1374
|
1 |
/*
|
|
2 |
* Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
# include "incls/_precompiled.incl"
|
|
26 |
# include "incls/_numberSeq.cpp.incl"
|
|
27 |
|
|
28 |
AbsSeq::AbsSeq(double alpha) :
|
|
29 |
_num(0), _sum(0.0), _sum_of_squares(0.0),
|
|
30 |
_davg(0.0), _dvariance(0.0), _alpha(alpha) {
|
|
31 |
}
|
|
32 |
|
|
33 |
void AbsSeq::add(double val) {
|
|
34 |
if (_num == 0) {
|
|
35 |
// if the sequence is empty, the davg is the same as the value
|
|
36 |
_davg = val;
|
|
37 |
// and the variance is 0
|
|
38 |
_dvariance = 0.0;
|
|
39 |
} else {
|
|
40 |
// otherwise, calculate both
|
|
41 |
_davg = (1.0 - _alpha) * val + _alpha * _davg;
|
|
42 |
double diff = val - _davg;
|
|
43 |
_dvariance = (1.0 - _alpha) * diff * diff + _alpha * _dvariance;
|
|
44 |
}
|
|
45 |
}
|
|
46 |
|
|
47 |
double AbsSeq::avg() const {
|
|
48 |
if (_num == 0)
|
|
49 |
return 0.0;
|
|
50 |
else
|
|
51 |
return _sum / total();
|
|
52 |
}
|
|
53 |
|
|
54 |
double AbsSeq::variance() const {
|
|
55 |
if (_num <= 1)
|
|
56 |
return 0.0;
|
|
57 |
|
|
58 |
double x_bar = avg();
|
|
59 |
double result = _sum_of_squares / total() - x_bar * x_bar;
|
|
60 |
if (result < 0.0) {
|
|
61 |
// due to loss-of-precision errors, the variance might be negative
|
|
62 |
// by a small bit
|
|
63 |
|
|
64 |
// guarantee(-0.1 < result && result < 0.0,
|
|
65 |
// "if variance is negative, it should be very small");
|
|
66 |
result = 0.0;
|
|
67 |
}
|
|
68 |
return result;
|
|
69 |
}
|
|
70 |
|
|
71 |
double AbsSeq::sd() const {
|
|
72 |
double var = variance();
|
|
73 |
guarantee( var >= 0.0, "variance should not be negative" );
|
|
74 |
return sqrt(var);
|
|
75 |
}
|
|
76 |
|
|
77 |
double AbsSeq::davg() const {
|
|
78 |
return _davg;
|
|
79 |
}
|
|
80 |
|
|
81 |
double AbsSeq::dvariance() const {
|
|
82 |
if (_num <= 1)
|
|
83 |
return 0.0;
|
|
84 |
|
|
85 |
double result = _dvariance;
|
|
86 |
if (result < 0.0) {
|
|
87 |
// due to loss-of-precision errors, the variance might be negative
|
|
88 |
// by a small bit
|
|
89 |
|
|
90 |
guarantee(-0.1 < result && result < 0.0,
|
|
91 |
"if variance is negative, it should be very small");
|
|
92 |
result = 0.0;
|
|
93 |
}
|
|
94 |
return result;
|
|
95 |
}
|
|
96 |
|
|
97 |
double AbsSeq::dsd() const {
|
|
98 |
double var = dvariance();
|
|
99 |
guarantee( var >= 0.0, "variance should not be negative" );
|
|
100 |
return sqrt(var);
|
|
101 |
}
|
|
102 |
|
|
103 |
NumberSeq::NumberSeq(double alpha) :
|
|
104 |
AbsSeq(alpha), _maximum(0.0), _last(0.0) {
|
|
105 |
}
|
|
106 |
|
|
107 |
bool NumberSeq::check_nums(NumberSeq *total, int n, NumberSeq **parts) {
|
|
108 |
for (int i = 0; i < n; ++i) {
|
|
109 |
if (parts[i] != NULL && total->num() != parts[i]->num())
|
|
110 |
return false;
|
|
111 |
}
|
|
112 |
return true;
|
|
113 |
}
|
|
114 |
|
|
115 |
NumberSeq::NumberSeq(NumberSeq *total, int n, NumberSeq **parts) {
|
|
116 |
guarantee(check_nums(total, n, parts), "all seq lengths should match");
|
|
117 |
double sum = total->sum();
|
|
118 |
for (int i = 0; i < n; ++i) {
|
|
119 |
if (parts[i] != NULL)
|
|
120 |
sum -= parts[i]->sum();
|
|
121 |
}
|
|
122 |
|
|
123 |
_num = total->num();
|
|
124 |
_sum = sum;
|
|
125 |
|
|
126 |
// we do not calculate these...
|
|
127 |
_sum_of_squares = -1.0;
|
|
128 |
_maximum = -1.0;
|
|
129 |
_davg = -1.0;
|
|
130 |
_dvariance = -1.0;
|
|
131 |
}
|
|
132 |
|
|
133 |
void NumberSeq::add(double val) {
|
|
134 |
AbsSeq::add(val);
|
|
135 |
|
|
136 |
_last = val;
|
|
137 |
if (_num == 0) {
|
|
138 |
_maximum = val;
|
|
139 |
} else {
|
|
140 |
if (val > _maximum)
|
|
141 |
_maximum = val;
|
|
142 |
}
|
|
143 |
_sum += val;
|
|
144 |
_sum_of_squares += val * val;
|
|
145 |
++_num;
|
|
146 |
}
|
|
147 |
|
|
148 |
|
|
149 |
TruncatedSeq::TruncatedSeq(int length, double alpha):
|
|
150 |
AbsSeq(alpha), _length(length), _next(0) {
|
|
151 |
_sequence = NEW_C_HEAP_ARRAY(double, _length);
|
|
152 |
for (int i = 0; i < _length; ++i)
|
|
153 |
_sequence[i] = 0.0;
|
|
154 |
}
|
|
155 |
|
|
156 |
void TruncatedSeq::add(double val) {
|
|
157 |
AbsSeq::add(val);
|
|
158 |
|
|
159 |
// get the oldest value in the sequence...
|
|
160 |
double old_val = _sequence[_next];
|
|
161 |
// ...remove it from the sum and sum of squares
|
|
162 |
_sum -= old_val;
|
|
163 |
_sum_of_squares -= old_val * old_val;
|
|
164 |
|
|
165 |
// ...and update them with the new value
|
|
166 |
_sum += val;
|
|
167 |
_sum_of_squares += val * val;
|
|
168 |
|
|
169 |
// now replace the old value with the new one
|
|
170 |
_sequence[_next] = val;
|
|
171 |
_next = (_next + 1) % _length;
|
|
172 |
|
|
173 |
// only increase it if the buffer is not full
|
|
174 |
if (_num < _length)
|
|
175 |
++_num;
|
|
176 |
|
|
177 |
guarantee( variance() > -1.0, "variance should be >= 0" );
|
|
178 |
}
|
|
179 |
|
|
180 |
// can't easily keep track of this incrementally...
|
|
181 |
double TruncatedSeq::maximum() const {
|
|
182 |
if (_num == 0)
|
|
183 |
return 0.0;
|
|
184 |
double ret = _sequence[0];
|
|
185 |
for (int i = 1; i < _num; ++i) {
|
|
186 |
double val = _sequence[i];
|
|
187 |
if (val > ret)
|
|
188 |
ret = val;
|
|
189 |
}
|
|
190 |
return ret;
|
|
191 |
}
|
|
192 |
|
|
193 |
double TruncatedSeq::last() const {
|
|
194 |
if (_num == 0)
|
|
195 |
return 0.0;
|
|
196 |
unsigned last_index = (_next + _length - 1) % _length;
|
|
197 |
return _sequence[last_index];
|
|
198 |
}
|
|
199 |
|
|
200 |
double TruncatedSeq::oldest() const {
|
|
201 |
if (_num == 0)
|
|
202 |
return 0.0;
|
|
203 |
else if (_num < _length)
|
|
204 |
// index 0 always oldest value until the array is full
|
|
205 |
return _sequence[0];
|
|
206 |
else {
|
|
207 |
// since the array is full, _next is over the oldest value
|
|
208 |
return _sequence[_next];
|
|
209 |
}
|
|
210 |
}
|
|
211 |
|
|
212 |
double TruncatedSeq::predict_next() const {
|
|
213 |
if (_num == 0)
|
|
214 |
return 0.0;
|
|
215 |
|
|
216 |
double num = (double) _num;
|
|
217 |
double x_squared_sum = 0.0;
|
|
218 |
double x_sum = 0.0;
|
|
219 |
double y_sum = 0.0;
|
|
220 |
double xy_sum = 0.0;
|
|
221 |
double x_avg = 0.0;
|
|
222 |
double y_avg = 0.0;
|
|
223 |
|
|
224 |
int first = (_next + _length - _num) % _length;
|
|
225 |
for (int i = 0; i < _num; ++i) {
|
|
226 |
double x = (double) i;
|
|
227 |
double y = _sequence[(first + i) % _length];
|
|
228 |
|
|
229 |
x_squared_sum += x * x;
|
|
230 |
x_sum += x;
|
|
231 |
y_sum += y;
|
|
232 |
xy_sum += x * y;
|
|
233 |
}
|
|
234 |
x_avg = x_sum / num;
|
|
235 |
y_avg = y_sum / num;
|
|
236 |
|
|
237 |
double Sxx = x_squared_sum - x_sum * x_sum / num;
|
|
238 |
double Sxy = xy_sum - x_sum * y_sum / num;
|
|
239 |
double b1 = Sxy / Sxx;
|
|
240 |
double b0 = y_avg - b1 * x_avg;
|
|
241 |
|
|
242 |
return b0 + b1 * num;
|
|
243 |
}
|