14631
|
1 |
/*
|
|
2 |
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include "precompiled.hpp"
|
|
26 |
#include "asm/assembler.inline.hpp"
|
|
27 |
#include "compiler/disassembler.hpp"
|
|
28 |
#include "gc_interface/collectedHeap.inline.hpp"
|
|
29 |
#include "interpreter/interpreter.hpp"
|
|
30 |
#include "memory/cardTableModRefBS.hpp"
|
|
31 |
#include "memory/resourceArea.hpp"
|
|
32 |
#include "prims/methodHandles.hpp"
|
|
33 |
#include "runtime/biasedLocking.hpp"
|
|
34 |
#include "runtime/interfaceSupport.hpp"
|
|
35 |
#include "runtime/objectMonitor.hpp"
|
|
36 |
#include "runtime/os.hpp"
|
|
37 |
#include "runtime/sharedRuntime.hpp"
|
|
38 |
#include "runtime/stubRoutines.hpp"
|
|
39 |
#ifndef SERIALGC
|
|
40 |
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
|
|
41 |
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
|
|
42 |
#include "gc_implementation/g1/heapRegion.hpp"
|
|
43 |
#endif
|
|
44 |
|
|
45 |
#ifdef PRODUCT
|
|
46 |
#define BLOCK_COMMENT(str) /* nothing */
|
|
47 |
#define STOP(error) stop(error)
|
|
48 |
#else
|
|
49 |
#define BLOCK_COMMENT(str) block_comment(str)
|
|
50 |
#define STOP(error) block_comment(error); stop(error)
|
|
51 |
#endif
|
|
52 |
|
|
53 |
// Convert the raw encoding form into the form expected by the
|
|
54 |
// constructor for Address.
|
|
55 |
Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
|
|
56 |
assert(scale == 0, "not supported");
|
|
57 |
RelocationHolder rspec;
|
|
58 |
if (disp_reloc != relocInfo::none) {
|
|
59 |
rspec = Relocation::spec_simple(disp_reloc);
|
|
60 |
}
|
|
61 |
|
|
62 |
Register rindex = as_Register(index);
|
|
63 |
if (rindex != G0) {
|
|
64 |
Address madr(as_Register(base), rindex);
|
|
65 |
madr._rspec = rspec;
|
|
66 |
return madr;
|
|
67 |
} else {
|
|
68 |
Address madr(as_Register(base), disp);
|
|
69 |
madr._rspec = rspec;
|
|
70 |
return madr;
|
|
71 |
}
|
|
72 |
}
|
|
73 |
|
|
74 |
Address Argument::address_in_frame() const {
|
|
75 |
// Warning: In LP64 mode disp will occupy more than 10 bits, but
|
|
76 |
// op codes such as ld or ldx, only access disp() to get
|
|
77 |
// their simm13 argument.
|
|
78 |
int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
|
|
79 |
if (is_in())
|
|
80 |
return Address(FP, disp); // In argument.
|
|
81 |
else
|
|
82 |
return Address(SP, disp); // Out argument.
|
|
83 |
}
|
|
84 |
|
|
85 |
static const char* argumentNames[][2] = {
|
|
86 |
{"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
|
|
87 |
{"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
|
|
88 |
{"A(n>9)","P(n>9)"}
|
|
89 |
};
|
|
90 |
|
|
91 |
const char* Argument::name() const {
|
|
92 |
int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
|
|
93 |
int num = number();
|
|
94 |
if (num >= nofArgs) num = nofArgs - 1;
|
|
95 |
return argumentNames[num][is_in() ? 1 : 0];
|
|
96 |
}
|
|
97 |
|
|
98 |
#ifdef ASSERT
|
|
99 |
// On RISC, there's no benefit to verifying instruction boundaries.
|
|
100 |
bool AbstractAssembler::pd_check_instruction_mark() { return false; }
|
|
101 |
#endif
|
|
102 |
|
|
103 |
|
|
104 |
void MacroAssembler::print_instruction(int inst) {
|
|
105 |
const char* s;
|
|
106 |
switch (inv_op(inst)) {
|
|
107 |
default: s = "????"; break;
|
|
108 |
case call_op: s = "call"; break;
|
|
109 |
case branch_op:
|
|
110 |
switch (inv_op2(inst)) {
|
|
111 |
case fb_op2: s = "fb"; break;
|
|
112 |
case fbp_op2: s = "fbp"; break;
|
|
113 |
case br_op2: s = "br"; break;
|
|
114 |
case bp_op2: s = "bp"; break;
|
|
115 |
case cb_op2: s = "cb"; break;
|
|
116 |
case bpr_op2: {
|
|
117 |
if (is_cbcond(inst)) {
|
|
118 |
s = is_cxb(inst) ? "cxb" : "cwb";
|
|
119 |
} else {
|
|
120 |
s = "bpr";
|
|
121 |
}
|
|
122 |
break;
|
|
123 |
}
|
|
124 |
default: s = "????"; break;
|
|
125 |
}
|
|
126 |
}
|
|
127 |
::tty->print("%s", s);
|
|
128 |
}
|
|
129 |
|
|
130 |
|
|
131 |
// Patch instruction inst at offset inst_pos to refer to dest_pos
|
|
132 |
// and return the resulting instruction.
|
|
133 |
// We should have pcs, not offsets, but since all is relative, it will work out
|
|
134 |
// OK.
|
|
135 |
int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
|
|
136 |
int m; // mask for displacement field
|
|
137 |
int v; // new value for displacement field
|
|
138 |
const int word_aligned_ones = -4;
|
|
139 |
switch (inv_op(inst)) {
|
|
140 |
default: ShouldNotReachHere();
|
|
141 |
case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
|
|
142 |
case branch_op:
|
|
143 |
switch (inv_op2(inst)) {
|
|
144 |
case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
|
|
145 |
case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
|
|
146 |
case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
|
|
147 |
case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
|
|
148 |
case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
|
|
149 |
case bpr_op2: {
|
|
150 |
if (is_cbcond(inst)) {
|
|
151 |
m = wdisp10(word_aligned_ones, 0);
|
|
152 |
v = wdisp10(dest_pos, inst_pos);
|
|
153 |
} else {
|
|
154 |
m = wdisp16(word_aligned_ones, 0);
|
|
155 |
v = wdisp16(dest_pos, inst_pos);
|
|
156 |
}
|
|
157 |
break;
|
|
158 |
}
|
|
159 |
default: ShouldNotReachHere();
|
|
160 |
}
|
|
161 |
}
|
|
162 |
return inst & ~m | v;
|
|
163 |
}
|
|
164 |
|
|
165 |
// Return the offset of the branch destionation of instruction inst
|
|
166 |
// at offset pos.
|
|
167 |
// Should have pcs, but since all is relative, it works out.
|
|
168 |
int MacroAssembler::branch_destination(int inst, int pos) {
|
|
169 |
int r;
|
|
170 |
switch (inv_op(inst)) {
|
|
171 |
default: ShouldNotReachHere();
|
|
172 |
case call_op: r = inv_wdisp(inst, pos, 30); break;
|
|
173 |
case branch_op:
|
|
174 |
switch (inv_op2(inst)) {
|
|
175 |
case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
|
|
176 |
case bp_op2: r = inv_wdisp( inst, pos, 19); break;
|
|
177 |
case fb_op2: r = inv_wdisp( inst, pos, 22); break;
|
|
178 |
case br_op2: r = inv_wdisp( inst, pos, 22); break;
|
|
179 |
case cb_op2: r = inv_wdisp( inst, pos, 22); break;
|
|
180 |
case bpr_op2: {
|
|
181 |
if (is_cbcond(inst)) {
|
|
182 |
r = inv_wdisp10(inst, pos);
|
|
183 |
} else {
|
|
184 |
r = inv_wdisp16(inst, pos);
|
|
185 |
}
|
|
186 |
break;
|
|
187 |
}
|
|
188 |
default: ShouldNotReachHere();
|
|
189 |
}
|
|
190 |
}
|
|
191 |
return r;
|
|
192 |
}
|
|
193 |
|
|
194 |
void MacroAssembler::null_check(Register reg, int offset) {
|
|
195 |
if (needs_explicit_null_check((intptr_t)offset)) {
|
|
196 |
// provoke OS NULL exception if reg = NULL by
|
|
197 |
// accessing M[reg] w/o changing any registers
|
|
198 |
ld_ptr(reg, 0, G0);
|
|
199 |
}
|
|
200 |
else {
|
|
201 |
// nothing to do, (later) access of M[reg + offset]
|
|
202 |
// will provoke OS NULL exception if reg = NULL
|
|
203 |
}
|
|
204 |
}
|
|
205 |
|
|
206 |
// Ring buffer jumps
|
|
207 |
|
|
208 |
#ifndef PRODUCT
|
|
209 |
void MacroAssembler::ret( bool trace ) { if (trace) {
|
|
210 |
mov(I7, O7); // traceable register
|
|
211 |
JMP(O7, 2 * BytesPerInstWord);
|
|
212 |
} else {
|
|
213 |
jmpl( I7, 2 * BytesPerInstWord, G0 );
|
|
214 |
}
|
|
215 |
}
|
|
216 |
|
|
217 |
void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
|
|
218 |
else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
|
|
219 |
#endif /* PRODUCT */
|
|
220 |
|
|
221 |
|
|
222 |
void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
|
|
223 |
assert_not_delayed();
|
|
224 |
// This can only be traceable if r1 & r2 are visible after a window save
|
|
225 |
if (TraceJumps) {
|
|
226 |
#ifndef PRODUCT
|
|
227 |
save_frame(0);
|
|
228 |
verify_thread();
|
|
229 |
ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
|
|
230 |
add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
|
|
231 |
sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
|
|
232 |
add(O2, O1, O1);
|
|
233 |
|
|
234 |
add(r1->after_save(), r2->after_save(), O2);
|
|
235 |
set((intptr_t)file, O3);
|
|
236 |
set(line, O4);
|
|
237 |
Label L;
|
|
238 |
// get nearby pc, store jmp target
|
|
239 |
call(L, relocInfo::none); // No relocation for call to pc+0x8
|
|
240 |
delayed()->st(O2, O1, 0);
|
|
241 |
bind(L);
|
|
242 |
|
|
243 |
// store nearby pc
|
|
244 |
st(O7, O1, sizeof(intptr_t));
|
|
245 |
// store file
|
|
246 |
st(O3, O1, 2*sizeof(intptr_t));
|
|
247 |
// store line
|
|
248 |
st(O4, O1, 3*sizeof(intptr_t));
|
|
249 |
add(O0, 1, O0);
|
|
250 |
and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
|
|
251 |
st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
|
|
252 |
restore();
|
|
253 |
#endif /* PRODUCT */
|
|
254 |
}
|
|
255 |
jmpl(r1, r2, G0);
|
|
256 |
}
|
|
257 |
void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
|
|
258 |
assert_not_delayed();
|
|
259 |
// This can only be traceable if r1 is visible after a window save
|
|
260 |
if (TraceJumps) {
|
|
261 |
#ifndef PRODUCT
|
|
262 |
save_frame(0);
|
|
263 |
verify_thread();
|
|
264 |
ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
|
|
265 |
add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
|
|
266 |
sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
|
|
267 |
add(O2, O1, O1);
|
|
268 |
|
|
269 |
add(r1->after_save(), offset, O2);
|
|
270 |
set((intptr_t)file, O3);
|
|
271 |
set(line, O4);
|
|
272 |
Label L;
|
|
273 |
// get nearby pc, store jmp target
|
|
274 |
call(L, relocInfo::none); // No relocation for call to pc+0x8
|
|
275 |
delayed()->st(O2, O1, 0);
|
|
276 |
bind(L);
|
|
277 |
|
|
278 |
// store nearby pc
|
|
279 |
st(O7, O1, sizeof(intptr_t));
|
|
280 |
// store file
|
|
281 |
st(O3, O1, 2*sizeof(intptr_t));
|
|
282 |
// store line
|
|
283 |
st(O4, O1, 3*sizeof(intptr_t));
|
|
284 |
add(O0, 1, O0);
|
|
285 |
and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
|
|
286 |
st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
|
|
287 |
restore();
|
|
288 |
#endif /* PRODUCT */
|
|
289 |
}
|
|
290 |
jmp(r1, offset);
|
|
291 |
}
|
|
292 |
|
|
293 |
// This code sequence is relocatable to any address, even on LP64.
|
|
294 |
void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
|
|
295 |
assert_not_delayed();
|
|
296 |
// Force fixed length sethi because NativeJump and NativeFarCall don't handle
|
|
297 |
// variable length instruction streams.
|
|
298 |
patchable_sethi(addrlit, temp);
|
|
299 |
Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
|
|
300 |
if (TraceJumps) {
|
|
301 |
#ifndef PRODUCT
|
|
302 |
// Must do the add here so relocation can find the remainder of the
|
|
303 |
// value to be relocated.
|
|
304 |
add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
|
|
305 |
save_frame(0);
|
|
306 |
verify_thread();
|
|
307 |
ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
|
|
308 |
add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
|
|
309 |
sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
|
|
310 |
add(O2, O1, O1);
|
|
311 |
|
|
312 |
set((intptr_t)file, O3);
|
|
313 |
set(line, O4);
|
|
314 |
Label L;
|
|
315 |
|
|
316 |
// get nearby pc, store jmp target
|
|
317 |
call(L, relocInfo::none); // No relocation for call to pc+0x8
|
|
318 |
delayed()->st(a.base()->after_save(), O1, 0);
|
|
319 |
bind(L);
|
|
320 |
|
|
321 |
// store nearby pc
|
|
322 |
st(O7, O1, sizeof(intptr_t));
|
|
323 |
// store file
|
|
324 |
st(O3, O1, 2*sizeof(intptr_t));
|
|
325 |
// store line
|
|
326 |
st(O4, O1, 3*sizeof(intptr_t));
|
|
327 |
add(O0, 1, O0);
|
|
328 |
and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
|
|
329 |
st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
|
|
330 |
restore();
|
|
331 |
jmpl(a.base(), G0, d);
|
|
332 |
#else
|
|
333 |
jmpl(a.base(), a.disp(), d);
|
|
334 |
#endif /* PRODUCT */
|
|
335 |
} else {
|
|
336 |
jmpl(a.base(), a.disp(), d);
|
|
337 |
}
|
|
338 |
}
|
|
339 |
|
|
340 |
void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
|
|
341 |
jumpl(addrlit, temp, G0, offset, file, line);
|
|
342 |
}
|
|
343 |
|
|
344 |
|
|
345 |
// Conditional breakpoint (for assertion checks in assembly code)
|
|
346 |
void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
|
|
347 |
trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
|
|
348 |
}
|
|
349 |
|
|
350 |
// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
|
|
351 |
void MacroAssembler::breakpoint_trap() {
|
|
352 |
trap(ST_RESERVED_FOR_USER_0);
|
|
353 |
}
|
|
354 |
|
|
355 |
// flush windows (except current) using flushw instruction if avail.
|
|
356 |
void MacroAssembler::flush_windows() {
|
|
357 |
if (VM_Version::v9_instructions_work()) flushw();
|
|
358 |
else flush_windows_trap();
|
|
359 |
}
|
|
360 |
|
|
361 |
// Write serialization page so VM thread can do a pseudo remote membar
|
|
362 |
// We use the current thread pointer to calculate a thread specific
|
|
363 |
// offset to write to within the page. This minimizes bus traffic
|
|
364 |
// due to cache line collision.
|
|
365 |
void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
|
|
366 |
srl(thread, os::get_serialize_page_shift_count(), tmp2);
|
|
367 |
if (Assembler::is_simm13(os::vm_page_size())) {
|
|
368 |
and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
|
|
369 |
}
|
|
370 |
else {
|
|
371 |
set((os::vm_page_size() - sizeof(int)), tmp1);
|
|
372 |
and3(tmp2, tmp1, tmp2);
|
|
373 |
}
|
|
374 |
set(os::get_memory_serialize_page(), tmp1);
|
|
375 |
st(G0, tmp1, tmp2);
|
|
376 |
}
|
|
377 |
|
|
378 |
|
|
379 |
|
|
380 |
void MacroAssembler::enter() {
|
|
381 |
Unimplemented();
|
|
382 |
}
|
|
383 |
|
|
384 |
void MacroAssembler::leave() {
|
|
385 |
Unimplemented();
|
|
386 |
}
|
|
387 |
|
|
388 |
void MacroAssembler::mult(Register s1, Register s2, Register d) {
|
|
389 |
if(VM_Version::v9_instructions_work()) {
|
|
390 |
mulx (s1, s2, d);
|
|
391 |
} else {
|
|
392 |
smul (s1, s2, d);
|
|
393 |
}
|
|
394 |
}
|
|
395 |
|
|
396 |
void MacroAssembler::mult(Register s1, int simm13a, Register d) {
|
|
397 |
if(VM_Version::v9_instructions_work()) {
|
|
398 |
mulx (s1, simm13a, d);
|
|
399 |
} else {
|
|
400 |
smul (s1, simm13a, d);
|
|
401 |
}
|
|
402 |
}
|
|
403 |
|
|
404 |
|
|
405 |
#ifdef ASSERT
|
|
406 |
void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
|
|
407 |
const Register s1 = G3_scratch;
|
|
408 |
const Register s2 = G4_scratch;
|
|
409 |
Label get_psr_test;
|
|
410 |
// Get the condition codes the V8 way.
|
|
411 |
read_ccr_trap(s1);
|
|
412 |
mov(ccr_save, s2);
|
|
413 |
// This is a test of V8 which has icc but not xcc
|
|
414 |
// so mask off the xcc bits
|
|
415 |
and3(s2, 0xf, s2);
|
|
416 |
// Compare condition codes from the V8 and V9 ways.
|
|
417 |
subcc(s2, s1, G0);
|
|
418 |
br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
|
|
419 |
delayed()->breakpoint_trap();
|
|
420 |
bind(get_psr_test);
|
|
421 |
}
|
|
422 |
|
|
423 |
void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
|
|
424 |
const Register s1 = G3_scratch;
|
|
425 |
const Register s2 = G4_scratch;
|
|
426 |
Label set_psr_test;
|
|
427 |
// Write out the saved condition codes the V8 way
|
|
428 |
write_ccr_trap(ccr_save, s1, s2);
|
|
429 |
// Read back the condition codes using the V9 instruction
|
|
430 |
rdccr(s1);
|
|
431 |
mov(ccr_save, s2);
|
|
432 |
// This is a test of V8 which has icc but not xcc
|
|
433 |
// so mask off the xcc bits
|
|
434 |
and3(s2, 0xf, s2);
|
|
435 |
and3(s1, 0xf, s1);
|
|
436 |
// Compare the V8 way with the V9 way.
|
|
437 |
subcc(s2, s1, G0);
|
|
438 |
br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
|
|
439 |
delayed()->breakpoint_trap();
|
|
440 |
bind(set_psr_test);
|
|
441 |
}
|
|
442 |
#else
|
|
443 |
#define read_ccr_v8_assert(x)
|
|
444 |
#define write_ccr_v8_assert(x)
|
|
445 |
#endif // ASSERT
|
|
446 |
|
|
447 |
void MacroAssembler::read_ccr(Register ccr_save) {
|
|
448 |
if (VM_Version::v9_instructions_work()) {
|
|
449 |
rdccr(ccr_save);
|
|
450 |
// Test code sequence used on V8. Do not move above rdccr.
|
|
451 |
read_ccr_v8_assert(ccr_save);
|
|
452 |
} else {
|
|
453 |
read_ccr_trap(ccr_save);
|
|
454 |
}
|
|
455 |
}
|
|
456 |
|
|
457 |
void MacroAssembler::write_ccr(Register ccr_save) {
|
|
458 |
if (VM_Version::v9_instructions_work()) {
|
|
459 |
// Test code sequence used on V8. Do not move below wrccr.
|
|
460 |
write_ccr_v8_assert(ccr_save);
|
|
461 |
wrccr(ccr_save);
|
|
462 |
} else {
|
|
463 |
const Register temp_reg1 = G3_scratch;
|
|
464 |
const Register temp_reg2 = G4_scratch;
|
|
465 |
write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
|
|
466 |
}
|
|
467 |
}
|
|
468 |
|
|
469 |
|
|
470 |
// Calls to C land
|
|
471 |
|
|
472 |
#ifdef ASSERT
|
|
473 |
// a hook for debugging
|
|
474 |
static Thread* reinitialize_thread() {
|
|
475 |
return ThreadLocalStorage::thread();
|
|
476 |
}
|
|
477 |
#else
|
|
478 |
#define reinitialize_thread ThreadLocalStorage::thread
|
|
479 |
#endif
|
|
480 |
|
|
481 |
#ifdef ASSERT
|
|
482 |
address last_get_thread = NULL;
|
|
483 |
#endif
|
|
484 |
|
|
485 |
// call this when G2_thread is not known to be valid
|
|
486 |
void MacroAssembler::get_thread() {
|
|
487 |
save_frame(0); // to avoid clobbering O0
|
|
488 |
mov(G1, L0); // avoid clobbering G1
|
|
489 |
mov(G5_method, L1); // avoid clobbering G5
|
|
490 |
mov(G3, L2); // avoid clobbering G3 also
|
|
491 |
mov(G4, L5); // avoid clobbering G4
|
|
492 |
#ifdef ASSERT
|
|
493 |
AddressLiteral last_get_thread_addrlit(&last_get_thread);
|
|
494 |
set(last_get_thread_addrlit, L3);
|
|
495 |
inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
|
|
496 |
st_ptr(L4, L3, 0);
|
|
497 |
#endif
|
|
498 |
call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
|
|
499 |
delayed()->nop();
|
|
500 |
mov(L0, G1);
|
|
501 |
mov(L1, G5_method);
|
|
502 |
mov(L2, G3);
|
|
503 |
mov(L5, G4);
|
|
504 |
restore(O0, 0, G2_thread);
|
|
505 |
}
|
|
506 |
|
|
507 |
static Thread* verify_thread_subroutine(Thread* gthread_value) {
|
|
508 |
Thread* correct_value = ThreadLocalStorage::thread();
|
|
509 |
guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
|
|
510 |
return correct_value;
|
|
511 |
}
|
|
512 |
|
|
513 |
void MacroAssembler::verify_thread() {
|
|
514 |
if (VerifyThread) {
|
|
515 |
// NOTE: this chops off the heads of the 64-bit O registers.
|
|
516 |
#ifdef CC_INTERP
|
|
517 |
save_frame(0);
|
|
518 |
#else
|
|
519 |
// make sure G2_thread contains the right value
|
|
520 |
save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
|
|
521 |
mov(G1, L1); // avoid clobbering G1
|
|
522 |
// G2 saved below
|
|
523 |
mov(G3, L3); // avoid clobbering G3
|
|
524 |
mov(G4, L4); // avoid clobbering G4
|
|
525 |
mov(G5_method, L5); // avoid clobbering G5_method
|
|
526 |
#endif /* CC_INTERP */
|
|
527 |
#if defined(COMPILER2) && !defined(_LP64)
|
|
528 |
// Save & restore possible 64-bit Long arguments in G-regs
|
|
529 |
srlx(G1,32,L0);
|
|
530 |
srlx(G4,32,L6);
|
|
531 |
#endif
|
|
532 |
call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
|
|
533 |
delayed()->mov(G2_thread, O0);
|
|
534 |
|
|
535 |
mov(L1, G1); // Restore G1
|
|
536 |
// G2 restored below
|
|
537 |
mov(L3, G3); // restore G3
|
|
538 |
mov(L4, G4); // restore G4
|
|
539 |
mov(L5, G5_method); // restore G5_method
|
|
540 |
#if defined(COMPILER2) && !defined(_LP64)
|
|
541 |
// Save & restore possible 64-bit Long arguments in G-regs
|
|
542 |
sllx(L0,32,G2); // Move old high G1 bits high in G2
|
|
543 |
srl(G1, 0,G1); // Clear current high G1 bits
|
|
544 |
or3 (G1,G2,G1); // Recover 64-bit G1
|
|
545 |
sllx(L6,32,G2); // Move old high G4 bits high in G2
|
|
546 |
srl(G4, 0,G4); // Clear current high G4 bits
|
|
547 |
or3 (G4,G2,G4); // Recover 64-bit G4
|
|
548 |
#endif
|
|
549 |
restore(O0, 0, G2_thread);
|
|
550 |
}
|
|
551 |
}
|
|
552 |
|
|
553 |
|
|
554 |
void MacroAssembler::save_thread(const Register thread_cache) {
|
|
555 |
verify_thread();
|
|
556 |
if (thread_cache->is_valid()) {
|
|
557 |
assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
|
|
558 |
mov(G2_thread, thread_cache);
|
|
559 |
}
|
|
560 |
if (VerifyThread) {
|
|
561 |
// smash G2_thread, as if the VM were about to anyway
|
|
562 |
set(0x67676767, G2_thread);
|
|
563 |
}
|
|
564 |
}
|
|
565 |
|
|
566 |
|
|
567 |
void MacroAssembler::restore_thread(const Register thread_cache) {
|
|
568 |
if (thread_cache->is_valid()) {
|
|
569 |
assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
|
|
570 |
mov(thread_cache, G2_thread);
|
|
571 |
verify_thread();
|
|
572 |
} else {
|
|
573 |
// do it the slow way
|
|
574 |
get_thread();
|
|
575 |
}
|
|
576 |
}
|
|
577 |
|
|
578 |
|
|
579 |
// %%% maybe get rid of [re]set_last_Java_frame
|
|
580 |
void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
|
|
581 |
assert_not_delayed();
|
|
582 |
Address flags(G2_thread, JavaThread::frame_anchor_offset() +
|
|
583 |
JavaFrameAnchor::flags_offset());
|
|
584 |
Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
|
|
585 |
|
|
586 |
// Always set last_Java_pc and flags first because once last_Java_sp is visible
|
|
587 |
// has_last_Java_frame is true and users will look at the rest of the fields.
|
|
588 |
// (Note: flags should always be zero before we get here so doesn't need to be set.)
|
|
589 |
|
|
590 |
#ifdef ASSERT
|
|
591 |
// Verify that flags was zeroed on return to Java
|
|
592 |
Label PcOk;
|
|
593 |
save_frame(0); // to avoid clobbering O0
|
|
594 |
ld_ptr(pc_addr, L0);
|
|
595 |
br_null_short(L0, Assembler::pt, PcOk);
|
|
596 |
STOP("last_Java_pc not zeroed before leaving Java");
|
|
597 |
bind(PcOk);
|
|
598 |
|
|
599 |
// Verify that flags was zeroed on return to Java
|
|
600 |
Label FlagsOk;
|
|
601 |
ld(flags, L0);
|
|
602 |
tst(L0);
|
|
603 |
br(Assembler::zero, false, Assembler::pt, FlagsOk);
|
|
604 |
delayed() -> restore();
|
|
605 |
STOP("flags not zeroed before leaving Java");
|
|
606 |
bind(FlagsOk);
|
|
607 |
#endif /* ASSERT */
|
|
608 |
//
|
|
609 |
// When returning from calling out from Java mode the frame anchor's last_Java_pc
|
|
610 |
// will always be set to NULL. It is set here so that if we are doing a call to
|
|
611 |
// native (not VM) that we capture the known pc and don't have to rely on the
|
|
612 |
// native call having a standard frame linkage where we can find the pc.
|
|
613 |
|
|
614 |
if (last_Java_pc->is_valid()) {
|
|
615 |
st_ptr(last_Java_pc, pc_addr);
|
|
616 |
}
|
|
617 |
|
|
618 |
#ifdef _LP64
|
|
619 |
#ifdef ASSERT
|
|
620 |
// Make sure that we have an odd stack
|
|
621 |
Label StackOk;
|
|
622 |
andcc(last_java_sp, 0x01, G0);
|
|
623 |
br(Assembler::notZero, false, Assembler::pt, StackOk);
|
|
624 |
delayed()->nop();
|
|
625 |
STOP("Stack Not Biased in set_last_Java_frame");
|
|
626 |
bind(StackOk);
|
|
627 |
#endif // ASSERT
|
|
628 |
assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
|
|
629 |
add( last_java_sp, STACK_BIAS, G4_scratch );
|
|
630 |
st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
|
|
631 |
#else
|
|
632 |
st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
|
|
633 |
#endif // _LP64
|
|
634 |
}
|
|
635 |
|
|
636 |
void MacroAssembler::reset_last_Java_frame(void) {
|
|
637 |
assert_not_delayed();
|
|
638 |
|
|
639 |
Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
|
|
640 |
Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
|
|
641 |
Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
|
|
642 |
|
|
643 |
#ifdef ASSERT
|
|
644 |
// check that it WAS previously set
|
|
645 |
#ifdef CC_INTERP
|
|
646 |
save_frame(0);
|
|
647 |
#else
|
|
648 |
save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
|
|
649 |
#endif /* CC_INTERP */
|
|
650 |
ld_ptr(sp_addr, L0);
|
|
651 |
tst(L0);
|
|
652 |
breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
|
|
653 |
restore();
|
|
654 |
#endif // ASSERT
|
|
655 |
|
|
656 |
st_ptr(G0, sp_addr);
|
|
657 |
// Always return last_Java_pc to zero
|
|
658 |
st_ptr(G0, pc_addr);
|
|
659 |
// Always null flags after return to Java
|
|
660 |
st(G0, flags);
|
|
661 |
}
|
|
662 |
|
|
663 |
|
|
664 |
void MacroAssembler::call_VM_base(
|
|
665 |
Register oop_result,
|
|
666 |
Register thread_cache,
|
|
667 |
Register last_java_sp,
|
|
668 |
address entry_point,
|
|
669 |
int number_of_arguments,
|
|
670 |
bool check_exceptions)
|
|
671 |
{
|
|
672 |
assert_not_delayed();
|
|
673 |
|
|
674 |
// determine last_java_sp register
|
|
675 |
if (!last_java_sp->is_valid()) {
|
|
676 |
last_java_sp = SP;
|
|
677 |
}
|
|
678 |
// debugging support
|
|
679 |
assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
|
|
680 |
|
|
681 |
// 64-bit last_java_sp is biased!
|
|
682 |
set_last_Java_frame(last_java_sp, noreg);
|
|
683 |
if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
|
|
684 |
save_thread(thread_cache);
|
|
685 |
// do the call
|
|
686 |
call(entry_point, relocInfo::runtime_call_type);
|
|
687 |
if (!VerifyThread)
|
|
688 |
delayed()->mov(G2_thread, O0); // pass thread as first argument
|
|
689 |
else
|
|
690 |
delayed()->nop(); // (thread already passed)
|
|
691 |
restore_thread(thread_cache);
|
|
692 |
reset_last_Java_frame();
|
|
693 |
|
|
694 |
// check for pending exceptions. use Gtemp as scratch register.
|
|
695 |
if (check_exceptions) {
|
|
696 |
check_and_forward_exception(Gtemp);
|
|
697 |
}
|
|
698 |
|
|
699 |
#ifdef ASSERT
|
|
700 |
set(badHeapWordVal, G3);
|
|
701 |
set(badHeapWordVal, G4);
|
|
702 |
set(badHeapWordVal, G5);
|
|
703 |
#endif
|
|
704 |
|
|
705 |
// get oop result if there is one and reset the value in the thread
|
|
706 |
if (oop_result->is_valid()) {
|
|
707 |
get_vm_result(oop_result);
|
|
708 |
}
|
|
709 |
}
|
|
710 |
|
|
711 |
void MacroAssembler::check_and_forward_exception(Register scratch_reg)
|
|
712 |
{
|
|
713 |
Label L;
|
|
714 |
|
|
715 |
check_and_handle_popframe(scratch_reg);
|
|
716 |
check_and_handle_earlyret(scratch_reg);
|
|
717 |
|
|
718 |
Address exception_addr(G2_thread, Thread::pending_exception_offset());
|
|
719 |
ld_ptr(exception_addr, scratch_reg);
|
|
720 |
br_null_short(scratch_reg, pt, L);
|
|
721 |
// we use O7 linkage so that forward_exception_entry has the issuing PC
|
|
722 |
call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
|
|
723 |
delayed()->nop();
|
|
724 |
bind(L);
|
|
725 |
}
|
|
726 |
|
|
727 |
|
|
728 |
void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
|
|
729 |
}
|
|
730 |
|
|
731 |
|
|
732 |
void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
|
|
733 |
}
|
|
734 |
|
|
735 |
|
|
736 |
void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
|
|
737 |
call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
|
|
738 |
}
|
|
739 |
|
|
740 |
|
|
741 |
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
|
|
742 |
// O0 is reserved for the thread
|
|
743 |
mov(arg_1, O1);
|
|
744 |
call_VM(oop_result, entry_point, 1, check_exceptions);
|
|
745 |
}
|
|
746 |
|
|
747 |
|
|
748 |
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
|
|
749 |
// O0 is reserved for the thread
|
|
750 |
mov(arg_1, O1);
|
|
751 |
mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
|
|
752 |
call_VM(oop_result, entry_point, 2, check_exceptions);
|
|
753 |
}
|
|
754 |
|
|
755 |
|
|
756 |
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
|
|
757 |
// O0 is reserved for the thread
|
|
758 |
mov(arg_1, O1);
|
|
759 |
mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
|
|
760 |
mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
|
|
761 |
call_VM(oop_result, entry_point, 3, check_exceptions);
|
|
762 |
}
|
|
763 |
|
|
764 |
|
|
765 |
|
|
766 |
// Note: The following call_VM overloadings are useful when a "save"
|
|
767 |
// has already been performed by a stub, and the last Java frame is
|
|
768 |
// the previous one. In that case, last_java_sp must be passed as FP
|
|
769 |
// instead of SP.
|
|
770 |
|
|
771 |
|
|
772 |
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
|
|
773 |
call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
|
|
774 |
}
|
|
775 |
|
|
776 |
|
|
777 |
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
|
|
778 |
// O0 is reserved for the thread
|
|
779 |
mov(arg_1, O1);
|
|
780 |
call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
|
|
781 |
}
|
|
782 |
|
|
783 |
|
|
784 |
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
|
|
785 |
// O0 is reserved for the thread
|
|
786 |
mov(arg_1, O1);
|
|
787 |
mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
|
|
788 |
call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
|
|
789 |
}
|
|
790 |
|
|
791 |
|
|
792 |
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
|
|
793 |
// O0 is reserved for the thread
|
|
794 |
mov(arg_1, O1);
|
|
795 |
mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
|
|
796 |
mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
|
|
797 |
call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
|
|
798 |
}
|
|
799 |
|
|
800 |
|
|
801 |
|
|
802 |
void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
|
|
803 |
assert_not_delayed();
|
|
804 |
save_thread(thread_cache);
|
|
805 |
// do the call
|
|
806 |
call(entry_point, relocInfo::runtime_call_type);
|
|
807 |
delayed()->nop();
|
|
808 |
restore_thread(thread_cache);
|
|
809 |
#ifdef ASSERT
|
|
810 |
set(badHeapWordVal, G3);
|
|
811 |
set(badHeapWordVal, G4);
|
|
812 |
set(badHeapWordVal, G5);
|
|
813 |
#endif
|
|
814 |
}
|
|
815 |
|
|
816 |
|
|
817 |
void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
|
|
818 |
call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
|
|
819 |
}
|
|
820 |
|
|
821 |
|
|
822 |
void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
|
|
823 |
mov(arg_1, O0);
|
|
824 |
call_VM_leaf(thread_cache, entry_point, 1);
|
|
825 |
}
|
|
826 |
|
|
827 |
|
|
828 |
void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
|
|
829 |
mov(arg_1, O0);
|
|
830 |
mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
|
|
831 |
call_VM_leaf(thread_cache, entry_point, 2);
|
|
832 |
}
|
|
833 |
|
|
834 |
|
|
835 |
void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
|
|
836 |
mov(arg_1, O0);
|
|
837 |
mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
|
|
838 |
mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
|
|
839 |
call_VM_leaf(thread_cache, entry_point, 3);
|
|
840 |
}
|
|
841 |
|
|
842 |
|
|
843 |
void MacroAssembler::get_vm_result(Register oop_result) {
|
|
844 |
verify_thread();
|
|
845 |
Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
|
|
846 |
ld_ptr( vm_result_addr, oop_result);
|
|
847 |
st_ptr(G0, vm_result_addr);
|
|
848 |
verify_oop(oop_result);
|
|
849 |
}
|
|
850 |
|
|
851 |
|
|
852 |
void MacroAssembler::get_vm_result_2(Register metadata_result) {
|
|
853 |
verify_thread();
|
|
854 |
Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
|
|
855 |
ld_ptr(vm_result_addr_2, metadata_result);
|
|
856 |
st_ptr(G0, vm_result_addr_2);
|
|
857 |
}
|
|
858 |
|
|
859 |
|
|
860 |
// We require that C code which does not return a value in vm_result will
|
|
861 |
// leave it undisturbed.
|
|
862 |
void MacroAssembler::set_vm_result(Register oop_result) {
|
|
863 |
verify_thread();
|
|
864 |
Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
|
|
865 |
verify_oop(oop_result);
|
|
866 |
|
|
867 |
# ifdef ASSERT
|
|
868 |
// Check that we are not overwriting any other oop.
|
|
869 |
#ifdef CC_INTERP
|
|
870 |
save_frame(0);
|
|
871 |
#else
|
|
872 |
save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
|
|
873 |
#endif /* CC_INTERP */
|
|
874 |
ld_ptr(vm_result_addr, L0);
|
|
875 |
tst(L0);
|
|
876 |
restore();
|
|
877 |
breakpoint_trap(notZero, Assembler::ptr_cc);
|
|
878 |
// }
|
|
879 |
# endif
|
|
880 |
|
|
881 |
st_ptr(oop_result, vm_result_addr);
|
|
882 |
}
|
|
883 |
|
|
884 |
|
|
885 |
void MacroAssembler::ic_call(address entry, bool emit_delay) {
|
|
886 |
RelocationHolder rspec = virtual_call_Relocation::spec(pc());
|
|
887 |
patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
|
|
888 |
relocate(rspec);
|
|
889 |
call(entry, relocInfo::none);
|
|
890 |
if (emit_delay) {
|
|
891 |
delayed()->nop();
|
|
892 |
}
|
|
893 |
}
|
|
894 |
|
|
895 |
|
|
896 |
void MacroAssembler::card_table_write(jbyte* byte_map_base,
|
|
897 |
Register tmp, Register obj) {
|
|
898 |
#ifdef _LP64
|
|
899 |
srlx(obj, CardTableModRefBS::card_shift, obj);
|
|
900 |
#else
|
|
901 |
srl(obj, CardTableModRefBS::card_shift, obj);
|
|
902 |
#endif
|
|
903 |
assert(tmp != obj, "need separate temp reg");
|
|
904 |
set((address) byte_map_base, tmp);
|
|
905 |
stb(G0, tmp, obj);
|
|
906 |
}
|
|
907 |
|
|
908 |
|
|
909 |
void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
|
|
910 |
address save_pc;
|
|
911 |
int shiftcnt;
|
|
912 |
#ifdef _LP64
|
|
913 |
# ifdef CHECK_DELAY
|
|
914 |
assert_not_delayed((char*) "cannot put two instructions in delay slot");
|
|
915 |
# endif
|
|
916 |
v9_dep();
|
|
917 |
save_pc = pc();
|
|
918 |
|
|
919 |
int msb32 = (int) (addrlit.value() >> 32);
|
|
920 |
int lsb32 = (int) (addrlit.value());
|
|
921 |
|
|
922 |
if (msb32 == 0 && lsb32 >= 0) {
|
|
923 |
Assembler::sethi(lsb32, d, addrlit.rspec());
|
|
924 |
}
|
|
925 |
else if (msb32 == -1) {
|
|
926 |
Assembler::sethi(~lsb32, d, addrlit.rspec());
|
|
927 |
xor3(d, ~low10(~0), d);
|
|
928 |
}
|
|
929 |
else {
|
|
930 |
Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
|
|
931 |
if (msb32 & 0x3ff) // Any bits?
|
|
932 |
or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
|
|
933 |
if (lsb32 & 0xFFFFFC00) { // done?
|
|
934 |
if ((lsb32 >> 20) & 0xfff) { // Any bits set?
|
|
935 |
sllx(d, 12, d); // Make room for next 12 bits
|
|
936 |
or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
|
|
937 |
shiftcnt = 0; // We already shifted
|
|
938 |
}
|
|
939 |
else
|
|
940 |
shiftcnt = 12;
|
|
941 |
if ((lsb32 >> 10) & 0x3ff) {
|
|
942 |
sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
|
|
943 |
or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
|
|
944 |
shiftcnt = 0;
|
|
945 |
}
|
|
946 |
else
|
|
947 |
shiftcnt = 10;
|
|
948 |
sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
|
|
949 |
}
|
|
950 |
else
|
|
951 |
sllx(d, 32, d);
|
|
952 |
}
|
|
953 |
// Pad out the instruction sequence so it can be patched later.
|
|
954 |
if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
|
|
955 |
addrlit.rtype() != relocInfo::runtime_call_type)) {
|
|
956 |
while (pc() < (save_pc + (7 * BytesPerInstWord)))
|
|
957 |
nop();
|
|
958 |
}
|
|
959 |
#else
|
|
960 |
Assembler::sethi(addrlit.value(), d, addrlit.rspec());
|
|
961 |
#endif
|
|
962 |
}
|
|
963 |
|
|
964 |
|
|
965 |
void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
|
|
966 |
internal_sethi(addrlit, d, false);
|
|
967 |
}
|
|
968 |
|
|
969 |
|
|
970 |
void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
|
|
971 |
internal_sethi(addrlit, d, true);
|
|
972 |
}
|
|
973 |
|
|
974 |
|
|
975 |
int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
|
|
976 |
#ifdef _LP64
|
|
977 |
if (worst_case) return 7;
|
|
978 |
intptr_t iaddr = (intptr_t) a;
|
|
979 |
int msb32 = (int) (iaddr >> 32);
|
|
980 |
int lsb32 = (int) (iaddr);
|
|
981 |
int count;
|
|
982 |
if (msb32 == 0 && lsb32 >= 0)
|
|
983 |
count = 1;
|
|
984 |
else if (msb32 == -1)
|
|
985 |
count = 2;
|
|
986 |
else {
|
|
987 |
count = 2;
|
|
988 |
if (msb32 & 0x3ff)
|
|
989 |
count++;
|
|
990 |
if (lsb32 & 0xFFFFFC00 ) {
|
|
991 |
if ((lsb32 >> 20) & 0xfff) count += 2;
|
|
992 |
if ((lsb32 >> 10) & 0x3ff) count += 2;
|
|
993 |
}
|
|
994 |
}
|
|
995 |
return count;
|
|
996 |
#else
|
|
997 |
return 1;
|
|
998 |
#endif
|
|
999 |
}
|
|
1000 |
|
|
1001 |
int MacroAssembler::worst_case_insts_for_set() {
|
|
1002 |
return insts_for_sethi(NULL, true) + 1;
|
|
1003 |
}
|
|
1004 |
|
|
1005 |
|
|
1006 |
// Keep in sync with MacroAssembler::insts_for_internal_set
|
|
1007 |
void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
|
|
1008 |
intptr_t value = addrlit.value();
|
|
1009 |
|
|
1010 |
if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
|
|
1011 |
// can optimize
|
|
1012 |
if (-4096 <= value && value <= 4095) {
|
|
1013 |
or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
|
|
1014 |
return;
|
|
1015 |
}
|
|
1016 |
if (inv_hi22(hi22(value)) == value) {
|
|
1017 |
sethi(addrlit, d);
|
|
1018 |
return;
|
|
1019 |
}
|
|
1020 |
}
|
|
1021 |
assert_not_delayed((char*) "cannot put two instructions in delay slot");
|
|
1022 |
internal_sethi(addrlit, d, ForceRelocatable);
|
|
1023 |
if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
|
|
1024 |
add(d, addrlit.low10(), d, addrlit.rspec());
|
|
1025 |
}
|
|
1026 |
}
|
|
1027 |
|
|
1028 |
// Keep in sync with MacroAssembler::internal_set
|
|
1029 |
int MacroAssembler::insts_for_internal_set(intptr_t value) {
|
|
1030 |
// can optimize
|
|
1031 |
if (-4096 <= value && value <= 4095) {
|
|
1032 |
return 1;
|
|
1033 |
}
|
|
1034 |
if (inv_hi22(hi22(value)) == value) {
|
|
1035 |
return insts_for_sethi((address) value);
|
|
1036 |
}
|
|
1037 |
int count = insts_for_sethi((address) value);
|
|
1038 |
AddressLiteral al(value);
|
|
1039 |
if (al.low10() != 0) {
|
|
1040 |
count++;
|
|
1041 |
}
|
|
1042 |
return count;
|
|
1043 |
}
|
|
1044 |
|
|
1045 |
void MacroAssembler::set(const AddressLiteral& al, Register d) {
|
|
1046 |
internal_set(al, d, false);
|
|
1047 |
}
|
|
1048 |
|
|
1049 |
void MacroAssembler::set(intptr_t value, Register d) {
|
|
1050 |
AddressLiteral al(value);
|
|
1051 |
internal_set(al, d, false);
|
|
1052 |
}
|
|
1053 |
|
|
1054 |
void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
|
|
1055 |
AddressLiteral al(addr, rspec);
|
|
1056 |
internal_set(al, d, false);
|
|
1057 |
}
|
|
1058 |
|
|
1059 |
void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
|
|
1060 |
internal_set(al, d, true);
|
|
1061 |
}
|
|
1062 |
|
|
1063 |
void MacroAssembler::patchable_set(intptr_t value, Register d) {
|
|
1064 |
AddressLiteral al(value);
|
|
1065 |
internal_set(al, d, true);
|
|
1066 |
}
|
|
1067 |
|
|
1068 |
|
|
1069 |
void MacroAssembler::set64(jlong value, Register d, Register tmp) {
|
|
1070 |
assert_not_delayed();
|
|
1071 |
v9_dep();
|
|
1072 |
|
|
1073 |
int hi = (int)(value >> 32);
|
|
1074 |
int lo = (int)(value & ~0);
|
|
1075 |
// (Matcher::isSimpleConstant64 knows about the following optimizations.)
|
|
1076 |
if (Assembler::is_simm13(lo) && value == lo) {
|
|
1077 |
or3(G0, lo, d);
|
|
1078 |
} else if (hi == 0) {
|
|
1079 |
Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
|
|
1080 |
if (low10(lo) != 0)
|
|
1081 |
or3(d, low10(lo), d);
|
|
1082 |
}
|
|
1083 |
else if (hi == -1) {
|
|
1084 |
Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
|
|
1085 |
xor3(d, low10(lo) ^ ~low10(~0), d);
|
|
1086 |
}
|
|
1087 |
else if (lo == 0) {
|
|
1088 |
if (Assembler::is_simm13(hi)) {
|
|
1089 |
or3(G0, hi, d);
|
|
1090 |
} else {
|
|
1091 |
Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
|
|
1092 |
if (low10(hi) != 0)
|
|
1093 |
or3(d, low10(hi), d);
|
|
1094 |
}
|
|
1095 |
sllx(d, 32, d);
|
|
1096 |
}
|
|
1097 |
else {
|
|
1098 |
Assembler::sethi(hi, tmp);
|
|
1099 |
Assembler::sethi(lo, d); // macro assembler version sign-extends
|
|
1100 |
if (low10(hi) != 0)
|
|
1101 |
or3 (tmp, low10(hi), tmp);
|
|
1102 |
if (low10(lo) != 0)
|
|
1103 |
or3 ( d, low10(lo), d);
|
|
1104 |
sllx(tmp, 32, tmp);
|
|
1105 |
or3 (d, tmp, d);
|
|
1106 |
}
|
|
1107 |
}
|
|
1108 |
|
|
1109 |
int MacroAssembler::insts_for_set64(jlong value) {
|
|
1110 |
v9_dep();
|
|
1111 |
|
|
1112 |
int hi = (int) (value >> 32);
|
|
1113 |
int lo = (int) (value & ~0);
|
|
1114 |
int count = 0;
|
|
1115 |
|
|
1116 |
// (Matcher::isSimpleConstant64 knows about the following optimizations.)
|
|
1117 |
if (Assembler::is_simm13(lo) && value == lo) {
|
|
1118 |
count++;
|
|
1119 |
} else if (hi == 0) {
|
|
1120 |
count++;
|
|
1121 |
if (low10(lo) != 0)
|
|
1122 |
count++;
|
|
1123 |
}
|
|
1124 |
else if (hi == -1) {
|
|
1125 |
count += 2;
|
|
1126 |
}
|
|
1127 |
else if (lo == 0) {
|
|
1128 |
if (Assembler::is_simm13(hi)) {
|
|
1129 |
count++;
|
|
1130 |
} else {
|
|
1131 |
count++;
|
|
1132 |
if (low10(hi) != 0)
|
|
1133 |
count++;
|
|
1134 |
}
|
|
1135 |
count++;
|
|
1136 |
}
|
|
1137 |
else {
|
|
1138 |
count += 2;
|
|
1139 |
if (low10(hi) != 0)
|
|
1140 |
count++;
|
|
1141 |
if (low10(lo) != 0)
|
|
1142 |
count++;
|
|
1143 |
count += 2;
|
|
1144 |
}
|
|
1145 |
return count;
|
|
1146 |
}
|
|
1147 |
|
|
1148 |
// compute size in bytes of sparc frame, given
|
|
1149 |
// number of extraWords
|
|
1150 |
int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
|
|
1151 |
|
|
1152 |
int nWords = frame::memory_parameter_word_sp_offset;
|
|
1153 |
|
|
1154 |
nWords += extraWords;
|
|
1155 |
|
|
1156 |
if (nWords & 1) ++nWords; // round up to double-word
|
|
1157 |
|
|
1158 |
return nWords * BytesPerWord;
|
|
1159 |
}
|
|
1160 |
|
|
1161 |
|
|
1162 |
// save_frame: given number of "extra" words in frame,
|
|
1163 |
// issue approp. save instruction (p 200, v8 manual)
|
|
1164 |
|
|
1165 |
void MacroAssembler::save_frame(int extraWords) {
|
|
1166 |
int delta = -total_frame_size_in_bytes(extraWords);
|
|
1167 |
if (is_simm13(delta)) {
|
|
1168 |
save(SP, delta, SP);
|
|
1169 |
} else {
|
|
1170 |
set(delta, G3_scratch);
|
|
1171 |
save(SP, G3_scratch, SP);
|
|
1172 |
}
|
|
1173 |
}
|
|
1174 |
|
|
1175 |
|
|
1176 |
void MacroAssembler::save_frame_c1(int size_in_bytes) {
|
|
1177 |
if (is_simm13(-size_in_bytes)) {
|
|
1178 |
save(SP, -size_in_bytes, SP);
|
|
1179 |
} else {
|
|
1180 |
set(-size_in_bytes, G3_scratch);
|
|
1181 |
save(SP, G3_scratch, SP);
|
|
1182 |
}
|
|
1183 |
}
|
|
1184 |
|
|
1185 |
|
|
1186 |
void MacroAssembler::save_frame_and_mov(int extraWords,
|
|
1187 |
Register s1, Register d1,
|
|
1188 |
Register s2, Register d2) {
|
|
1189 |
assert_not_delayed();
|
|
1190 |
|
|
1191 |
// The trick here is to use precisely the same memory word
|
|
1192 |
// that trap handlers also use to save the register.
|
|
1193 |
// This word cannot be used for any other purpose, but
|
|
1194 |
// it works fine to save the register's value, whether or not
|
|
1195 |
// an interrupt flushes register windows at any given moment!
|
|
1196 |
Address s1_addr;
|
|
1197 |
if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
|
|
1198 |
s1_addr = s1->address_in_saved_window();
|
|
1199 |
st_ptr(s1, s1_addr);
|
|
1200 |
}
|
|
1201 |
|
|
1202 |
Address s2_addr;
|
|
1203 |
if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
|
|
1204 |
s2_addr = s2->address_in_saved_window();
|
|
1205 |
st_ptr(s2, s2_addr);
|
|
1206 |
}
|
|
1207 |
|
|
1208 |
save_frame(extraWords);
|
|
1209 |
|
|
1210 |
if (s1_addr.base() == SP) {
|
|
1211 |
ld_ptr(s1_addr.after_save(), d1);
|
|
1212 |
} else if (s1->is_valid()) {
|
|
1213 |
mov(s1->after_save(), d1);
|
|
1214 |
}
|
|
1215 |
|
|
1216 |
if (s2_addr.base() == SP) {
|
|
1217 |
ld_ptr(s2_addr.after_save(), d2);
|
|
1218 |
} else if (s2->is_valid()) {
|
|
1219 |
mov(s2->after_save(), d2);
|
|
1220 |
}
|
|
1221 |
}
|
|
1222 |
|
|
1223 |
|
|
1224 |
AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
|
|
1225 |
assert(oop_recorder() != NULL, "this assembler needs a Recorder");
|
|
1226 |
int index = oop_recorder()->allocate_metadata_index(obj);
|
|
1227 |
RelocationHolder rspec = metadata_Relocation::spec(index);
|
|
1228 |
return AddressLiteral((address)obj, rspec);
|
|
1229 |
}
|
|
1230 |
|
|
1231 |
AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
|
|
1232 |
assert(oop_recorder() != NULL, "this assembler needs a Recorder");
|
|
1233 |
int index = oop_recorder()->find_index(obj);
|
|
1234 |
RelocationHolder rspec = metadata_Relocation::spec(index);
|
|
1235 |
return AddressLiteral((address)obj, rspec);
|
|
1236 |
}
|
|
1237 |
|
|
1238 |
|
|
1239 |
AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
|
|
1240 |
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
|
|
1241 |
assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
|
|
1242 |
int oop_index = oop_recorder()->find_index(obj);
|
|
1243 |
return AddressLiteral(obj, oop_Relocation::spec(oop_index));
|
|
1244 |
}
|
|
1245 |
|
|
1246 |
void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
|
|
1247 |
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
|
|
1248 |
int oop_index = oop_recorder()->find_index(obj);
|
|
1249 |
RelocationHolder rspec = oop_Relocation::spec(oop_index);
|
|
1250 |
|
|
1251 |
assert_not_delayed();
|
|
1252 |
// Relocation with special format (see relocInfo_sparc.hpp).
|
|
1253 |
relocate(rspec, 1);
|
|
1254 |
// Assembler::sethi(0x3fffff, d);
|
|
1255 |
emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
|
|
1256 |
// Don't add relocation for 'add'. Do patching during 'sethi' processing.
|
|
1257 |
add(d, 0x3ff, d);
|
|
1258 |
|
|
1259 |
}
|
|
1260 |
|
|
1261 |
void MacroAssembler::set_narrow_klass(Klass* k, Register d) {
|
|
1262 |
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
|
|
1263 |
int klass_index = oop_recorder()->find_index(k);
|
|
1264 |
RelocationHolder rspec = metadata_Relocation::spec(klass_index);
|
|
1265 |
narrowOop encoded_k = oopDesc::encode_klass(k);
|
|
1266 |
|
|
1267 |
assert_not_delayed();
|
|
1268 |
// Relocation with special format (see relocInfo_sparc.hpp).
|
|
1269 |
relocate(rspec, 1);
|
|
1270 |
// Assembler::sethi(encoded_k, d);
|
|
1271 |
emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
|
|
1272 |
// Don't add relocation for 'add'. Do patching during 'sethi' processing.
|
|
1273 |
add(d, low10(encoded_k), d);
|
|
1274 |
|
|
1275 |
}
|
|
1276 |
|
|
1277 |
void MacroAssembler::align(int modulus) {
|
|
1278 |
while (offset() % modulus != 0) nop();
|
|
1279 |
}
|
|
1280 |
|
|
1281 |
|
|
1282 |
void MacroAssembler::safepoint() {
|
|
1283 |
relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
|
|
1284 |
}
|
|
1285 |
|
|
1286 |
|
|
1287 |
void RegistersForDebugging::print(outputStream* s) {
|
|
1288 |
FlagSetting fs(Debugging, true);
|
|
1289 |
int j;
|
|
1290 |
for (j = 0; j < 8; ++j) {
|
|
1291 |
if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
|
|
1292 |
else { s->print( "fp = " ); os::print_location(s, i[j]); }
|
|
1293 |
}
|
|
1294 |
s->cr();
|
|
1295 |
|
|
1296 |
for (j = 0; j < 8; ++j) {
|
|
1297 |
s->print("l%d = ", j); os::print_location(s, l[j]);
|
|
1298 |
}
|
|
1299 |
s->cr();
|
|
1300 |
|
|
1301 |
for (j = 0; j < 8; ++j) {
|
|
1302 |
if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
|
|
1303 |
else { s->print( "sp = " ); os::print_location(s, o[j]); }
|
|
1304 |
}
|
|
1305 |
s->cr();
|
|
1306 |
|
|
1307 |
for (j = 0; j < 8; ++j) {
|
|
1308 |
s->print("g%d = ", j); os::print_location(s, g[j]);
|
|
1309 |
}
|
|
1310 |
s->cr();
|
|
1311 |
|
|
1312 |
// print out floats with compression
|
|
1313 |
for (j = 0; j < 32; ) {
|
|
1314 |
jfloat val = f[j];
|
|
1315 |
int last = j;
|
|
1316 |
for ( ; last+1 < 32; ++last ) {
|
|
1317 |
char b1[1024], b2[1024];
|
|
1318 |
sprintf(b1, "%f", val);
|
|
1319 |
sprintf(b2, "%f", f[last+1]);
|
|
1320 |
if (strcmp(b1, b2))
|
|
1321 |
break;
|
|
1322 |
}
|
|
1323 |
s->print("f%d", j);
|
|
1324 |
if ( j != last ) s->print(" - f%d", last);
|
|
1325 |
s->print(" = %f", val);
|
|
1326 |
s->fill_to(25);
|
|
1327 |
s->print_cr(" (0x%x)", val);
|
|
1328 |
j = last + 1;
|
|
1329 |
}
|
|
1330 |
s->cr();
|
|
1331 |
|
|
1332 |
// and doubles (evens only)
|
|
1333 |
for (j = 0; j < 32; ) {
|
|
1334 |
jdouble val = d[j];
|
|
1335 |
int last = j;
|
|
1336 |
for ( ; last+1 < 32; ++last ) {
|
|
1337 |
char b1[1024], b2[1024];
|
|
1338 |
sprintf(b1, "%f", val);
|
|
1339 |
sprintf(b2, "%f", d[last+1]);
|
|
1340 |
if (strcmp(b1, b2))
|
|
1341 |
break;
|
|
1342 |
}
|
|
1343 |
s->print("d%d", 2 * j);
|
|
1344 |
if ( j != last ) s->print(" - d%d", last);
|
|
1345 |
s->print(" = %f", val);
|
|
1346 |
s->fill_to(30);
|
|
1347 |
s->print("(0x%x)", *(int*)&val);
|
|
1348 |
s->fill_to(42);
|
|
1349 |
s->print_cr("(0x%x)", *(1 + (int*)&val));
|
|
1350 |
j = last + 1;
|
|
1351 |
}
|
|
1352 |
s->cr();
|
|
1353 |
}
|
|
1354 |
|
|
1355 |
void RegistersForDebugging::save_registers(MacroAssembler* a) {
|
|
1356 |
a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
|
|
1357 |
a->flush_windows();
|
|
1358 |
int i;
|
|
1359 |
for (i = 0; i < 8; ++i) {
|
|
1360 |
a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
|
|
1361 |
a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
|
|
1362 |
a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
|
|
1363 |
a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
|
|
1364 |
}
|
|
1365 |
for (i = 0; i < 32; ++i) {
|
|
1366 |
a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
|
|
1367 |
}
|
|
1368 |
for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
|
|
1369 |
a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
|
|
1370 |
}
|
|
1371 |
}
|
|
1372 |
|
|
1373 |
void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
|
|
1374 |
for (int i = 1; i < 8; ++i) {
|
|
1375 |
a->ld_ptr(r, g_offset(i), as_gRegister(i));
|
|
1376 |
}
|
|
1377 |
for (int j = 0; j < 32; ++j) {
|
|
1378 |
a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
|
|
1379 |
}
|
|
1380 |
for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
|
|
1381 |
a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
|
|
1382 |
}
|
|
1383 |
}
|
|
1384 |
|
|
1385 |
|
|
1386 |
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
|
|
1387 |
void MacroAssembler::push_fTOS() {
|
|
1388 |
// %%%%%% need to implement this
|
|
1389 |
}
|
|
1390 |
|
|
1391 |
// pops double TOS element from CPU stack and pushes on FPU stack
|
|
1392 |
void MacroAssembler::pop_fTOS() {
|
|
1393 |
// %%%%%% need to implement this
|
|
1394 |
}
|
|
1395 |
|
|
1396 |
void MacroAssembler::empty_FPU_stack() {
|
|
1397 |
// %%%%%% need to implement this
|
|
1398 |
}
|
|
1399 |
|
|
1400 |
void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
|
|
1401 |
// plausibility check for oops
|
|
1402 |
if (!VerifyOops) return;
|
|
1403 |
|
|
1404 |
if (reg == G0) return; // always NULL, which is always an oop
|
|
1405 |
|
|
1406 |
BLOCK_COMMENT("verify_oop {");
|
|
1407 |
char buffer[64];
|
|
1408 |
#ifdef COMPILER1
|
|
1409 |
if (CommentedAssembly) {
|
|
1410 |
snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
|
|
1411 |
block_comment(buffer);
|
|
1412 |
}
|
|
1413 |
#endif
|
|
1414 |
|
|
1415 |
int len = strlen(file) + strlen(msg) + 1 + 4;
|
|
1416 |
sprintf(buffer, "%d", line);
|
|
1417 |
len += strlen(buffer);
|
|
1418 |
sprintf(buffer, " at offset %d ", offset());
|
|
1419 |
len += strlen(buffer);
|
|
1420 |
char * real_msg = new char[len];
|
|
1421 |
sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
|
|
1422 |
|
|
1423 |
// Call indirectly to solve generation ordering problem
|
|
1424 |
AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
|
|
1425 |
|
|
1426 |
// Make some space on stack above the current register window.
|
|
1427 |
// Enough to hold 8 64-bit registers.
|
|
1428 |
add(SP,-8*8,SP);
|
|
1429 |
|
|
1430 |
// Save some 64-bit registers; a normal 'save' chops the heads off
|
|
1431 |
// of 64-bit longs in the 32-bit build.
|
|
1432 |
stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
|
|
1433 |
stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
|
|
1434 |
mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
|
|
1435 |
stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
|
|
1436 |
|
|
1437 |
// Size of set() should stay the same
|
|
1438 |
patchable_set((intptr_t)real_msg, O1);
|
|
1439 |
// Load address to call to into O7
|
|
1440 |
load_ptr_contents(a, O7);
|
|
1441 |
// Register call to verify_oop_subroutine
|
|
1442 |
callr(O7, G0);
|
|
1443 |
delayed()->nop();
|
|
1444 |
// recover frame size
|
|
1445 |
add(SP, 8*8,SP);
|
|
1446 |
BLOCK_COMMENT("} verify_oop");
|
|
1447 |
}
|
|
1448 |
|
|
1449 |
void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
|
|
1450 |
// plausibility check for oops
|
|
1451 |
if (!VerifyOops) return;
|
|
1452 |
|
|
1453 |
char buffer[64];
|
|
1454 |
sprintf(buffer, "%d", line);
|
|
1455 |
int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
|
|
1456 |
sprintf(buffer, " at SP+%d ", addr.disp());
|
|
1457 |
len += strlen(buffer);
|
|
1458 |
char * real_msg = new char[len];
|
|
1459 |
sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
|
|
1460 |
|
|
1461 |
// Call indirectly to solve generation ordering problem
|
|
1462 |
AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
|
|
1463 |
|
|
1464 |
// Make some space on stack above the current register window.
|
|
1465 |
// Enough to hold 8 64-bit registers.
|
|
1466 |
add(SP,-8*8,SP);
|
|
1467 |
|
|
1468 |
// Save some 64-bit registers; a normal 'save' chops the heads off
|
|
1469 |
// of 64-bit longs in the 32-bit build.
|
|
1470 |
stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
|
|
1471 |
stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
|
|
1472 |
ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
|
|
1473 |
stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
|
|
1474 |
|
|
1475 |
// Size of set() should stay the same
|
|
1476 |
patchable_set((intptr_t)real_msg, O1);
|
|
1477 |
// Load address to call to into O7
|
|
1478 |
load_ptr_contents(a, O7);
|
|
1479 |
// Register call to verify_oop_subroutine
|
|
1480 |
callr(O7, G0);
|
|
1481 |
delayed()->nop();
|
|
1482 |
// recover frame size
|
|
1483 |
add(SP, 8*8,SP);
|
|
1484 |
}
|
|
1485 |
|
|
1486 |
// side-door communication with signalHandler in os_solaris.cpp
|
|
1487 |
address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
|
|
1488 |
|
|
1489 |
// This macro is expanded just once; it creates shared code. Contract:
|
|
1490 |
// receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
|
|
1491 |
// registers, including flags. May not use a register 'save', as this blows
|
|
1492 |
// the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
|
|
1493 |
// call.
|
|
1494 |
void MacroAssembler::verify_oop_subroutine() {
|
|
1495 |
assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
|
|
1496 |
|
|
1497 |
// Leaf call; no frame.
|
|
1498 |
Label succeed, fail, null_or_fail;
|
|
1499 |
|
|
1500 |
// O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
|
|
1501 |
// O0 is now the oop to be checked. O7 is the return address.
|
|
1502 |
Register O0_obj = O0;
|
|
1503 |
|
|
1504 |
// Save some more registers for temps.
|
|
1505 |
stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
|
|
1506 |
stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
|
|
1507 |
stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
|
|
1508 |
stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
|
|
1509 |
|
|
1510 |
// Save flags
|
|
1511 |
Register O5_save_flags = O5;
|
|
1512 |
rdccr( O5_save_flags );
|
|
1513 |
|
|
1514 |
{ // count number of verifies
|
|
1515 |
Register O2_adr = O2;
|
|
1516 |
Register O3_accum = O3;
|
|
1517 |
inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
|
|
1518 |
}
|
|
1519 |
|
|
1520 |
Register O2_mask = O2;
|
|
1521 |
Register O3_bits = O3;
|
|
1522 |
Register O4_temp = O4;
|
|
1523 |
|
|
1524 |
// mark lower end of faulting range
|
|
1525 |
assert(_verify_oop_implicit_branch[0] == NULL, "set once");
|
|
1526 |
_verify_oop_implicit_branch[0] = pc();
|
|
1527 |
|
|
1528 |
// We can't check the mark oop because it could be in the process of
|
|
1529 |
// locking or unlocking while this is running.
|
|
1530 |
set(Universe::verify_oop_mask (), O2_mask);
|
|
1531 |
set(Universe::verify_oop_bits (), O3_bits);
|
|
1532 |
|
|
1533 |
// assert((obj & oop_mask) == oop_bits);
|
|
1534 |
and3(O0_obj, O2_mask, O4_temp);
|
|
1535 |
cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
|
|
1536 |
|
|
1537 |
if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
|
|
1538 |
// the null_or_fail case is useless; must test for null separately
|
|
1539 |
br_null_short(O0_obj, pn, succeed);
|
|
1540 |
}
|
|
1541 |
|
|
1542 |
// Check the Klass* of this object for being in the right area of memory.
|
|
1543 |
// Cannot do the load in the delay above slot in case O0 is null
|
|
1544 |
load_klass(O0_obj, O0_obj);
|
|
1545 |
// assert((klass != NULL)
|
|
1546 |
br_null_short(O0_obj, pn, fail);
|
|
1547 |
// TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
|
|
1548 |
|
|
1549 |
wrccr( O5_save_flags ); // Restore CCR's
|
|
1550 |
|
|
1551 |
// mark upper end of faulting range
|
|
1552 |
_verify_oop_implicit_branch[1] = pc();
|
|
1553 |
|
|
1554 |
//-----------------------
|
|
1555 |
// all tests pass
|
|
1556 |
bind(succeed);
|
|
1557 |
|
|
1558 |
// Restore prior 64-bit registers
|
|
1559 |
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
|
|
1560 |
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
|
|
1561 |
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
|
|
1562 |
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
|
|
1563 |
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
|
|
1564 |
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
|
|
1565 |
|
|
1566 |
retl(); // Leaf return; restore prior O7 in delay slot
|
|
1567 |
delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
|
|
1568 |
|
|
1569 |
//-----------------------
|
|
1570 |
bind(null_or_fail); // nulls are less common but OK
|
|
1571 |
br_null(O0_obj, false, pt, succeed);
|
|
1572 |
delayed()->wrccr( O5_save_flags ); // Restore CCR's
|
|
1573 |
|
|
1574 |
//-----------------------
|
|
1575 |
// report failure:
|
|
1576 |
bind(fail);
|
|
1577 |
_verify_oop_implicit_branch[2] = pc();
|
|
1578 |
|
|
1579 |
wrccr( O5_save_flags ); // Restore CCR's
|
|
1580 |
|
|
1581 |
save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
|
|
1582 |
|
|
1583 |
// stop_subroutine expects message pointer in I1.
|
|
1584 |
mov(I1, O1);
|
|
1585 |
|
|
1586 |
// Restore prior 64-bit registers
|
|
1587 |
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
|
|
1588 |
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
|
|
1589 |
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
|
|
1590 |
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
|
|
1591 |
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
|
|
1592 |
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
|
|
1593 |
|
|
1594 |
// factor long stop-sequence into subroutine to save space
|
|
1595 |
assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
|
|
1596 |
|
|
1597 |
// call indirectly to solve generation ordering problem
|
|
1598 |
AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
|
|
1599 |
load_ptr_contents(al, O5);
|
|
1600 |
jmpl(O5, 0, O7);
|
|
1601 |
delayed()->nop();
|
|
1602 |
}
|
|
1603 |
|
|
1604 |
|
|
1605 |
void MacroAssembler::stop(const char* msg) {
|
|
1606 |
// save frame first to get O7 for return address
|
|
1607 |
// add one word to size in case struct is odd number of words long
|
|
1608 |
// It must be doubleword-aligned for storing doubles into it.
|
|
1609 |
|
|
1610 |
save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
|
|
1611 |
|
|
1612 |
// stop_subroutine expects message pointer in I1.
|
|
1613 |
// Size of set() should stay the same
|
|
1614 |
patchable_set((intptr_t)msg, O1);
|
|
1615 |
|
|
1616 |
// factor long stop-sequence into subroutine to save space
|
|
1617 |
assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
|
|
1618 |
|
|
1619 |
// call indirectly to solve generation ordering problem
|
|
1620 |
AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
|
|
1621 |
load_ptr_contents(a, O5);
|
|
1622 |
jmpl(O5, 0, O7);
|
|
1623 |
delayed()->nop();
|
|
1624 |
|
|
1625 |
breakpoint_trap(); // make stop actually stop rather than writing
|
|
1626 |
// unnoticeable results in the output files.
|
|
1627 |
|
|
1628 |
// restore(); done in callee to save space!
|
|
1629 |
}
|
|
1630 |
|
|
1631 |
|
|
1632 |
void MacroAssembler::warn(const char* msg) {
|
|
1633 |
save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
|
|
1634 |
RegistersForDebugging::save_registers(this);
|
|
1635 |
mov(O0, L0);
|
|
1636 |
// Size of set() should stay the same
|
|
1637 |
patchable_set((intptr_t)msg, O0);
|
|
1638 |
call( CAST_FROM_FN_PTR(address, warning) );
|
|
1639 |
delayed()->nop();
|
|
1640 |
// ret();
|
|
1641 |
// delayed()->restore();
|
|
1642 |
RegistersForDebugging::restore_registers(this, L0);
|
|
1643 |
restore();
|
|
1644 |
}
|
|
1645 |
|
|
1646 |
|
|
1647 |
void MacroAssembler::untested(const char* what) {
|
|
1648 |
// We must be able to turn interactive prompting off
|
|
1649 |
// in order to run automated test scripts on the VM
|
|
1650 |
// Use the flag ShowMessageBoxOnError
|
|
1651 |
|
|
1652 |
char* b = new char[1024];
|
|
1653 |
sprintf(b, "untested: %s", what);
|
|
1654 |
|
|
1655 |
if (ShowMessageBoxOnError) { STOP(b); }
|
|
1656 |
else { warn(b); }
|
|
1657 |
}
|
|
1658 |
|
|
1659 |
|
|
1660 |
void MacroAssembler::stop_subroutine() {
|
|
1661 |
RegistersForDebugging::save_registers(this);
|
|
1662 |
|
|
1663 |
// for the sake of the debugger, stick a PC on the current frame
|
|
1664 |
// (this assumes that the caller has performed an extra "save")
|
|
1665 |
mov(I7, L7);
|
|
1666 |
add(O7, -7 * BytesPerInt, I7);
|
|
1667 |
|
|
1668 |
save_frame(); // one more save to free up another O7 register
|
|
1669 |
mov(I0, O1); // addr of reg save area
|
|
1670 |
|
|
1671 |
// We expect pointer to message in I1. Caller must set it up in O1
|
|
1672 |
mov(I1, O0); // get msg
|
|
1673 |
call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
|
|
1674 |
delayed()->nop();
|
|
1675 |
|
|
1676 |
restore();
|
|
1677 |
|
|
1678 |
RegistersForDebugging::restore_registers(this, O0);
|
|
1679 |
|
|
1680 |
save_frame(0);
|
|
1681 |
call(CAST_FROM_FN_PTR(address,breakpoint));
|
|
1682 |
delayed()->nop();
|
|
1683 |
restore();
|
|
1684 |
|
|
1685 |
mov(L7, I7);
|
|
1686 |
retl();
|
|
1687 |
delayed()->restore(); // see stop above
|
|
1688 |
}
|
|
1689 |
|
|
1690 |
|
|
1691 |
void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
|
|
1692 |
if ( ShowMessageBoxOnError ) {
|
|
1693 |
JavaThread* thread = JavaThread::current();
|
|
1694 |
JavaThreadState saved_state = thread->thread_state();
|
|
1695 |
thread->set_thread_state(_thread_in_vm);
|
|
1696 |
{
|
|
1697 |
// In order to get locks work, we need to fake a in_VM state
|
|
1698 |
ttyLocker ttyl;
|
|
1699 |
::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
|
|
1700 |
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
|
|
1701 |
BytecodeCounter::print();
|
|
1702 |
}
|
|
1703 |
if (os::message_box(msg, "Execution stopped, print registers?"))
|
|
1704 |
regs->print(::tty);
|
|
1705 |
}
|
|
1706 |
BREAKPOINT;
|
|
1707 |
ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
|
|
1708 |
}
|
|
1709 |
else {
|
|
1710 |
::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
|
|
1711 |
}
|
|
1712 |
assert(false, err_msg("DEBUG MESSAGE: %s", msg));
|
|
1713 |
}
|
|
1714 |
|
|
1715 |
|
|
1716 |
void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
|
|
1717 |
subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
|
|
1718 |
Label no_extras;
|
|
1719 |
br( negative, true, pt, no_extras ); // if neg, clear reg
|
|
1720 |
delayed()->set(0, Rresult); // annuled, so only if taken
|
|
1721 |
bind( no_extras );
|
|
1722 |
}
|
|
1723 |
|
|
1724 |
|
|
1725 |
void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
|
|
1726 |
#ifdef _LP64
|
|
1727 |
add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
|
|
1728 |
#else
|
|
1729 |
add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
|
|
1730 |
#endif
|
|
1731 |
bclr(1, Rresult);
|
|
1732 |
sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
|
|
1733 |
}
|
|
1734 |
|
|
1735 |
|
|
1736 |
void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
|
|
1737 |
calc_frame_size(Rextra_words, Rresult);
|
|
1738 |
neg(Rresult);
|
|
1739 |
save(SP, Rresult, SP);
|
|
1740 |
}
|
|
1741 |
|
|
1742 |
|
|
1743 |
// ---------------------------------------------------------
|
|
1744 |
Assembler::RCondition cond2rcond(Assembler::Condition c) {
|
|
1745 |
switch (c) {
|
|
1746 |
/*case zero: */
|
|
1747 |
case Assembler::equal: return Assembler::rc_z;
|
|
1748 |
case Assembler::lessEqual: return Assembler::rc_lez;
|
|
1749 |
case Assembler::less: return Assembler::rc_lz;
|
|
1750 |
/*case notZero:*/
|
|
1751 |
case Assembler::notEqual: return Assembler::rc_nz;
|
|
1752 |
case Assembler::greater: return Assembler::rc_gz;
|
|
1753 |
case Assembler::greaterEqual: return Assembler::rc_gez;
|
|
1754 |
}
|
|
1755 |
ShouldNotReachHere();
|
|
1756 |
return Assembler::rc_z;
|
|
1757 |
}
|
|
1758 |
|
|
1759 |
// compares (32 bit) register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
|
|
1760 |
void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
|
|
1761 |
tst(s1);
|
|
1762 |
br (c, a, p, L);
|
|
1763 |
}
|
|
1764 |
|
|
1765 |
// Compares a pointer register with zero and branches on null.
|
|
1766 |
// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
|
|
1767 |
void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
|
|
1768 |
assert_not_delayed();
|
|
1769 |
#ifdef _LP64
|
|
1770 |
bpr( rc_z, a, p, s1, L );
|
|
1771 |
#else
|
|
1772 |
tst(s1);
|
|
1773 |
br ( zero, a, p, L );
|
|
1774 |
#endif
|
|
1775 |
}
|
|
1776 |
|
|
1777 |
void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
|
|
1778 |
assert_not_delayed();
|
|
1779 |
#ifdef _LP64
|
|
1780 |
bpr( rc_nz, a, p, s1, L );
|
|
1781 |
#else
|
|
1782 |
tst(s1);
|
|
1783 |
br ( notZero, a, p, L );
|
|
1784 |
#endif
|
|
1785 |
}
|
|
1786 |
|
|
1787 |
// Compare registers and branch with nop in delay slot or cbcond without delay slot.
|
|
1788 |
|
|
1789 |
// Compare integer (32 bit) values (icc only).
|
|
1790 |
void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
|
|
1791 |
Predict p, Label& L) {
|
|
1792 |
assert_not_delayed();
|
|
1793 |
if (use_cbcond(L)) {
|
|
1794 |
Assembler::cbcond(c, icc, s1, s2, L);
|
|
1795 |
} else {
|
|
1796 |
cmp(s1, s2);
|
|
1797 |
br(c, false, p, L);
|
|
1798 |
delayed()->nop();
|
|
1799 |
}
|
|
1800 |
}
|
|
1801 |
|
|
1802 |
// Compare integer (32 bit) values (icc only).
|
|
1803 |
void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
|
|
1804 |
Predict p, Label& L) {
|
|
1805 |
assert_not_delayed();
|
|
1806 |
if (is_simm(simm13a,5) && use_cbcond(L)) {
|
|
1807 |
Assembler::cbcond(c, icc, s1, simm13a, L);
|
|
1808 |
} else {
|
|
1809 |
cmp(s1, simm13a);
|
|
1810 |
br(c, false, p, L);
|
|
1811 |
delayed()->nop();
|
|
1812 |
}
|
|
1813 |
}
|
|
1814 |
|
|
1815 |
// Branch that tests xcc in LP64 and icc in !LP64
|
|
1816 |
void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
|
|
1817 |
Predict p, Label& L) {
|
|
1818 |
assert_not_delayed();
|
|
1819 |
if (use_cbcond(L)) {
|
|
1820 |
Assembler::cbcond(c, ptr_cc, s1, s2, L);
|
|
1821 |
} else {
|
|
1822 |
cmp(s1, s2);
|
|
1823 |
brx(c, false, p, L);
|
|
1824 |
delayed()->nop();
|
|
1825 |
}
|
|
1826 |
}
|
|
1827 |
|
|
1828 |
// Branch that tests xcc in LP64 and icc in !LP64
|
|
1829 |
void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
|
|
1830 |
Predict p, Label& L) {
|
|
1831 |
assert_not_delayed();
|
|
1832 |
if (is_simm(simm13a,5) && use_cbcond(L)) {
|
|
1833 |
Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
|
|
1834 |
} else {
|
|
1835 |
cmp(s1, simm13a);
|
|
1836 |
brx(c, false, p, L);
|
|
1837 |
delayed()->nop();
|
|
1838 |
}
|
|
1839 |
}
|
|
1840 |
|
|
1841 |
// Short branch version for compares a pointer with zero.
|
|
1842 |
|
|
1843 |
void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
|
|
1844 |
assert_not_delayed();
|
|
1845 |
if (use_cbcond(L)) {
|
|
1846 |
Assembler::cbcond(zero, ptr_cc, s1, 0, L);
|
|
1847 |
return;
|
|
1848 |
}
|
|
1849 |
br_null(s1, false, p, L);
|
|
1850 |
delayed()->nop();
|
|
1851 |
}
|
|
1852 |
|
|
1853 |
void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
|
|
1854 |
assert_not_delayed();
|
|
1855 |
if (use_cbcond(L)) {
|
|
1856 |
Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
|
|
1857 |
return;
|
|
1858 |
}
|
|
1859 |
br_notnull(s1, false, p, L);
|
|
1860 |
delayed()->nop();
|
|
1861 |
}
|
|
1862 |
|
|
1863 |
// Unconditional short branch
|
|
1864 |
void MacroAssembler::ba_short(Label& L) {
|
|
1865 |
if (use_cbcond(L)) {
|
|
1866 |
Assembler::cbcond(equal, icc, G0, G0, L);
|
|
1867 |
return;
|
|
1868 |
}
|
|
1869 |
br(always, false, pt, L);
|
|
1870 |
delayed()->nop();
|
|
1871 |
}
|
|
1872 |
|
|
1873 |
// instruction sequences factored across compiler & interpreter
|
|
1874 |
|
|
1875 |
|
|
1876 |
void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
|
|
1877 |
Register Rb_hi, Register Rb_low,
|
|
1878 |
Register Rresult) {
|
|
1879 |
|
|
1880 |
Label check_low_parts, done;
|
|
1881 |
|
|
1882 |
cmp(Ra_hi, Rb_hi ); // compare hi parts
|
|
1883 |
br(equal, true, pt, check_low_parts);
|
|
1884 |
delayed()->cmp(Ra_low, Rb_low); // test low parts
|
|
1885 |
|
|
1886 |
// And, with an unsigned comparison, it does not matter if the numbers
|
|
1887 |
// are negative or not.
|
|
1888 |
// E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
|
|
1889 |
// The second one is bigger (unsignedly).
|
|
1890 |
|
|
1891 |
// Other notes: The first move in each triplet can be unconditional
|
|
1892 |
// (and therefore probably prefetchable).
|
|
1893 |
// And the equals case for the high part does not need testing,
|
|
1894 |
// since that triplet is reached only after finding the high halves differ.
|
|
1895 |
|
|
1896 |
if (VM_Version::v9_instructions_work()) {
|
|
1897 |
mov(-1, Rresult);
|
|
1898 |
ba(done); delayed()-> movcc(greater, false, icc, 1, Rresult);
|
|
1899 |
} else {
|
|
1900 |
br(less, true, pt, done); delayed()-> set(-1, Rresult);
|
|
1901 |
br(greater, true, pt, done); delayed()-> set( 1, Rresult);
|
|
1902 |
}
|
|
1903 |
|
|
1904 |
bind( check_low_parts );
|
|
1905 |
|
|
1906 |
if (VM_Version::v9_instructions_work()) {
|
|
1907 |
mov( -1, Rresult);
|
|
1908 |
movcc(equal, false, icc, 0, Rresult);
|
|
1909 |
movcc(greaterUnsigned, false, icc, 1, Rresult);
|
|
1910 |
} else {
|
|
1911 |
set(-1, Rresult);
|
|
1912 |
br(equal, true, pt, done); delayed()->set( 0, Rresult);
|
|
1913 |
br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
|
|
1914 |
}
|
|
1915 |
bind( done );
|
|
1916 |
}
|
|
1917 |
|
|
1918 |
void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
|
|
1919 |
subcc( G0, Rlow, Rlow );
|
|
1920 |
subc( G0, Rhi, Rhi );
|
|
1921 |
}
|
|
1922 |
|
|
1923 |
void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
|
|
1924 |
Register Rcount,
|
|
1925 |
Register Rout_high, Register Rout_low,
|
|
1926 |
Register Rtemp ) {
|
|
1927 |
|
|
1928 |
|
|
1929 |
Register Ralt_count = Rtemp;
|
|
1930 |
Register Rxfer_bits = Rtemp;
|
|
1931 |
|
|
1932 |
assert( Ralt_count != Rin_high
|
|
1933 |
&& Ralt_count != Rin_low
|
|
1934 |
&& Ralt_count != Rcount
|
|
1935 |
&& Rxfer_bits != Rin_low
|
|
1936 |
&& Rxfer_bits != Rin_high
|
|
1937 |
&& Rxfer_bits != Rcount
|
|
1938 |
&& Rxfer_bits != Rout_low
|
|
1939 |
&& Rout_low != Rin_high,
|
|
1940 |
"register alias checks");
|
|
1941 |
|
|
1942 |
Label big_shift, done;
|
|
1943 |
|
|
1944 |
// This code can be optimized to use the 64 bit shifts in V9.
|
|
1945 |
// Here we use the 32 bit shifts.
|
|
1946 |
|
|
1947 |
and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
|
|
1948 |
subcc(Rcount, 31, Ralt_count);
|
|
1949 |
br(greater, true, pn, big_shift);
|
|
1950 |
delayed()->dec(Ralt_count);
|
|
1951 |
|
|
1952 |
// shift < 32 bits, Ralt_count = Rcount-31
|
|
1953 |
|
|
1954 |
// We get the transfer bits by shifting right by 32-count the low
|
|
1955 |
// register. This is done by shifting right by 31-count and then by one
|
|
1956 |
// more to take care of the special (rare) case where count is zero
|
|
1957 |
// (shifting by 32 would not work).
|
|
1958 |
|
|
1959 |
neg(Ralt_count);
|
|
1960 |
|
|
1961 |
// The order of the next two instructions is critical in the case where
|
|
1962 |
// Rin and Rout are the same and should not be reversed.
|
|
1963 |
|
|
1964 |
srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
|
|
1965 |
if (Rcount != Rout_low) {
|
|
1966 |
sll(Rin_low, Rcount, Rout_low); // low half
|
|
1967 |
}
|
|
1968 |
sll(Rin_high, Rcount, Rout_high);
|
|
1969 |
if (Rcount == Rout_low) {
|
|
1970 |
sll(Rin_low, Rcount, Rout_low); // low half
|
|
1971 |
}
|
|
1972 |
srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
|
|
1973 |
ba(done);
|
|
1974 |
delayed()->or3(Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
|
|
1975 |
|
|
1976 |
// shift >= 32 bits, Ralt_count = Rcount-32
|
|
1977 |
bind(big_shift);
|
|
1978 |
sll(Rin_low, Ralt_count, Rout_high );
|
|
1979 |
clr(Rout_low);
|
|
1980 |
|
|
1981 |
bind(done);
|
|
1982 |
}
|
|
1983 |
|
|
1984 |
|
|
1985 |
void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
|
|
1986 |
Register Rcount,
|
|
1987 |
Register Rout_high, Register Rout_low,
|
|
1988 |
Register Rtemp ) {
|
|
1989 |
|
|
1990 |
Register Ralt_count = Rtemp;
|
|
1991 |
Register Rxfer_bits = Rtemp;
|
|
1992 |
|
|
1993 |
assert( Ralt_count != Rin_high
|
|
1994 |
&& Ralt_count != Rin_low
|
|
1995 |
&& Ralt_count != Rcount
|
|
1996 |
&& Rxfer_bits != Rin_low
|
|
1997 |
&& Rxfer_bits != Rin_high
|
|
1998 |
&& Rxfer_bits != Rcount
|
|
1999 |
&& Rxfer_bits != Rout_high
|
|
2000 |
&& Rout_high != Rin_low,
|
|
2001 |
"register alias checks");
|
|
2002 |
|
|
2003 |
Label big_shift, done;
|
|
2004 |
|
|
2005 |
// This code can be optimized to use the 64 bit shifts in V9.
|
|
2006 |
// Here we use the 32 bit shifts.
|
|
2007 |
|
|
2008 |
and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
|
|
2009 |
subcc(Rcount, 31, Ralt_count);
|
|
2010 |
br(greater, true, pn, big_shift);
|
|
2011 |
delayed()->dec(Ralt_count);
|
|
2012 |
|
|
2013 |
// shift < 32 bits, Ralt_count = Rcount-31
|
|
2014 |
|
|
2015 |
// We get the transfer bits by shifting left by 32-count the high
|
|
2016 |
// register. This is done by shifting left by 31-count and then by one
|
|
2017 |
// more to take care of the special (rare) case where count is zero
|
|
2018 |
// (shifting by 32 would not work).
|
|
2019 |
|
|
2020 |
neg(Ralt_count);
|
|
2021 |
if (Rcount != Rout_low) {
|
|
2022 |
srl(Rin_low, Rcount, Rout_low);
|
|
2023 |
}
|
|
2024 |
|
|
2025 |
// The order of the next two instructions is critical in the case where
|
|
2026 |
// Rin and Rout are the same and should not be reversed.
|
|
2027 |
|
|
2028 |
sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
|
|
2029 |
sra(Rin_high, Rcount, Rout_high ); // high half
|
|
2030 |
sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
|
|
2031 |
if (Rcount == Rout_low) {
|
|
2032 |
srl(Rin_low, Rcount, Rout_low);
|
|
2033 |
}
|
|
2034 |
ba(done);
|
|
2035 |
delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
|
|
2036 |
|
|
2037 |
// shift >= 32 bits, Ralt_count = Rcount-32
|
|
2038 |
bind(big_shift);
|
|
2039 |
|
|
2040 |
sra(Rin_high, Ralt_count, Rout_low);
|
|
2041 |
sra(Rin_high, 31, Rout_high); // sign into hi
|
|
2042 |
|
|
2043 |
bind( done );
|
|
2044 |
}
|
|
2045 |
|
|
2046 |
|
|
2047 |
|
|
2048 |
void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
|
|
2049 |
Register Rcount,
|
|
2050 |
Register Rout_high, Register Rout_low,
|
|
2051 |
Register Rtemp ) {
|
|
2052 |
|
|
2053 |
Register Ralt_count = Rtemp;
|
|
2054 |
Register Rxfer_bits = Rtemp;
|
|
2055 |
|
|
2056 |
assert( Ralt_count != Rin_high
|
|
2057 |
&& Ralt_count != Rin_low
|
|
2058 |
&& Ralt_count != Rcount
|
|
2059 |
&& Rxfer_bits != Rin_low
|
|
2060 |
&& Rxfer_bits != Rin_high
|
|
2061 |
&& Rxfer_bits != Rcount
|
|
2062 |
&& Rxfer_bits != Rout_high
|
|
2063 |
&& Rout_high != Rin_low,
|
|
2064 |
"register alias checks");
|
|
2065 |
|
|
2066 |
Label big_shift, done;
|
|
2067 |
|
|
2068 |
// This code can be optimized to use the 64 bit shifts in V9.
|
|
2069 |
// Here we use the 32 bit shifts.
|
|
2070 |
|
|
2071 |
and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
|
|
2072 |
subcc(Rcount, 31, Ralt_count);
|
|
2073 |
br(greater, true, pn, big_shift);
|
|
2074 |
delayed()->dec(Ralt_count);
|
|
2075 |
|
|
2076 |
// shift < 32 bits, Ralt_count = Rcount-31
|
|
2077 |
|
|
2078 |
// We get the transfer bits by shifting left by 32-count the high
|
|
2079 |
// register. This is done by shifting left by 31-count and then by one
|
|
2080 |
// more to take care of the special (rare) case where count is zero
|
|
2081 |
// (shifting by 32 would not work).
|
|
2082 |
|
|
2083 |
neg(Ralt_count);
|
|
2084 |
if (Rcount != Rout_low) {
|
|
2085 |
srl(Rin_low, Rcount, Rout_low);
|
|
2086 |
}
|
|
2087 |
|
|
2088 |
// The order of the next two instructions is critical in the case where
|
|
2089 |
// Rin and Rout are the same and should not be reversed.
|
|
2090 |
|
|
2091 |
sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
|
|
2092 |
srl(Rin_high, Rcount, Rout_high ); // high half
|
|
2093 |
sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
|
|
2094 |
if (Rcount == Rout_low) {
|
|
2095 |
srl(Rin_low, Rcount, Rout_low);
|
|
2096 |
}
|
|
2097 |
ba(done);
|
|
2098 |
delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
|
|
2099 |
|
|
2100 |
// shift >= 32 bits, Ralt_count = Rcount-32
|
|
2101 |
bind(big_shift);
|
|
2102 |
|
|
2103 |
srl(Rin_high, Ralt_count, Rout_low);
|
|
2104 |
clr(Rout_high);
|
|
2105 |
|
|
2106 |
bind( done );
|
|
2107 |
}
|
|
2108 |
|
|
2109 |
#ifdef _LP64
|
|
2110 |
void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
|
|
2111 |
cmp(Ra, Rb);
|
|
2112 |
mov(-1, Rresult);
|
|
2113 |
movcc(equal, false, xcc, 0, Rresult);
|
|
2114 |
movcc(greater, false, xcc, 1, Rresult);
|
|
2115 |
}
|
|
2116 |
#endif
|
|
2117 |
|
|
2118 |
|
|
2119 |
void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
|
|
2120 |
switch (size_in_bytes) {
|
|
2121 |
case 8: ld_long(src, dst); break;
|
|
2122 |
case 4: ld( src, dst); break;
|
|
2123 |
case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
|
|
2124 |
case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
|
|
2125 |
default: ShouldNotReachHere();
|
|
2126 |
}
|
|
2127 |
}
|
|
2128 |
|
|
2129 |
void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
|
|
2130 |
switch (size_in_bytes) {
|
|
2131 |
case 8: st_long(src, dst); break;
|
|
2132 |
case 4: st( src, dst); break;
|
|
2133 |
case 2: sth( src, dst); break;
|
|
2134 |
case 1: stb( src, dst); break;
|
|
2135 |
default: ShouldNotReachHere();
|
|
2136 |
}
|
|
2137 |
}
|
|
2138 |
|
|
2139 |
|
|
2140 |
void MacroAssembler::float_cmp( bool is_float, int unordered_result,
|
|
2141 |
FloatRegister Fa, FloatRegister Fb,
|
|
2142 |
Register Rresult) {
|
|
2143 |
|
|
2144 |
fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
|
|
2145 |
|
|
2146 |
Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
|
|
2147 |
Condition eq = f_equal;
|
|
2148 |
Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
|
|
2149 |
|
|
2150 |
if (VM_Version::v9_instructions_work()) {
|
|
2151 |
|
|
2152 |
mov(-1, Rresult);
|
|
2153 |
movcc(eq, true, fcc0, 0, Rresult);
|
|
2154 |
movcc(gt, true, fcc0, 1, Rresult);
|
|
2155 |
|
|
2156 |
} else {
|
|
2157 |
Label done;
|
|
2158 |
|
|
2159 |
set( -1, Rresult );
|
|
2160 |
//fb(lt, true, pn, done); delayed()->set( -1, Rresult );
|
|
2161 |
fb( eq, true, pn, done); delayed()->set( 0, Rresult );
|
|
2162 |
fb( gt, true, pn, done); delayed()->set( 1, Rresult );
|
|
2163 |
|
|
2164 |
bind (done);
|
|
2165 |
}
|
|
2166 |
}
|
|
2167 |
|
|
2168 |
|
|
2169 |
void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
|
|
2170 |
{
|
|
2171 |
if (VM_Version::v9_instructions_work()) {
|
|
2172 |
Assembler::fneg(w, s, d);
|
|
2173 |
} else {
|
|
2174 |
if (w == FloatRegisterImpl::S) {
|
|
2175 |
Assembler::fneg(w, s, d);
|
|
2176 |
} else if (w == FloatRegisterImpl::D) {
|
|
2177 |
// number() does a sanity check on the alignment.
|
|
2178 |
assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
|
|
2179 |
((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
|
|
2180 |
|
|
2181 |
Assembler::fneg(FloatRegisterImpl::S, s, d);
|
|
2182 |
Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
|
|
2183 |
} else {
|
|
2184 |
assert(w == FloatRegisterImpl::Q, "Invalid float register width");
|
|
2185 |
|
|
2186 |
// number() does a sanity check on the alignment.
|
|
2187 |
assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
|
|
2188 |
((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
|
|
2189 |
|
|
2190 |
Assembler::fneg(FloatRegisterImpl::S, s, d);
|
|
2191 |
Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
|
|
2192 |
Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
|
|
2193 |
Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
|
|
2194 |
}
|
|
2195 |
}
|
|
2196 |
}
|
|
2197 |
|
|
2198 |
void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
|
|
2199 |
{
|
|
2200 |
if (VM_Version::v9_instructions_work()) {
|
|
2201 |
Assembler::fmov(w, s, d);
|
|
2202 |
} else {
|
|
2203 |
if (w == FloatRegisterImpl::S) {
|
|
2204 |
Assembler::fmov(w, s, d);
|
|
2205 |
} else if (w == FloatRegisterImpl::D) {
|
|
2206 |
// number() does a sanity check on the alignment.
|
|
2207 |
assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
|
|
2208 |
((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
|
|
2209 |
|
|
2210 |
Assembler::fmov(FloatRegisterImpl::S, s, d);
|
|
2211 |
Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
|
|
2212 |
} else {
|
|
2213 |
assert(w == FloatRegisterImpl::Q, "Invalid float register width");
|
|
2214 |
|
|
2215 |
// number() does a sanity check on the alignment.
|
|
2216 |
assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
|
|
2217 |
((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
|
|
2218 |
|
|
2219 |
Assembler::fmov(FloatRegisterImpl::S, s, d);
|
|
2220 |
Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
|
|
2221 |
Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
|
|
2222 |
Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
|
|
2223 |
}
|
|
2224 |
}
|
|
2225 |
}
|
|
2226 |
|
|
2227 |
void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
|
|
2228 |
{
|
|
2229 |
if (VM_Version::v9_instructions_work()) {
|
|
2230 |
Assembler::fabs(w, s, d);
|
|
2231 |
} else {
|
|
2232 |
if (w == FloatRegisterImpl::S) {
|
|
2233 |
Assembler::fabs(w, s, d);
|
|
2234 |
} else if (w == FloatRegisterImpl::D) {
|
|
2235 |
// number() does a sanity check on the alignment.
|
|
2236 |
assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
|
|
2237 |
((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
|
|
2238 |
|
|
2239 |
Assembler::fabs(FloatRegisterImpl::S, s, d);
|
|
2240 |
Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
|
|
2241 |
} else {
|
|
2242 |
assert(w == FloatRegisterImpl::Q, "Invalid float register width");
|
|
2243 |
|
|
2244 |
// number() does a sanity check on the alignment.
|
|
2245 |
assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
|
|
2246 |
((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
|
|
2247 |
|
|
2248 |
Assembler::fabs(FloatRegisterImpl::S, s, d);
|
|
2249 |
Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
|
|
2250 |
Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
|
|
2251 |
Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
|
|
2252 |
}
|
|
2253 |
}
|
|
2254 |
}
|
|
2255 |
|
|
2256 |
void MacroAssembler::save_all_globals_into_locals() {
|
|
2257 |
mov(G1,L1);
|
|
2258 |
mov(G2,L2);
|
|
2259 |
mov(G3,L3);
|
|
2260 |
mov(G4,L4);
|
|
2261 |
mov(G5,L5);
|
|
2262 |
mov(G6,L6);
|
|
2263 |
mov(G7,L7);
|
|
2264 |
}
|
|
2265 |
|
|
2266 |
void MacroAssembler::restore_globals_from_locals() {
|
|
2267 |
mov(L1,G1);
|
|
2268 |
mov(L2,G2);
|
|
2269 |
mov(L3,G3);
|
|
2270 |
mov(L4,G4);
|
|
2271 |
mov(L5,G5);
|
|
2272 |
mov(L6,G6);
|
|
2273 |
mov(L7,G7);
|
|
2274 |
}
|
|
2275 |
|
|
2276 |
// Use for 64 bit operation.
|
|
2277 |
void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
|
|
2278 |
{
|
|
2279 |
// store ptr_reg as the new top value
|
|
2280 |
#ifdef _LP64
|
|
2281 |
casx(top_ptr_reg, top_reg, ptr_reg);
|
|
2282 |
#else
|
|
2283 |
cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
|
|
2284 |
#endif // _LP64
|
|
2285 |
}
|
|
2286 |
|
|
2287 |
// [RGV] This routine does not handle 64 bit operations.
|
|
2288 |
// use casx_under_lock() or casx directly!!!
|
|
2289 |
void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
|
|
2290 |
{
|
|
2291 |
// store ptr_reg as the new top value
|
|
2292 |
if (VM_Version::v9_instructions_work()) {
|
|
2293 |
cas(top_ptr_reg, top_reg, ptr_reg);
|
|
2294 |
} else {
|
|
2295 |
|
|
2296 |
// If the register is not an out nor global, it is not visible
|
|
2297 |
// after the save. Allocate a register for it, save its
|
|
2298 |
// value in the register save area (the save may not flush
|
|
2299 |
// registers to the save area).
|
|
2300 |
|
|
2301 |
Register top_ptr_reg_after_save;
|
|
2302 |
Register top_reg_after_save;
|
|
2303 |
Register ptr_reg_after_save;
|
|
2304 |
|
|
2305 |
if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
|
|
2306 |
top_ptr_reg_after_save = top_ptr_reg->after_save();
|
|
2307 |
} else {
|
|
2308 |
Address reg_save_addr = top_ptr_reg->address_in_saved_window();
|
|
2309 |
top_ptr_reg_after_save = L0;
|
|
2310 |
st(top_ptr_reg, reg_save_addr);
|
|
2311 |
}
|
|
2312 |
|
|
2313 |
if (top_reg->is_out() || top_reg->is_global()) {
|
|
2314 |
top_reg_after_save = top_reg->after_save();
|
|
2315 |
} else {
|
|
2316 |
Address reg_save_addr = top_reg->address_in_saved_window();
|
|
2317 |
top_reg_after_save = L1;
|
|
2318 |
st(top_reg, reg_save_addr);
|
|
2319 |
}
|
|
2320 |
|
|
2321 |
if (ptr_reg->is_out() || ptr_reg->is_global()) {
|
|
2322 |
ptr_reg_after_save = ptr_reg->after_save();
|
|
2323 |
} else {
|
|
2324 |
Address reg_save_addr = ptr_reg->address_in_saved_window();
|
|
2325 |
ptr_reg_after_save = L2;
|
|
2326 |
st(ptr_reg, reg_save_addr);
|
|
2327 |
}
|
|
2328 |
|
|
2329 |
const Register& lock_reg = L3;
|
|
2330 |
const Register& lock_ptr_reg = L4;
|
|
2331 |
const Register& value_reg = L5;
|
|
2332 |
const Register& yield_reg = L6;
|
|
2333 |
const Register& yieldall_reg = L7;
|
|
2334 |
|
|
2335 |
save_frame();
|
|
2336 |
|
|
2337 |
if (top_ptr_reg_after_save == L0) {
|
|
2338 |
ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
|
|
2339 |
}
|
|
2340 |
|
|
2341 |
if (top_reg_after_save == L1) {
|
|
2342 |
ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
|
|
2343 |
}
|
|
2344 |
|
|
2345 |
if (ptr_reg_after_save == L2) {
|
|
2346 |
ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
|
|
2347 |
}
|
|
2348 |
|
|
2349 |
Label(retry_get_lock);
|
|
2350 |
Label(not_same);
|
|
2351 |
Label(dont_yield);
|
|
2352 |
|
|
2353 |
assert(lock_addr, "lock_address should be non null for v8");
|
|
2354 |
set((intptr_t)lock_addr, lock_ptr_reg);
|
|
2355 |
// Initialize yield counter
|
|
2356 |
mov(G0,yield_reg);
|
|
2357 |
mov(G0, yieldall_reg);
|
|
2358 |
set(StubRoutines::Sparc::locked, lock_reg);
|
|
2359 |
|
|
2360 |
bind(retry_get_lock);
|
|
2361 |
cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
|
|
2362 |
|
|
2363 |
if(use_call_vm) {
|
|
2364 |
Untested("Need to verify global reg consistancy");
|
|
2365 |
call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
|
|
2366 |
} else {
|
|
2367 |
// Save the regs and make space for a C call
|
|
2368 |
save(SP, -96, SP);
|
|
2369 |
save_all_globals_into_locals();
|
|
2370 |
call(CAST_FROM_FN_PTR(address,os::yield_all));
|
|
2371 |
delayed()->mov(yieldall_reg, O0);
|
|
2372 |
restore_globals_from_locals();
|
|
2373 |
restore();
|
|
2374 |
}
|
|
2375 |
|
|
2376 |
// reset the counter
|
|
2377 |
mov(G0,yield_reg);
|
|
2378 |
add(yieldall_reg, 1, yieldall_reg);
|
|
2379 |
|
|
2380 |
bind(dont_yield);
|
|
2381 |
// try to get lock
|
|
2382 |
Assembler::swap(lock_ptr_reg, 0, lock_reg);
|
|
2383 |
|
|
2384 |
// did we get the lock?
|
|
2385 |
cmp(lock_reg, StubRoutines::Sparc::unlocked);
|
|
2386 |
br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
|
|
2387 |
delayed()->add(yield_reg,1,yield_reg);
|
|
2388 |
|
|
2389 |
// yes, got lock. do we have the same top?
|
|
2390 |
ld(top_ptr_reg_after_save, 0, value_reg);
|
|
2391 |
cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
|
|
2392 |
|
|
2393 |
// yes, same top.
|
|
2394 |
st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
|
|
2395 |
membar(Assembler::StoreStore);
|
|
2396 |
|
|
2397 |
bind(not_same);
|
|
2398 |
mov(value_reg, ptr_reg_after_save);
|
|
2399 |
st(lock_reg, lock_ptr_reg, 0); // unlock
|
|
2400 |
|
|
2401 |
restore();
|
|
2402 |
}
|
|
2403 |
}
|
|
2404 |
|
|
2405 |
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
|
|
2406 |
Register tmp,
|
|
2407 |
int offset) {
|
|
2408 |
intptr_t value = *delayed_value_addr;
|
|
2409 |
if (value != 0)
|
|
2410 |
return RegisterOrConstant(value + offset);
|
|
2411 |
|
|
2412 |
// load indirectly to solve generation ordering problem
|
|
2413 |
AddressLiteral a(delayed_value_addr);
|
|
2414 |
load_ptr_contents(a, tmp);
|
|
2415 |
|
|
2416 |
#ifdef ASSERT
|
|
2417 |
tst(tmp);
|
|
2418 |
breakpoint_trap(zero, xcc);
|
|
2419 |
#endif
|
|
2420 |
|
|
2421 |
if (offset != 0)
|
|
2422 |
add(tmp, offset, tmp);
|
|
2423 |
|
|
2424 |
return RegisterOrConstant(tmp);
|
|
2425 |
}
|
|
2426 |
|
|
2427 |
|
|
2428 |
RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
|
|
2429 |
assert(d.register_or_noreg() != G0, "lost side effect");
|
|
2430 |
if ((s2.is_constant() && s2.as_constant() == 0) ||
|
|
2431 |
(s2.is_register() && s2.as_register() == G0)) {
|
|
2432 |
// Do nothing, just move value.
|
|
2433 |
if (s1.is_register()) {
|
|
2434 |
if (d.is_constant()) d = temp;
|
|
2435 |
mov(s1.as_register(), d.as_register());
|
|
2436 |
return d;
|
|
2437 |
} else {
|
|
2438 |
return s1;
|
|
2439 |
}
|
|
2440 |
}
|
|
2441 |
|
|
2442 |
if (s1.is_register()) {
|
|
2443 |
assert_different_registers(s1.as_register(), temp);
|
|
2444 |
if (d.is_constant()) d = temp;
|
|
2445 |
andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
|
|
2446 |
return d;
|
|
2447 |
} else {
|
|
2448 |
if (s2.is_register()) {
|
|
2449 |
assert_different_registers(s2.as_register(), temp);
|
|
2450 |
if (d.is_constant()) d = temp;
|
|
2451 |
set(s1.as_constant(), temp);
|
|
2452 |
andn(temp, s2.as_register(), d.as_register());
|
|
2453 |
return d;
|
|
2454 |
} else {
|
|
2455 |
intptr_t res = s1.as_constant() & ~s2.as_constant();
|
|
2456 |
return res;
|
|
2457 |
}
|
|
2458 |
}
|
|
2459 |
}
|
|
2460 |
|
|
2461 |
RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
|
|
2462 |
assert(d.register_or_noreg() != G0, "lost side effect");
|
|
2463 |
if ((s2.is_constant() && s2.as_constant() == 0) ||
|
|
2464 |
(s2.is_register() && s2.as_register() == G0)) {
|
|
2465 |
// Do nothing, just move value.
|
|
2466 |
if (s1.is_register()) {
|
|
2467 |
if (d.is_constant()) d = temp;
|
|
2468 |
mov(s1.as_register(), d.as_register());
|
|
2469 |
return d;
|
|
2470 |
} else {
|
|
2471 |
return s1;
|
|
2472 |
}
|
|
2473 |
}
|
|
2474 |
|
|
2475 |
if (s1.is_register()) {
|
|
2476 |
assert_different_registers(s1.as_register(), temp);
|
|
2477 |
if (d.is_constant()) d = temp;
|
|
2478 |
add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
|
|
2479 |
return d;
|
|
2480 |
} else {
|
|
2481 |
if (s2.is_register()) {
|
|
2482 |
assert_different_registers(s2.as_register(), temp);
|
|
2483 |
if (d.is_constant()) d = temp;
|
|
2484 |
add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
|
|
2485 |
return d;
|
|
2486 |
} else {
|
|
2487 |
intptr_t res = s1.as_constant() + s2.as_constant();
|
|
2488 |
return res;
|
|
2489 |
}
|
|
2490 |
}
|
|
2491 |
}
|
|
2492 |
|
|
2493 |
RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
|
|
2494 |
assert(d.register_or_noreg() != G0, "lost side effect");
|
|
2495 |
if (!is_simm13(s2.constant_or_zero()))
|
|
2496 |
s2 = (s2.as_constant() & 0xFF);
|
|
2497 |
if ((s2.is_constant() && s2.as_constant() == 0) ||
|
|
2498 |
(s2.is_register() && s2.as_register() == G0)) {
|
|
2499 |
// Do nothing, just move value.
|
|
2500 |
if (s1.is_register()) {
|
|
2501 |
if (d.is_constant()) d = temp;
|
|
2502 |
mov(s1.as_register(), d.as_register());
|
|
2503 |
return d;
|
|
2504 |
} else {
|
|
2505 |
return s1;
|
|
2506 |
}
|
|
2507 |
}
|
|
2508 |
|
|
2509 |
if (s1.is_register()) {
|
|
2510 |
assert_different_registers(s1.as_register(), temp);
|
|
2511 |
if (d.is_constant()) d = temp;
|
|
2512 |
sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
|
|
2513 |
return d;
|
|
2514 |
} else {
|
|
2515 |
if (s2.is_register()) {
|
|
2516 |
assert_different_registers(s2.as_register(), temp);
|
|
2517 |
if (d.is_constant()) d = temp;
|
|
2518 |
set(s1.as_constant(), temp);
|
|
2519 |
sll_ptr(temp, s2.as_register(), d.as_register());
|
|
2520 |
return d;
|
|
2521 |
} else {
|
|
2522 |
intptr_t res = s1.as_constant() << s2.as_constant();
|
|
2523 |
return res;
|
|
2524 |
}
|
|
2525 |
}
|
|
2526 |
}
|
|
2527 |
|
|
2528 |
|
|
2529 |
// Look up the method for a megamorphic invokeinterface call.
|
|
2530 |
// The target method is determined by <intf_klass, itable_index>.
|
|
2531 |
// The receiver klass is in recv_klass.
|
|
2532 |
// On success, the result will be in method_result, and execution falls through.
|
|
2533 |
// On failure, execution transfers to the given label.
|
|
2534 |
void MacroAssembler::lookup_interface_method(Register recv_klass,
|
|
2535 |
Register intf_klass,
|
|
2536 |
RegisterOrConstant itable_index,
|
|
2537 |
Register method_result,
|
|
2538 |
Register scan_temp,
|
|
2539 |
Register sethi_temp,
|
|
2540 |
Label& L_no_such_interface) {
|
|
2541 |
assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
|
|
2542 |
assert(itable_index.is_constant() || itable_index.as_register() == method_result,
|
|
2543 |
"caller must use same register for non-constant itable index as for method");
|
|
2544 |
|
|
2545 |
Label L_no_such_interface_restore;
|
|
2546 |
bool did_save = false;
|
|
2547 |
if (scan_temp == noreg || sethi_temp == noreg) {
|
|
2548 |
Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
|
|
2549 |
Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
|
|
2550 |
assert(method_result->is_global(), "must be able to return value");
|
|
2551 |
scan_temp = L2;
|
|
2552 |
sethi_temp = L3;
|
|
2553 |
save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
|
|
2554 |
recv_klass = recv_2;
|
|
2555 |
intf_klass = intf_2;
|
|
2556 |
did_save = true;
|
|
2557 |
}
|
|
2558 |
|
|
2559 |
// Compute start of first itableOffsetEntry (which is at the end of the vtable)
|
|
2560 |
int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
|
|
2561 |
int scan_step = itableOffsetEntry::size() * wordSize;
|
|
2562 |
int vte_size = vtableEntry::size() * wordSize;
|
|
2563 |
|
|
2564 |
lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
|
|
2565 |
// %%% We should store the aligned, prescaled offset in the klassoop.
|
|
2566 |
// Then the next several instructions would fold away.
|
|
2567 |
|
|
2568 |
int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
|
|
2569 |
int itb_offset = vtable_base;
|
|
2570 |
if (round_to_unit != 0) {
|
|
2571 |
// hoist first instruction of round_to(scan_temp, BytesPerLong):
|
|
2572 |
itb_offset += round_to_unit - wordSize;
|
|
2573 |
}
|
|
2574 |
int itb_scale = exact_log2(vtableEntry::size() * wordSize);
|
|
2575 |
sll(scan_temp, itb_scale, scan_temp);
|
|
2576 |
add(scan_temp, itb_offset, scan_temp);
|
|
2577 |
if (round_to_unit != 0) {
|
|
2578 |
// Round up to align_object_offset boundary
|
|
2579 |
// see code for InstanceKlass::start_of_itable!
|
|
2580 |
// Was: round_to(scan_temp, BytesPerLong);
|
|
2581 |
// Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
|
|
2582 |
and3(scan_temp, -round_to_unit, scan_temp);
|
|
2583 |
}
|
|
2584 |
add(recv_klass, scan_temp, scan_temp);
|
|
2585 |
|
|
2586 |
// Adjust recv_klass by scaled itable_index, so we can free itable_index.
|
|
2587 |
RegisterOrConstant itable_offset = itable_index;
|
|
2588 |
itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
|
|
2589 |
itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
|
|
2590 |
add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
|
|
2591 |
|
|
2592 |
// for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
|
|
2593 |
// if (scan->interface() == intf) {
|
|
2594 |
// result = (klass + scan->offset() + itable_index);
|
|
2595 |
// }
|
|
2596 |
// }
|
|
2597 |
Label L_search, L_found_method;
|
|
2598 |
|
|
2599 |
for (int peel = 1; peel >= 0; peel--) {
|
|
2600 |
// %%%% Could load both offset and interface in one ldx, if they were
|
|
2601 |
// in the opposite order. This would save a load.
|
|
2602 |
ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
|
|
2603 |
|
|
2604 |
// Check that this entry is non-null. A null entry means that
|
|
2605 |
// the receiver class doesn't implement the interface, and wasn't the
|
|
2606 |
// same as when the caller was compiled.
|
|
2607 |
bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
|
|
2608 |
delayed()->cmp(method_result, intf_klass);
|
|
2609 |
|
|
2610 |
if (peel) {
|
|
2611 |
brx(Assembler::equal, false, Assembler::pt, L_found_method);
|
|
2612 |
} else {
|
|
2613 |
brx(Assembler::notEqual, false, Assembler::pn, L_search);
|
|
2614 |
// (invert the test to fall through to found_method...)
|
|
2615 |
}
|
|
2616 |
delayed()->add(scan_temp, scan_step, scan_temp);
|
|
2617 |
|
|
2618 |
if (!peel) break;
|
|
2619 |
|
|
2620 |
bind(L_search);
|
|
2621 |
}
|
|
2622 |
|
|
2623 |
bind(L_found_method);
|
|
2624 |
|
|
2625 |
// Got a hit.
|
|
2626 |
int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
|
|
2627 |
// scan_temp[-scan_step] points to the vtable offset we need
|
|
2628 |
ito_offset -= scan_step;
|
|
2629 |
lduw(scan_temp, ito_offset, scan_temp);
|
|
2630 |
ld_ptr(recv_klass, scan_temp, method_result);
|
|
2631 |
|
|
2632 |
if (did_save) {
|
|
2633 |
Label L_done;
|
|
2634 |
ba(L_done);
|
|
2635 |
delayed()->restore();
|
|
2636 |
|
|
2637 |
bind(L_no_such_interface_restore);
|
|
2638 |
ba(L_no_such_interface);
|
|
2639 |
delayed()->restore();
|
|
2640 |
|
|
2641 |
bind(L_done);
|
|
2642 |
}
|
|
2643 |
}
|
|
2644 |
|
|
2645 |
|
|
2646 |
// virtual method calling
|
|
2647 |
void MacroAssembler::lookup_virtual_method(Register recv_klass,
|
|
2648 |
RegisterOrConstant vtable_index,
|
|
2649 |
Register method_result) {
|
|
2650 |
assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
|
|
2651 |
Register sethi_temp = method_result;
|
|
2652 |
const int base = (InstanceKlass::vtable_start_offset() * wordSize +
|
|
2653 |
// method pointer offset within the vtable entry:
|
|
2654 |
vtableEntry::method_offset_in_bytes());
|
|
2655 |
RegisterOrConstant vtable_offset = vtable_index;
|
|
2656 |
// Each of the following three lines potentially generates an instruction.
|
|
2657 |
// But the total number of address formation instructions will always be
|
|
2658 |
// at most two, and will often be zero. In any case, it will be optimal.
|
|
2659 |
// If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
|
|
2660 |
// If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
|
|
2661 |
vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
|
|
2662 |
vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
|
|
2663 |
Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
|
|
2664 |
ld_ptr(vtable_entry_addr, method_result);
|
|
2665 |
}
|
|
2666 |
|
|
2667 |
|
|
2668 |
void MacroAssembler::check_klass_subtype(Register sub_klass,
|
|
2669 |
Register super_klass,
|
|
2670 |
Register temp_reg,
|
|
2671 |
Register temp2_reg,
|
|
2672 |
Label& L_success) {
|
|
2673 |
Register sub_2 = sub_klass;
|
|
2674 |
Register sup_2 = super_klass;
|
|
2675 |
if (!sub_2->is_global()) sub_2 = L0;
|
|
2676 |
if (!sup_2->is_global()) sup_2 = L1;
|
|
2677 |
bool did_save = false;
|
|
2678 |
if (temp_reg == noreg || temp2_reg == noreg) {
|
|
2679 |
temp_reg = L2;
|
|
2680 |
temp2_reg = L3;
|
|
2681 |
save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
|
|
2682 |
sub_klass = sub_2;
|
|
2683 |
super_klass = sup_2;
|
|
2684 |
did_save = true;
|
|
2685 |
}
|
|
2686 |
Label L_failure, L_pop_to_failure, L_pop_to_success;
|
|
2687 |
check_klass_subtype_fast_path(sub_klass, super_klass,
|
|
2688 |
temp_reg, temp2_reg,
|
|
2689 |
(did_save ? &L_pop_to_success : &L_success),
|
|
2690 |
(did_save ? &L_pop_to_failure : &L_failure), NULL);
|
|
2691 |
|
|
2692 |
if (!did_save)
|
|
2693 |
save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
|
|
2694 |
check_klass_subtype_slow_path(sub_2, sup_2,
|
|
2695 |
L2, L3, L4, L5,
|
|
2696 |
NULL, &L_pop_to_failure);
|
|
2697 |
|
|
2698 |
// on success:
|
|
2699 |
bind(L_pop_to_success);
|
|
2700 |
restore();
|
|
2701 |
ba_short(L_success);
|
|
2702 |
|
|
2703 |
// on failure:
|
|
2704 |
bind(L_pop_to_failure);
|
|
2705 |
restore();
|
|
2706 |
bind(L_failure);
|
|
2707 |
}
|
|
2708 |
|
|
2709 |
|
|
2710 |
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
|
|
2711 |
Register super_klass,
|
|
2712 |
Register temp_reg,
|
|
2713 |
Register temp2_reg,
|
|
2714 |
Label* L_success,
|
|
2715 |
Label* L_failure,
|
|
2716 |
Label* L_slow_path,
|
|
2717 |
RegisterOrConstant super_check_offset) {
|
|
2718 |
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
|
|
2719 |
int sco_offset = in_bytes(Klass::super_check_offset_offset());
|
|
2720 |
|
|
2721 |
bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
|
|
2722 |
bool need_slow_path = (must_load_sco ||
|
|
2723 |
super_check_offset.constant_or_zero() == sco_offset);
|
|
2724 |
|
|
2725 |
assert_different_registers(sub_klass, super_klass, temp_reg);
|
|
2726 |
if (super_check_offset.is_register()) {
|
|
2727 |
assert_different_registers(sub_klass, super_klass, temp_reg,
|
|
2728 |
super_check_offset.as_register());
|
|
2729 |
} else if (must_load_sco) {
|
|
2730 |
assert(temp2_reg != noreg, "supply either a temp or a register offset");
|
|
2731 |
}
|
|
2732 |
|
|
2733 |
Label L_fallthrough;
|
|
2734 |
int label_nulls = 0;
|
|
2735 |
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
|
|
2736 |
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
|
|
2737 |
if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
|
|
2738 |
assert(label_nulls <= 1 ||
|
|
2739 |
(L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
|
|
2740 |
"at most one NULL in the batch, usually");
|
|
2741 |
|
|
2742 |
// If the pointers are equal, we are done (e.g., String[] elements).
|
|
2743 |
// This self-check enables sharing of secondary supertype arrays among
|
|
2744 |
// non-primary types such as array-of-interface. Otherwise, each such
|
|
2745 |
// type would need its own customized SSA.
|
|
2746 |
// We move this check to the front of the fast path because many
|
|
2747 |
// type checks are in fact trivially successful in this manner,
|
|
2748 |
// so we get a nicely predicted branch right at the start of the check.
|
|
2749 |
cmp(super_klass, sub_klass);
|
|
2750 |
brx(Assembler::equal, false, Assembler::pn, *L_success);
|
|
2751 |
delayed()->nop();
|
|
2752 |
|
|
2753 |
// Check the supertype display:
|
|
2754 |
if (must_load_sco) {
|
|
2755 |
// The super check offset is always positive...
|
|
2756 |
lduw(super_klass, sco_offset, temp2_reg);
|
|
2757 |
super_check_offset = RegisterOrConstant(temp2_reg);
|
|
2758 |
// super_check_offset is register.
|
|
2759 |
assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
|
|
2760 |
}
|
|
2761 |
ld_ptr(sub_klass, super_check_offset, temp_reg);
|
|
2762 |
cmp(super_klass, temp_reg);
|
|
2763 |
|
|
2764 |
// This check has worked decisively for primary supers.
|
|
2765 |
// Secondary supers are sought in the super_cache ('super_cache_addr').
|
|
2766 |
// (Secondary supers are interfaces and very deeply nested subtypes.)
|
|
2767 |
// This works in the same check above because of a tricky aliasing
|
|
2768 |
// between the super_cache and the primary super display elements.
|
|
2769 |
// (The 'super_check_addr' can address either, as the case requires.)
|
|
2770 |
// Note that the cache is updated below if it does not help us find
|
|
2771 |
// what we need immediately.
|
|
2772 |
// So if it was a primary super, we can just fail immediately.
|
|
2773 |
// Otherwise, it's the slow path for us (no success at this point).
|
|
2774 |
|
|
2775 |
// Hacked ba(), which may only be used just before L_fallthrough.
|
|
2776 |
#define FINAL_JUMP(label) \
|
|
2777 |
if (&(label) != &L_fallthrough) { \
|
|
2778 |
ba(label); delayed()->nop(); \
|
|
2779 |
}
|
|
2780 |
|
|
2781 |
if (super_check_offset.is_register()) {
|
|
2782 |
brx(Assembler::equal, false, Assembler::pn, *L_success);
|
|
2783 |
delayed()->cmp(super_check_offset.as_register(), sc_offset);
|
|
2784 |
|
|
2785 |
if (L_failure == &L_fallthrough) {
|
|
2786 |
brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
|
|
2787 |
delayed()->nop();
|
|
2788 |
} else {
|
|
2789 |
brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
|
|
2790 |
delayed()->nop();
|
|
2791 |
FINAL_JUMP(*L_slow_path);
|
|
2792 |
}
|
|
2793 |
} else if (super_check_offset.as_constant() == sc_offset) {
|
|
2794 |
// Need a slow path; fast failure is impossible.
|
|
2795 |
if (L_slow_path == &L_fallthrough) {
|
|
2796 |
brx(Assembler::equal, false, Assembler::pt, *L_success);
|
|
2797 |
delayed()->nop();
|
|
2798 |
} else {
|
|
2799 |
brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
|
|
2800 |
delayed()->nop();
|
|
2801 |
FINAL_JUMP(*L_success);
|
|
2802 |
}
|
|
2803 |
} else {
|
|
2804 |
// No slow path; it's a fast decision.
|
|
2805 |
if (L_failure == &L_fallthrough) {
|
|
2806 |
brx(Assembler::equal, false, Assembler::pt, *L_success);
|
|
2807 |
delayed()->nop();
|
|
2808 |
} else {
|
|
2809 |
brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
|
|
2810 |
delayed()->nop();
|
|
2811 |
FINAL_JUMP(*L_success);
|
|
2812 |
}
|
|
2813 |
}
|
|
2814 |
|
|
2815 |
bind(L_fallthrough);
|
|
2816 |
|
|
2817 |
#undef FINAL_JUMP
|
|
2818 |
}
|
|
2819 |
|
|
2820 |
|
|
2821 |
void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
|
|
2822 |
Register super_klass,
|
|
2823 |
Register count_temp,
|
|
2824 |
Register scan_temp,
|
|
2825 |
Register scratch_reg,
|
|
2826 |
Register coop_reg,
|
|
2827 |
Label* L_success,
|
|
2828 |
Label* L_failure) {
|
|
2829 |
assert_different_registers(sub_klass, super_klass,
|
|
2830 |
count_temp, scan_temp, scratch_reg, coop_reg);
|
|
2831 |
|
|
2832 |
Label L_fallthrough, L_loop;
|
|
2833 |
int label_nulls = 0;
|
|
2834 |
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
|
|
2835 |
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
|
|
2836 |
assert(label_nulls <= 1, "at most one NULL in the batch");
|
|
2837 |
|
|
2838 |
// a couple of useful fields in sub_klass:
|
|
2839 |
int ss_offset = in_bytes(Klass::secondary_supers_offset());
|
|
2840 |
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
|
|
2841 |
|
|
2842 |
// Do a linear scan of the secondary super-klass chain.
|
|
2843 |
// This code is rarely used, so simplicity is a virtue here.
|
|
2844 |
|
|
2845 |
#ifndef PRODUCT
|
|
2846 |
int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
|
|
2847 |
inc_counter((address) pst_counter, count_temp, scan_temp);
|
|
2848 |
#endif
|
|
2849 |
|
|
2850 |
// We will consult the secondary-super array.
|
|
2851 |
ld_ptr(sub_klass, ss_offset, scan_temp);
|
|
2852 |
|
|
2853 |
Register search_key = super_klass;
|
|
2854 |
|
|
2855 |
// Load the array length. (Positive movl does right thing on LP64.)
|
|
2856 |
lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
|
|
2857 |
|
|
2858 |
// Check for empty secondary super list
|
|
2859 |
tst(count_temp);
|
|
2860 |
|
|
2861 |
// In the array of super classes elements are pointer sized.
|
|
2862 |
int element_size = wordSize;
|
|
2863 |
|
|
2864 |
// Top of search loop
|
|
2865 |
bind(L_loop);
|
|
2866 |
br(Assembler::equal, false, Assembler::pn, *L_failure);
|
|
2867 |
delayed()->add(scan_temp, element_size, scan_temp);
|
|
2868 |
|
|
2869 |
// Skip the array header in all array accesses.
|
|
2870 |
int elem_offset = Array<Klass*>::base_offset_in_bytes();
|
|
2871 |
elem_offset -= element_size; // the scan pointer was pre-incremented also
|
|
2872 |
|
|
2873 |
// Load next super to check
|
|
2874 |
ld_ptr( scan_temp, elem_offset, scratch_reg );
|
|
2875 |
|
|
2876 |
// Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
|
|
2877 |
cmp(scratch_reg, search_key);
|
|
2878 |
|
|
2879 |
// A miss means we are NOT a subtype and need to keep looping
|
|
2880 |
brx(Assembler::notEqual, false, Assembler::pn, L_loop);
|
|
2881 |
delayed()->deccc(count_temp); // decrement trip counter in delay slot
|
|
2882 |
|
|
2883 |
// Success. Cache the super we found and proceed in triumph.
|
|
2884 |
st_ptr(super_klass, sub_klass, sc_offset);
|
|
2885 |
|
|
2886 |
if (L_success != &L_fallthrough) {
|
|
2887 |
ba(*L_success);
|
|
2888 |
delayed()->nop();
|
|
2889 |
}
|
|
2890 |
|
|
2891 |
bind(L_fallthrough);
|
|
2892 |
}
|
|
2893 |
|
|
2894 |
|
|
2895 |
RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
|
|
2896 |
Register temp_reg,
|
|
2897 |
int extra_slot_offset) {
|
|
2898 |
// cf. TemplateTable::prepare_invoke(), if (load_receiver).
|
|
2899 |
int stackElementSize = Interpreter::stackElementSize;
|
|
2900 |
int offset = extra_slot_offset * stackElementSize;
|
|
2901 |
if (arg_slot.is_constant()) {
|
|
2902 |
offset += arg_slot.as_constant() * stackElementSize;
|
|
2903 |
return offset;
|
|
2904 |
} else {
|
|
2905 |
assert(temp_reg != noreg, "must specify");
|
|
2906 |
sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
|
|
2907 |
if (offset != 0)
|
|
2908 |
add(temp_reg, offset, temp_reg);
|
|
2909 |
return temp_reg;
|
|
2910 |
}
|
|
2911 |
}
|
|
2912 |
|
|
2913 |
|
|
2914 |
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
|
|
2915 |
Register temp_reg,
|
|
2916 |
int extra_slot_offset) {
|
|
2917 |
return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
|
|
2918 |
}
|
|
2919 |
|
|
2920 |
|
|
2921 |
void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
|
|
2922 |
Register temp_reg,
|
|
2923 |
Label& done, Label* slow_case,
|
|
2924 |
BiasedLockingCounters* counters) {
|
|
2925 |
assert(UseBiasedLocking, "why call this otherwise?");
|
|
2926 |
|
|
2927 |
if (PrintBiasedLockingStatistics) {
|
|
2928 |
assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
|
|
2929 |
if (counters == NULL)
|
|
2930 |
counters = BiasedLocking::counters();
|
|
2931 |
}
|
|
2932 |
|
|
2933 |
Label cas_label;
|
|
2934 |
|
|
2935 |
// Biased locking
|
|
2936 |
// See whether the lock is currently biased toward our thread and
|
|
2937 |
// whether the epoch is still valid
|
|
2938 |
// Note that the runtime guarantees sufficient alignment of JavaThread
|
|
2939 |
// pointers to allow age to be placed into low bits
|
|
2940 |
assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
|
|
2941 |
and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
|
|
2942 |
cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
|
|
2943 |
|
|
2944 |
load_klass(obj_reg, temp_reg);
|
|
2945 |
ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
|
|
2946 |
or3(G2_thread, temp_reg, temp_reg);
|
|
2947 |
xor3(mark_reg, temp_reg, temp_reg);
|
|
2948 |
andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
|
|
2949 |
if (counters != NULL) {
|
|
2950 |
cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
|
|
2951 |
// Reload mark_reg as we may need it later
|
|
2952 |
ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
|
|
2953 |
}
|
|
2954 |
brx(Assembler::equal, true, Assembler::pt, done);
|
|
2955 |
delayed()->nop();
|
|
2956 |
|
|
2957 |
Label try_revoke_bias;
|
|
2958 |
Label try_rebias;
|
|
2959 |
Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
|
|
2960 |
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
|
|
2961 |
|
|
2962 |
// At this point we know that the header has the bias pattern and
|
|
2963 |
// that we are not the bias owner in the current epoch. We need to
|
|
2964 |
// figure out more details about the state of the header in order to
|
|
2965 |
// know what operations can be legally performed on the object's
|
|
2966 |
// header.
|
|
2967 |
|
|
2968 |
// If the low three bits in the xor result aren't clear, that means
|
|
2969 |
// the prototype header is no longer biased and we have to revoke
|
|
2970 |
// the bias on this object.
|
|
2971 |
btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
|
|
2972 |
brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
|
|
2973 |
|
|
2974 |
// Biasing is still enabled for this data type. See whether the
|
|
2975 |
// epoch of the current bias is still valid, meaning that the epoch
|
|
2976 |
// bits of the mark word are equal to the epoch bits of the
|
|
2977 |
// prototype header. (Note that the prototype header's epoch bits
|
|
2978 |
// only change at a safepoint.) If not, attempt to rebias the object
|
|
2979 |
// toward the current thread. Note that we must be absolutely sure
|
|
2980 |
// that the current epoch is invalid in order to do this because
|
|
2981 |
// otherwise the manipulations it performs on the mark word are
|
|
2982 |
// illegal.
|
|
2983 |
delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
|
|
2984 |
brx(Assembler::notZero, false, Assembler::pn, try_rebias);
|
|
2985 |
|
|
2986 |
// The epoch of the current bias is still valid but we know nothing
|
|
2987 |
// about the owner; it might be set or it might be clear. Try to
|
|
2988 |
// acquire the bias of the object using an atomic operation. If this
|
|
2989 |
// fails we will go in to the runtime to revoke the object's bias.
|
|
2990 |
// Note that we first construct the presumed unbiased header so we
|
|
2991 |
// don't accidentally blow away another thread's valid bias.
|
|
2992 |
delayed()->and3(mark_reg,
|
|
2993 |
markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
|
|
2994 |
mark_reg);
|
|
2995 |
or3(G2_thread, mark_reg, temp_reg);
|
|
2996 |
casn(mark_addr.base(), mark_reg, temp_reg);
|
|
2997 |
// If the biasing toward our thread failed, this means that
|
|
2998 |
// another thread succeeded in biasing it toward itself and we
|
|
2999 |
// need to revoke that bias. The revocation will occur in the
|
|
3000 |
// interpreter runtime in the slow case.
|
|
3001 |
cmp(mark_reg, temp_reg);
|
|
3002 |
if (counters != NULL) {
|
|
3003 |
cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
|
|
3004 |
}
|
|
3005 |
if (slow_case != NULL) {
|
|
3006 |
brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
|
|
3007 |
delayed()->nop();
|
|
3008 |
}
|
|
3009 |
ba_short(done);
|
|
3010 |
|
|
3011 |
bind(try_rebias);
|
|
3012 |
// At this point we know the epoch has expired, meaning that the
|
|
3013 |
// current "bias owner", if any, is actually invalid. Under these
|
|
3014 |
// circumstances _only_, we are allowed to use the current header's
|
|
3015 |
// value as the comparison value when doing the cas to acquire the
|
|
3016 |
// bias in the current epoch. In other words, we allow transfer of
|
|
3017 |
// the bias from one thread to another directly in this situation.
|
|
3018 |
//
|
|
3019 |
// FIXME: due to a lack of registers we currently blow away the age
|
|
3020 |
// bits in this situation. Should attempt to preserve them.
|
|
3021 |
load_klass(obj_reg, temp_reg);
|
|
3022 |
ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
|
|
3023 |
or3(G2_thread, temp_reg, temp_reg);
|
|
3024 |
casn(mark_addr.base(), mark_reg, temp_reg);
|
|
3025 |
// If the biasing toward our thread failed, this means that
|
|
3026 |
// another thread succeeded in biasing it toward itself and we
|
|
3027 |
// need to revoke that bias. The revocation will occur in the
|
|
3028 |
// interpreter runtime in the slow case.
|
|
3029 |
cmp(mark_reg, temp_reg);
|
|
3030 |
if (counters != NULL) {
|
|
3031 |
cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
|
|
3032 |
}
|
|
3033 |
if (slow_case != NULL) {
|
|
3034 |
brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
|
|
3035 |
delayed()->nop();
|
|
3036 |
}
|
|
3037 |
ba_short(done);
|
|
3038 |
|
|
3039 |
bind(try_revoke_bias);
|
|
3040 |
// The prototype mark in the klass doesn't have the bias bit set any
|
|
3041 |
// more, indicating that objects of this data type are not supposed
|
|
3042 |
// to be biased any more. We are going to try to reset the mark of
|
|
3043 |
// this object to the prototype value and fall through to the
|
|
3044 |
// CAS-based locking scheme. Note that if our CAS fails, it means
|
|
3045 |
// that another thread raced us for the privilege of revoking the
|
|
3046 |
// bias of this particular object, so it's okay to continue in the
|
|
3047 |
// normal locking code.
|
|
3048 |
//
|
|
3049 |
// FIXME: due to a lack of registers we currently blow away the age
|
|
3050 |
// bits in this situation. Should attempt to preserve them.
|
|
3051 |
load_klass(obj_reg, temp_reg);
|
|
3052 |
ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
|
|
3053 |
casn(mark_addr.base(), mark_reg, temp_reg);
|
|
3054 |
// Fall through to the normal CAS-based lock, because no matter what
|
|
3055 |
// the result of the above CAS, some thread must have succeeded in
|
|
3056 |
// removing the bias bit from the object's header.
|
|
3057 |
if (counters != NULL) {
|
|
3058 |
cmp(mark_reg, temp_reg);
|
|
3059 |
cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
|
|
3060 |
}
|
|
3061 |
|
|
3062 |
bind(cas_label);
|
|
3063 |
}
|
|
3064 |
|
|
3065 |
void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
|
|
3066 |
bool allow_delay_slot_filling) {
|
|
3067 |
// Check for biased locking unlock case, which is a no-op
|
|
3068 |
// Note: we do not have to check the thread ID for two reasons.
|
|
3069 |
// First, the interpreter checks for IllegalMonitorStateException at
|
|
3070 |
// a higher level. Second, if the bias was revoked while we held the
|
|
3071 |
// lock, the object could not be rebiased toward another thread, so
|
|
3072 |
// the bias bit would be clear.
|
|
3073 |
ld_ptr(mark_addr, temp_reg);
|
|
3074 |
and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
|
|
3075 |
cmp(temp_reg, markOopDesc::biased_lock_pattern);
|
|
3076 |
brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
|
|
3077 |
delayed();
|
|
3078 |
if (!allow_delay_slot_filling) {
|
|
3079 |
nop();
|
|
3080 |
}
|
|
3081 |
}
|
|
3082 |
|
|
3083 |
|
|
3084 |
// CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
|
|
3085 |
// Solaris/SPARC's "as". Another apt name would be cas_ptr()
|
|
3086 |
|
|
3087 |
void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
|
|
3088 |
casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
|
|
3089 |
}
|
|
3090 |
|
|
3091 |
|
|
3092 |
|
|
3093 |
// compiler_lock_object() and compiler_unlock_object() are direct transliterations
|
|
3094 |
// of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
|
|
3095 |
// The code could be tightened up considerably.
|
|
3096 |
//
|
|
3097 |
// box->dhw disposition - post-conditions at DONE_LABEL.
|
|
3098 |
// - Successful inflated lock: box->dhw != 0.
|
|
3099 |
// Any non-zero value suffices.
|
|
3100 |
// Consider G2_thread, rsp, boxReg, or unused_mark()
|
|
3101 |
// - Successful Stack-lock: box->dhw == mark.
|
|
3102 |
// box->dhw must contain the displaced mark word value
|
|
3103 |
// - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
|
|
3104 |
// The slow-path fast_enter() and slow_enter() operators
|
|
3105 |
// are responsible for setting box->dhw = NonZero (typically ::unused_mark).
|
|
3106 |
// - Biased: box->dhw is undefined
|
|
3107 |
//
|
|
3108 |
// SPARC refworkload performance - specifically jetstream and scimark - are
|
|
3109 |
// extremely sensitive to the size of the code emitted by compiler_lock_object
|
|
3110 |
// and compiler_unlock_object. Critically, the key factor is code size, not path
|
|
3111 |
// length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
|
|
3112 |
// effect).
|
|
3113 |
|
|
3114 |
|
|
3115 |
void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
|
|
3116 |
Register Rbox, Register Rscratch,
|
|
3117 |
BiasedLockingCounters* counters,
|
|
3118 |
bool try_bias) {
|
|
3119 |
Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
|
|
3120 |
|
|
3121 |
verify_oop(Roop);
|
|
3122 |
Label done ;
|
|
3123 |
|
|
3124 |
if (counters != NULL) {
|
|
3125 |
inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
|
|
3126 |
}
|
|
3127 |
|
|
3128 |
if (EmitSync & 1) {
|
|
3129 |
mov(3, Rscratch);
|
|
3130 |
st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
|
|
3131 |
cmp(SP, G0);
|
|
3132 |
return ;
|
|
3133 |
}
|
|
3134 |
|
|
3135 |
if (EmitSync & 2) {
|
|
3136 |
|
|
3137 |
// Fetch object's markword
|
|
3138 |
ld_ptr(mark_addr, Rmark);
|
|
3139 |
|
|
3140 |
if (try_bias) {
|
|
3141 |
biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
|
|
3142 |
}
|
|
3143 |
|
|
3144 |
// Save Rbox in Rscratch to be used for the cas operation
|
|
3145 |
mov(Rbox, Rscratch);
|
|
3146 |
|
|
3147 |
// set Rmark to markOop | markOopDesc::unlocked_value
|
|
3148 |
or3(Rmark, markOopDesc::unlocked_value, Rmark);
|
|
3149 |
|
|
3150 |
// Initialize the box. (Must happen before we update the object mark!)
|
|
3151 |
st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
|
|
3152 |
|
|
3153 |
// compare object markOop with Rmark and if equal exchange Rscratch with object markOop
|
|
3154 |
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
|
|
3155 |
casx_under_lock(mark_addr.base(), Rmark, Rscratch,
|
|
3156 |
(address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
|
|
3157 |
|
|
3158 |
// if compare/exchange succeeded we found an unlocked object and we now have locked it
|
|
3159 |
// hence we are done
|
|
3160 |
cmp(Rmark, Rscratch);
|
|
3161 |
#ifdef _LP64
|
|
3162 |
sub(Rscratch, STACK_BIAS, Rscratch);
|
|
3163 |
#endif
|
|
3164 |
brx(Assembler::equal, false, Assembler::pt, done);
|
|
3165 |
delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
|
|
3166 |
|
|
3167 |
// we did not find an unlocked object so see if this is a recursive case
|
|
3168 |
// sub(Rscratch, SP, Rscratch);
|
|
3169 |
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
|
|
3170 |
andcc(Rscratch, 0xfffff003, Rscratch);
|
|
3171 |
st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
|
|
3172 |
bind (done);
|
|
3173 |
return ;
|
|
3174 |
}
|
|
3175 |
|
|
3176 |
Label Egress ;
|
|
3177 |
|
|
3178 |
if (EmitSync & 256) {
|
|
3179 |
Label IsInflated ;
|
|
3180 |
|
|
3181 |
ld_ptr(mark_addr, Rmark); // fetch obj->mark
|
|
3182 |
// Triage: biased, stack-locked, neutral, inflated
|
|
3183 |
if (try_bias) {
|
|
3184 |
biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
|
|
3185 |
// Invariant: if control reaches this point in the emitted stream
|
|
3186 |
// then Rmark has not been modified.
|
|
3187 |
}
|
|
3188 |
|
|
3189 |
// Store mark into displaced mark field in the on-stack basic-lock "box"
|
|
3190 |
// Critically, this must happen before the CAS
|
|
3191 |
// Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
|
|
3192 |
st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
|
|
3193 |
andcc(Rmark, 2, G0);
|
|
3194 |
brx(Assembler::notZero, false, Assembler::pn, IsInflated);
|
|
3195 |
delayed()->
|
|
3196 |
|
|
3197 |
// Try stack-lock acquisition.
|
|
3198 |
// Beware: the 1st instruction is in a delay slot
|
|
3199 |
mov(Rbox, Rscratch);
|
|
3200 |
or3(Rmark, markOopDesc::unlocked_value, Rmark);
|
|
3201 |
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
|
|
3202 |
casn(mark_addr.base(), Rmark, Rscratch);
|
|
3203 |
cmp(Rmark, Rscratch);
|
|
3204 |
brx(Assembler::equal, false, Assembler::pt, done);
|
|
3205 |
delayed()->sub(Rscratch, SP, Rscratch);
|
|
3206 |
|
|
3207 |
// Stack-lock attempt failed - check for recursive stack-lock.
|
|
3208 |
// See the comments below about how we might remove this case.
|
|
3209 |
#ifdef _LP64
|
|
3210 |
sub(Rscratch, STACK_BIAS, Rscratch);
|
|
3211 |
#endif
|
|
3212 |
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
|
|
3213 |
andcc(Rscratch, 0xfffff003, Rscratch);
|
|
3214 |
br(Assembler::always, false, Assembler::pt, done);
|
|
3215 |
delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
|
|
3216 |
|
|
3217 |
bind(IsInflated);
|
|
3218 |
if (EmitSync & 64) {
|
|
3219 |
// If m->owner != null goto IsLocked
|
|
3220 |
// Pessimistic form: Test-and-CAS vs CAS
|
|
3221 |
// The optimistic form avoids RTS->RTO cache line upgrades.
|
|
3222 |
ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
|
|
3223 |
andcc(Rscratch, Rscratch, G0);
|
|
3224 |
brx(Assembler::notZero, false, Assembler::pn, done);
|
|
3225 |
delayed()->nop();
|
|
3226 |
// m->owner == null : it's unlocked.
|
|
3227 |
}
|
|
3228 |
|
|
3229 |
// Try to CAS m->owner from null to Self
|
|
3230 |
// Invariant: if we acquire the lock then _recursions should be 0.
|
|
3231 |
add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
|
|
3232 |
mov(G2_thread, Rscratch);
|
|
3233 |
casn(Rmark, G0, Rscratch);
|
|
3234 |
cmp(Rscratch, G0);
|
|
3235 |
// Intentional fall-through into done
|
|
3236 |
} else {
|
|
3237 |
// Aggressively avoid the Store-before-CAS penalty
|
|
3238 |
// Defer the store into box->dhw until after the CAS
|
|
3239 |
Label IsInflated, Recursive ;
|
|
3240 |
|
|
3241 |
// Anticipate CAS -- Avoid RTS->RTO upgrade
|
|
3242 |
// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
|
|
3243 |
|
|
3244 |
ld_ptr(mark_addr, Rmark); // fetch obj->mark
|
|
3245 |
// Triage: biased, stack-locked, neutral, inflated
|
|
3246 |
|
|
3247 |
if (try_bias) {
|
|
3248 |
biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
|
|
3249 |
// Invariant: if control reaches this point in the emitted stream
|
|
3250 |
// then Rmark has not been modified.
|
|
3251 |
}
|
|
3252 |
andcc(Rmark, 2, G0);
|
|
3253 |
brx(Assembler::notZero, false, Assembler::pn, IsInflated);
|
|
3254 |
delayed()-> // Beware - dangling delay-slot
|
|
3255 |
|
|
3256 |
// Try stack-lock acquisition.
|
|
3257 |
// Transiently install BUSY (0) encoding in the mark word.
|
|
3258 |
// if the CAS of 0 into the mark was successful then we execute:
|
|
3259 |
// ST box->dhw = mark -- save fetched mark in on-stack basiclock box
|
|
3260 |
// ST obj->mark = box -- overwrite transient 0 value
|
|
3261 |
// This presumes TSO, of course.
|
|
3262 |
|
|
3263 |
mov(0, Rscratch);
|
|
3264 |
or3(Rmark, markOopDesc::unlocked_value, Rmark);
|
|
3265 |
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
|
|
3266 |
casn(mark_addr.base(), Rmark, Rscratch);
|
|
3267 |
// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
|
|
3268 |
cmp(Rscratch, Rmark);
|
|
3269 |
brx(Assembler::notZero, false, Assembler::pn, Recursive);
|
|
3270 |
delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
|
|
3271 |
if (counters != NULL) {
|
|
3272 |
cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
|
|
3273 |
}
|
|
3274 |
ba(done);
|
|
3275 |
delayed()->st_ptr(Rbox, mark_addr);
|
|
3276 |
|
|
3277 |
bind(Recursive);
|
|
3278 |
// Stack-lock attempt failed - check for recursive stack-lock.
|
|
3279 |
// Tests show that we can remove the recursive case with no impact
|
|
3280 |
// on refworkload 0.83. If we need to reduce the size of the code
|
|
3281 |
// emitted by compiler_lock_object() the recursive case is perfect
|
|
3282 |
// candidate.
|
|
3283 |
//
|
|
3284 |
// A more extreme idea is to always inflate on stack-lock recursion.
|
|
3285 |
// This lets us eliminate the recursive checks in compiler_lock_object
|
|
3286 |
// and compiler_unlock_object and the (box->dhw == 0) encoding.
|
|
3287 |
// A brief experiment - requiring changes to synchronizer.cpp, interpreter,
|
|
3288 |
// and showed a performance *increase*. In the same experiment I eliminated
|
|
3289 |
// the fast-path stack-lock code from the interpreter and always passed
|
|
3290 |
// control to the "slow" operators in synchronizer.cpp.
|
|
3291 |
|
|
3292 |
// RScratch contains the fetched obj->mark value from the failed CASN.
|
|
3293 |
#ifdef _LP64
|
|
3294 |
sub(Rscratch, STACK_BIAS, Rscratch);
|
|
3295 |
#endif
|
|
3296 |
sub(Rscratch, SP, Rscratch);
|
|
3297 |
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
|
|
3298 |
andcc(Rscratch, 0xfffff003, Rscratch);
|
|
3299 |
if (counters != NULL) {
|
|
3300 |
// Accounting needs the Rscratch register
|
|
3301 |
st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
|
|
3302 |
cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
|
|
3303 |
ba_short(done);
|
|
3304 |
} else {
|
|
3305 |
ba(done);
|
|
3306 |
delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
|
|
3307 |
}
|
|
3308 |
|
|
3309 |
bind (IsInflated);
|
|
3310 |
if (EmitSync & 64) {
|
|
3311 |
// If m->owner != null goto IsLocked
|
|
3312 |
// Test-and-CAS vs CAS
|
|
3313 |
// Pessimistic form avoids futile (doomed) CAS attempts
|
|
3314 |
// The optimistic form avoids RTS->RTO cache line upgrades.
|
|
3315 |
ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
|
|
3316 |
andcc(Rscratch, Rscratch, G0);
|
|
3317 |
brx(Assembler::notZero, false, Assembler::pn, done);
|
|
3318 |
delayed()->nop();
|
|
3319 |
// m->owner == null : it's unlocked.
|
|
3320 |
}
|
|
3321 |
|
|
3322 |
// Try to CAS m->owner from null to Self
|
|
3323 |
// Invariant: if we acquire the lock then _recursions should be 0.
|
|
3324 |
add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
|
|
3325 |
mov(G2_thread, Rscratch);
|
|
3326 |
casn(Rmark, G0, Rscratch);
|
|
3327 |
cmp(Rscratch, G0);
|
|
3328 |
// ST box->displaced_header = NonZero.
|
|
3329 |
// Any non-zero value suffices:
|
|
3330 |
// unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
|
|
3331 |
st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
|
|
3332 |
// Intentional fall-through into done
|
|
3333 |
}
|
|
3334 |
|
|
3335 |
bind (done);
|
|
3336 |
}
|
|
3337 |
|
|
3338 |
void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
|
|
3339 |
Register Rbox, Register Rscratch,
|
|
3340 |
bool try_bias) {
|
|
3341 |
Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
|
|
3342 |
|
|
3343 |
Label done ;
|
|
3344 |
|
|
3345 |
if (EmitSync & 4) {
|
|
3346 |
cmp(SP, G0);
|
|
3347 |
return ;
|
|
3348 |
}
|
|
3349 |
|
|
3350 |
if (EmitSync & 8) {
|
|
3351 |
if (try_bias) {
|
|
3352 |
biased_locking_exit(mark_addr, Rscratch, done);
|
|
3353 |
}
|
|
3354 |
|
|
3355 |
// Test first if it is a fast recursive unlock
|
|
3356 |
ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
|
|
3357 |
br_null_short(Rmark, Assembler::pt, done);
|
|
3358 |
|
|
3359 |
// Check if it is still a light weight lock, this is is true if we see
|
|
3360 |
// the stack address of the basicLock in the markOop of the object
|
|
3361 |
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
|
|
3362 |
casx_under_lock(mark_addr.base(), Rbox, Rmark,
|
|
3363 |
(address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
|
|
3364 |
ba(done);
|
|
3365 |
delayed()->cmp(Rbox, Rmark);
|
|
3366 |
bind(done);
|
|
3367 |
return ;
|
|
3368 |
}
|
|
3369 |
|
|
3370 |
// Beware ... If the aggregate size of the code emitted by CLO and CUO is
|
|
3371 |
// is too large performance rolls abruptly off a cliff.
|
|
3372 |
// This could be related to inlining policies, code cache management, or
|
|
3373 |
// I$ effects.
|
|
3374 |
Label LStacked ;
|
|
3375 |
|
|
3376 |
if (try_bias) {
|
|
3377 |
// TODO: eliminate redundant LDs of obj->mark
|
|
3378 |
biased_locking_exit(mark_addr, Rscratch, done);
|
|
3379 |
}
|
|
3380 |
|
|
3381 |
ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
|
|
3382 |
ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
|
|
3383 |
andcc(Rscratch, Rscratch, G0);
|
|
3384 |
brx(Assembler::zero, false, Assembler::pn, done);
|
|
3385 |
delayed()->nop(); // consider: relocate fetch of mark, above, into this DS
|
|
3386 |
andcc(Rmark, 2, G0);
|
|
3387 |
brx(Assembler::zero, false, Assembler::pt, LStacked);
|
|
3388 |
delayed()->nop();
|
|
3389 |
|
|
3390 |
// It's inflated
|
|
3391 |
// Conceptually we need a #loadstore|#storestore "release" MEMBAR before
|
|
3392 |
// the ST of 0 into _owner which releases the lock. This prevents loads
|
|
3393 |
// and stores within the critical section from reordering (floating)
|
|
3394 |
// past the store that releases the lock. But TSO is a strong memory model
|
|
3395 |
// and that particular flavor of barrier is a noop, so we can safely elide it.
|
|
3396 |
// Note that we use 1-0 locking by default for the inflated case. We
|
|
3397 |
// close the resultant (and rare) race by having contented threads in
|
|
3398 |
// monitorenter periodically poll _owner.
|
|
3399 |
ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
|
|
3400 |
ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
|
|
3401 |
xor3(Rscratch, G2_thread, Rscratch);
|
|
3402 |
orcc(Rbox, Rscratch, Rbox);
|
|
3403 |
brx(Assembler::notZero, false, Assembler::pn, done);
|
|
3404 |
delayed()->
|
|
3405 |
ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
|
|
3406 |
ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
|
|
3407 |
orcc(Rbox, Rscratch, G0);
|
|
3408 |
if (EmitSync & 65536) {
|
|
3409 |
Label LSucc ;
|
|
3410 |
brx(Assembler::notZero, false, Assembler::pn, LSucc);
|
|
3411 |
delayed()->nop();
|
|
3412 |
ba(done);
|
|
3413 |
delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
|
|
3414 |
|
|
3415 |
bind(LSucc);
|
|
3416 |
st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
|
|
3417 |
if (os::is_MP()) { membar (StoreLoad); }
|
|
3418 |
ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
|
|
3419 |
andcc(Rscratch, Rscratch, G0);
|
|
3420 |
brx(Assembler::notZero, false, Assembler::pt, done);
|
|
3421 |
delayed()->andcc(G0, G0, G0);
|
|
3422 |
add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
|
|
3423 |
mov(G2_thread, Rscratch);
|
|
3424 |
casn(Rmark, G0, Rscratch);
|
|
3425 |
// invert icc.zf and goto done
|
|
3426 |
br_notnull(Rscratch, false, Assembler::pt, done);
|
|
3427 |
delayed()->cmp(G0, G0);
|
|
3428 |
ba(done);
|
|
3429 |
delayed()->cmp(G0, 1);
|
|
3430 |
} else {
|
|
3431 |
brx(Assembler::notZero, false, Assembler::pn, done);
|
|
3432 |
delayed()->nop();
|
|
3433 |
ba(done);
|
|
3434 |
delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
|
|
3435 |
}
|
|
3436 |
|
|
3437 |
bind (LStacked);
|
|
3438 |
// Consider: we could replace the expensive CAS in the exit
|
|
3439 |
// path with a simple ST of the displaced mark value fetched from
|
|
3440 |
// the on-stack basiclock box. That admits a race where a thread T2
|
|
3441 |
// in the slow lock path -- inflating with monitor M -- could race a
|
|
3442 |
// thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
|
|
3443 |
// More precisely T1 in the stack-lock unlock path could "stomp" the
|
|
3444 |
// inflated mark value M installed by T2, resulting in an orphan
|
|
3445 |
// object monitor M and T2 becoming stranded. We can remedy that situation
|
|
3446 |
// by having T2 periodically poll the object's mark word using timed wait
|
|
3447 |
// operations. If T2 discovers that a stomp has occurred it vacates
|
|
3448 |
// the monitor M and wakes any other threads stranded on the now-orphan M.
|
|
3449 |
// In addition the monitor scavenger, which performs deflation,
|
|
3450 |
// would also need to check for orpan monitors and stranded threads.
|
|
3451 |
//
|
|
3452 |
// Finally, inflation is also used when T2 needs to assign a hashCode
|
|
3453 |
// to O and O is stack-locked by T1. The "stomp" race could cause
|
|
3454 |
// an assigned hashCode value to be lost. We can avoid that condition
|
|
3455 |
// and provide the necessary hashCode stability invariants by ensuring
|
|
3456 |
// that hashCode generation is idempotent between copying GCs.
|
|
3457 |
// For example we could compute the hashCode of an object O as
|
|
3458 |
// O's heap address XOR some high quality RNG value that is refreshed
|
|
3459 |
// at GC-time. The monitor scavenger would install the hashCode
|
|
3460 |
// found in any orphan monitors. Again, the mechanism admits a
|
|
3461 |
// lost-update "stomp" WAW race but detects and recovers as needed.
|
|
3462 |
//
|
|
3463 |
// A prototype implementation showed excellent results, although
|
|
3464 |
// the scavenger and timeout code was rather involved.
|
|
3465 |
|
|
3466 |
casn(mark_addr.base(), Rbox, Rscratch);
|
|
3467 |
cmp(Rbox, Rscratch);
|
|
3468 |
// Intentional fall through into done ...
|
|
3469 |
|
|
3470 |
bind(done);
|
|
3471 |
}
|
|
3472 |
|
|
3473 |
|
|
3474 |
|
|
3475 |
void MacroAssembler::print_CPU_state() {
|
|
3476 |
// %%%%% need to implement this
|
|
3477 |
}
|
|
3478 |
|
|
3479 |
void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
|
|
3480 |
// %%%%% need to implement this
|
|
3481 |
}
|
|
3482 |
|
|
3483 |
void MacroAssembler::push_IU_state() {
|
|
3484 |
// %%%%% need to implement this
|
|
3485 |
}
|
|
3486 |
|
|
3487 |
|
|
3488 |
void MacroAssembler::pop_IU_state() {
|
|
3489 |
// %%%%% need to implement this
|
|
3490 |
}
|
|
3491 |
|
|
3492 |
|
|
3493 |
void MacroAssembler::push_FPU_state() {
|
|
3494 |
// %%%%% need to implement this
|
|
3495 |
}
|
|
3496 |
|
|
3497 |
|
|
3498 |
void MacroAssembler::pop_FPU_state() {
|
|
3499 |
// %%%%% need to implement this
|
|
3500 |
}
|
|
3501 |
|
|
3502 |
|
|
3503 |
void MacroAssembler::push_CPU_state() {
|
|
3504 |
// %%%%% need to implement this
|
|
3505 |
}
|
|
3506 |
|
|
3507 |
|
|
3508 |
void MacroAssembler::pop_CPU_state() {
|
|
3509 |
// %%%%% need to implement this
|
|
3510 |
}
|
|
3511 |
|
|
3512 |
|
|
3513 |
|
|
3514 |
void MacroAssembler::verify_tlab() {
|
|
3515 |
#ifdef ASSERT
|
|
3516 |
if (UseTLAB && VerifyOops) {
|
|
3517 |
Label next, next2, ok;
|
|
3518 |
Register t1 = L0;
|
|
3519 |
Register t2 = L1;
|
|
3520 |
Register t3 = L2;
|
|
3521 |
|
|
3522 |
save_frame(0);
|
|
3523 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
|
|
3524 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
|
|
3525 |
or3(t1, t2, t3);
|
|
3526 |
cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
|
|
3527 |
STOP("assert(top >= start)");
|
|
3528 |
should_not_reach_here();
|
|
3529 |
|
|
3530 |
bind(next);
|
|
3531 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
|
|
3532 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
|
|
3533 |
or3(t3, t2, t3);
|
|
3534 |
cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
|
|
3535 |
STOP("assert(top <= end)");
|
|
3536 |
should_not_reach_here();
|
|
3537 |
|
|
3538 |
bind(next2);
|
|
3539 |
and3(t3, MinObjAlignmentInBytesMask, t3);
|
|
3540 |
cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
|
|
3541 |
STOP("assert(aligned)");
|
|
3542 |
should_not_reach_here();
|
|
3543 |
|
|
3544 |
bind(ok);
|
|
3545 |
restore();
|
|
3546 |
}
|
|
3547 |
#endif
|
|
3548 |
}
|
|
3549 |
|
|
3550 |
|
|
3551 |
void MacroAssembler::eden_allocate(
|
|
3552 |
Register obj, // result: pointer to object after successful allocation
|
|
3553 |
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
3554 |
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
3555 |
Register t1, // temp register
|
|
3556 |
Register t2, // temp register
|
|
3557 |
Label& slow_case // continuation point if fast allocation fails
|
|
3558 |
){
|
|
3559 |
// make sure arguments make sense
|
|
3560 |
assert_different_registers(obj, var_size_in_bytes, t1, t2);
|
|
3561 |
assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
|
|
3562 |
assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
|
|
3563 |
|
|
3564 |
if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
|
|
3565 |
// No allocation in the shared eden.
|
|
3566 |
ba_short(slow_case);
|
|
3567 |
} else {
|
|
3568 |
// get eden boundaries
|
|
3569 |
// note: we need both top & top_addr!
|
|
3570 |
const Register top_addr = t1;
|
|
3571 |
const Register end = t2;
|
|
3572 |
|
|
3573 |
CollectedHeap* ch = Universe::heap();
|
|
3574 |
set((intx)ch->top_addr(), top_addr);
|
|
3575 |
intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
|
|
3576 |
ld_ptr(top_addr, delta, end);
|
|
3577 |
ld_ptr(top_addr, 0, obj);
|
|
3578 |
|
|
3579 |
// try to allocate
|
|
3580 |
Label retry;
|
|
3581 |
bind(retry);
|
|
3582 |
#ifdef ASSERT
|
|
3583 |
// make sure eden top is properly aligned
|
|
3584 |
{
|
|
3585 |
Label L;
|
|
3586 |
btst(MinObjAlignmentInBytesMask, obj);
|
|
3587 |
br(Assembler::zero, false, Assembler::pt, L);
|
|
3588 |
delayed()->nop();
|
|
3589 |
STOP("eden top is not properly aligned");
|
|
3590 |
bind(L);
|
|
3591 |
}
|
|
3592 |
#endif // ASSERT
|
|
3593 |
const Register free = end;
|
|
3594 |
sub(end, obj, free); // compute amount of free space
|
|
3595 |
if (var_size_in_bytes->is_valid()) {
|
|
3596 |
// size is unknown at compile time
|
|
3597 |
cmp(free, var_size_in_bytes);
|
|
3598 |
br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
|
|
3599 |
delayed()->add(obj, var_size_in_bytes, end);
|
|
3600 |
} else {
|
|
3601 |
// size is known at compile time
|
|
3602 |
cmp(free, con_size_in_bytes);
|
|
3603 |
br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
|
|
3604 |
delayed()->add(obj, con_size_in_bytes, end);
|
|
3605 |
}
|
|
3606 |
// Compare obj with the value at top_addr; if still equal, swap the value of
|
|
3607 |
// end with the value at top_addr. If not equal, read the value at top_addr
|
|
3608 |
// into end.
|
|
3609 |
casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
|
|
3610 |
// if someone beat us on the allocation, try again, otherwise continue
|
|
3611 |
cmp(obj, end);
|
|
3612 |
brx(Assembler::notEqual, false, Assembler::pn, retry);
|
|
3613 |
delayed()->mov(end, obj); // nop if successfull since obj == end
|
|
3614 |
|
|
3615 |
#ifdef ASSERT
|
|
3616 |
// make sure eden top is properly aligned
|
|
3617 |
{
|
|
3618 |
Label L;
|
|
3619 |
const Register top_addr = t1;
|
|
3620 |
|
|
3621 |
set((intx)ch->top_addr(), top_addr);
|
|
3622 |
ld_ptr(top_addr, 0, top_addr);
|
|
3623 |
btst(MinObjAlignmentInBytesMask, top_addr);
|
|
3624 |
br(Assembler::zero, false, Assembler::pt, L);
|
|
3625 |
delayed()->nop();
|
|
3626 |
STOP("eden top is not properly aligned");
|
|
3627 |
bind(L);
|
|
3628 |
}
|
|
3629 |
#endif // ASSERT
|
|
3630 |
}
|
|
3631 |
}
|
|
3632 |
|
|
3633 |
|
|
3634 |
void MacroAssembler::tlab_allocate(
|
|
3635 |
Register obj, // result: pointer to object after successful allocation
|
|
3636 |
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
3637 |
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
3638 |
Register t1, // temp register
|
|
3639 |
Label& slow_case // continuation point if fast allocation fails
|
|
3640 |
){
|
|
3641 |
// make sure arguments make sense
|
|
3642 |
assert_different_registers(obj, var_size_in_bytes, t1);
|
|
3643 |
assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
|
|
3644 |
assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
|
|
3645 |
|
|
3646 |
const Register free = t1;
|
|
3647 |
|
|
3648 |
verify_tlab();
|
|
3649 |
|
|
3650 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
|
|
3651 |
|
|
3652 |
// calculate amount of free space
|
|
3653 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
|
|
3654 |
sub(free, obj, free);
|
|
3655 |
|
|
3656 |
Label done;
|
|
3657 |
if (var_size_in_bytes == noreg) {
|
|
3658 |
cmp(free, con_size_in_bytes);
|
|
3659 |
} else {
|
|
3660 |
cmp(free, var_size_in_bytes);
|
|
3661 |
}
|
|
3662 |
br(Assembler::less, false, Assembler::pn, slow_case);
|
|
3663 |
// calculate the new top pointer
|
|
3664 |
if (var_size_in_bytes == noreg) {
|
|
3665 |
delayed()->add(obj, con_size_in_bytes, free);
|
|
3666 |
} else {
|
|
3667 |
delayed()->add(obj, var_size_in_bytes, free);
|
|
3668 |
}
|
|
3669 |
|
|
3670 |
bind(done);
|
|
3671 |
|
|
3672 |
#ifdef ASSERT
|
|
3673 |
// make sure new free pointer is properly aligned
|
|
3674 |
{
|
|
3675 |
Label L;
|
|
3676 |
btst(MinObjAlignmentInBytesMask, free);
|
|
3677 |
br(Assembler::zero, false, Assembler::pt, L);
|
|
3678 |
delayed()->nop();
|
|
3679 |
STOP("updated TLAB free is not properly aligned");
|
|
3680 |
bind(L);
|
|
3681 |
}
|
|
3682 |
#endif // ASSERT
|
|
3683 |
|
|
3684 |
// update the tlab top pointer
|
|
3685 |
st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
|
|
3686 |
verify_tlab();
|
|
3687 |
}
|
|
3688 |
|
|
3689 |
|
|
3690 |
void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
|
|
3691 |
Register top = O0;
|
|
3692 |
Register t1 = G1;
|
|
3693 |
Register t2 = G3;
|
|
3694 |
Register t3 = O1;
|
|
3695 |
assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
|
|
3696 |
Label do_refill, discard_tlab;
|
|
3697 |
|
|
3698 |
if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
|
|
3699 |
// No allocation in the shared eden.
|
|
3700 |
ba_short(slow_case);
|
|
3701 |
}
|
|
3702 |
|
|
3703 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
|
|
3704 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
|
|
3705 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
|
|
3706 |
|
|
3707 |
// calculate amount of free space
|
|
3708 |
sub(t1, top, t1);
|
|
3709 |
srl_ptr(t1, LogHeapWordSize, t1);
|
|
3710 |
|
|
3711 |
// Retain tlab and allocate object in shared space if
|
|
3712 |
// the amount free in the tlab is too large to discard.
|
|
3713 |
cmp(t1, t2);
|
|
3714 |
brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
|
|
3715 |
|
|
3716 |
// increment waste limit to prevent getting stuck on this slow path
|
|
3717 |
delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
|
|
3718 |
st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
|
|
3719 |
if (TLABStats) {
|
|
3720 |
// increment number of slow_allocations
|
|
3721 |
ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
|
|
3722 |
add(t2, 1, t2);
|
|
3723 |
stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
|
|
3724 |
}
|
|
3725 |
ba_short(try_eden);
|
|
3726 |
|
|
3727 |
bind(discard_tlab);
|
|
3728 |
if (TLABStats) {
|
|
3729 |
// increment number of refills
|
|
3730 |
ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
|
|
3731 |
add(t2, 1, t2);
|
|
3732 |
stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
|
|
3733 |
// accumulate wastage
|
|
3734 |
ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
|
|
3735 |
add(t2, t1, t2);
|
|
3736 |
stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
|
|
3737 |
}
|
|
3738 |
|
|
3739 |
// if tlab is currently allocated (top or end != null) then
|
|
3740 |
// fill [top, end + alignment_reserve) with array object
|
|
3741 |
br_null_short(top, Assembler::pn, do_refill);
|
|
3742 |
|
|
3743 |
set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
|
|
3744 |
st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
|
|
3745 |
// set klass to intArrayKlass
|
|
3746 |
sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
|
|
3747 |
add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
|
|
3748 |
sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
|
|
3749 |
st(t1, top, arrayOopDesc::length_offset_in_bytes());
|
|
3750 |
set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
|
|
3751 |
ld_ptr(t2, 0, t2);
|
|
3752 |
// store klass last. concurrent gcs assumes klass length is valid if
|
|
3753 |
// klass field is not null.
|
|
3754 |
store_klass(t2, top);
|
|
3755 |
verify_oop(top);
|
|
3756 |
|
|
3757 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
|
|
3758 |
sub(top, t1, t1); // size of tlab's allocated portion
|
|
3759 |
incr_allocated_bytes(t1, t2, t3);
|
|
3760 |
|
|
3761 |
// refill the tlab with an eden allocation
|
|
3762 |
bind(do_refill);
|
|
3763 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
|
|
3764 |
sll_ptr(t1, LogHeapWordSize, t1);
|
|
3765 |
// allocate new tlab, address returned in top
|
|
3766 |
eden_allocate(top, t1, 0, t2, t3, slow_case);
|
|
3767 |
|
|
3768 |
st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
|
|
3769 |
st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
|
|
3770 |
#ifdef ASSERT
|
|
3771 |
// check that tlab_size (t1) is still valid
|
|
3772 |
{
|
|
3773 |
Label ok;
|
|
3774 |
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
|
|
3775 |
sll_ptr(t2, LogHeapWordSize, t2);
|
|
3776 |
cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
|
|
3777 |
STOP("assert(t1 == tlab_size)");
|
|
3778 |
should_not_reach_here();
|
|
3779 |
|
|
3780 |
bind(ok);
|
|
3781 |
}
|
|
3782 |
#endif // ASSERT
|
|
3783 |
add(top, t1, top); // t1 is tlab_size
|
|
3784 |
sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
|
|
3785 |
st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
|
|
3786 |
verify_tlab();
|
|
3787 |
ba_short(retry);
|
|
3788 |
}
|
|
3789 |
|
|
3790 |
void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
|
|
3791 |
Register t1, Register t2) {
|
|
3792 |
// Bump total bytes allocated by this thread
|
|
3793 |
assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
|
|
3794 |
assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
|
|
3795 |
// v8 support has gone the way of the dodo
|
|
3796 |
ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
|
|
3797 |
add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
|
|
3798 |
stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
|
|
3799 |
}
|
|
3800 |
|
|
3801 |
Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
|
|
3802 |
switch (cond) {
|
|
3803 |
// Note some conditions are synonyms for others
|
|
3804 |
case Assembler::never: return Assembler::always;
|
|
3805 |
case Assembler::zero: return Assembler::notZero;
|
|
3806 |
case Assembler::lessEqual: return Assembler::greater;
|
|
3807 |
case Assembler::less: return Assembler::greaterEqual;
|
|
3808 |
case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
|
|
3809 |
case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
|
|
3810 |
case Assembler::negative: return Assembler::positive;
|
|
3811 |
case Assembler::overflowSet: return Assembler::overflowClear;
|
|
3812 |
case Assembler::always: return Assembler::never;
|
|
3813 |
case Assembler::notZero: return Assembler::zero;
|
|
3814 |
case Assembler::greater: return Assembler::lessEqual;
|
|
3815 |
case Assembler::greaterEqual: return Assembler::less;
|
|
3816 |
case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
|
|
3817 |
case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
|
|
3818 |
case Assembler::positive: return Assembler::negative;
|
|
3819 |
case Assembler::overflowClear: return Assembler::overflowSet;
|
|
3820 |
}
|
|
3821 |
|
|
3822 |
ShouldNotReachHere(); return Assembler::overflowClear;
|
|
3823 |
}
|
|
3824 |
|
|
3825 |
void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
|
|
3826 |
Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
|
|
3827 |
Condition negated_cond = negate_condition(cond);
|
|
3828 |
Label L;
|
|
3829 |
brx(negated_cond, false, Assembler::pt, L);
|
|
3830 |
delayed()->nop();
|
|
3831 |
inc_counter(counter_ptr, Rtmp1, Rtmp2);
|
|
3832 |
bind(L);
|
|
3833 |
}
|
|
3834 |
|
|
3835 |
void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
|
|
3836 |
AddressLiteral addrlit(counter_addr);
|
|
3837 |
sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
|
|
3838 |
Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
|
|
3839 |
ld(addr, Rtmp2);
|
|
3840 |
inc(Rtmp2);
|
|
3841 |
st(Rtmp2, addr);
|
|
3842 |
}
|
|
3843 |
|
|
3844 |
void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
|
|
3845 |
inc_counter((address) counter_addr, Rtmp1, Rtmp2);
|
|
3846 |
}
|
|
3847 |
|
|
3848 |
SkipIfEqual::SkipIfEqual(
|
|
3849 |
MacroAssembler* masm, Register temp, const bool* flag_addr,
|
|
3850 |
Assembler::Condition condition) {
|
|
3851 |
_masm = masm;
|
|
3852 |
AddressLiteral flag(flag_addr);
|
|
3853 |
_masm->sethi(flag, temp);
|
|
3854 |
_masm->ldub(temp, flag.low10(), temp);
|
|
3855 |
_masm->tst(temp);
|
|
3856 |
_masm->br(condition, false, Assembler::pt, _label);
|
|
3857 |
_masm->delayed()->nop();
|
|
3858 |
}
|
|
3859 |
|
|
3860 |
SkipIfEqual::~SkipIfEqual() {
|
|
3861 |
_masm->bind(_label);
|
|
3862 |
}
|
|
3863 |
|
|
3864 |
|
|
3865 |
// Writes to stack successive pages until offset reached to check for
|
|
3866 |
// stack overflow + shadow pages. This clobbers tsp and scratch.
|
|
3867 |
void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
|
|
3868 |
Register Rscratch) {
|
|
3869 |
// Use stack pointer in temp stack pointer
|
|
3870 |
mov(SP, Rtsp);
|
|
3871 |
|
|
3872 |
// Bang stack for total size given plus stack shadow page size.
|
|
3873 |
// Bang one page at a time because a large size can overflow yellow and
|
|
3874 |
// red zones (the bang will fail but stack overflow handling can't tell that
|
|
3875 |
// it was a stack overflow bang vs a regular segv).
|
|
3876 |
int offset = os::vm_page_size();
|
|
3877 |
Register Roffset = Rscratch;
|
|
3878 |
|
|
3879 |
Label loop;
|
|
3880 |
bind(loop);
|
|
3881 |
set((-offset)+STACK_BIAS, Rscratch);
|
|
3882 |
st(G0, Rtsp, Rscratch);
|
|
3883 |
set(offset, Roffset);
|
|
3884 |
sub(Rsize, Roffset, Rsize);
|
|
3885 |
cmp(Rsize, G0);
|
|
3886 |
br(Assembler::greater, false, Assembler::pn, loop);
|
|
3887 |
delayed()->sub(Rtsp, Roffset, Rtsp);
|
|
3888 |
|
|
3889 |
// Bang down shadow pages too.
|
|
3890 |
// The -1 because we already subtracted 1 page.
|
|
3891 |
for (int i = 0; i< StackShadowPages-1; i++) {
|
|
3892 |
set((-i*offset)+STACK_BIAS, Rscratch);
|
|
3893 |
st(G0, Rtsp, Rscratch);
|
|
3894 |
}
|
|
3895 |
}
|
|
3896 |
|
|
3897 |
///////////////////////////////////////////////////////////////////////////////////
|
|
3898 |
#ifndef SERIALGC
|
|
3899 |
|
|
3900 |
static address satb_log_enqueue_with_frame = NULL;
|
|
3901 |
static u_char* satb_log_enqueue_with_frame_end = NULL;
|
|
3902 |
|
|
3903 |
static address satb_log_enqueue_frameless = NULL;
|
|
3904 |
static u_char* satb_log_enqueue_frameless_end = NULL;
|
|
3905 |
|
|
3906 |
static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
|
|
3907 |
|
|
3908 |
static void generate_satb_log_enqueue(bool with_frame) {
|
|
3909 |
BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
|
|
3910 |
CodeBuffer buf(bb);
|
|
3911 |
MacroAssembler masm(&buf);
|
|
3912 |
|
|
3913 |
#define __ masm.
|
|
3914 |
|
|
3915 |
address start = __ pc();
|
|
3916 |
Register pre_val;
|
|
3917 |
|
|
3918 |
Label refill, restart;
|
|
3919 |
if (with_frame) {
|
|
3920 |
__ save_frame(0);
|
|
3921 |
pre_val = I0; // Was O0 before the save.
|
|
3922 |
} else {
|
|
3923 |
pre_val = O0;
|
|
3924 |
}
|
|
3925 |
|
|
3926 |
int satb_q_index_byte_offset =
|
|
3927 |
in_bytes(JavaThread::satb_mark_queue_offset() +
|
|
3928 |
PtrQueue::byte_offset_of_index());
|
|
3929 |
|
|
3930 |
int satb_q_buf_byte_offset =
|
|
3931 |
in_bytes(JavaThread::satb_mark_queue_offset() +
|
|
3932 |
PtrQueue::byte_offset_of_buf());
|
|
3933 |
|
|
3934 |
assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
|
|
3935 |
in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
|
|
3936 |
"check sizes in assembly below");
|
|
3937 |
|
|
3938 |
__ bind(restart);
|
|
3939 |
|
|
3940 |
// Load the index into the SATB buffer. PtrQueue::_index is a size_t
|
|
3941 |
// so ld_ptr is appropriate.
|
|
3942 |
__ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
|
|
3943 |
|
|
3944 |
// index == 0?
|
|
3945 |
__ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
|
|
3946 |
|
|
3947 |
__ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
|
|
3948 |
__ sub(L0, oopSize, L0);
|
|
3949 |
|
|
3950 |
__ st_ptr(pre_val, L1, L0); // [_buf + index] := I0
|
|
3951 |
if (!with_frame) {
|
|
3952 |
// Use return-from-leaf
|
|
3953 |
__ retl();
|
|
3954 |
__ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
|
|
3955 |
} else {
|
|
3956 |
// Not delayed.
|
|
3957 |
__ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
|
|
3958 |
}
|
|
3959 |
if (with_frame) {
|
|
3960 |
__ ret();
|
|
3961 |
__ delayed()->restore();
|
|
3962 |
}
|
|
3963 |
__ bind(refill);
|
|
3964 |
|
|
3965 |
address handle_zero =
|
|
3966 |
CAST_FROM_FN_PTR(address,
|
|
3967 |
&SATBMarkQueueSet::handle_zero_index_for_thread);
|
|
3968 |
// This should be rare enough that we can afford to save all the
|
|
3969 |
// scratch registers that the calling context might be using.
|
|
3970 |
__ mov(G1_scratch, L0);
|
|
3971 |
__ mov(G3_scratch, L1);
|
|
3972 |
__ mov(G4, L2);
|
|
3973 |
// We need the value of O0 above (for the write into the buffer), so we
|
|
3974 |
// save and restore it.
|
|
3975 |
__ mov(O0, L3);
|
|
3976 |
// Since the call will overwrite O7, we save and restore that, as well.
|
|
3977 |
__ mov(O7, L4);
|
|
3978 |
__ call_VM_leaf(L5, handle_zero, G2_thread);
|
|
3979 |
__ mov(L0, G1_scratch);
|
|
3980 |
__ mov(L1, G3_scratch);
|
|
3981 |
__ mov(L2, G4);
|
|
3982 |
__ mov(L3, O0);
|
|
3983 |
__ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
|
|
3984 |
__ delayed()->mov(L4, O7);
|
|
3985 |
|
|
3986 |
if (with_frame) {
|
|
3987 |
satb_log_enqueue_with_frame = start;
|
|
3988 |
satb_log_enqueue_with_frame_end = __ pc();
|
|
3989 |
} else {
|
|
3990 |
satb_log_enqueue_frameless = start;
|
|
3991 |
satb_log_enqueue_frameless_end = __ pc();
|
|
3992 |
}
|
|
3993 |
|
|
3994 |
#undef __
|
|
3995 |
}
|
|
3996 |
|
|
3997 |
static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
|
|
3998 |
if (with_frame) {
|
|
3999 |
if (satb_log_enqueue_with_frame == 0) {
|
|
4000 |
generate_satb_log_enqueue(with_frame);
|
|
4001 |
assert(satb_log_enqueue_with_frame != 0, "postcondition.");
|
|
4002 |
if (G1SATBPrintStubs) {
|
|
4003 |
tty->print_cr("Generated with-frame satb enqueue:");
|
|
4004 |
Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
|
|
4005 |
satb_log_enqueue_with_frame_end,
|
|
4006 |
tty);
|
|
4007 |
}
|
|
4008 |
}
|
|
4009 |
} else {
|
|
4010 |
if (satb_log_enqueue_frameless == 0) {
|
|
4011 |
generate_satb_log_enqueue(with_frame);
|
|
4012 |
assert(satb_log_enqueue_frameless != 0, "postcondition.");
|
|
4013 |
if (G1SATBPrintStubs) {
|
|
4014 |
tty->print_cr("Generated frameless satb enqueue:");
|
|
4015 |
Disassembler::decode((u_char*)satb_log_enqueue_frameless,
|
|
4016 |
satb_log_enqueue_frameless_end,
|
|
4017 |
tty);
|
|
4018 |
}
|
|
4019 |
}
|
|
4020 |
}
|
|
4021 |
}
|
|
4022 |
|
|
4023 |
void MacroAssembler::g1_write_barrier_pre(Register obj,
|
|
4024 |
Register index,
|
|
4025 |
int offset,
|
|
4026 |
Register pre_val,
|
|
4027 |
Register tmp,
|
|
4028 |
bool preserve_o_regs) {
|
|
4029 |
Label filtered;
|
|
4030 |
|
|
4031 |
if (obj == noreg) {
|
|
4032 |
// We are not loading the previous value so make
|
|
4033 |
// sure that we don't trash the value in pre_val
|
|
4034 |
// with the code below.
|
|
4035 |
assert_different_registers(pre_val, tmp);
|
|
4036 |
} else {
|
|
4037 |
// We will be loading the previous value
|
|
4038 |
// in this code so...
|
|
4039 |
assert(offset == 0 || index == noreg, "choose one");
|
|
4040 |
assert(pre_val == noreg, "check this code");
|
|
4041 |
}
|
|
4042 |
|
|
4043 |
// Is marking active?
|
|
4044 |
if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
|
|
4045 |
ld(G2,
|
|
4046 |
in_bytes(JavaThread::satb_mark_queue_offset() +
|
|
4047 |
PtrQueue::byte_offset_of_active()),
|
|
4048 |
tmp);
|
|
4049 |
} else {
|
|
4050 |
guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
|
|
4051 |
"Assumption");
|
|
4052 |
ldsb(G2,
|
|
4053 |
in_bytes(JavaThread::satb_mark_queue_offset() +
|
|
4054 |
PtrQueue::byte_offset_of_active()),
|
|
4055 |
tmp);
|
|
4056 |
}
|
|
4057 |
|
|
4058 |
// Is marking active?
|
|
4059 |
cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
|
|
4060 |
|
|
4061 |
// Do we need to load the previous value?
|
|
4062 |
if (obj != noreg) {
|
|
4063 |
// Load the previous value...
|
|
4064 |
if (index == noreg) {
|
|
4065 |
if (Assembler::is_simm13(offset)) {
|
|
4066 |
load_heap_oop(obj, offset, tmp);
|
|
4067 |
} else {
|
|
4068 |
set(offset, tmp);
|
|
4069 |
load_heap_oop(obj, tmp, tmp);
|
|
4070 |
}
|
|
4071 |
} else {
|
|
4072 |
load_heap_oop(obj, index, tmp);
|
|
4073 |
}
|
|
4074 |
// Previous value has been loaded into tmp
|
|
4075 |
pre_val = tmp;
|
|
4076 |
}
|
|
4077 |
|
|
4078 |
assert(pre_val != noreg, "must have a real register");
|
|
4079 |
|
|
4080 |
// Is the previous value null?
|
|
4081 |
cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
|
|
4082 |
|
|
4083 |
// OK, it's not filtered, so we'll need to call enqueue. In the normal
|
|
4084 |
// case, pre_val will be a scratch G-reg, but there are some cases in
|
|
4085 |
// which it's an O-reg. In the first case, do a normal call. In the
|
|
4086 |
// latter, do a save here and call the frameless version.
|
|
4087 |
|
|
4088 |
guarantee(pre_val->is_global() || pre_val->is_out(),
|
|
4089 |
"Or we need to think harder.");
|
|
4090 |
|
|
4091 |
if (pre_val->is_global() && !preserve_o_regs) {
|
|
4092 |
generate_satb_log_enqueue_if_necessary(true); // with frame
|
|
4093 |
|
|
4094 |
call(satb_log_enqueue_with_frame);
|
|
4095 |
delayed()->mov(pre_val, O0);
|
|
4096 |
} else {
|
|
4097 |
generate_satb_log_enqueue_if_necessary(false); // frameless
|
|
4098 |
|
|
4099 |
save_frame(0);
|
|
4100 |
call(satb_log_enqueue_frameless);
|
|
4101 |
delayed()->mov(pre_val->after_save(), O0);
|
|
4102 |
restore();
|
|
4103 |
}
|
|
4104 |
|
|
4105 |
bind(filtered);
|
|
4106 |
}
|
|
4107 |
|
|
4108 |
static address dirty_card_log_enqueue = 0;
|
|
4109 |
static u_char* dirty_card_log_enqueue_end = 0;
|
|
4110 |
|
|
4111 |
// This gets to assume that o0 contains the object address.
|
|
4112 |
static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
|
|
4113 |
BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
|
|
4114 |
CodeBuffer buf(bb);
|
|
4115 |
MacroAssembler masm(&buf);
|
|
4116 |
#define __ masm.
|
|
4117 |
address start = __ pc();
|
|
4118 |
|
|
4119 |
Label not_already_dirty, restart, refill;
|
|
4120 |
|
|
4121 |
#ifdef _LP64
|
|
4122 |
__ srlx(O0, CardTableModRefBS::card_shift, O0);
|
|
4123 |
#else
|
|
4124 |
__ srl(O0, CardTableModRefBS::card_shift, O0);
|
|
4125 |
#endif
|
|
4126 |
AddressLiteral addrlit(byte_map_base);
|
|
4127 |
__ set(addrlit, O1); // O1 := <card table base>
|
|
4128 |
__ ldub(O0, O1, O2); // O2 := [O0 + O1]
|
|
4129 |
|
|
4130 |
assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
|
|
4131 |
__ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
|
|
4132 |
|
|
4133 |
// We didn't take the branch, so we're already dirty: return.
|
|
4134 |
// Use return-from-leaf
|
|
4135 |
__ retl();
|
|
4136 |
__ delayed()->nop();
|
|
4137 |
|
|
4138 |
// Not dirty.
|
|
4139 |
__ bind(not_already_dirty);
|
|
4140 |
|
|
4141 |
// Get O0 + O1 into a reg by itself
|
|
4142 |
__ add(O0, O1, O3);
|
|
4143 |
|
|
4144 |
// First, dirty it.
|
|
4145 |
__ stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
|
|
4146 |
|
|
4147 |
int dirty_card_q_index_byte_offset =
|
|
4148 |
in_bytes(JavaThread::dirty_card_queue_offset() +
|
|
4149 |
PtrQueue::byte_offset_of_index());
|
|
4150 |
int dirty_card_q_buf_byte_offset =
|
|
4151 |
in_bytes(JavaThread::dirty_card_queue_offset() +
|
|
4152 |
PtrQueue::byte_offset_of_buf());
|
|
4153 |
__ bind(restart);
|
|
4154 |
|
|
4155 |
// Load the index into the update buffer. PtrQueue::_index is
|
|
4156 |
// a size_t so ld_ptr is appropriate here.
|
|
4157 |
__ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
|
|
4158 |
|
|
4159 |
// index == 0?
|
|
4160 |
__ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
|
|
4161 |
|
|
4162 |
__ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
|
|
4163 |
__ sub(L0, oopSize, L0);
|
|
4164 |
|
|
4165 |
__ st_ptr(O3, L1, L0); // [_buf + index] := I0
|
|
4166 |
// Use return-from-leaf
|
|
4167 |
__ retl();
|
|
4168 |
__ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
|
|
4169 |
|
|
4170 |
__ bind(refill);
|
|
4171 |
address handle_zero =
|
|
4172 |
CAST_FROM_FN_PTR(address,
|
|
4173 |
&DirtyCardQueueSet::handle_zero_index_for_thread);
|
|
4174 |
// This should be rare enough that we can afford to save all the
|
|
4175 |
// scratch registers that the calling context might be using.
|
|
4176 |
__ mov(G1_scratch, L3);
|
|
4177 |
__ mov(G3_scratch, L5);
|
|
4178 |
// We need the value of O3 above (for the write into the buffer), so we
|
|
4179 |
// save and restore it.
|
|
4180 |
__ mov(O3, L6);
|
|
4181 |
// Since the call will overwrite O7, we save and restore that, as well.
|
|
4182 |
__ mov(O7, L4);
|
|
4183 |
|
|
4184 |
__ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
|
|
4185 |
__ mov(L3, G1_scratch);
|
|
4186 |
__ mov(L5, G3_scratch);
|
|
4187 |
__ mov(L6, O3);
|
|
4188 |
__ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
|
|
4189 |
__ delayed()->mov(L4, O7);
|
|
4190 |
|
|
4191 |
dirty_card_log_enqueue = start;
|
|
4192 |
dirty_card_log_enqueue_end = __ pc();
|
|
4193 |
// XXX Should have a guarantee here about not going off the end!
|
|
4194 |
// Does it already do so? Do an experiment...
|
|
4195 |
|
|
4196 |
#undef __
|
|
4197 |
|
|
4198 |
}
|
|
4199 |
|
|
4200 |
static inline void
|
|
4201 |
generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
|
|
4202 |
if (dirty_card_log_enqueue == 0) {
|
|
4203 |
generate_dirty_card_log_enqueue(byte_map_base);
|
|
4204 |
assert(dirty_card_log_enqueue != 0, "postcondition.");
|
|
4205 |
if (G1SATBPrintStubs) {
|
|
4206 |
tty->print_cr("Generated dirty_card enqueue:");
|
|
4207 |
Disassembler::decode((u_char*)dirty_card_log_enqueue,
|
|
4208 |
dirty_card_log_enqueue_end,
|
|
4209 |
tty);
|
|
4210 |
}
|
|
4211 |
}
|
|
4212 |
}
|
|
4213 |
|
|
4214 |
|
|
4215 |
void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
|
|
4216 |
|
|
4217 |
Label filtered;
|
|
4218 |
MacroAssembler* post_filter_masm = this;
|
|
4219 |
|
|
4220 |
if (new_val == G0) return;
|
|
4221 |
|
|
4222 |
G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
|
|
4223 |
assert(bs->kind() == BarrierSet::G1SATBCT ||
|
|
4224 |
bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
|
|
4225 |
|
|
4226 |
if (G1RSBarrierRegionFilter) {
|
|
4227 |
xor3(store_addr, new_val, tmp);
|
|
4228 |
#ifdef _LP64
|
|
4229 |
srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
|
|
4230 |
#else
|
|
4231 |
srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
|
|
4232 |
#endif
|
|
4233 |
|
|
4234 |
// XXX Should I predict this taken or not? Does it matter?
|
|
4235 |
cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
|
|
4236 |
}
|
|
4237 |
|
|
4238 |
// If the "store_addr" register is an "in" or "local" register, move it to
|
|
4239 |
// a scratch reg so we can pass it as an argument.
|
|
4240 |
bool use_scr = !(store_addr->is_global() || store_addr->is_out());
|
|
4241 |
// Pick a scratch register different from "tmp".
|
|
4242 |
Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
|
|
4243 |
// Make sure we use up the delay slot!
|
|
4244 |
if (use_scr) {
|
|
4245 |
post_filter_masm->mov(store_addr, scr);
|
|
4246 |
} else {
|
|
4247 |
post_filter_masm->nop();
|
|
4248 |
}
|
|
4249 |
generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
|
|
4250 |
save_frame(0);
|
|
4251 |
call(dirty_card_log_enqueue);
|
|
4252 |
if (use_scr) {
|
|
4253 |
delayed()->mov(scr, O0);
|
|
4254 |
} else {
|
|
4255 |
delayed()->mov(store_addr->after_save(), O0);
|
|
4256 |
}
|
|
4257 |
restore();
|
|
4258 |
|
|
4259 |
bind(filtered);
|
|
4260 |
}
|
|
4261 |
|
|
4262 |
#endif // SERIALGC
|
|
4263 |
///////////////////////////////////////////////////////////////////////////////////
|
|
4264 |
|
|
4265 |
void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
|
|
4266 |
// If we're writing constant NULL, we can skip the write barrier.
|
|
4267 |
if (new_val == G0) return;
|
|
4268 |
CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
|
|
4269 |
assert(bs->kind() == BarrierSet::CardTableModRef ||
|
|
4270 |
bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
|
|
4271 |
card_table_write(bs->byte_map_base, tmp, store_addr);
|
|
4272 |
}
|
|
4273 |
|
|
4274 |
void MacroAssembler::load_klass(Register src_oop, Register klass) {
|
|
4275 |
// The number of bytes in this code is used by
|
|
4276 |
// MachCallDynamicJavaNode::ret_addr_offset()
|
|
4277 |
// if this changes, change that.
|
|
4278 |
if (UseCompressedKlassPointers) {
|
|
4279 |
lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
|
|
4280 |
decode_klass_not_null(klass);
|
|
4281 |
} else {
|
|
4282 |
ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
|
|
4283 |
}
|
|
4284 |
}
|
|
4285 |
|
|
4286 |
void MacroAssembler::store_klass(Register klass, Register dst_oop) {
|
|
4287 |
if (UseCompressedKlassPointers) {
|
|
4288 |
assert(dst_oop != klass, "not enough registers");
|
|
4289 |
encode_klass_not_null(klass);
|
|
4290 |
st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
|
|
4291 |
} else {
|
|
4292 |
st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
|
|
4293 |
}
|
|
4294 |
}
|
|
4295 |
|
|
4296 |
void MacroAssembler::store_klass_gap(Register s, Register d) {
|
|
4297 |
if (UseCompressedKlassPointers) {
|
|
4298 |
assert(s != d, "not enough registers");
|
|
4299 |
st(s, d, oopDesc::klass_gap_offset_in_bytes());
|
|
4300 |
}
|
|
4301 |
}
|
|
4302 |
|
|
4303 |
void MacroAssembler::load_heap_oop(const Address& s, Register d) {
|
|
4304 |
if (UseCompressedOops) {
|
|
4305 |
lduw(s, d);
|
|
4306 |
decode_heap_oop(d);
|
|
4307 |
} else {
|
|
4308 |
ld_ptr(s, d);
|
|
4309 |
}
|
|
4310 |
}
|
|
4311 |
|
|
4312 |
void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
|
|
4313 |
if (UseCompressedOops) {
|
|
4314 |
lduw(s1, s2, d);
|
|
4315 |
decode_heap_oop(d, d);
|
|
4316 |
} else {
|
|
4317 |
ld_ptr(s1, s2, d);
|
|
4318 |
}
|
|
4319 |
}
|
|
4320 |
|
|
4321 |
void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
|
|
4322 |
if (UseCompressedOops) {
|
|
4323 |
lduw(s1, simm13a, d);
|
|
4324 |
decode_heap_oop(d, d);
|
|
4325 |
} else {
|
|
4326 |
ld_ptr(s1, simm13a, d);
|
|
4327 |
}
|
|
4328 |
}
|
|
4329 |
|
|
4330 |
void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
|
|
4331 |
if (s2.is_constant()) load_heap_oop(s1, s2.as_constant(), d);
|
|
4332 |
else load_heap_oop(s1, s2.as_register(), d);
|
|
4333 |
}
|
|
4334 |
|
|
4335 |
void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
|
|
4336 |
if (UseCompressedOops) {
|
|
4337 |
assert(s1 != d && s2 != d, "not enough registers");
|
|
4338 |
encode_heap_oop(d);
|
|
4339 |
st(d, s1, s2);
|
|
4340 |
} else {
|
|
4341 |
st_ptr(d, s1, s2);
|
|
4342 |
}
|
|
4343 |
}
|
|
4344 |
|
|
4345 |
void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
|
|
4346 |
if (UseCompressedOops) {
|
|
4347 |
assert(s1 != d, "not enough registers");
|
|
4348 |
encode_heap_oop(d);
|
|
4349 |
st(d, s1, simm13a);
|
|
4350 |
} else {
|
|
4351 |
st_ptr(d, s1, simm13a);
|
|
4352 |
}
|
|
4353 |
}
|
|
4354 |
|
|
4355 |
void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
|
|
4356 |
if (UseCompressedOops) {
|
|
4357 |
assert(a.base() != d, "not enough registers");
|
|
4358 |
encode_heap_oop(d);
|
|
4359 |
st(d, a, offset);
|
|
4360 |
} else {
|
|
4361 |
st_ptr(d, a, offset);
|
|
4362 |
}
|
|
4363 |
}
|
|
4364 |
|
|
4365 |
|
|
4366 |
void MacroAssembler::encode_heap_oop(Register src, Register dst) {
|
|
4367 |
assert (UseCompressedOops, "must be compressed");
|
|
4368 |
assert (Universe::heap() != NULL, "java heap should be initialized");
|
|
4369 |
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
|
|
4370 |
verify_oop(src);
|
|
4371 |
if (Universe::narrow_oop_base() == NULL) {
|
|
4372 |
srlx(src, LogMinObjAlignmentInBytes, dst);
|
|
4373 |
return;
|
|
4374 |
}
|
|
4375 |
Label done;
|
|
4376 |
if (src == dst) {
|
|
4377 |
// optimize for frequent case src == dst
|
|
4378 |
bpr(rc_nz, true, Assembler::pt, src, done);
|
|
4379 |
delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
|
|
4380 |
bind(done);
|
|
4381 |
srlx(src, LogMinObjAlignmentInBytes, dst);
|
|
4382 |
} else {
|
|
4383 |
bpr(rc_z, false, Assembler::pn, src, done);
|
|
4384 |
delayed() -> mov(G0, dst);
|
|
4385 |
// could be moved before branch, and annulate delay,
|
|
4386 |
// but may add some unneeded work decoding null
|
|
4387 |
sub(src, G6_heapbase, dst);
|
|
4388 |
srlx(dst, LogMinObjAlignmentInBytes, dst);
|
|
4389 |
bind(done);
|
|
4390 |
}
|
|
4391 |
}
|
|
4392 |
|
|
4393 |
|
|
4394 |
void MacroAssembler::encode_heap_oop_not_null(Register r) {
|
|
4395 |
assert (UseCompressedOops, "must be compressed");
|
|
4396 |
assert (Universe::heap() != NULL, "java heap should be initialized");
|
|
4397 |
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
|
|
4398 |
verify_oop(r);
|
|
4399 |
if (Universe::narrow_oop_base() != NULL)
|
|
4400 |
sub(r, G6_heapbase, r);
|
|
4401 |
srlx(r, LogMinObjAlignmentInBytes, r);
|
|
4402 |
}
|
|
4403 |
|
|
4404 |
void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
|
|
4405 |
assert (UseCompressedOops, "must be compressed");
|
|
4406 |
assert (Universe::heap() != NULL, "java heap should be initialized");
|
|
4407 |
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
|
|
4408 |
verify_oop(src);
|
|
4409 |
if (Universe::narrow_oop_base() == NULL) {
|
|
4410 |
srlx(src, LogMinObjAlignmentInBytes, dst);
|
|
4411 |
} else {
|
|
4412 |
sub(src, G6_heapbase, dst);
|
|
4413 |
srlx(dst, LogMinObjAlignmentInBytes, dst);
|
|
4414 |
}
|
|
4415 |
}
|
|
4416 |
|
|
4417 |
// Same algorithm as oops.inline.hpp decode_heap_oop.
|
|
4418 |
void MacroAssembler::decode_heap_oop(Register src, Register dst) {
|
|
4419 |
assert (UseCompressedOops, "must be compressed");
|
|
4420 |
assert (Universe::heap() != NULL, "java heap should be initialized");
|
|
4421 |
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
|
|
4422 |
sllx(src, LogMinObjAlignmentInBytes, dst);
|
|
4423 |
if (Universe::narrow_oop_base() != NULL) {
|
|
4424 |
Label done;
|
|
4425 |
bpr(rc_nz, true, Assembler::pt, dst, done);
|
|
4426 |
delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
|
|
4427 |
bind(done);
|
|
4428 |
}
|
|
4429 |
verify_oop(dst);
|
|
4430 |
}
|
|
4431 |
|
|
4432 |
void MacroAssembler::decode_heap_oop_not_null(Register r) {
|
|
4433 |
// Do not add assert code to this unless you change vtableStubs_sparc.cpp
|
|
4434 |
// pd_code_size_limit.
|
|
4435 |
// Also do not verify_oop as this is called by verify_oop.
|
|
4436 |
assert (UseCompressedOops, "must be compressed");
|
|
4437 |
assert (Universe::heap() != NULL, "java heap should be initialized");
|
|
4438 |
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
|
|
4439 |
sllx(r, LogMinObjAlignmentInBytes, r);
|
|
4440 |
if (Universe::narrow_oop_base() != NULL)
|
|
4441 |
add(r, G6_heapbase, r);
|
|
4442 |
}
|
|
4443 |
|
|
4444 |
void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
|
|
4445 |
// Do not add assert code to this unless you change vtableStubs_sparc.cpp
|
|
4446 |
// pd_code_size_limit.
|
|
4447 |
// Also do not verify_oop as this is called by verify_oop.
|
|
4448 |
assert (UseCompressedOops, "must be compressed");
|
|
4449 |
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
|
|
4450 |
sllx(src, LogMinObjAlignmentInBytes, dst);
|
|
4451 |
if (Universe::narrow_oop_base() != NULL)
|
|
4452 |
add(dst, G6_heapbase, dst);
|
|
4453 |
}
|
|
4454 |
|
|
4455 |
void MacroAssembler::encode_klass_not_null(Register r) {
|
|
4456 |
assert(Metaspace::is_initialized(), "metaspace should be initialized");
|
|
4457 |
assert (UseCompressedKlassPointers, "must be compressed");
|
|
4458 |
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
|
|
4459 |
if (Universe::narrow_klass_base() != NULL)
|
|
4460 |
sub(r, G6_heapbase, r);
|
|
4461 |
srlx(r, LogKlassAlignmentInBytes, r);
|
|
4462 |
}
|
|
4463 |
|
|
4464 |
void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
|
|
4465 |
assert(Metaspace::is_initialized(), "metaspace should be initialized");
|
|
4466 |
assert (UseCompressedKlassPointers, "must be compressed");
|
|
4467 |
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
|
|
4468 |
if (Universe::narrow_klass_base() == NULL) {
|
|
4469 |
srlx(src, LogKlassAlignmentInBytes, dst);
|
|
4470 |
} else {
|
|
4471 |
sub(src, G6_heapbase, dst);
|
|
4472 |
srlx(dst, LogKlassAlignmentInBytes, dst);
|
|
4473 |
}
|
|
4474 |
}
|
|
4475 |
|
|
4476 |
void MacroAssembler::decode_klass_not_null(Register r) {
|
|
4477 |
assert(Metaspace::is_initialized(), "metaspace should be initialized");
|
|
4478 |
// Do not add assert code to this unless you change vtableStubs_sparc.cpp
|
|
4479 |
// pd_code_size_limit.
|
|
4480 |
assert (UseCompressedKlassPointers, "must be compressed");
|
|
4481 |
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
|
|
4482 |
sllx(r, LogKlassAlignmentInBytes, r);
|
|
4483 |
if (Universe::narrow_klass_base() != NULL)
|
|
4484 |
add(r, G6_heapbase, r);
|
|
4485 |
}
|
|
4486 |
|
|
4487 |
void MacroAssembler::decode_klass_not_null(Register src, Register dst) {
|
|
4488 |
assert(Metaspace::is_initialized(), "metaspace should be initialized");
|
|
4489 |
// Do not add assert code to this unless you change vtableStubs_sparc.cpp
|
|
4490 |
// pd_code_size_limit.
|
|
4491 |
assert (UseCompressedKlassPointers, "must be compressed");
|
|
4492 |
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
|
|
4493 |
sllx(src, LogKlassAlignmentInBytes, dst);
|
|
4494 |
if (Universe::narrow_klass_base() != NULL)
|
|
4495 |
add(dst, G6_heapbase, dst);
|
|
4496 |
}
|
|
4497 |
|
|
4498 |
void MacroAssembler::reinit_heapbase() {
|
|
4499 |
if (UseCompressedOops || UseCompressedKlassPointers) {
|
|
4500 |
AddressLiteral base(Universe::narrow_ptrs_base_addr());
|
|
4501 |
load_ptr_contents(base, G6_heapbase);
|
|
4502 |
}
|
|
4503 |
}
|
|
4504 |
|
|
4505 |
// Compare char[] arrays aligned to 4 bytes.
|
|
4506 |
void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
|
|
4507 |
Register limit, Register result,
|
|
4508 |
Register chr1, Register chr2, Label& Ldone) {
|
|
4509 |
Label Lvector, Lloop;
|
|
4510 |
assert(chr1 == result, "should be the same");
|
|
4511 |
|
|
4512 |
// Note: limit contains number of bytes (2*char_elements) != 0.
|
|
4513 |
andcc(limit, 0x2, chr1); // trailing character ?
|
|
4514 |
br(Assembler::zero, false, Assembler::pt, Lvector);
|
|
4515 |
delayed()->nop();
|
|
4516 |
|
|
4517 |
// compare the trailing char
|
|
4518 |
sub(limit, sizeof(jchar), limit);
|
|
4519 |
lduh(ary1, limit, chr1);
|
|
4520 |
lduh(ary2, limit, chr2);
|
|
4521 |
cmp(chr1, chr2);
|
|
4522 |
br(Assembler::notEqual, true, Assembler::pt, Ldone);
|
|
4523 |
delayed()->mov(G0, result); // not equal
|
|
4524 |
|
|
4525 |
// only one char ?
|
|
4526 |
cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
|
|
4527 |
delayed()->add(G0, 1, result); // zero-length arrays are equal
|
|
4528 |
|
|
4529 |
// word by word compare, dont't need alignment check
|
|
4530 |
bind(Lvector);
|
|
4531 |
// Shift ary1 and ary2 to the end of the arrays, negate limit
|
|
4532 |
add(ary1, limit, ary1);
|
|
4533 |
add(ary2, limit, ary2);
|
|
4534 |
neg(limit, limit);
|
|
4535 |
|
|
4536 |
lduw(ary1, limit, chr1);
|
|
4537 |
bind(Lloop);
|
|
4538 |
lduw(ary2, limit, chr2);
|
|
4539 |
cmp(chr1, chr2);
|
|
4540 |
br(Assembler::notEqual, true, Assembler::pt, Ldone);
|
|
4541 |
delayed()->mov(G0, result); // not equal
|
|
4542 |
inccc(limit, 2*sizeof(jchar));
|
|
4543 |
// annul LDUW if branch is not taken to prevent access past end of array
|
|
4544 |
br(Assembler::notZero, true, Assembler::pt, Lloop);
|
|
4545 |
delayed()->lduw(ary1, limit, chr1); // hoisted
|
|
4546 |
|
|
4547 |
// Caller should set it:
|
|
4548 |
// add(G0, 1, result); // equals
|
|
4549 |
}
|
|
4550 |
|
|
4551 |
// Use BIS for zeroing (count is in bytes).
|
|
4552 |
void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
|
|
4553 |
assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
|
|
4554 |
Register end = count;
|
|
4555 |
int cache_line_size = VM_Version::prefetch_data_size();
|
|
4556 |
// Minimum count when BIS zeroing can be used since
|
|
4557 |
// it needs membar which is expensive.
|
|
4558 |
int block_zero_size = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
|
|
4559 |
|
|
4560 |
Label small_loop;
|
|
4561 |
// Check if count is negative (dead code) or zero.
|
|
4562 |
// Note, count uses 64bit in 64 bit VM.
|
|
4563 |
cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
|
|
4564 |
|
|
4565 |
// Use BIS zeroing only for big arrays since it requires membar.
|
|
4566 |
if (Assembler::is_simm13(block_zero_size)) { // < 4096
|
|
4567 |
cmp(count, block_zero_size);
|
|
4568 |
} else {
|
|
4569 |
set(block_zero_size, temp);
|
|
4570 |
cmp(count, temp);
|
|
4571 |
}
|
|
4572 |
br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
|
|
4573 |
delayed()->add(to, count, end);
|
|
4574 |
|
|
4575 |
// Note: size is >= three (32 bytes) cache lines.
|
|
4576 |
|
|
4577 |
// Clean the beginning of space up to next cache line.
|
|
4578 |
for (int offs = 0; offs < cache_line_size; offs += 8) {
|
|
4579 |
stx(G0, to, offs);
|
|
4580 |
}
|
|
4581 |
|
|
4582 |
// align to next cache line
|
|
4583 |
add(to, cache_line_size, to);
|
|
4584 |
and3(to, -cache_line_size, to);
|
|
4585 |
|
|
4586 |
// Note: size left >= two (32 bytes) cache lines.
|
|
4587 |
|
|
4588 |
// BIS should not be used to zero tail (64 bytes)
|
|
4589 |
// to avoid zeroing a header of the following object.
|
|
4590 |
sub(end, (cache_line_size*2)-8, end);
|
|
4591 |
|
|
4592 |
Label bis_loop;
|
|
4593 |
bind(bis_loop);
|
|
4594 |
stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
|
|
4595 |
add(to, cache_line_size, to);
|
|
4596 |
cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
|
|
4597 |
|
|
4598 |
// BIS needs membar.
|
|
4599 |
membar(Assembler::StoreLoad);
|
|
4600 |
|
|
4601 |
add(end, (cache_line_size*2)-8, end); // restore end
|
|
4602 |
cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
|
|
4603 |
|
|
4604 |
// Clean the tail.
|
|
4605 |
bind(small_loop);
|
|
4606 |
stx(G0, to, 0);
|
|
4607 |
add(to, 8, to);
|
|
4608 |
cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
|
|
4609 |
nop(); // Separate short branches
|
|
4610 |
}
|