |
||
1304 |
address di_to_dp(int di) { |
|
1305 |
return (address)data_layout_at(di); |
|
1306 |
} |
|
1307 |
||
1308 |
// bci to di/dp conversion. |
|
1309 |
address bci_to_dp(int bci); |
|
1310 |
int bci_to_di(int bci) { |
|
1311 |
return dp_to_di(bci_to_dp(bci)); |
|
1312 |
} |
|
1313 |
||
1314 |
// Get the data at an arbitrary bci, or NULL if there is none. |
|
1315 |
ProfileData* bci_to_data(int bci); |
|
1316 |
||
1317 |
// Same, but try to create an extra_data record if one is needed: |
|
1318 |
ProfileData* allocate_bci_to_data(int bci) { |
|
1319 |
ProfileData* data = bci_to_data(bci); |
|
1320 |
return (data != NULL) ? data : bci_to_extra_data(bci, true); |
|
1321 |
} |
|
1322 |
||
1323 |
// Add a handful of extra data records, for trap tracking. |
|
1324 |
DataLayout* extra_data_base() { return limit_data_position(); } |
|
1325 |
DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); } |
|
1326 |
int extra_data_size() { return (address)extra_data_limit() |
|
1327 |
- (address)extra_data_base(); } |
|
1328 |
static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); } |
|
1329 |
||
1330 |
// Return (uint)-1 for overflow. |
|
1331 |
uint trap_count(int reason) const { |
|
1332 |
assert((uint)reason < _trap_hist_limit, "oob"); |
|
1333 |
return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1; |
|
1334 |
} |
|
1335 |
// For loops: |
|
1336 |
static uint trap_reason_limit() { return _trap_hist_limit; } |
|
1337 |
static uint trap_count_limit() { return _trap_hist_mask; } |
|
1338 |
uint inc_trap_count(int reason) { |
|
1339 |
// Count another trap, anywhere in this method. |
|
1340 |
assert(reason >= 0, "must be single trap"); |
|
1341 |
if ((uint)reason < _trap_hist_limit) { |
|
1342 |
uint cnt1 = 1 + _trap_hist._array[reason]; |
|
1343 |
if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow... |
|
1344 |
_trap_hist._array[reason] = cnt1; |
|
1345 |
return cnt1; |
|
1346 |
} else { |
|
1347 |
return _trap_hist_mask + (++_nof_overflow_traps); |
|
1348 |
} |
|
1349 |
} else { |
|
1350 |
// Could not represent the count in the histogram. |
|
1351 |
return (++_nof_overflow_traps); |
|
1352 |
} |
|
1353 |
} |
|
1354 |
||
1355 |
uint overflow_trap_count() const { |
|
1356 |
return _nof_overflow_traps; |
|
1357 |
} |
|
1358 |
uint overflow_recompile_count() const { |
|
1359 |
return _nof_overflow_recompiles; |
|
1360 |
} |
|
1361 |
void inc_overflow_recompile_count() { |
|
1362 |
_nof_overflow_recompiles += 1; |
|
1363 |
} |
|
1364 |
uint decompile_count() const { |
|
1365 |
return _nof_decompiles; |
|
1366 |
} |
|
1367 |
void inc_decompile_count() { |
|
1368 |
_nof_decompiles += 1; |
|
1369 |
} |
|
1370 |
||
1371 |
// Support for code generation |
|
1372 |
static ByteSize data_offset() { |
|
1373 |
return byte_offset_of(methodDataOopDesc, _data[0]); |
|
1374 |
} |
|
1375 |
||
1376 |
// GC support |
|
1377 |
oop* adr_method() const { return (oop*)&_method; } |
|
1378 |
bool object_is_parsable() const { return _size != 0; } |
|
1379 |
void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; } |
|
1380 |
||
1381 |
#ifndef PRODUCT |
|
1382 |
// printing support for method data |
|
1383 |
void print_data_on(outputStream* st); |
|
1384 |
#endif |
|
1385 |
||
1386 |
// verification |
|
1387 |
void verify_data_on(outputStream* st); |
|
1388 |
}; |