author | twisti |
Thu, 06 Dec 2012 09:57:41 -0800 | |
changeset 14631 | 526804361522 |
parent 13969 | d2a189b83b87 |
child 15116 | af423dcb739c |
permissions | -rw-r--r-- |
1 | 1 |
/* |
11637
030466036615
7013347: allow crypto functions to be called inline to enhance performance
never
parents:
11190
diff
changeset
|
2 |
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
5542
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
5542
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
5542
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
7397 | 25 |
#ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP |
26 |
#define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP |
|
27 |
||
14631
526804361522
8003250: SPARC: move MacroAssembler into separate file
twisti
parents:
13969
diff
changeset
|
28 |
#include "asm/register.hpp" |
1 | 29 |
|
30 |
// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction |
|
31 |
// level; i.e., what you write |
|
32 |
// is what you get. The Assembler is generating code into a CodeBuffer. |
|
33 |
||
34 |
class Assembler : public AbstractAssembler { |
|
35 |
friend class AbstractAssembler; |
|
2571 | 36 |
friend class AddressLiteral; |
1 | 37 |
|
38 |
// code patchers need various routines like inv_wdisp() |
|
39 |
friend class NativeInstruction; |
|
40 |
friend class NativeGeneralJump; |
|
41 |
friend class Relocation; |
|
42 |
friend class Label; |
|
43 |
||
44 |
public: |
|
45 |
// op carries format info; see page 62 & 267 |
|
46 |
||
47 |
enum ops { |
|
48 |
call_op = 1, // fmt 1 |
|
49 |
branch_op = 0, // also sethi (fmt2) |
|
50 |
arith_op = 2, // fmt 3, arith & misc |
|
51 |
ldst_op = 3 // fmt 3, load/store |
|
52 |
}; |
|
53 |
||
54 |
enum op2s { |
|
55 |
bpr_op2 = 3, |
|
56 |
fb_op2 = 6, |
|
57 |
fbp_op2 = 5, |
|
58 |
br_op2 = 2, |
|
59 |
bp_op2 = 1, |
|
60 |
cb_op2 = 7, // V8 |
|
61 |
sethi_op2 = 4 |
|
62 |
}; |
|
63 |
||
64 |
enum op3s { |
|
65 |
// selected op3s |
|
66 |
add_op3 = 0x00, |
|
67 |
and_op3 = 0x01, |
|
68 |
or_op3 = 0x02, |
|
69 |
xor_op3 = 0x03, |
|
70 |
sub_op3 = 0x04, |
|
71 |
andn_op3 = 0x05, |
|
72 |
orn_op3 = 0x06, |
|
73 |
xnor_op3 = 0x07, |
|
74 |
addc_op3 = 0x08, |
|
75 |
mulx_op3 = 0x09, |
|
76 |
umul_op3 = 0x0a, |
|
77 |
smul_op3 = 0x0b, |
|
78 |
subc_op3 = 0x0c, |
|
79 |
udivx_op3 = 0x0d, |
|
80 |
udiv_op3 = 0x0e, |
|
81 |
sdiv_op3 = 0x0f, |
|
82 |
||
83 |
addcc_op3 = 0x10, |
|
84 |
andcc_op3 = 0x11, |
|
85 |
orcc_op3 = 0x12, |
|
86 |
xorcc_op3 = 0x13, |
|
87 |
subcc_op3 = 0x14, |
|
88 |
andncc_op3 = 0x15, |
|
89 |
orncc_op3 = 0x16, |
|
90 |
xnorcc_op3 = 0x17, |
|
91 |
addccc_op3 = 0x18, |
|
92 |
umulcc_op3 = 0x1a, |
|
93 |
smulcc_op3 = 0x1b, |
|
94 |
subccc_op3 = 0x1c, |
|
95 |
udivcc_op3 = 0x1e, |
|
96 |
sdivcc_op3 = 0x1f, |
|
97 |
||
98 |
taddcc_op3 = 0x20, |
|
99 |
tsubcc_op3 = 0x21, |
|
100 |
taddcctv_op3 = 0x22, |
|
101 |
tsubcctv_op3 = 0x23, |
|
102 |
mulscc_op3 = 0x24, |
|
103 |
sll_op3 = 0x25, |
|
104 |
sllx_op3 = 0x25, |
|
105 |
srl_op3 = 0x26, |
|
106 |
srlx_op3 = 0x26, |
|
107 |
sra_op3 = 0x27, |
|
108 |
srax_op3 = 0x27, |
|
109 |
rdreg_op3 = 0x28, |
|
110 |
membar_op3 = 0x28, |
|
111 |
||
112 |
flushw_op3 = 0x2b, |
|
113 |
movcc_op3 = 0x2c, |
|
114 |
sdivx_op3 = 0x2d, |
|
115 |
popc_op3 = 0x2e, |
|
116 |
movr_op3 = 0x2f, |
|
117 |
||
118 |
sir_op3 = 0x30, |
|
119 |
wrreg_op3 = 0x30, |
|
120 |
saved_op3 = 0x31, |
|
121 |
||
122 |
fpop1_op3 = 0x34, |
|
123 |
fpop2_op3 = 0x35, |
|
124 |
impdep1_op3 = 0x36, |
|
125 |
impdep2_op3 = 0x37, |
|
126 |
jmpl_op3 = 0x38, |
|
127 |
rett_op3 = 0x39, |
|
128 |
trap_op3 = 0x3a, |
|
129 |
flush_op3 = 0x3b, |
|
130 |
save_op3 = 0x3c, |
|
131 |
restore_op3 = 0x3d, |
|
132 |
done_op3 = 0x3e, |
|
133 |
retry_op3 = 0x3e, |
|
134 |
||
135 |
lduw_op3 = 0x00, |
|
136 |
ldub_op3 = 0x01, |
|
137 |
lduh_op3 = 0x02, |
|
138 |
ldd_op3 = 0x03, |
|
139 |
stw_op3 = 0x04, |
|
140 |
stb_op3 = 0x05, |
|
141 |
sth_op3 = 0x06, |
|
142 |
std_op3 = 0x07, |
|
143 |
ldsw_op3 = 0x08, |
|
144 |
ldsb_op3 = 0x09, |
|
145 |
ldsh_op3 = 0x0a, |
|
146 |
ldx_op3 = 0x0b, |
|
147 |
||
148 |
ldstub_op3 = 0x0d, |
|
149 |
stx_op3 = 0x0e, |
|
150 |
swap_op3 = 0x0f, |
|
151 |
||
152 |
stwa_op3 = 0x14, |
|
153 |
stxa_op3 = 0x1e, |
|
154 |
||
155 |
ldf_op3 = 0x20, |
|
156 |
ldfsr_op3 = 0x21, |
|
157 |
ldqf_op3 = 0x22, |
|
158 |
lddf_op3 = 0x23, |
|
159 |
stf_op3 = 0x24, |
|
160 |
stfsr_op3 = 0x25, |
|
161 |
stqf_op3 = 0x26, |
|
162 |
stdf_op3 = 0x27, |
|
163 |
||
164 |
prefetch_op3 = 0x2d, |
|
165 |
||
166 |
||
167 |
ldc_op3 = 0x30, |
|
168 |
ldcsr_op3 = 0x31, |
|
169 |
lddc_op3 = 0x33, |
|
170 |
stc_op3 = 0x34, |
|
171 |
stcsr_op3 = 0x35, |
|
172 |
stdcq_op3 = 0x36, |
|
173 |
stdc_op3 = 0x37, |
|
174 |
||
175 |
casa_op3 = 0x3c, |
|
176 |
casxa_op3 = 0x3e, |
|
177 |
||
10027 | 178 |
mftoi_op3 = 0x36, |
179 |
||
1 | 180 |
alt_bit_op3 = 0x10, |
181 |
cc_bit_op3 = 0x10 |
|
182 |
}; |
|
183 |
||
184 |
enum opfs { |
|
185 |
// selected opfs |
|
186 |
fmovs_opf = 0x01, |
|
187 |
fmovd_opf = 0x02, |
|
188 |
||
189 |
fnegs_opf = 0x05, |
|
190 |
fnegd_opf = 0x06, |
|
191 |
||
192 |
fadds_opf = 0x41, |
|
193 |
faddd_opf = 0x42, |
|
194 |
fsubs_opf = 0x45, |
|
195 |
fsubd_opf = 0x46, |
|
196 |
||
197 |
fmuls_opf = 0x49, |
|
198 |
fmuld_opf = 0x4a, |
|
199 |
fdivs_opf = 0x4d, |
|
200 |
fdivd_opf = 0x4e, |
|
201 |
||
202 |
fcmps_opf = 0x51, |
|
203 |
fcmpd_opf = 0x52, |
|
204 |
||
205 |
fstox_opf = 0x81, |
|
206 |
fdtox_opf = 0x82, |
|
207 |
fxtos_opf = 0x84, |
|
208 |
fxtod_opf = 0x88, |
|
209 |
fitos_opf = 0xc4, |
|
210 |
fdtos_opf = 0xc6, |
|
211 |
fitod_opf = 0xc8, |
|
212 |
fstod_opf = 0xc9, |
|
213 |
fstoi_opf = 0xd1, |
|
10027 | 214 |
fdtoi_opf = 0xd2, |
215 |
||
216 |
mdtox_opf = 0x110, |
|
217 |
mstouw_opf = 0x111, |
|
218 |
mstosw_opf = 0x113, |
|
219 |
mxtod_opf = 0x118, |
|
220 |
mwtos_opf = 0x119 |
|
1 | 221 |
}; |
222 |
||
10252 | 223 |
enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez }; |
1 | 224 |
|
225 |
enum Condition { |
|
226 |
// for FBfcc & FBPfcc instruction |
|
227 |
f_never = 0, |
|
228 |
f_notEqual = 1, |
|
229 |
f_notZero = 1, |
|
230 |
f_lessOrGreater = 2, |
|
231 |
f_unorderedOrLess = 3, |
|
232 |
f_less = 4, |
|
233 |
f_unorderedOrGreater = 5, |
|
234 |
f_greater = 6, |
|
235 |
f_unordered = 7, |
|
236 |
f_always = 8, |
|
237 |
f_equal = 9, |
|
238 |
f_zero = 9, |
|
239 |
f_unorderedOrEqual = 10, |
|
240 |
f_greaterOrEqual = 11, |
|
241 |
f_unorderedOrGreaterOrEqual = 12, |
|
242 |
f_lessOrEqual = 13, |
|
243 |
f_unorderedOrLessOrEqual = 14, |
|
244 |
f_ordered = 15, |
|
245 |
||
246 |
// V8 coproc, pp 123 v8 manual |
|
247 |
||
248 |
cp_always = 8, |
|
249 |
cp_never = 0, |
|
250 |
cp_3 = 7, |
|
251 |
cp_2 = 6, |
|
252 |
cp_2or3 = 5, |
|
253 |
cp_1 = 4, |
|
254 |
cp_1or3 = 3, |
|
255 |
cp_1or2 = 2, |
|
256 |
cp_1or2or3 = 1, |
|
257 |
cp_0 = 9, |
|
258 |
cp_0or3 = 10, |
|
259 |
cp_0or2 = 11, |
|
260 |
cp_0or2or3 = 12, |
|
261 |
cp_0or1 = 13, |
|
262 |
cp_0or1or3 = 14, |
|
263 |
cp_0or1or2 = 15, |
|
264 |
||
265 |
||
266 |
// for integers |
|
267 |
||
268 |
never = 0, |
|
269 |
equal = 1, |
|
270 |
zero = 1, |
|
271 |
lessEqual = 2, |
|
272 |
less = 3, |
|
273 |
lessEqualUnsigned = 4, |
|
274 |
lessUnsigned = 5, |
|
275 |
carrySet = 5, |
|
276 |
negative = 6, |
|
277 |
overflowSet = 7, |
|
278 |
always = 8, |
|
279 |
notEqual = 9, |
|
280 |
notZero = 9, |
|
281 |
greater = 10, |
|
282 |
greaterEqual = 11, |
|
283 |
greaterUnsigned = 12, |
|
284 |
greaterEqualUnsigned = 13, |
|
285 |
carryClear = 13, |
|
286 |
positive = 14, |
|
287 |
overflowClear = 15 |
|
288 |
}; |
|
289 |
||
290 |
enum CC { |
|
291 |
icc = 0, xcc = 2, |
|
292 |
// ptr_cc is the correct condition code for a pointer or intptr_t: |
|
293 |
ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc), |
|
294 |
fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3 |
|
295 |
}; |
|
296 |
||
297 |
enum PrefetchFcn { |
|
298 |
severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4 |
|
299 |
}; |
|
300 |
||
301 |
public: |
|
302 |
// Helper functions for groups of instructions |
|
303 |
||
304 |
enum Predict { pt = 1, pn = 0 }; // pt = predict taken |
|
305 |
||
306 |
enum Membar_mask_bits { // page 184, v9 |
|
307 |
StoreStore = 1 << 3, |
|
308 |
LoadStore = 1 << 2, |
|
309 |
StoreLoad = 1 << 1, |
|
310 |
LoadLoad = 1 << 0, |
|
311 |
||
312 |
Sync = 1 << 6, |
|
313 |
MemIssue = 1 << 5, |
|
314 |
Lookaside = 1 << 4 |
|
315 |
}; |
|
316 |
||
7892
ff4948f95c49
7011627: C1: call_RT must support targets that don't fit in wdisp30
iveresov
parents:
7700
diff
changeset
|
317 |
static bool is_in_wdisp_range(address a, address b, int nbits) { |
ff4948f95c49
7011627: C1: call_RT must support targets that don't fit in wdisp30
iveresov
parents:
7700
diff
changeset
|
318 |
intptr_t d = intptr_t(b) - intptr_t(a); |
ff4948f95c49
7011627: C1: call_RT must support targets that don't fit in wdisp30
iveresov
parents:
7700
diff
changeset
|
319 |
return is_simm(d, nbits + 2); |
ff4948f95c49
7011627: C1: call_RT must support targets that don't fit in wdisp30
iveresov
parents:
7700
diff
changeset
|
320 |
} |
1 | 321 |
|
10252 | 322 |
address target_distance(Label& L) { |
323 |
// Assembler::target(L) should be called only when |
|
324 |
// a branch instruction is emitted since non-bound |
|
325 |
// labels record current pc() as a branch address. |
|
326 |
if (L.is_bound()) return target(L); |
|
327 |
// Return current address for non-bound labels. |
|
328 |
return pc(); |
|
329 |
} |
|
330 |
||
6774 | 331 |
// test if label is in simm16 range in words (wdisp16). |
332 |
bool is_in_wdisp16_range(Label& L) { |
|
10252 | 333 |
return is_in_wdisp_range(target_distance(L), pc(), 16); |
7892
ff4948f95c49
7011627: C1: call_RT must support targets that don't fit in wdisp30
iveresov
parents:
7700
diff
changeset
|
334 |
} |
ff4948f95c49
7011627: C1: call_RT must support targets that don't fit in wdisp30
iveresov
parents:
7700
diff
changeset
|
335 |
// test if the distance between two addresses fits in simm30 range in words |
ff4948f95c49
7011627: C1: call_RT must support targets that don't fit in wdisp30
iveresov
parents:
7700
diff
changeset
|
336 |
static bool is_in_wdisp30_range(address a, address b) { |
ff4948f95c49
7011627: C1: call_RT must support targets that don't fit in wdisp30
iveresov
parents:
7700
diff
changeset
|
337 |
return is_in_wdisp_range(a, b, 30); |
6774 | 338 |
} |
339 |
||
1 | 340 |
enum ASIs { // page 72, v9 |
10501 | 341 |
ASI_PRIMARY = 0x80, |
342 |
ASI_PRIMARY_NOFAULT = 0x82, |
|
343 |
ASI_PRIMARY_LITTLE = 0x88, |
|
10267 | 344 |
// Block initializing store |
345 |
ASI_ST_BLKINIT_PRIMARY = 0xE2, |
|
346 |
// Most-Recently-Used (MRU) BIS variant |
|
347 |
ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2 |
|
1 | 348 |
// add more from book as needed |
349 |
}; |
|
350 |
||
351 |
protected: |
|
352 |
// helpers |
|
353 |
||
354 |
// x is supposed to fit in a field "nbits" wide |
|
355 |
// and be sign-extended. Check the range. |
|
356 |
||
357 |
static void assert_signed_range(intptr_t x, int nbits) { |
|
9976
6fef34e63df1
7045514: SPARC assembly code for JSR 292 ricochet frames
never
parents:
9176
diff
changeset
|
358 |
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)), |
6fef34e63df1
7045514: SPARC assembly code for JSR 292 ricochet frames
never
parents:
9176
diff
changeset
|
359 |
err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits)); |
1 | 360 |
} |
361 |
||
362 |
static void assert_signed_word_disp_range(intptr_t x, int nbits) { |
|
363 |
assert( (x & 3) == 0, "not word aligned"); |
|
364 |
assert_signed_range(x, nbits + 2); |
|
365 |
} |
|
366 |
||
367 |
static void assert_unsigned_const(int x, int nbits) { |
|
368 |
assert( juint(x) < juint(1 << nbits), "unsigned constant out of range"); |
|
369 |
} |
|
370 |
||
371 |
// fields: note bits numbered from LSB = 0, |
|
372 |
// fields known by inclusive bit range |
|
373 |
||
374 |
static int fmask(juint hi_bit, juint lo_bit) { |
|
375 |
assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits"); |
|
376 |
return (1 << ( hi_bit-lo_bit + 1 )) - 1; |
|
377 |
} |
|
378 |
||
379 |
// inverse of u_field |
|
380 |
||
381 |
static int inv_u_field(int x, int hi_bit, int lo_bit) { |
|
382 |
juint r = juint(x) >> lo_bit; |
|
383 |
r &= fmask( hi_bit, lo_bit); |
|
384 |
return int(r); |
|
385 |
} |
|
386 |
||
387 |
||
388 |
// signed version: extract from field and sign-extend |
|
389 |
||
390 |
static int inv_s_field(int x, int hi_bit, int lo_bit) { |
|
391 |
int sign_shift = 31 - hi_bit; |
|
392 |
return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit); |
|
393 |
} |
|
394 |
||
395 |
// given a field that ranges from hi_bit to lo_bit (inclusive, |
|
396 |
// LSB = 0), and an unsigned value for the field, |
|
397 |
// shift it into the field |
|
398 |
||
399 |
#ifdef ASSERT |
|
400 |
static int u_field(int x, int hi_bit, int lo_bit) { |
|
401 |
assert( ( x & ~fmask(hi_bit, lo_bit)) == 0, |
|
402 |
"value out of range"); |
|
403 |
int r = x << lo_bit; |
|
404 |
assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking"); |
|
405 |
return r; |
|
406 |
} |
|
407 |
#else |
|
408 |
// make sure this is inlined as it will reduce code size significantly |
|
409 |
#define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit)) |
|
410 |
#endif |
|
411 |
||
412 |
static int inv_op( int x ) { return inv_u_field(x, 31, 30); } |
|
413 |
static int inv_op2( int x ) { return inv_u_field(x, 24, 22); } |
|
414 |
static int inv_op3( int x ) { return inv_u_field(x, 24, 19); } |
|
415 |
static int inv_cond( int x ){ return inv_u_field(x, 28, 25); } |
|
416 |
||
417 |
static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; } |
|
418 |
||
419 |
static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); } |
|
420 |
static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); } |
|
421 |
static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); } |
|
422 |
||
423 |
static int op( int x) { return u_field(x, 31, 30); } |
|
424 |
static int rd( Register r) { return u_field(r->encoding(), 29, 25); } |
|
425 |
static int fcn( int x) { return u_field(x, 29, 25); } |
|
426 |
static int op3( int x) { return u_field(x, 24, 19); } |
|
427 |
static int rs1( Register r) { return u_field(r->encoding(), 18, 14); } |
|
428 |
static int rs2( Register r) { return u_field(r->encoding(), 4, 0); } |
|
429 |
static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); } |
|
430 |
static int cond( int x) { return u_field(x, 28, 25); } |
|
431 |
static int cond_mov( int x) { return u_field(x, 17, 14); } |
|
432 |
static int rcond( RCondition x) { return u_field(x, 12, 10); } |
|
433 |
static int op2( int x) { return u_field(x, 24, 22); } |
|
434 |
static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); } |
|
435 |
static int branchcc( CC fcca) { return u_field(fcca, 21, 20); } |
|
436 |
static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); } |
|
437 |
static int imm_asi( int x) { return u_field(x, 12, 5); } |
|
438 |
static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); } |
|
439 |
static int opf_low6( int w) { return u_field(w, 10, 5); } |
|
440 |
static int opf_low5( int w) { return u_field(w, 9, 5); } |
|
441 |
static int trapcc( CC cc) { return u_field(cc, 12, 11); } |
|
442 |
static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit |
|
443 |
static int opf( int x) { return u_field(x, 13, 5); } |
|
444 |
||
10252 | 445 |
static bool is_cbcond( int x ) { |
446 |
return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) && |
|
447 |
inv_op(x) == branch_op && inv_op2(x) == bpr_op2); |
|
448 |
} |
|
449 |
static bool is_cxb( int x ) { |
|
450 |
assert(is_cbcond(x), "wrong instruction"); |
|
451 |
return (x & (1<<21)) != 0; |
|
452 |
} |
|
453 |
static int cond_cbcond( int x) { return u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); } |
|
454 |
static int inv_cond_cbcond(int x) { |
|
455 |
assert(is_cbcond(x), "wrong instruction"); |
|
456 |
return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3); |
|
457 |
} |
|
458 |
||
1 | 459 |
static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); } |
460 |
static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); } |
|
461 |
||
462 |
static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); }; |
|
463 |
static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); }; |
|
464 |
static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); }; |
|
465 |
||
466 |
// some float instructions use this encoding on the op3 field |
|
467 |
static int alt_op3(int op, FloatRegisterImpl::Width w) { |
|
468 |
int r; |
|
469 |
switch(w) { |
|
470 |
case FloatRegisterImpl::S: r = op + 0; break; |
|
471 |
case FloatRegisterImpl::D: r = op + 3; break; |
|
472 |
case FloatRegisterImpl::Q: r = op + 2; break; |
|
473 |
default: ShouldNotReachHere(); break; |
|
474 |
} |
|
475 |
return op3(r); |
|
476 |
} |
|
477 |
||
478 |
||
479 |
// compute inverse of simm |
|
480 |
static int inv_simm(int x, int nbits) { |
|
481 |
return (int)(x << (32 - nbits)) >> (32 - nbits); |
|
482 |
} |
|
483 |
||
484 |
static int inv_simm13( int x ) { return inv_simm(x, 13); } |
|
485 |
||
486 |
// signed immediate, in low bits, nbits long |
|
487 |
static int simm(int x, int nbits) { |
|
488 |
assert_signed_range(x, nbits); |
|
489 |
return x & (( 1 << nbits ) - 1); |
|
490 |
} |
|
491 |
||
492 |
// compute inverse of wdisp16 |
|
493 |
static intptr_t inv_wdisp16(int x, intptr_t pos) { |
|
494 |
int lo = x & (( 1 << 14 ) - 1); |
|
495 |
int hi = (x >> 20) & 3; |
|
496 |
if (hi >= 2) hi |= ~1; |
|
497 |
return (((hi << 14) | lo) << 2) + pos; |
|
498 |
} |
|
499 |
||
500 |
// word offset, 14 bits at LSend, 2 bits at B21, B20 |
|
501 |
static int wdisp16(intptr_t x, intptr_t off) { |
|
502 |
intptr_t xx = x - off; |
|
503 |
assert_signed_word_disp_range(xx, 16); |
|
504 |
int r = (xx >> 2) & ((1 << 14) - 1) |
|
505 |
| ( ( (xx>>(2+14)) & 3 ) << 20 ); |
|
506 |
assert( inv_wdisp16(r, off) == x, "inverse is not inverse"); |
|
507 |
return r; |
|
508 |
} |
|
509 |
||
10252 | 510 |
// compute inverse of wdisp10 |
511 |
static intptr_t inv_wdisp10(int x, intptr_t pos) { |
|
512 |
assert(is_cbcond(x), "wrong instruction"); |
|
513 |
int lo = inv_u_field(x, 12, 5); |
|
514 |
int hi = (x >> 19) & 3; |
|
515 |
if (hi >= 2) hi |= ~1; |
|
516 |
return (((hi << 8) | lo) << 2) + pos; |
|
517 |
} |
|
518 |
||
519 |
// word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19] |
|
520 |
static int wdisp10(intptr_t x, intptr_t off) { |
|
521 |
assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction"); |
|
522 |
intptr_t xx = x - off; |
|
523 |
assert_signed_word_disp_range(xx, 10); |
|
524 |
int r = ( ( (xx >> 2 ) & ((1 << 8) - 1) ) << 5 ) |
|
525 |
| ( ( (xx >> (2+8)) & 3 ) << 19 ); |
|
526 |
// Have to fake cbcond instruction to pass assert in inv_wdisp10() |
|
527 |
assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x, "inverse is not inverse"); |
|
528 |
return r; |
|
529 |
} |
|
1 | 530 |
|
531 |
// word displacement in low-order nbits bits |
|
532 |
||
533 |
static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) { |
|
534 |
int pre_sign_extend = x & (( 1 << nbits ) - 1); |
|
535 |
int r = pre_sign_extend >= ( 1 << (nbits-1) ) |
|
536 |
? pre_sign_extend | ~(( 1 << nbits ) - 1) |
|
537 |
: pre_sign_extend; |
|
538 |
return (r << 2) + pos; |
|
539 |
} |
|
540 |
||
541 |
static int wdisp( intptr_t x, intptr_t off, int nbits ) { |
|
542 |
intptr_t xx = x - off; |
|
543 |
assert_signed_word_disp_range(xx, nbits); |
|
544 |
int r = (xx >> 2) & (( 1 << nbits ) - 1); |
|
545 |
assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse"); |
|
546 |
return r; |
|
547 |
} |
|
548 |
||
549 |
||
550 |
// Extract the top 32 bits in a 64 bit word |
|
551 |
static int32_t hi32( int64_t x ) { |
|
552 |
int32_t r = int32_t( (uint64_t)x >> 32 ); |
|
553 |
return r; |
|
554 |
} |
|
555 |
||
556 |
// given a sethi instruction, extract the constant, left-justified |
|
557 |
static int inv_hi22( int x ) { |
|
558 |
return x << 10; |
|
559 |
} |
|
560 |
||
561 |
// create an imm22 field, given a 32-bit left-justified constant |
|
562 |
static int hi22( int x ) { |
|
563 |
int r = int( juint(x) >> 10 ); |
|
564 |
assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'"); |
|
565 |
return r; |
|
566 |
} |
|
567 |
||
568 |
// create a low10 __value__ (not a field) for a given a 32-bit constant |
|
569 |
static int low10( int x ) { |
|
570 |
return x & ((1 << 10) - 1); |
|
571 |
} |
|
572 |
||
10027 | 573 |
// instruction only in VIS3 |
574 |
static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); } |
|
575 |
||
1 | 576 |
// instruction only in v9 |
577 |
static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); } |
|
578 |
||
579 |
// instruction only in v8 |
|
580 |
static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); } |
|
581 |
||
582 |
// instruction deprecated in v9 |
|
583 |
static void v9_dep() { } // do nothing for now |
|
584 |
||
585 |
// some float instructions only exist for single prec. on v8 |
|
586 |
static void v8_s_only(FloatRegisterImpl::Width w) { if (w != FloatRegisterImpl::S) v9_only(); } |
|
587 |
||
588 |
// v8 has no CC field |
|
589 |
static void v8_no_cc(CC cc) { if (cc) v9_only(); } |
|
590 |
||
591 |
protected: |
|
592 |
// Simple delay-slot scheme: |
|
593 |
// In order to check the programmer, the assembler keeps track of deley slots. |
|
594 |
// It forbids CTIs in delay slots (conservative, but should be OK). |
|
595 |
// Also, when putting an instruction into a delay slot, you must say |
|
596 |
// asm->delayed()->add(...), in order to check that you don't omit |
|
597 |
// delay-slot instructions. |
|
598 |
// To implement this, we use a simple FSA |
|
599 |
||
600 |
#ifdef ASSERT |
|
601 |
#define CHECK_DELAY |
|
602 |
#endif |
|
603 |
#ifdef CHECK_DELAY |
|
604 |
enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state; |
|
605 |
#endif |
|
606 |
||
607 |
public: |
|
608 |
// Tells assembler next instruction must NOT be in delay slot. |
|
609 |
// Use at start of multinstruction macros. |
|
610 |
void assert_not_delayed() { |
|
611 |
// This is a separate overloading to avoid creation of string constants |
|
612 |
// in non-asserted code--with some compilers this pollutes the object code. |
|
613 |
#ifdef CHECK_DELAY |
|
614 |
assert_not_delayed("next instruction should not be a delay slot"); |
|
615 |
#endif |
|
616 |
} |
|
617 |
void assert_not_delayed(const char* msg) { |
|
618 |
#ifdef CHECK_DELAY |
|
5403
6b0dd9c75dde
6888954: argument formatting for assert() and friends
jcoomes
parents:
4009
diff
changeset
|
619 |
assert(delay_state == no_delay, msg); |
1 | 620 |
#endif |
621 |
} |
|
622 |
||
623 |
protected: |
|
624 |
// Delay slot helpers |
|
625 |
// cti is called when emitting control-transfer instruction, |
|
626 |
// BEFORE doing the emitting. |
|
627 |
// Only effective when assertion-checking is enabled. |
|
628 |
void cti() { |
|
629 |
#ifdef CHECK_DELAY |
|
630 |
assert_not_delayed("cti should not be in delay slot"); |
|
631 |
#endif |
|
632 |
} |
|
633 |
||
634 |
// called when emitting cti with a delay slot, AFTER emitting |
|
635 |
void has_delay_slot() { |
|
636 |
#ifdef CHECK_DELAY |
|
637 |
assert_not_delayed("just checking"); |
|
638 |
delay_state = at_delay_slot; |
|
639 |
#endif |
|
640 |
} |
|
641 |
||
10252 | 642 |
// cbcond instruction should not be generated one after an other |
643 |
bool cbcond_before() { |
|
644 |
if (offset() == 0) return false; // it is first instruction |
|
645 |
int x = *(int*)(intptr_t(pc()) - 4); // previous instruction |
|
646 |
return is_cbcond(x); |
|
647 |
} |
|
648 |
||
649 |
void no_cbcond_before() { |
|
650 |
assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond"); |
|
651 |
} |
|
652 |
||
10264 | 653 |
public: |
654 |
||
10252 | 655 |
bool use_cbcond(Label& L) { |
656 |
if (!UseCBCond || cbcond_before()) return false; |
|
657 |
intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc()); |
|
658 |
assert( (x & 3) == 0, "not word aligned"); |
|
11190
d561d41f241a
7003454: order constants in constant table by number of references in code
twisti
parents:
10519
diff
changeset
|
659 |
return is_simm12(x); |
10252 | 660 |
} |
661 |
||
1 | 662 |
// Tells assembler you know that next instruction is delayed |
663 |
Assembler* delayed() { |
|
664 |
#ifdef CHECK_DELAY |
|
665 |
assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot"); |
|
666 |
delay_state = filling_delay_slot; |
|
667 |
#endif |
|
668 |
return this; |
|
669 |
} |
|
670 |
||
671 |
void flush() { |
|
672 |
#ifdef CHECK_DELAY |
|
673 |
assert ( delay_state == no_delay, "ending code with a delay slot"); |
|
674 |
#endif |
|
675 |
AbstractAssembler::flush(); |
|
676 |
} |
|
677 |
||
678 |
inline void emit_long(int); // shadows AbstractAssembler::emit_long |
|
679 |
inline void emit_data(int x) { emit_long(x); } |
|
680 |
inline void emit_data(int, RelocationHolder const&); |
|
681 |
inline void emit_data(int, relocInfo::relocType rtype); |
|
682 |
// helper for above fcns |
|
683 |
inline void check_delay(); |
|
684 |
||
685 |
||
686 |
public: |
|
687 |
// instructions, refer to page numbers in the SPARC Architecture Manual, V9 |
|
688 |
||
689 |
// pp 135 (addc was addx in v8) |
|
690 |
||
2571 | 691 |
inline void add(Register s1, Register s2, Register d ); |
14631
526804361522
8003250: SPARC: move MacroAssembler into separate file
twisti
parents:
13969
diff
changeset
|
692 |
inline void add(Register s1, int simm13a, Register d ); |
1 | 693 |
|
694 |
void addcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
695 |
void addcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
696 |
void addc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); } |
|
697 |
void addc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
698 |
void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
699 |
void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
700 |
||
10252 | 701 |
|
1 | 702 |
// pp 136 |
703 |
||
10252 | 704 |
inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none); |
705 |
inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L); |
|
1 | 706 |
|
10264 | 707 |
// compare and branch |
708 |
inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L); |
|
709 |
inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L); |
|
710 |
||
1 | 711 |
protected: // use MacroAssembler::br instead |
712 |
||
713 |
// pp 138 |
|
714 |
||
715 |
inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none ); |
|
716 |
inline void fb( Condition c, bool a, Label& L ); |
|
717 |
||
718 |
// pp 141 |
|
719 |
||
720 |
inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); |
|
721 |
inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L ); |
|
722 |
||
723 |
// pp 144 |
|
724 |
||
725 |
inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none ); |
|
726 |
inline void br( Condition c, bool a, Label& L ); |
|
727 |
||
728 |
// pp 146 |
|
729 |
||
730 |
inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); |
|
731 |
inline void bp( Condition c, bool a, CC cc, Predict p, Label& L ); |
|
732 |
||
733 |
// pp 121 (V8) |
|
734 |
||
735 |
inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none ); |
|
736 |
inline void cb( Condition c, bool a, Label& L ); |
|
737 |
||
738 |
// pp 149 |
|
739 |
||
740 |
inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type ); |
|
741 |
inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type ); |
|
742 |
||
10252 | 743 |
public: |
744 |
||
1 | 745 |
// pp 150 |
746 |
||
747 |
// These instructions compare the contents of s2 with the contents of |
|
748 |
// memory at address in s1. If the values are equal, the contents of memory |
|
749 |
// at address s1 is swapped with the data in d. If the values are not equal, |
|
750 |
// the the contents of memory at s1 is loaded into d, without the swap. |
|
751 |
||
752 |
void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); } |
|
753 |
void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); } |
|
754 |
||
755 |
// pp 152 |
|
756 |
||
757 |
void udiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); } |
|
758 |
void udiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
759 |
void sdiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); } |
|
760 |
void sdiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
761 |
void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); } |
|
762 |
void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
763 |
void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); } |
|
764 |
void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
765 |
||
766 |
// pp 155 |
|
767 |
||
768 |
void done() { v9_only(); cti(); emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); } |
|
769 |
void retry() { v9_only(); cti(); emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); } |
|
770 |
||
771 |
// pp 156 |
|
772 |
||
773 |
void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); } |
|
774 |
void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); } |
|
775 |
||
776 |
// pp 157 |
|
777 |
||
778 |
void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); } |
|
779 |
void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); } |
|
780 |
||
781 |
// pp 159 |
|
782 |
||
10027 | 783 |
void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); } |
784 |
void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); } |
|
1 | 785 |
|
786 |
// pp 160 |
|
787 |
||
788 |
void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); } |
|
789 |
||
790 |
// pp 161 |
|
791 |
||
10027 | 792 |
void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); } |
793 |
void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); } |
|
1 | 794 |
|
795 |
// pp 162 |
|
796 |
||
797 |
void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); } |
|
798 |
||
799 |
void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); } |
|
800 |
||
801 |
// page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available |
|
802 |
// on v8 to do negation of single, double and quad precision floats. |
|
803 |
||
804 |
void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x05) | fs2(sd, w)); } |
|
805 |
||
806 |
void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); } |
|
807 |
||
808 |
// page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available |
|
809 |
// on v8 to do abs operation on single/double/quad precision floats. |
|
810 |
||
811 |
void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); } |
|
812 |
||
813 |
// pp 163 |
|
814 |
||
815 |
void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); } |
|
816 |
void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); } |
|
817 |
void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); } |
|
818 |
||
819 |
// pp 164 |
|
820 |
||
821 |
void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); } |
|
822 |
||
823 |
// pp 165 |
|
824 |
||
825 |
inline void flush( Register s1, Register s2 ); |
|
826 |
inline void flush( Register s1, int simm13a); |
|
827 |
||
828 |
// pp 167 |
|
829 |
||
830 |
void flushw() { v9_only(); emit_long( op(arith_op) | op3(flushw_op3) ); } |
|
831 |
||
832 |
// pp 168 |
|
833 |
||
834 |
void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_long( op(branch_op) | u_field(const22a, 21, 0) ); } |
|
835 |
// v8 unimp == illtrap(0) |
|
836 |
||
837 |
// pp 169 |
|
838 |
||
839 |
void impdep1( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); } |
|
840 |
void impdep2( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); } |
|
841 |
||
842 |
// pp 149 (v8) |
|
843 |
||
844 |
void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); } |
|
845 |
void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); } |
|
846 |
||
847 |
// pp 170 |
|
848 |
||
849 |
void jmpl( Register s1, Register s2, Register d ); |
|
850 |
void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() ); |
|
851 |
||
852 |
// 171 |
|
853 |
||
2571 | 854 |
inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d); |
855 |
inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder()); |
|
856 |
||
1 | 857 |
|
858 |
inline void ldfsr( Register s1, Register s2 ); |
|
859 |
inline void ldfsr( Register s1, int simm13a); |
|
860 |
inline void ldxfsr( Register s1, Register s2 ); |
|
861 |
inline void ldxfsr( Register s1, int simm13a); |
|
862 |
||
863 |
// pp 94 (v8) |
|
864 |
||
865 |
inline void ldc( Register s1, Register s2, int crd ); |
|
866 |
inline void ldc( Register s1, int simm13a, int crd); |
|
867 |
inline void lddc( Register s1, Register s2, int crd ); |
|
868 |
inline void lddc( Register s1, int simm13a, int crd); |
|
869 |
inline void ldcsr( Register s1, Register s2, int crd ); |
|
870 |
inline void ldcsr( Register s1, int simm13a, int crd); |
|
871 |
||
872 |
||
873 |
// 173 |
|
874 |
||
875 |
void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
876 |
void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
877 |
||
878 |
// pp 175, lduw is ld on v8 |
|
879 |
||
880 |
inline void ldsb( Register s1, Register s2, Register d ); |
|
881 |
inline void ldsb( Register s1, int simm13a, Register d); |
|
882 |
inline void ldsh( Register s1, Register s2, Register d ); |
|
883 |
inline void ldsh( Register s1, int simm13a, Register d); |
|
884 |
inline void ldsw( Register s1, Register s2, Register d ); |
|
885 |
inline void ldsw( Register s1, int simm13a, Register d); |
|
886 |
inline void ldub( Register s1, Register s2, Register d ); |
|
887 |
inline void ldub( Register s1, int simm13a, Register d); |
|
888 |
inline void lduh( Register s1, Register s2, Register d ); |
|
889 |
inline void lduh( Register s1, int simm13a, Register d); |
|
890 |
inline void lduw( Register s1, Register s2, Register d ); |
|
891 |
inline void lduw( Register s1, int simm13a, Register d); |
|
892 |
inline void ldx( Register s1, Register s2, Register d ); |
|
893 |
inline void ldx( Register s1, int simm13a, Register d); |
|
894 |
inline void ldd( Register s1, Register s2, Register d ); |
|
895 |
inline void ldd( Register s1, int simm13a, Register d); |
|
896 |
||
897 |
// pp 177 |
|
898 |
||
899 |
void ldsba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
900 |
void ldsba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
901 |
void ldsha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
902 |
void ldsha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
903 |
void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
904 |
void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
905 |
void lduba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
906 |
void lduba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
907 |
void lduha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
908 |
void lduha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
909 |
void lduwa( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
910 |
void lduwa( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
911 |
void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
912 |
void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
913 |
void ldda( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
914 |
void ldda( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
915 |
||
916 |
// pp 179 |
|
917 |
||
918 |
inline void ldstub( Register s1, Register s2, Register d ); |
|
919 |
inline void ldstub( Register s1, int simm13a, Register d); |
|
920 |
||
921 |
// pp 180 |
|
922 |
||
923 |
void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
924 |
void ldstuba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
925 |
||
926 |
// pp 181 |
|
927 |
||
5416 | 928 |
void and3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); } |
929 |
void and3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1 | 930 |
void andcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
931 |
void andcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
932 |
void andn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); } |
|
933 |
void andn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
934 |
void andncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
935 |
void andncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
5416 | 936 |
void or3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); } |
937 |
void or3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1 | 938 |
void orcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
939 |
void orcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
940 |
void orn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); } |
|
941 |
void orn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
942 |
void orncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
943 |
void orncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
5416 | 944 |
void xor3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); } |
945 |
void xor3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1 | 946 |
void xorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
947 |
void xorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
948 |
void xnor( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); } |
|
949 |
void xnor( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
950 |
void xnorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
951 |
void xnorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
952 |
||
953 |
// pp 183 |
|
954 |
||
955 |
void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); } |
|
956 |
||
957 |
// pp 185 |
|
958 |
||
959 |
void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); } |
|
960 |
||
961 |
// pp 189 |
|
962 |
||
963 |
void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); } |
|
964 |
||
965 |
// pp 191 |
|
966 |
||
967 |
void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); } |
|
968 |
void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); } |
|
969 |
||
970 |
// pp 195 |
|
971 |
||
972 |
void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); } |
|
973 |
void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); } |
|
974 |
||
975 |
// pp 196 |
|
976 |
||
977 |
void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); } |
|
978 |
void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
979 |
void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); } |
|
980 |
void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
981 |
void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); } |
|
982 |
void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
983 |
||
984 |
// pp 197 |
|
985 |
||
986 |
void umul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); } |
|
987 |
void umul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
988 |
void smul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); } |
|
989 |
void smul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
990 |
void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
991 |
void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
992 |
void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
993 |
void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
994 |
||
995 |
// pp 199 |
|
996 |
||
997 |
void mulscc( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); } |
|
998 |
void mulscc( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
999 |
||
1000 |
// pp 201 |
|
1001 |
||
1002 |
void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); } |
|
1003 |
||
1004 |
||
1005 |
// pp 202 |
|
1006 |
||
1007 |
void popc( Register s, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); } |
|
1008 |
void popc( int simm13a, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); } |
|
1009 |
||
1010 |
// pp 203 |
|
1011 |
||
14631
526804361522
8003250: SPARC: move MacroAssembler into separate file
twisti
parents:
13969
diff
changeset
|
1012 |
void prefetch( Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); } |
526804361522
8003250: SPARC: move MacroAssembler into separate file
twisti
parents:
13969
diff
changeset
|
1013 |
void prefetch( Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); } |
526804361522
8003250: SPARC: move MacroAssembler into separate file
twisti
parents:
13969
diff
changeset
|
1014 |
|
1 | 1015 |
void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
1016 |
void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1017 |
||
1018 |
// pp 208 |
|
1019 |
||
1020 |
// not implementing read privileged register |
|
1021 |
||
1022 |
inline void rdy( Register d) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); } |
|
1023 |
inline void rdccr( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); } |
|
1024 |
inline void rdasi( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); } |
|
1025 |
inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon! |
|
1026 |
inline void rdpc( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); } |
|
1027 |
inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); } |
|
1028 |
||
1029 |
// pp 213 |
|
1030 |
||
1031 |
inline void rett( Register s1, Register s2); |
|
1032 |
inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none); |
|
1033 |
||
1034 |
// pp 214 |
|
1035 |
||
1036 |
void save( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); } |
|
1374
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1037 |
void save( Register s1, int simm13a, Register d ) { |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1038 |
// make sure frame is at least large enough for the register save area |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1039 |
assert(-simm13a >= 16 * wordSize, "frame too small"); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1040 |
emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1041 |
} |
1 | 1042 |
|
1043 |
void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); } |
|
1044 |
void restore( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1045 |
||
1046 |
// pp 216 |
|
1047 |
||
1048 |
void saved() { v9_only(); emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); } |
|
1049 |
void restored() { v9_only(); emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); } |
|
1050 |
||
1051 |
// pp 217 |
|
1052 |
||
1053 |
inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() ); |
|
1054 |
// pp 218 |
|
1055 |
||
1056 |
void sll( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); } |
|
1057 |
void sll( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); } |
|
1058 |
void srl( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); } |
|
1059 |
void srl( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); } |
|
1060 |
void sra( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); } |
|
1061 |
void sra( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); } |
|
1062 |
||
1063 |
void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); } |
|
1064 |
void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); } |
|
1065 |
void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); } |
|
1066 |
void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); } |
|
1067 |
void srax( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); } |
|
1068 |
void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); } |
|
1069 |
||
1070 |
// pp 220 |
|
1071 |
||
1072 |
void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); } |
|
1073 |
||
1074 |
// pp 221 |
|
1075 |
||
1076 |
void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); } |
|
1077 |
||
1078 |
// pp 222 |
|
1079 |
||
4009
8731c367fa98
6879902: CTW failure jdk6_18/hotspot/src/cpu/sparc/vm/assembler_sparc.hpp:845
twisti
parents:
3905
diff
changeset
|
1080 |
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2); |
1 | 1081 |
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a); |
1082 |
||
1083 |
inline void stfsr( Register s1, Register s2 ); |
|
1084 |
inline void stfsr( Register s1, int simm13a); |
|
1085 |
inline void stxfsr( Register s1, Register s2 ); |
|
1086 |
inline void stxfsr( Register s1, int simm13a); |
|
1087 |
||
1088 |
// pp 224 |
|
1089 |
||
1090 |
void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1091 |
void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1092 |
||
1093 |
// p 226 |
|
1094 |
||
1095 |
inline void stb( Register d, Register s1, Register s2 ); |
|
1096 |
inline void stb( Register d, Register s1, int simm13a); |
|
1097 |
inline void sth( Register d, Register s1, Register s2 ); |
|
1098 |
inline void sth( Register d, Register s1, int simm13a); |
|
1099 |
inline void stw( Register d, Register s1, Register s2 ); |
|
1100 |
inline void stw( Register d, Register s1, int simm13a); |
|
1101 |
inline void stx( Register d, Register s1, Register s2 ); |
|
1102 |
inline void stx( Register d, Register s1, int simm13a); |
|
1103 |
inline void std( Register d, Register s1, Register s2 ); |
|
1104 |
inline void std( Register d, Register s1, int simm13a); |
|
1105 |
||
1106 |
// pp 177 |
|
1107 |
||
1108 |
void stba( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1109 |
void stba( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1110 |
void stha( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1111 |
void stha( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1112 |
void stwa( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1113 |
void stwa( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1114 |
void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1115 |
void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1116 |
void stda( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1117 |
void stda( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1118 |
||
1119 |
// pp 97 (v8) |
|
1120 |
||
1121 |
inline void stc( int crd, Register s1, Register s2 ); |
|
1122 |
inline void stc( int crd, Register s1, int simm13a); |
|
1123 |
inline void stdc( int crd, Register s1, Register s2 ); |
|
1124 |
inline void stdc( int crd, Register s1, int simm13a); |
|
1125 |
inline void stcsr( int crd, Register s1, Register s2 ); |
|
1126 |
inline void stcsr( int crd, Register s1, int simm13a); |
|
1127 |
inline void stdcq( int crd, Register s1, Register s2 ); |
|
1128 |
inline void stdcq( int crd, Register s1, int simm13a); |
|
1129 |
||
1130 |
// pp 230 |
|
1131 |
||
1132 |
void sub( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1133 |
void sub( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
7433 | 1134 |
|
1 | 1135 |
void subcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); } |
1136 |
void subcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1137 |
void subc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1138 |
void subc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1139 |
void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1140 |
void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1141 |
||
1142 |
// pp 231 |
|
1143 |
||
1144 |
inline void swap( Register s1, Register s2, Register d ); |
|
1145 |
inline void swap( Register s1, int simm13a, Register d); |
|
1146 |
||
1147 |
// pp 232 |
|
1148 |
||
1149 |
void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1150 |
void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1151 |
||
1152 |
// pp 234, note op in book is wrong, see pp 268 |
|
1153 |
||
1154 |
void taddcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1155 |
void taddcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1156 |
void taddcctv( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); } |
|
1157 |
void taddcctv( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1158 |
||
1159 |
// pp 235 |
|
1160 |
||
1161 |
void tsubcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1162 |
void tsubcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1163 |
void tsubcctv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); } |
|
1164 |
void tsubcctv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1165 |
||
1166 |
// pp 237 |
|
1167 |
||
1168 |
void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); } |
|
1169 |
void trap( Condition c, CC cc, Register s1, int trapa ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); } |
|
1170 |
// simple uncond. trap |
|
1171 |
void trap( int trapa ) { trap( always, icc, G0, trapa ); } |
|
1172 |
||
1173 |
// pp 239 omit write priv register for now |
|
1174 |
||
1175 |
inline void wry( Register d) { v9_dep(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); } |
|
1176 |
inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); } |
|
1177 |
inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) | |
|
1178 |
rs1(s) | |
|
1179 |
op3(wrreg_op3) | |
|
1180 |
u_field(2, 29, 25) | |
|
10501 | 1181 |
immed(true) | |
1 | 1182 |
simm(simm13a, 13)); } |
10501 | 1183 |
inline void wrasi(Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); } |
1184 |
// wrasi(d, imm) stores (d xor imm) to asi |
|
1185 |
inline void wrasi(Register d, int simm13a) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | |
|
1186 |
u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); } |
|
1 | 1187 |
inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); } |
1188 |
||
10027 | 1189 |
|
1190 |
// VIS3 instructions |
|
1191 |
||
1192 |
void movstosw( FloatRegister s, Register d ) { vis3_only(); emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); } |
|
1193 |
void movstouw( FloatRegister s, Register d ) { vis3_only(); emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); } |
|
1194 |
void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); } |
|
1195 |
||
1196 |
void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_long( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); } |
|
1197 |
void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_long( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); } |
|
1198 |
||
1 | 1199 |
// Creation |
1200 |
Assembler(CodeBuffer* code) : AbstractAssembler(code) { |
|
1201 |
#ifdef CHECK_DELAY |
|
1202 |
delay_state = no_delay; |
|
1203 |
#endif |
|
1204 |
} |
|
1205 |
}; |
|
1206 |
||
7397 | 1207 |
#endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP |