author | poonam |
Fri, 19 Nov 2010 03:41:50 -0800 | |
changeset 7393 | 3ca6a3ec6699 |
parent 5547 | f4b087cbb361 |
child 7397 | 5b173b4ca846 |
permissions | -rw-r--r-- |
1 | 1 |
/* |
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
5237
diff
changeset
|
2 |
* Copyright (c) 2001, 2007, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
5237
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
5237
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
5237
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
25 |
# include "incls/_precompiled.incl" |
|
26 |
# include "incls/_perfMemory_windows.cpp.incl" |
|
27 |
||
28 |
#include <windows.h> |
|
29 |
#include <sys/types.h> |
|
30 |
#include <sys/stat.h> |
|
31 |
#include <errno.h> |
|
32 |
#include <lmcons.h> |
|
33 |
||
34 |
typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)( |
|
35 |
IN PSECURITY_DESCRIPTOR pSecurityDescriptor, |
|
36 |
IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest, |
|
37 |
IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet); |
|
38 |
||
39 |
// Standard Memory Implementation Details |
|
40 |
||
41 |
// create the PerfData memory region in standard memory. |
|
42 |
// |
|
43 |
static char* create_standard_memory(size_t size) { |
|
44 |
||
45 |
// allocate an aligned chuck of memory |
|
46 |
char* mapAddress = os::reserve_memory(size); |
|
47 |
||
48 |
if (mapAddress == NULL) { |
|
49 |
return NULL; |
|
50 |
} |
|
51 |
||
52 |
// commit memory |
|
53 |
if (!os::commit_memory(mapAddress, size)) { |
|
54 |
if (PrintMiscellaneous && Verbose) { |
|
55 |
warning("Could not commit PerfData memory\n"); |
|
56 |
} |
|
57 |
os::release_memory(mapAddress, size); |
|
58 |
return NULL; |
|
59 |
} |
|
60 |
||
61 |
return mapAddress; |
|
62 |
} |
|
63 |
||
64 |
// delete the PerfData memory region |
|
65 |
// |
|
66 |
static void delete_standard_memory(char* addr, size_t size) { |
|
67 |
||
68 |
// there are no persistent external resources to cleanup for standard |
|
69 |
// memory. since DestroyJavaVM does not support unloading of the JVM, |
|
70 |
// cleanup of the memory resource is not performed. The memory will be |
|
71 |
// reclaimed by the OS upon termination of the process. |
|
72 |
// |
|
73 |
return; |
|
74 |
||
75 |
} |
|
76 |
||
77 |
// save the specified memory region to the given file |
|
78 |
// |
|
79 |
static void save_memory_to_file(char* addr, size_t size) { |
|
80 |
||
81 |
const char* destfile = PerfMemory::get_perfdata_file_path(); |
|
82 |
assert(destfile[0] != '\0', "invalid Perfdata file path"); |
|
83 |
||
84 |
int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC, |
|
85 |
_S_IREAD|_S_IWRITE); |
|
86 |
||
87 |
if (fd == OS_ERR) { |
|
88 |
if (PrintMiscellaneous && Verbose) { |
|
89 |
warning("Could not create Perfdata save file: %s: %s\n", |
|
90 |
destfile, strerror(errno)); |
|
91 |
} |
|
92 |
} else { |
|
93 |
for (size_t remaining = size; remaining > 0;) { |
|
94 |
||
95 |
int nbytes = ::_write(fd, addr, (unsigned int)remaining); |
|
96 |
if (nbytes == OS_ERR) { |
|
97 |
if (PrintMiscellaneous && Verbose) { |
|
98 |
warning("Could not write Perfdata save file: %s: %s\n", |
|
99 |
destfile, strerror(errno)); |
|
100 |
} |
|
101 |
break; |
|
102 |
} |
|
103 |
||
104 |
remaining -= (size_t)nbytes; |
|
105 |
addr += nbytes; |
|
106 |
} |
|
107 |
||
108 |
int result = ::_close(fd); |
|
109 |
if (PrintMiscellaneous && Verbose) { |
|
110 |
if (result == OS_ERR) { |
|
111 |
warning("Could not close %s: %s\n", destfile, strerror(errno)); |
|
112 |
} |
|
113 |
} |
|
114 |
} |
|
115 |
||
116 |
FREE_C_HEAP_ARRAY(char, destfile); |
|
117 |
} |
|
118 |
||
119 |
// Shared Memory Implementation Details |
|
120 |
||
121 |
// Note: the win32 shared memory implementation uses two objects to represent |
|
122 |
// the shared memory: a windows kernel based file mapping object and a backing |
|
123 |
// store file. On windows, the name space for shared memory is a kernel |
|
124 |
// based name space that is disjoint from other win32 name spaces. Since Java |
|
125 |
// is unaware of this name space, a parallel file system based name space is |
|
126 |
// maintained, which provides a common file system based shared memory name |
|
127 |
// space across the supported platforms and one that Java apps can deal with |
|
128 |
// through simple file apis. |
|
129 |
// |
|
130 |
// For performance and resource cleanup reasons, it is recommended that the |
|
131 |
// user specific directory and the backing store file be stored in either a |
|
132 |
// RAM based file system or a local disk based file system. Network based |
|
133 |
// file systems are not recommended for performance reasons. In addition, |
|
134 |
// use of SMB network based file systems may result in unsuccesful cleanup |
|
135 |
// of the disk based resource on exit of the VM. The Windows TMP and TEMP |
|
136 |
// environement variables, as used by the GetTempPath() Win32 API (see |
|
137 |
// os::get_temp_directory() in os_win32.cpp), control the location of the |
|
138 |
// user specific directory and the shared memory backing store file. |
|
139 |
||
140 |
static HANDLE sharedmem_fileMapHandle = NULL; |
|
141 |
static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE; |
|
142 |
static char* sharedmem_fileName = NULL; |
|
143 |
||
144 |
// return the user specific temporary directory name. |
|
145 |
// |
|
146 |
// the caller is expected to free the allocated memory. |
|
147 |
// |
|
148 |
static char* get_user_tmp_dir(const char* user) { |
|
149 |
||
150 |
const char* tmpdir = os::get_temp_directory(); |
|
151 |
const char* perfdir = PERFDATA_NAME; |
|
5237
aab592fd4f44
6938627: Make temporary directory use property java.io.tmpdir when specified
coleenp
parents:
2131
diff
changeset
|
152 |
size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3; |
1 | 153 |
char* dirname = NEW_C_HEAP_ARRAY(char, nbytes); |
154 |
||
155 |
// construct the path name to user specific tmp directory |
|
5237
aab592fd4f44
6938627: Make temporary directory use property java.io.tmpdir when specified
coleenp
parents:
2131
diff
changeset
|
156 |
_snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user); |
1 | 157 |
|
158 |
return dirname; |
|
159 |
} |
|
160 |
||
161 |
// convert the given file name into a process id. if the file |
|
162 |
// does not meet the file naming constraints, return 0. |
|
163 |
// |
|
164 |
static int filename_to_pid(const char* filename) { |
|
165 |
||
166 |
// a filename that doesn't begin with a digit is not a |
|
167 |
// candidate for conversion. |
|
168 |
// |
|
169 |
if (!isdigit(*filename)) { |
|
170 |
return 0; |
|
171 |
} |
|
172 |
||
173 |
// check if file name can be converted to an integer without |
|
174 |
// any leftover characters. |
|
175 |
// |
|
176 |
char* remainder = NULL; |
|
177 |
errno = 0; |
|
178 |
int pid = (int)strtol(filename, &remainder, 10); |
|
179 |
||
180 |
if (errno != 0) { |
|
181 |
return 0; |
|
182 |
} |
|
183 |
||
184 |
// check for left over characters. If any, then the filename is |
|
185 |
// not a candidate for conversion. |
|
186 |
// |
|
187 |
if (remainder != NULL && *remainder != '\0') { |
|
188 |
return 0; |
|
189 |
} |
|
190 |
||
191 |
// successful conversion, return the pid |
|
192 |
return pid; |
|
193 |
} |
|
194 |
||
195 |
// check if the given path is considered a secure directory for |
|
196 |
// the backing store files. Returns true if the directory exists |
|
197 |
// and is considered a secure location. Returns false if the path |
|
2131 | 198 |
// is a symbolic link or if an error occurred. |
1 | 199 |
// |
200 |
static bool is_directory_secure(const char* path) { |
|
201 |
||
202 |
DWORD fa; |
|
203 |
||
204 |
fa = GetFileAttributes(path); |
|
205 |
if (fa == 0xFFFFFFFF) { |
|
206 |
DWORD lasterror = GetLastError(); |
|
207 |
if (lasterror == ERROR_FILE_NOT_FOUND) { |
|
208 |
return false; |
|
209 |
} |
|
210 |
else { |
|
211 |
// unexpected error, declare the path insecure |
|
212 |
if (PrintMiscellaneous && Verbose) { |
|
213 |
warning("could not get attributes for file %s: ", |
|
214 |
" lasterror = %d\n", path, lasterror); |
|
215 |
} |
|
216 |
return false; |
|
217 |
} |
|
218 |
} |
|
219 |
||
220 |
if (fa & FILE_ATTRIBUTE_REPARSE_POINT) { |
|
221 |
// we don't accept any redirection for the user specific directory |
|
222 |
// so declare the path insecure. This may be too conservative, |
|
223 |
// as some types of reparse points might be acceptable, but it |
|
224 |
// is probably more secure to avoid these conditions. |
|
225 |
// |
|
226 |
if (PrintMiscellaneous && Verbose) { |
|
227 |
warning("%s is a reparse point\n", path); |
|
228 |
} |
|
229 |
return false; |
|
230 |
} |
|
231 |
||
232 |
if (fa & FILE_ATTRIBUTE_DIRECTORY) { |
|
233 |
// this is the expected case. Since windows supports symbolic |
|
234 |
// links to directories only, not to files, there is no need |
|
235 |
// to check for open write permissions on the directory. If the |
|
236 |
// directory has open write permissions, any files deposited that |
|
237 |
// are not expected will be removed by the cleanup code. |
|
238 |
// |
|
239 |
return true; |
|
240 |
} |
|
241 |
else { |
|
242 |
// this is either a regular file or some other type of file, |
|
243 |
// any of which are unexpected and therefore insecure. |
|
244 |
// |
|
245 |
if (PrintMiscellaneous && Verbose) { |
|
246 |
warning("%s is not a directory, file attributes = " |
|
247 |
INTPTR_FORMAT "\n", path, fa); |
|
248 |
} |
|
249 |
return false; |
|
250 |
} |
|
251 |
} |
|
252 |
||
253 |
// return the user name for the owner of this process |
|
254 |
// |
|
255 |
// the caller is expected to free the allocated memory. |
|
256 |
// |
|
257 |
static char* get_user_name() { |
|
258 |
||
259 |
/* get the user name. This code is adapted from code found in |
|
260 |
* the jdk in src/windows/native/java/lang/java_props_md.c |
|
261 |
* java_props_md.c 1.29 02/02/06. According to the original |
|
262 |
* source, the call to GetUserName is avoided because of a resulting |
|
263 |
* increase in footprint of 100K. |
|
264 |
*/ |
|
265 |
char* user = getenv("USERNAME"); |
|
266 |
char buf[UNLEN+1]; |
|
267 |
DWORD buflen = sizeof(buf); |
|
268 |
if (user == NULL || strlen(user) == 0) { |
|
269 |
if (GetUserName(buf, &buflen)) { |
|
270 |
user = buf; |
|
271 |
} |
|
272 |
else { |
|
273 |
return NULL; |
|
274 |
} |
|
275 |
} |
|
276 |
||
277 |
char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1); |
|
278 |
strcpy(user_name, user); |
|
279 |
||
280 |
return user_name; |
|
281 |
} |
|
282 |
||
283 |
// return the name of the user that owns the process identified by vmid. |
|
284 |
// |
|
285 |
// This method uses a slow directory search algorithm to find the backing |
|
286 |
// store file for the specified vmid and returns the user name, as determined |
|
287 |
// by the user name suffix of the hsperfdata_<username> directory name. |
|
288 |
// |
|
289 |
// the caller is expected to free the allocated memory. |
|
290 |
// |
|
291 |
static char* get_user_name_slow(int vmid) { |
|
292 |
||
293 |
// directory search |
|
294 |
char* oldest_user = NULL; |
|
295 |
time_t oldest_ctime = 0; |
|
296 |
||
297 |
const char* tmpdirname = os::get_temp_directory(); |
|
298 |
||
299 |
DIR* tmpdirp = os::opendir(tmpdirname); |
|
300 |
||
301 |
if (tmpdirp == NULL) { |
|
302 |
return NULL; |
|
303 |
} |
|
304 |
||
305 |
// for each entry in the directory that matches the pattern hsperfdata_*, |
|
306 |
// open the directory and check if the file for the given vmid exists. |
|
307 |
// The file with the expected name and the latest creation date is used |
|
308 |
// to determine the user name for the process id. |
|
309 |
// |
|
310 |
struct dirent* dentry; |
|
311 |
char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname)); |
|
312 |
errno = 0; |
|
313 |
while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) { |
|
314 |
||
315 |
// check if the directory entry is a hsperfdata file |
|
316 |
if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) { |
|
317 |
continue; |
|
318 |
} |
|
319 |
||
320 |
char* usrdir_name = NEW_C_HEAP_ARRAY(char, |
|
5237
aab592fd4f44
6938627: Make temporary directory use property java.io.tmpdir when specified
coleenp
parents:
2131
diff
changeset
|
321 |
strlen(tmpdirname) + strlen(dentry->d_name) + 2); |
1 | 322 |
strcpy(usrdir_name, tmpdirname); |
5237
aab592fd4f44
6938627: Make temporary directory use property java.io.tmpdir when specified
coleenp
parents:
2131
diff
changeset
|
323 |
strcat(usrdir_name, "\\"); |
1 | 324 |
strcat(usrdir_name, dentry->d_name); |
325 |
||
326 |
DIR* subdirp = os::opendir(usrdir_name); |
|
327 |
||
328 |
if (subdirp == NULL) { |
|
329 |
FREE_C_HEAP_ARRAY(char, usrdir_name); |
|
330 |
continue; |
|
331 |
} |
|
332 |
||
333 |
// Since we don't create the backing store files in directories |
|
334 |
// pointed to by symbolic links, we also don't follow them when |
|
335 |
// looking for the files. We check for a symbolic link after the |
|
336 |
// call to opendir in order to eliminate a small window where the |
|
337 |
// symlink can be exploited. |
|
338 |
// |
|
339 |
if (!is_directory_secure(usrdir_name)) { |
|
340 |
FREE_C_HEAP_ARRAY(char, usrdir_name); |
|
341 |
os::closedir(subdirp); |
|
342 |
continue; |
|
343 |
} |
|
344 |
||
345 |
struct dirent* udentry; |
|
346 |
char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name)); |
|
347 |
errno = 0; |
|
348 |
while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) { |
|
349 |
||
350 |
if (filename_to_pid(udentry->d_name) == vmid) { |
|
351 |
struct stat statbuf; |
|
352 |
||
353 |
char* filename = NEW_C_HEAP_ARRAY(char, |
|
354 |
strlen(usrdir_name) + strlen(udentry->d_name) + 2); |
|
355 |
||
356 |
strcpy(filename, usrdir_name); |
|
357 |
strcat(filename, "\\"); |
|
358 |
strcat(filename, udentry->d_name); |
|
359 |
||
360 |
if (::stat(filename, &statbuf) == OS_ERR) { |
|
361 |
FREE_C_HEAP_ARRAY(char, filename); |
|
362 |
continue; |
|
363 |
} |
|
364 |
||
365 |
// skip over files that are not regular files. |
|
366 |
if ((statbuf.st_mode & S_IFMT) != S_IFREG) { |
|
367 |
FREE_C_HEAP_ARRAY(char, filename); |
|
368 |
continue; |
|
369 |
} |
|
370 |
||
371 |
// compare and save filename with latest creation time |
|
372 |
if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) { |
|
373 |
||
374 |
if (statbuf.st_ctime > oldest_ctime) { |
|
375 |
char* user = strchr(dentry->d_name, '_') + 1; |
|
376 |
||
377 |
if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user); |
|
378 |
oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1); |
|
379 |
||
380 |
strcpy(oldest_user, user); |
|
381 |
oldest_ctime = statbuf.st_ctime; |
|
382 |
} |
|
383 |
} |
|
384 |
||
385 |
FREE_C_HEAP_ARRAY(char, filename); |
|
386 |
} |
|
387 |
} |
|
388 |
os::closedir(subdirp); |
|
389 |
FREE_C_HEAP_ARRAY(char, udbuf); |
|
390 |
FREE_C_HEAP_ARRAY(char, usrdir_name); |
|
391 |
} |
|
392 |
os::closedir(tmpdirp); |
|
393 |
FREE_C_HEAP_ARRAY(char, tdbuf); |
|
394 |
||
395 |
return(oldest_user); |
|
396 |
} |
|
397 |
||
398 |
// return the name of the user that owns the process identified by vmid. |
|
399 |
// |
|
400 |
// note: this method should only be used via the Perf native methods. |
|
401 |
// There are various costs to this method and limiting its use to the |
|
402 |
// Perf native methods limits the impact to monitoring applications only. |
|
403 |
// |
|
404 |
static char* get_user_name(int vmid) { |
|
405 |
||
406 |
// A fast implementation is not provided at this time. It's possible |
|
407 |
// to provide a fast process id to user name mapping function using |
|
408 |
// the win32 apis, but the default ACL for the process object only |
|
409 |
// allows processes with the same owner SID to acquire the process |
|
410 |
// handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible |
|
411 |
// to have the JVM change the ACL for the process object to allow arbitrary |
|
412 |
// users to access the process handle and the process security token. |
|
413 |
// The security ramifications need to be studied before providing this |
|
414 |
// mechanism. |
|
415 |
// |
|
416 |
return get_user_name_slow(vmid); |
|
417 |
} |
|
418 |
||
419 |
// return the name of the shared memory file mapping object for the |
|
420 |
// named shared memory region for the given user name and vmid. |
|
421 |
// |
|
422 |
// The file mapping object's name is not the file name. It is a name |
|
423 |
// in a separate name space. |
|
424 |
// |
|
425 |
// the caller is expected to free the allocated memory. |
|
426 |
// |
|
427 |
static char *get_sharedmem_objectname(const char* user, int vmid) { |
|
428 |
||
429 |
// construct file mapping object's name, add 3 for two '_' and a |
|
430 |
// null terminator. |
|
431 |
int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3; |
|
432 |
||
433 |
// the id is converted to an unsigned value here because win32 allows |
|
434 |
// negative process ids. However, OpenFileMapping API complains |
|
435 |
// about a name containing a '-' characters. |
|
436 |
// |
|
437 |
nbytes += UINT_CHARS; |
|
438 |
char* name = NEW_C_HEAP_ARRAY(char, nbytes); |
|
439 |
_snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid); |
|
440 |
||
441 |
return name; |
|
442 |
} |
|
443 |
||
444 |
// return the file name of the backing store file for the named |
|
445 |
// shared memory region for the given user name and vmid. |
|
446 |
// |
|
447 |
// the caller is expected to free the allocated memory. |
|
448 |
// |
|
449 |
static char* get_sharedmem_filename(const char* dirname, int vmid) { |
|
450 |
||
451 |
// add 2 for the file separator and a null terminator. |
|
452 |
size_t nbytes = strlen(dirname) + UINT_CHARS + 2; |
|
453 |
||
454 |
char* name = NEW_C_HEAP_ARRAY(char, nbytes); |
|
455 |
_snprintf(name, nbytes, "%s\\%d", dirname, vmid); |
|
456 |
||
457 |
return name; |
|
458 |
} |
|
459 |
||
460 |
// remove file |
|
461 |
// |
|
462 |
// this method removes the file with the given file name. |
|
463 |
// |
|
464 |
// Note: if the indicated file is on an SMB network file system, this |
|
465 |
// method may be unsuccessful in removing the file. |
|
466 |
// |
|
467 |
static void remove_file(const char* dirname, const char* filename) { |
|
468 |
||
469 |
size_t nbytes = strlen(dirname) + strlen(filename) + 2; |
|
470 |
char* path = NEW_C_HEAP_ARRAY(char, nbytes); |
|
471 |
||
472 |
strcpy(path, dirname); |
|
473 |
strcat(path, "\\"); |
|
474 |
strcat(path, filename); |
|
475 |
||
476 |
if (::unlink(path) == OS_ERR) { |
|
477 |
if (PrintMiscellaneous && Verbose) { |
|
478 |
if (errno != ENOENT) { |
|
479 |
warning("Could not unlink shared memory backing" |
|
480 |
" store file %s : %s\n", path, strerror(errno)); |
|
481 |
} |
|
482 |
} |
|
483 |
} |
|
484 |
||
485 |
FREE_C_HEAP_ARRAY(char, path); |
|
486 |
} |
|
487 |
||
488 |
// returns true if the process represented by pid is alive, otherwise |
|
489 |
// returns false. the validity of the result is only accurate if the |
|
490 |
// target process is owned by the same principal that owns this process. |
|
491 |
// this method should not be used if to test the status of an otherwise |
|
492 |
// arbitrary process unless it is know that this process has the appropriate |
|
493 |
// privileges to guarantee a result valid. |
|
494 |
// |
|
495 |
static bool is_alive(int pid) { |
|
496 |
||
497 |
HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid); |
|
498 |
if (ph == NULL) { |
|
499 |
// the process does not exist. |
|
500 |
if (PrintMiscellaneous && Verbose) { |
|
501 |
DWORD lastError = GetLastError(); |
|
502 |
if (lastError != ERROR_INVALID_PARAMETER) { |
|
503 |
warning("OpenProcess failed: %d\n", GetLastError()); |
|
504 |
} |
|
505 |
} |
|
506 |
return false; |
|
507 |
} |
|
508 |
||
509 |
DWORD exit_status; |
|
510 |
if (!GetExitCodeProcess(ph, &exit_status)) { |
|
511 |
if (PrintMiscellaneous && Verbose) { |
|
512 |
warning("GetExitCodeProcess failed: %d\n", GetLastError()); |
|
513 |
} |
|
514 |
CloseHandle(ph); |
|
515 |
return false; |
|
516 |
} |
|
517 |
||
518 |
CloseHandle(ph); |
|
519 |
return (exit_status == STILL_ACTIVE) ? true : false; |
|
520 |
} |
|
521 |
||
522 |
// check if the file system is considered secure for the backing store files |
|
523 |
// |
|
524 |
static bool is_filesystem_secure(const char* path) { |
|
525 |
||
526 |
char root_path[MAX_PATH]; |
|
527 |
char fs_type[MAX_PATH]; |
|
528 |
||
529 |
if (PerfBypassFileSystemCheck) { |
|
530 |
if (PrintMiscellaneous && Verbose) { |
|
531 |
warning("bypassing file system criteria checks for %s\n", path); |
|
532 |
} |
|
533 |
return true; |
|
534 |
} |
|
535 |
||
536 |
char* first_colon = strchr((char *)path, ':'); |
|
537 |
if (first_colon == NULL) { |
|
538 |
if (PrintMiscellaneous && Verbose) { |
|
539 |
warning("expected device specifier in path: %s\n", path); |
|
540 |
} |
|
541 |
return false; |
|
542 |
} |
|
543 |
||
544 |
size_t len = (size_t)(first_colon - path); |
|
545 |
assert(len + 2 <= MAX_PATH, "unexpected device specifier length"); |
|
546 |
strncpy(root_path, path, len + 1); |
|
547 |
root_path[len + 1] = '\\'; |
|
548 |
root_path[len + 2] = '\0'; |
|
549 |
||
550 |
// check that we have something like "C:\" or "AA:\" |
|
551 |
assert(strlen(root_path) >= 3, "device specifier too short"); |
|
552 |
assert(strchr(root_path, ':') != NULL, "bad device specifier format"); |
|
553 |
assert(strchr(root_path, '\\') != NULL, "bad device specifier format"); |
|
554 |
||
555 |
DWORD maxpath; |
|
556 |
DWORD flags; |
|
557 |
||
558 |
if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath, |
|
559 |
&flags, fs_type, MAX_PATH)) { |
|
560 |
// we can't get information about the volume, so assume unsafe. |
|
561 |
if (PrintMiscellaneous && Verbose) { |
|
562 |
warning("could not get device information for %s: " |
|
563 |
" path = %s: lasterror = %d\n", |
|
564 |
root_path, path, GetLastError()); |
|
565 |
} |
|
566 |
return false; |
|
567 |
} |
|
568 |
||
569 |
if ((flags & FS_PERSISTENT_ACLS) == 0) { |
|
570 |
// file system doesn't support ACLs, declare file system unsafe |
|
571 |
if (PrintMiscellaneous && Verbose) { |
|
572 |
warning("file system type %s on device %s does not support" |
|
573 |
" ACLs\n", fs_type, root_path); |
|
574 |
} |
|
575 |
return false; |
|
576 |
} |
|
577 |
||
578 |
if ((flags & FS_VOL_IS_COMPRESSED) != 0) { |
|
579 |
// file system is compressed, declare file system unsafe |
|
580 |
if (PrintMiscellaneous && Verbose) { |
|
581 |
warning("file system type %s on device %s is compressed\n", |
|
582 |
fs_type, root_path); |
|
583 |
} |
|
584 |
return false; |
|
585 |
} |
|
586 |
||
587 |
return true; |
|
588 |
} |
|
589 |
||
590 |
// cleanup stale shared memory resources |
|
591 |
// |
|
592 |
// This method attempts to remove all stale shared memory files in |
|
593 |
// the named user temporary directory. It scans the named directory |
|
594 |
// for files matching the pattern ^$[0-9]*$. For each file found, the |
|
595 |
// process id is extracted from the file name and a test is run to |
|
596 |
// determine if the process is alive. If the process is not alive, |
|
597 |
// any stale file resources are removed. |
|
598 |
// |
|
599 |
static void cleanup_sharedmem_resources(const char* dirname) { |
|
600 |
||
601 |
// open the user temp directory |
|
602 |
DIR* dirp = os::opendir(dirname); |
|
603 |
||
604 |
if (dirp == NULL) { |
|
605 |
// directory doesn't exist, so there is nothing to cleanup |
|
606 |
return; |
|
607 |
} |
|
608 |
||
609 |
if (!is_directory_secure(dirname)) { |
|
610 |
// the directory is not secure, don't attempt any cleanup |
|
611 |
return; |
|
612 |
} |
|
613 |
||
614 |
// for each entry in the directory that matches the expected file |
|
615 |
// name pattern, determine if the file resources are stale and if |
|
616 |
// so, remove the file resources. Note, instrumented HotSpot processes |
|
617 |
// for this user may start and/or terminate during this search and |
|
618 |
// remove or create new files in this directory. The behavior of this |
|
619 |
// loop under these conditions is dependent upon the implementation of |
|
620 |
// opendir/readdir. |
|
621 |
// |
|
622 |
struct dirent* entry; |
|
623 |
char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname)); |
|
624 |
errno = 0; |
|
625 |
while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) { |
|
626 |
||
627 |
int pid = filename_to_pid(entry->d_name); |
|
628 |
||
629 |
if (pid == 0) { |
|
630 |
||
631 |
if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) { |
|
632 |
||
633 |
// attempt to remove all unexpected files, except "." and ".." |
|
634 |
remove_file(dirname, entry->d_name); |
|
635 |
} |
|
636 |
||
637 |
errno = 0; |
|
638 |
continue; |
|
639 |
} |
|
640 |
||
641 |
// we now have a file name that converts to a valid integer |
|
642 |
// that could represent a process id . if this process id |
|
643 |
// matches the current process id or the process is not running, |
|
644 |
// then remove the stale file resources. |
|
645 |
// |
|
646 |
// process liveness is detected by checking the exit status |
|
647 |
// of the process. if the process id is valid and the exit status |
|
648 |
// indicates that it is still running, the file file resources |
|
649 |
// are not removed. If the process id is invalid, or if we don't |
|
650 |
// have permissions to check the process status, or if the process |
|
651 |
// id is valid and the process has terminated, the the file resources |
|
652 |
// are assumed to be stale and are removed. |
|
653 |
// |
|
654 |
if (pid == os::current_process_id() || !is_alive(pid)) { |
|
655 |
||
656 |
// we can only remove the file resources. Any mapped views |
|
657 |
// of the file can only be unmapped by the processes that |
|
658 |
// opened those views and the file mapping object will not |
|
659 |
// get removed until all views are unmapped. |
|
660 |
// |
|
661 |
remove_file(dirname, entry->d_name); |
|
662 |
} |
|
663 |
errno = 0; |
|
664 |
} |
|
665 |
os::closedir(dirp); |
|
666 |
FREE_C_HEAP_ARRAY(char, dbuf); |
|
667 |
} |
|
668 |
||
669 |
// create a file mapping object with the requested name, and size |
|
670 |
// from the file represented by the given Handle object |
|
671 |
// |
|
672 |
static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) { |
|
673 |
||
674 |
DWORD lowSize = (DWORD)size; |
|
675 |
DWORD highSize = 0; |
|
676 |
HANDLE fmh = NULL; |
|
677 |
||
678 |
// Create a file mapping object with the given name. This function |
|
679 |
// will grow the file to the specified size. |
|
680 |
// |
|
681 |
fmh = CreateFileMapping( |
|
682 |
fh, /* HANDLE file handle for backing store */ |
|
683 |
fsa, /* LPSECURITY_ATTRIBUTES Not inheritable */ |
|
684 |
PAGE_READWRITE, /* DWORD protections */ |
|
685 |
highSize, /* DWORD High word of max size */ |
|
686 |
lowSize, /* DWORD Low word of max size */ |
|
687 |
name); /* LPCTSTR name for object */ |
|
688 |
||
689 |
if (fmh == NULL) { |
|
690 |
if (PrintMiscellaneous && Verbose) { |
|
691 |
warning("CreateFileMapping failed, lasterror = %d\n", GetLastError()); |
|
692 |
} |
|
693 |
return NULL; |
|
694 |
} |
|
695 |
||
696 |
if (GetLastError() == ERROR_ALREADY_EXISTS) { |
|
697 |
||
698 |
// a stale file mapping object was encountered. This object may be |
|
699 |
// owned by this or some other user and cannot be removed until |
|
700 |
// the other processes either exit or close their mapping objects |
|
701 |
// and/or mapped views of this mapping object. |
|
702 |
// |
|
703 |
if (PrintMiscellaneous && Verbose) { |
|
704 |
warning("file mapping already exists, lasterror = %d\n", GetLastError()); |
|
705 |
} |
|
706 |
||
707 |
CloseHandle(fmh); |
|
708 |
return NULL; |
|
709 |
} |
|
710 |
||
711 |
return fmh; |
|
712 |
} |
|
713 |
||
714 |
||
715 |
// method to free the given security descriptor and the contained |
|
716 |
// access control list. |
|
717 |
// |
|
718 |
static void free_security_desc(PSECURITY_DESCRIPTOR pSD) { |
|
719 |
||
720 |
BOOL success, exists, isdefault; |
|
721 |
PACL pACL; |
|
722 |
||
723 |
if (pSD != NULL) { |
|
724 |
||
725 |
// get the access control list from the security descriptor |
|
726 |
success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault); |
|
727 |
||
728 |
// if an ACL existed and it was not a default acl, then it must |
|
729 |
// be an ACL we enlisted. free the resources. |
|
730 |
// |
|
731 |
if (success && exists && pACL != NULL && !isdefault) { |
|
732 |
FREE_C_HEAP_ARRAY(char, pACL); |
|
733 |
} |
|
734 |
||
735 |
// free the security descriptor |
|
736 |
FREE_C_HEAP_ARRAY(char, pSD); |
|
737 |
} |
|
738 |
} |
|
739 |
||
740 |
// method to free up a security attributes structure and any |
|
741 |
// contained security descriptors and ACL |
|
742 |
// |
|
743 |
static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) { |
|
744 |
||
745 |
if (lpSA != NULL) { |
|
746 |
// free the contained security descriptor and the ACL |
|
747 |
free_security_desc(lpSA->lpSecurityDescriptor); |
|
748 |
lpSA->lpSecurityDescriptor = NULL; |
|
749 |
||
750 |
// free the security attributes structure |
|
751 |
FREE_C_HEAP_ARRAY(char, lpSA); |
|
752 |
} |
|
753 |
} |
|
754 |
||
755 |
// get the user SID for the process indicated by the process handle |
|
756 |
// |
|
757 |
static PSID get_user_sid(HANDLE hProcess) { |
|
758 |
||
759 |
HANDLE hAccessToken; |
|
760 |
PTOKEN_USER token_buf = NULL; |
|
761 |
DWORD rsize = 0; |
|
762 |
||
763 |
if (hProcess == NULL) { |
|
764 |
return NULL; |
|
765 |
} |
|
766 |
||
767 |
// get the process token |
|
768 |
if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) { |
|
769 |
if (PrintMiscellaneous && Verbose) { |
|
770 |
warning("OpenProcessToken failure: lasterror = %d \n", GetLastError()); |
|
771 |
} |
|
772 |
return NULL; |
|
773 |
} |
|
774 |
||
775 |
// determine the size of the token structured needed to retrieve |
|
776 |
// the user token information from the access token. |
|
777 |
// |
|
778 |
if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) { |
|
779 |
DWORD lasterror = GetLastError(); |
|
780 |
if (lasterror != ERROR_INSUFFICIENT_BUFFER) { |
|
781 |
if (PrintMiscellaneous && Verbose) { |
|
782 |
warning("GetTokenInformation failure: lasterror = %d," |
|
783 |
" rsize = %d\n", lasterror, rsize); |
|
784 |
} |
|
785 |
CloseHandle(hAccessToken); |
|
786 |
return NULL; |
|
787 |
} |
|
788 |
} |
|
789 |
||
790 |
token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize); |
|
791 |
||
792 |
// get the user token information |
|
793 |
if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) { |
|
794 |
if (PrintMiscellaneous && Verbose) { |
|
795 |
warning("GetTokenInformation failure: lasterror = %d," |
|
796 |
" rsize = %d\n", GetLastError(), rsize); |
|
797 |
} |
|
798 |
FREE_C_HEAP_ARRAY(char, token_buf); |
|
799 |
CloseHandle(hAccessToken); |
|
800 |
return NULL; |
|
801 |
} |
|
802 |
||
803 |
DWORD nbytes = GetLengthSid(token_buf->User.Sid); |
|
804 |
PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes); |
|
805 |
||
806 |
if (!CopySid(nbytes, pSID, token_buf->User.Sid)) { |
|
807 |
if (PrintMiscellaneous && Verbose) { |
|
808 |
warning("GetTokenInformation failure: lasterror = %d," |
|
809 |
" rsize = %d\n", GetLastError(), rsize); |
|
810 |
} |
|
811 |
FREE_C_HEAP_ARRAY(char, token_buf); |
|
812 |
FREE_C_HEAP_ARRAY(char, pSID); |
|
813 |
CloseHandle(hAccessToken); |
|
814 |
return NULL; |
|
815 |
} |
|
816 |
||
817 |
// close the access token. |
|
818 |
CloseHandle(hAccessToken); |
|
819 |
FREE_C_HEAP_ARRAY(char, token_buf); |
|
820 |
||
821 |
return pSID; |
|
822 |
} |
|
823 |
||
824 |
// structure used to consolidate access control entry information |
|
825 |
// |
|
826 |
typedef struct ace_data { |
|
827 |
PSID pSid; // SID of the ACE |
|
828 |
DWORD mask; // mask for the ACE |
|
829 |
} ace_data_t; |
|
830 |
||
831 |
||
832 |
// method to add an allow access control entry with the access rights |
|
833 |
// indicated in mask for the principal indicated in SID to the given |
|
834 |
// security descriptor. Much of the DACL handling was adapted from |
|
835 |
// the example provided here: |
|
836 |
// http://support.microsoft.com/kb/102102/EN-US/ |
|
837 |
// |
|
838 |
||
839 |
static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD, |
|
840 |
ace_data_t aces[], int ace_count) { |
|
841 |
PACL newACL = NULL; |
|
842 |
PACL oldACL = NULL; |
|
843 |
||
844 |
if (pSD == NULL) { |
|
845 |
return false; |
|
846 |
} |
|
847 |
||
848 |
BOOL exists, isdefault; |
|
849 |
||
850 |
// retrieve any existing access control list. |
|
851 |
if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) { |
|
852 |
if (PrintMiscellaneous && Verbose) { |
|
853 |
warning("GetSecurityDescriptor failure: lasterror = %d \n", |
|
854 |
GetLastError()); |
|
855 |
} |
|
856 |
return false; |
|
857 |
} |
|
858 |
||
859 |
// get the size of the DACL |
|
860 |
ACL_SIZE_INFORMATION aclinfo; |
|
861 |
||
862 |
// GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent) |
|
863 |
// while oldACL is NULL for some case. |
|
864 |
if (oldACL == NULL) { |
|
865 |
exists = FALSE; |
|
866 |
} |
|
867 |
||
868 |
if (exists) { |
|
869 |
if (!GetAclInformation(oldACL, &aclinfo, |
|
870 |
sizeof(ACL_SIZE_INFORMATION), |
|
871 |
AclSizeInformation)) { |
|
872 |
if (PrintMiscellaneous && Verbose) { |
|
873 |
warning("GetAclInformation failure: lasterror = %d \n", GetLastError()); |
|
874 |
return false; |
|
875 |
} |
|
876 |
} |
|
877 |
} else { |
|
878 |
aclinfo.AceCount = 0; // assume NULL DACL |
|
879 |
aclinfo.AclBytesFree = 0; |
|
880 |
aclinfo.AclBytesInUse = sizeof(ACL); |
|
881 |
} |
|
882 |
||
883 |
// compute the size needed for the new ACL |
|
884 |
// initial size of ACL is sum of the following: |
|
885 |
// * size of ACL structure. |
|
886 |
// * size of each ACE structure that ACL is to contain minus the sid |
|
887 |
// sidStart member (DWORD) of the ACE. |
|
888 |
// * length of the SID that each ACE is to contain. |
|
889 |
DWORD newACLsize = aclinfo.AclBytesInUse + |
|
890 |
(sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count; |
|
891 |
for (int i = 0; i < ace_count; i++) { |
|
7393
3ca6a3ec6699
6837842: JNI_CreateJavaVM crashes under impersonation
poonam
parents:
5547
diff
changeset
|
892 |
assert(aces[i].pSid != 0, "pSid should not be 0"); |
1 | 893 |
newACLsize += GetLengthSid(aces[i].pSid); |
894 |
} |
|
895 |
||
896 |
// create the new ACL |
|
897 |
newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize); |
|
898 |
||
899 |
if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) { |
|
900 |
if (PrintMiscellaneous && Verbose) { |
|
901 |
warning("InitializeAcl failure: lasterror = %d \n", GetLastError()); |
|
902 |
} |
|
903 |
FREE_C_HEAP_ARRAY(char, newACL); |
|
904 |
return false; |
|
905 |
} |
|
906 |
||
907 |
unsigned int ace_index = 0; |
|
908 |
// copy any existing ACEs from the old ACL (if any) to the new ACL. |
|
909 |
if (aclinfo.AceCount != 0) { |
|
910 |
while (ace_index < aclinfo.AceCount) { |
|
911 |
LPVOID ace; |
|
912 |
if (!GetAce(oldACL, ace_index, &ace)) { |
|
913 |
if (PrintMiscellaneous && Verbose) { |
|
914 |
warning("InitializeAcl failure: lasterror = %d \n", GetLastError()); |
|
915 |
} |
|
916 |
FREE_C_HEAP_ARRAY(char, newACL); |
|
917 |
return false; |
|
918 |
} |
|
919 |
if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) { |
|
920 |
// this is an inherited, allowed ACE; break from loop so we can |
|
921 |
// add the new access allowed, non-inherited ACE in the correct |
|
922 |
// position, immediately following all non-inherited ACEs. |
|
923 |
break; |
|
924 |
} |
|
925 |
||
926 |
// determine if the SID of this ACE matches any of the SIDs |
|
927 |
// for which we plan to set ACEs. |
|
928 |
int matches = 0; |
|
929 |
for (int i = 0; i < ace_count; i++) { |
|
930 |
if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) { |
|
931 |
matches++; |
|
932 |
break; |
|
933 |
} |
|
934 |
} |
|
935 |
||
936 |
// if there are no SID matches, then add this existing ACE to the new ACL |
|
937 |
if (matches == 0) { |
|
938 |
if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace, |
|
939 |
((PACE_HEADER)ace)->AceSize)) { |
|
940 |
if (PrintMiscellaneous && Verbose) { |
|
941 |
warning("AddAce failure: lasterror = %d \n", GetLastError()); |
|
942 |
} |
|
943 |
FREE_C_HEAP_ARRAY(char, newACL); |
|
944 |
return false; |
|
945 |
} |
|
946 |
} |
|
947 |
ace_index++; |
|
948 |
} |
|
949 |
} |
|
950 |
||
951 |
// add the passed-in access control entries to the new ACL |
|
952 |
for (int i = 0; i < ace_count; i++) { |
|
953 |
if (!AddAccessAllowedAce(newACL, ACL_REVISION, |
|
954 |
aces[i].mask, aces[i].pSid)) { |
|
955 |
if (PrintMiscellaneous && Verbose) { |
|
956 |
warning("AddAccessAllowedAce failure: lasterror = %d \n", |
|
957 |
GetLastError()); |
|
958 |
} |
|
959 |
FREE_C_HEAP_ARRAY(char, newACL); |
|
960 |
return false; |
|
961 |
} |
|
962 |
} |
|
963 |
||
964 |
// now copy the rest of the inherited ACEs from the old ACL |
|
965 |
if (aclinfo.AceCount != 0) { |
|
966 |
// picking up at ace_index, where we left off in the |
|
967 |
// previous ace_index loop |
|
968 |
while (ace_index < aclinfo.AceCount) { |
|
969 |
LPVOID ace; |
|
970 |
if (!GetAce(oldACL, ace_index, &ace)) { |
|
971 |
if (PrintMiscellaneous && Verbose) { |
|
972 |
warning("InitializeAcl failure: lasterror = %d \n", GetLastError()); |
|
973 |
} |
|
974 |
FREE_C_HEAP_ARRAY(char, newACL); |
|
975 |
return false; |
|
976 |
} |
|
977 |
if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace, |
|
978 |
((PACE_HEADER)ace)->AceSize)) { |
|
979 |
if (PrintMiscellaneous && Verbose) { |
|
980 |
warning("AddAce failure: lasterror = %d \n", GetLastError()); |
|
981 |
} |
|
982 |
FREE_C_HEAP_ARRAY(char, newACL); |
|
983 |
return false; |
|
984 |
} |
|
985 |
ace_index++; |
|
986 |
} |
|
987 |
} |
|
988 |
||
989 |
// add the new ACL to the security descriptor. |
|
990 |
if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) { |
|
991 |
if (PrintMiscellaneous && Verbose) { |
|
992 |
warning("SetSecurityDescriptorDacl failure:" |
|
993 |
" lasterror = %d \n", GetLastError()); |
|
994 |
} |
|
995 |
FREE_C_HEAP_ARRAY(char, newACL); |
|
996 |
return false; |
|
997 |
} |
|
998 |
||
2131 | 999 |
// if running on windows 2000 or later, set the automatic inheritance |
1 | 1000 |
// control flags. |
1001 |
SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl; |
|
1002 |
_SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr) |
|
1003 |
GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")), |
|
1004 |
"SetSecurityDescriptorControl"); |
|
1005 |
||
1006 |
if (_SetSecurityDescriptorControl != NULL) { |
|
2131 | 1007 |
// We do not want to further propagate inherited DACLs, so making them |
1 | 1008 |
// protected prevents that. |
1009 |
if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED, |
|
1010 |
SE_DACL_PROTECTED)) { |
|
1011 |
if (PrintMiscellaneous && Verbose) { |
|
1012 |
warning("SetSecurityDescriptorControl failure:" |
|
1013 |
" lasterror = %d \n", GetLastError()); |
|
1014 |
} |
|
1015 |
FREE_C_HEAP_ARRAY(char, newACL); |
|
1016 |
return false; |
|
1017 |
} |
|
1018 |
} |
|
1019 |
// Note, the security descriptor maintains a reference to the newACL, not |
|
1020 |
// a copy of it. Therefore, the newACL is not freed here. It is freed when |
|
1021 |
// the security descriptor containing its reference is freed. |
|
1022 |
// |
|
1023 |
return true; |
|
1024 |
} |
|
1025 |
||
1026 |
// method to create a security attributes structure, which contains a |
|
1027 |
// security descriptor and an access control list comprised of 0 or more |
|
1028 |
// access control entries. The method take an array of ace_data structures |
|
1029 |
// that indicate the ACE to be added to the security descriptor. |
|
1030 |
// |
|
1031 |
// the caller must free the resources associated with the security |
|
1032 |
// attributes structure created by this method by calling the |
|
1033 |
// free_security_attr() method. |
|
1034 |
// |
|
1035 |
static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) { |
|
1036 |
||
1037 |
// allocate space for a security descriptor |
|
1038 |
PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR) |
|
1039 |
NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH); |
|
1040 |
||
1041 |
// initialize the security descriptor |
|
1042 |
if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) { |
|
1043 |
if (PrintMiscellaneous && Verbose) { |
|
1044 |
warning("InitializeSecurityDescriptor failure: " |
|
1045 |
"lasterror = %d \n", GetLastError()); |
|
1046 |
} |
|
1047 |
free_security_desc(pSD); |
|
1048 |
return NULL; |
|
1049 |
} |
|
1050 |
||
1051 |
// add the access control entries |
|
1052 |
if (!add_allow_aces(pSD, aces, count)) { |
|
1053 |
free_security_desc(pSD); |
|
1054 |
return NULL; |
|
1055 |
} |
|
1056 |
||
1057 |
// allocate and initialize the security attributes structure and |
|
1058 |
// return it to the caller. |
|
1059 |
// |
|
1060 |
LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES) |
|
1061 |
NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES)); |
|
1062 |
lpSA->nLength = sizeof(SECURITY_ATTRIBUTES); |
|
1063 |
lpSA->lpSecurityDescriptor = pSD; |
|
1064 |
lpSA->bInheritHandle = FALSE; |
|
1065 |
||
1066 |
return(lpSA); |
|
1067 |
} |
|
1068 |
||
1069 |
// method to create a security attributes structure with a restrictive |
|
1070 |
// access control list that creates a set access rights for the user/owner |
|
1071 |
// of the securable object and a separate set access rights for everyone else. |
|
1072 |
// also provides for full access rights for the administrator group. |
|
1073 |
// |
|
1074 |
// the caller must free the resources associated with the security |
|
1075 |
// attributes structure created by this method by calling the |
|
1076 |
// free_security_attr() method. |
|
1077 |
// |
|
1078 |
||
1079 |
static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr( |
|
1080 |
DWORD umask, DWORD emask, DWORD amask) { |
|
1081 |
||
1082 |
ace_data_t aces[3]; |
|
1083 |
||
1084 |
// initialize the user ace data |
|
1085 |
aces[0].pSid = get_user_sid(GetCurrentProcess()); |
|
1086 |
aces[0].mask = umask; |
|
1087 |
||
7393
3ca6a3ec6699
6837842: JNI_CreateJavaVM crashes under impersonation
poonam
parents:
5547
diff
changeset
|
1088 |
if (aces[0].pSid == 0) |
3ca6a3ec6699
6837842: JNI_CreateJavaVM crashes under impersonation
poonam
parents:
5547
diff
changeset
|
1089 |
return NULL; |
3ca6a3ec6699
6837842: JNI_CreateJavaVM crashes under impersonation
poonam
parents:
5547
diff
changeset
|
1090 |
|
1 | 1091 |
// get the well known SID for BUILTIN\Administrators |
1092 |
PSID administratorsSid = NULL; |
|
1093 |
SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY; |
|
1094 |
||
1095 |
if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2, |
|
1096 |
SECURITY_BUILTIN_DOMAIN_RID, |
|
1097 |
DOMAIN_ALIAS_RID_ADMINS, |
|
1098 |
0, 0, 0, 0, 0, 0, &administratorsSid)) { |
|
1099 |
||
1100 |
if (PrintMiscellaneous && Verbose) { |
|
1101 |
warning("AllocateAndInitializeSid failure: " |
|
1102 |
"lasterror = %d \n", GetLastError()); |
|
1103 |
} |
|
1104 |
return NULL; |
|
1105 |
} |
|
1106 |
||
1107 |
// initialize the ace data for administrator group |
|
1108 |
aces[1].pSid = administratorsSid; |
|
1109 |
aces[1].mask = amask; |
|
1110 |
||
1111 |
// get the well known SID for the universal Everybody |
|
1112 |
PSID everybodySid = NULL; |
|
1113 |
SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY; |
|
1114 |
||
1115 |
if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID, |
|
1116 |
0, 0, 0, 0, 0, 0, 0, &everybodySid)) { |
|
1117 |
||
1118 |
if (PrintMiscellaneous && Verbose) { |
|
1119 |
warning("AllocateAndInitializeSid failure: " |
|
1120 |
"lasterror = %d \n", GetLastError()); |
|
1121 |
} |
|
1122 |
return NULL; |
|
1123 |
} |
|
1124 |
||
1125 |
// initialize the ace data for everybody else. |
|
1126 |
aces[2].pSid = everybodySid; |
|
1127 |
aces[2].mask = emask; |
|
1128 |
||
1129 |
// create a security attributes structure with access control |
|
1130 |
// entries as initialized above. |
|
1131 |
LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3); |
|
1132 |
FREE_C_HEAP_ARRAY(char, aces[0].pSid); |
|
1133 |
FreeSid(everybodySid); |
|
1134 |
FreeSid(administratorsSid); |
|
1135 |
return(lpSA); |
|
1136 |
} |
|
1137 |
||
1138 |
||
1139 |
// method to create the security attributes structure for restricting |
|
1140 |
// access to the user temporary directory. |
|
1141 |
// |
|
1142 |
// the caller must free the resources associated with the security |
|
1143 |
// attributes structure created by this method by calling the |
|
1144 |
// free_security_attr() method. |
|
1145 |
// |
|
1146 |
static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() { |
|
1147 |
||
1148 |
// create full access rights for the user/owner of the directory |
|
1149 |
// and read-only access rights for everybody else. This is |
|
1150 |
// effectively equivalent to UNIX 755 permissions on a directory. |
|
1151 |
// |
|
1152 |
DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS; |
|
1153 |
DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE; |
|
1154 |
DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS; |
|
1155 |
||
1156 |
return make_user_everybody_admin_security_attr(umask, emask, amask); |
|
1157 |
} |
|
1158 |
||
1159 |
// method to create the security attributes structure for restricting |
|
1160 |
// access to the shared memory backing store file. |
|
1161 |
// |
|
1162 |
// the caller must free the resources associated with the security |
|
1163 |
// attributes structure created by this method by calling the |
|
1164 |
// free_security_attr() method. |
|
1165 |
// |
|
1166 |
static LPSECURITY_ATTRIBUTES make_file_security_attr() { |
|
1167 |
||
1168 |
// create extensive access rights for the user/owner of the file |
|
1169 |
// and attribute read-only access rights for everybody else. This |
|
1170 |
// is effectively equivalent to UNIX 600 permissions on a file. |
|
1171 |
// |
|
1172 |
DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS; |
|
1173 |
DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES | |
|
1174 |
FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE; |
|
1175 |
DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS; |
|
1176 |
||
1177 |
return make_user_everybody_admin_security_attr(umask, emask, amask); |
|
1178 |
} |
|
1179 |
||
1180 |
// method to create the security attributes structure for restricting |
|
1181 |
// access to the name shared memory file mapping object. |
|
1182 |
// |
|
1183 |
// the caller must free the resources associated with the security |
|
1184 |
// attributes structure created by this method by calling the |
|
1185 |
// free_security_attr() method. |
|
1186 |
// |
|
1187 |
static LPSECURITY_ATTRIBUTES make_smo_security_attr() { |
|
1188 |
||
1189 |
// create extensive access rights for the user/owner of the shared |
|
1190 |
// memory object and attribute read-only access rights for everybody |
|
1191 |
// else. This is effectively equivalent to UNIX 600 permissions on |
|
1192 |
// on the shared memory object. |
|
1193 |
// |
|
1194 |
DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS; |
|
1195 |
DWORD emask = STANDARD_RIGHTS_READ; // attributes only |
|
1196 |
DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS; |
|
1197 |
||
1198 |
return make_user_everybody_admin_security_attr(umask, emask, amask); |
|
1199 |
} |
|
1200 |
||
1201 |
// make the user specific temporary directory |
|
1202 |
// |
|
1203 |
static bool make_user_tmp_dir(const char* dirname) { |
|
1204 |
||
1205 |
||
1206 |
LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr(); |
|
1207 |
if (pDirSA == NULL) { |
|
1208 |
return false; |
|
1209 |
} |
|
1210 |
||
1211 |
||
1212 |
// create the directory with the given security attributes |
|
1213 |
if (!CreateDirectory(dirname, pDirSA)) { |
|
1214 |
DWORD lasterror = GetLastError(); |
|
1215 |
if (lasterror == ERROR_ALREADY_EXISTS) { |
|
1216 |
// The directory already exists and was probably created by another |
|
1217 |
// JVM instance. However, this could also be the result of a |
|
1218 |
// deliberate symlink. Verify that the existing directory is safe. |
|
1219 |
// |
|
1220 |
if (!is_directory_secure(dirname)) { |
|
1221 |
// directory is not secure |
|
1222 |
if (PrintMiscellaneous && Verbose) { |
|
1223 |
warning("%s directory is insecure\n", dirname); |
|
1224 |
} |
|
1225 |
return false; |
|
1226 |
} |
|
1227 |
// The administrator should be able to delete this directory. |
|
1228 |
// But the directory created by previous version of JVM may not |
|
1229 |
// have permission for administrators to delete this directory. |
|
1230 |
// So add full permission to the administrator. Also setting new |
|
1231 |
// DACLs might fix the corrupted the DACLs. |
|
1232 |
SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION; |
|
1233 |
if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) { |
|
1234 |
if (PrintMiscellaneous && Verbose) { |
|
1235 |
lasterror = GetLastError(); |
|
1236 |
warning("SetFileSecurity failed for %s directory. lasterror %d \n", |
|
1237 |
dirname, lasterror); |
|
1238 |
} |
|
1239 |
} |
|
1240 |
} |
|
1241 |
else { |
|
1242 |
if (PrintMiscellaneous && Verbose) { |
|
1243 |
warning("CreateDirectory failed: %d\n", GetLastError()); |
|
1244 |
} |
|
1245 |
return false; |
|
1246 |
} |
|
1247 |
} |
|
1248 |
||
1249 |
// free the security attributes structure |
|
1250 |
free_security_attr(pDirSA); |
|
1251 |
||
1252 |
return true; |
|
1253 |
} |
|
1254 |
||
1255 |
// create the shared memory resources |
|
1256 |
// |
|
1257 |
// This function creates the shared memory resources. This includes |
|
1258 |
// the backing store file and the file mapping shared memory object. |
|
1259 |
// |
|
1260 |
static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) { |
|
1261 |
||
1262 |
HANDLE fh = INVALID_HANDLE_VALUE; |
|
1263 |
HANDLE fmh = NULL; |
|
1264 |
||
1265 |
||
1266 |
// create the security attributes for the backing store file |
|
1267 |
LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr(); |
|
1268 |
if (lpFileSA == NULL) { |
|
1269 |
return NULL; |
|
1270 |
} |
|
1271 |
||
1272 |
// create the security attributes for the shared memory object |
|
1273 |
LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr(); |
|
1274 |
if (lpSmoSA == NULL) { |
|
1275 |
free_security_attr(lpFileSA); |
|
1276 |
return NULL; |
|
1277 |
} |
|
1278 |
||
1279 |
// create the user temporary directory |
|
1280 |
if (!make_user_tmp_dir(dirname)) { |
|
1281 |
// could not make/find the directory or the found directory |
|
1282 |
// was not secure |
|
1283 |
return NULL; |
|
1284 |
} |
|
1285 |
||
1286 |
// Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the |
|
1287 |
// file to be deleted by the last process that closes its handle to |
|
1288 |
// the file. This is important as the apis do not allow a terminating |
|
1289 |
// JVM being monitored by another process to remove the file name. |
|
1290 |
// |
|
1291 |
// the FILE_SHARE_DELETE share mode is valid only in winnt |
|
1292 |
// |
|
1293 |
fh = CreateFile( |
|
1294 |
filename, /* LPCTSTR file name */ |
|
1295 |
||
1296 |
GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */ |
|
1297 |
||
1298 |
(os::win32::is_nt() ? FILE_SHARE_DELETE : 0)| |
|
1299 |
FILE_SHARE_READ, /* DWORD share mode, future READONLY |
|
1300 |
* open operations allowed |
|
1301 |
*/ |
|
1302 |
lpFileSA, /* LPSECURITY security attributes */ |
|
1303 |
CREATE_ALWAYS, /* DWORD creation disposition |
|
1304 |
* create file, if it already |
|
1305 |
* exists, overwrite it. |
|
1306 |
*/ |
|
1307 |
FILE_FLAG_DELETE_ON_CLOSE, /* DWORD flags and attributes */ |
|
1308 |
||
1309 |
NULL); /* HANDLE template file access */ |
|
1310 |
||
1311 |
free_security_attr(lpFileSA); |
|
1312 |
||
1313 |
if (fh == INVALID_HANDLE_VALUE) { |
|
1314 |
DWORD lasterror = GetLastError(); |
|
1315 |
if (PrintMiscellaneous && Verbose) { |
|
1316 |
warning("could not create file %s: %d\n", filename, lasterror); |
|
1317 |
} |
|
1318 |
return NULL; |
|
1319 |
} |
|
1320 |
||
1321 |
// try to create the file mapping |
|
1322 |
fmh = create_file_mapping(objectname, fh, lpSmoSA, size); |
|
1323 |
||
1324 |
free_security_attr(lpSmoSA); |
|
1325 |
||
1326 |
if (fmh == NULL) { |
|
1327 |
// closing the file handle here will decrement the reference count |
|
1328 |
// on the file. When all processes accessing the file close their |
|
1329 |
// handle to it, the reference count will decrement to 0 and the |
|
1330 |
// OS will delete the file. These semantics are requested by the |
|
1331 |
// FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above. |
|
1332 |
CloseHandle(fh); |
|
1333 |
fh = NULL; |
|
1334 |
return NULL; |
|
1335 |
} |
|
1336 |
||
1337 |
// the file has been successfully created and the file mapping |
|
1338 |
// object has been created. |
|
1339 |
sharedmem_fileHandle = fh; |
|
1340 |
sharedmem_fileName = strdup(filename); |
|
1341 |
||
1342 |
return fmh; |
|
1343 |
} |
|
1344 |
||
1345 |
// open the shared memory object for the given vmid. |
|
1346 |
// |
|
1347 |
static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) { |
|
1348 |
||
1349 |
HANDLE fmh; |
|
1350 |
||
1351 |
// open the file mapping with the requested mode |
|
1352 |
fmh = OpenFileMapping( |
|
1353 |
ofm_access, /* DWORD access mode */ |
|
1354 |
FALSE, /* BOOL inherit flag - Do not allow inherit */ |
|
1355 |
objectname); /* name for object */ |
|
1356 |
||
1357 |
if (fmh == NULL) { |
|
1358 |
if (PrintMiscellaneous && Verbose) { |
|
1359 |
warning("OpenFileMapping failed for shared memory object %s:" |
|
1360 |
" lasterror = %d\n", objectname, GetLastError()); |
|
1361 |
} |
|
1362 |
THROW_MSG_(vmSymbols::java_lang_Exception(), |
|
1363 |
"Could not open PerfMemory", INVALID_HANDLE_VALUE); |
|
1364 |
} |
|
1365 |
||
1366 |
return fmh;; |
|
1367 |
} |
|
1368 |
||
1369 |
// create a named shared memory region |
|
1370 |
// |
|
1371 |
// On Win32, a named shared memory object has a name space that |
|
1372 |
// is independent of the file system name space. Shared memory object, |
|
1373 |
// or more precisely, file mapping objects, provide no mechanism to |
|
1374 |
// inquire the size of the memory region. There is also no api to |
|
1375 |
// enumerate the memory regions for various processes. |
|
1376 |
// |
|
1377 |
// This implementation utilizes the shared memory name space in parallel |
|
1378 |
// with the file system name space. This allows us to determine the |
|
1379 |
// size of the shared memory region from the size of the file and it |
|
1380 |
// allows us to provide a common, file system based name space for |
|
1381 |
// shared memory across platforms. |
|
1382 |
// |
|
1383 |
static char* mapping_create_shared(size_t size) { |
|
1384 |
||
1385 |
void *mapAddress; |
|
1386 |
int vmid = os::current_process_id(); |
|
1387 |
||
1388 |
// get the name of the user associated with this process |
|
1389 |
char* user = get_user_name(); |
|
1390 |
||
1391 |
if (user == NULL) { |
|
1392 |
return NULL; |
|
1393 |
} |
|
1394 |
||
1395 |
// construct the name of the user specific temporary directory |
|
1396 |
char* dirname = get_user_tmp_dir(user); |
|
1397 |
||
1398 |
// check that the file system is secure - i.e. it supports ACLs. |
|
1399 |
if (!is_filesystem_secure(dirname)) { |
|
1400 |
return NULL; |
|
1401 |
} |
|
1402 |
||
1403 |
// create the names of the backing store files and for the |
|
1404 |
// share memory object. |
|
1405 |
// |
|
1406 |
char* filename = get_sharedmem_filename(dirname, vmid); |
|
1407 |
char* objectname = get_sharedmem_objectname(user, vmid); |
|
1408 |
||
1409 |
// cleanup any stale shared memory resources |
|
1410 |
cleanup_sharedmem_resources(dirname); |
|
1411 |
||
1412 |
assert(((size != 0) && (size % os::vm_page_size() == 0)), |
|
1413 |
"unexpected PerfMemry region size"); |
|
1414 |
||
1415 |
FREE_C_HEAP_ARRAY(char, user); |
|
1416 |
||
1417 |
// create the shared memory resources |
|
1418 |
sharedmem_fileMapHandle = |
|
1419 |
create_sharedmem_resources(dirname, filename, objectname, size); |
|
1420 |
||
1421 |
FREE_C_HEAP_ARRAY(char, filename); |
|
1422 |
FREE_C_HEAP_ARRAY(char, objectname); |
|
1423 |
FREE_C_HEAP_ARRAY(char, dirname); |
|
1424 |
||
1425 |
if (sharedmem_fileMapHandle == NULL) { |
|
1426 |
return NULL; |
|
1427 |
} |
|
1428 |
||
1429 |
// map the file into the address space |
|
1430 |
mapAddress = MapViewOfFile( |
|
1431 |
sharedmem_fileMapHandle, /* HANDLE = file mapping object */ |
|
1432 |
FILE_MAP_ALL_ACCESS, /* DWORD access flags */ |
|
1433 |
0, /* DWORD High word of offset */ |
|
1434 |
0, /* DWORD Low word of offset */ |
|
1435 |
(DWORD)size); /* DWORD Number of bytes to map */ |
|
1436 |
||
1437 |
if (mapAddress == NULL) { |
|
1438 |
if (PrintMiscellaneous && Verbose) { |
|
1439 |
warning("MapViewOfFile failed, lasterror = %d\n", GetLastError()); |
|
1440 |
} |
|
1441 |
CloseHandle(sharedmem_fileMapHandle); |
|
1442 |
sharedmem_fileMapHandle = NULL; |
|
1443 |
return NULL; |
|
1444 |
} |
|
1445 |
||
1446 |
// clear the shared memory region |
|
1447 |
(void)memset(mapAddress, '\0', size); |
|
1448 |
||
1449 |
return (char*) mapAddress; |
|
1450 |
} |
|
1451 |
||
1452 |
// this method deletes the file mapping object. |
|
1453 |
// |
|
1454 |
static void delete_file_mapping(char* addr, size_t size) { |
|
1455 |
||
1456 |
// cleanup the persistent shared memory resources. since DestroyJavaVM does |
|
1457 |
// not support unloading of the JVM, unmapping of the memory resource is not |
|
1458 |
// performed. The memory will be reclaimed by the OS upon termination of all |
|
1459 |
// processes mapping the resource. The file mapping handle and the file |
|
1460 |
// handle are closed here to expedite the remove of the file by the OS. The |
|
1461 |
// file is not removed directly because it was created with |
|
1462 |
// FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would |
|
1463 |
// be unsuccessful. |
|
1464 |
||
1465 |
// close the fileMapHandle. the file mapping will still be retained |
|
1466 |
// by the OS as long as any other JVM processes has an open file mapping |
|
1467 |
// handle or a mapped view of the file. |
|
1468 |
// |
|
1469 |
if (sharedmem_fileMapHandle != NULL) { |
|
1470 |
CloseHandle(sharedmem_fileMapHandle); |
|
1471 |
sharedmem_fileMapHandle = NULL; |
|
1472 |
} |
|
1473 |
||
1474 |
// close the file handle. This will decrement the reference count on the |
|
1475 |
// backing store file. When the reference count decrements to 0, the OS |
|
1476 |
// will delete the file. These semantics apply because the file was |
|
1477 |
// created with the FILE_FLAG_DELETE_ON_CLOSE flag. |
|
1478 |
// |
|
1479 |
if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) { |
|
1480 |
CloseHandle(sharedmem_fileHandle); |
|
1481 |
sharedmem_fileHandle = INVALID_HANDLE_VALUE; |
|
1482 |
} |
|
1483 |
} |
|
1484 |
||
1485 |
// this method determines the size of the shared memory file |
|
1486 |
// |
|
1487 |
static size_t sharedmem_filesize(const char* filename, TRAPS) { |
|
1488 |
||
1489 |
struct stat statbuf; |
|
1490 |
||
1491 |
// get the file size |
|
1492 |
// |
|
1493 |
// on win95/98/me, _stat returns a file size of 0 bytes, but on |
|
1494 |
// winnt/2k the appropriate file size is returned. support for |
|
1495 |
// the sharable aspects of performance counters was abandonded |
|
1496 |
// on the non-nt win32 platforms due to this and other api |
|
1497 |
// inconsistencies |
|
1498 |
// |
|
1499 |
if (::stat(filename, &statbuf) == OS_ERR) { |
|
1500 |
if (PrintMiscellaneous && Verbose) { |
|
1501 |
warning("stat %s failed: %s\n", filename, strerror(errno)); |
|
1502 |
} |
|
1503 |
THROW_MSG_0(vmSymbols::java_io_IOException(), |
|
1504 |
"Could not determine PerfMemory size"); |
|
1505 |
} |
|
1506 |
||
1507 |
if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) { |
|
1508 |
if (PrintMiscellaneous && Verbose) { |
|
1509 |
warning("unexpected file size: size = " SIZE_FORMAT "\n", |
|
1510 |
statbuf.st_size); |
|
1511 |
} |
|
1512 |
THROW_MSG_0(vmSymbols::java_lang_Exception(), |
|
1513 |
"Invalid PerfMemory size"); |
|
1514 |
} |
|
1515 |
||
1516 |
return statbuf.st_size; |
|
1517 |
} |
|
1518 |
||
1519 |
// this method opens a file mapping object and maps the object |
|
1520 |
// into the address space of the process |
|
1521 |
// |
|
1522 |
static void open_file_mapping(const char* user, int vmid, |
|
1523 |
PerfMemory::PerfMemoryMode mode, |
|
1524 |
char** addrp, size_t* sizep, TRAPS) { |
|
1525 |
||
1526 |
ResourceMark rm; |
|
1527 |
||
1528 |
void *mapAddress = 0; |
|
1529 |
size_t size; |
|
1530 |
HANDLE fmh; |
|
1531 |
DWORD ofm_access; |
|
1532 |
DWORD mv_access; |
|
1533 |
const char* luser = NULL; |
|
1534 |
||
1535 |
if (mode == PerfMemory::PERF_MODE_RO) { |
|
1536 |
ofm_access = FILE_MAP_READ; |
|
1537 |
mv_access = FILE_MAP_READ; |
|
1538 |
} |
|
1539 |
else if (mode == PerfMemory::PERF_MODE_RW) { |
|
1540 |
#ifdef LATER |
|
1541 |
ofm_access = FILE_MAP_READ | FILE_MAP_WRITE; |
|
1542 |
mv_access = FILE_MAP_READ | FILE_MAP_WRITE; |
|
1543 |
#else |
|
1544 |
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), |
|
1545 |
"Unsupported access mode"); |
|
1546 |
#endif |
|
1547 |
} |
|
1548 |
else { |
|
1549 |
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), |
|
1550 |
"Illegal access mode"); |
|
1551 |
} |
|
1552 |
||
1553 |
// if a user name wasn't specified, then find the user name for |
|
1554 |
// the owner of the target vm. |
|
1555 |
if (user == NULL || strlen(user) == 0) { |
|
1556 |
luser = get_user_name(vmid); |
|
1557 |
} |
|
1558 |
else { |
|
1559 |
luser = user; |
|
1560 |
} |
|
1561 |
||
1562 |
if (luser == NULL) { |
|
1563 |
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), |
|
1564 |
"Could not map vmid to user name"); |
|
1565 |
} |
|
1566 |
||
1567 |
// get the names for the resources for the target vm |
|
1568 |
char* dirname = get_user_tmp_dir(luser); |
|
1569 |
||
1570 |
// since we don't follow symbolic links when creating the backing |
|
1571 |
// store file, we also don't following them when attaching |
|
1572 |
// |
|
1573 |
if (!is_directory_secure(dirname)) { |
|
1574 |
FREE_C_HEAP_ARRAY(char, dirname); |
|
1575 |
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), |
|
1576 |
"Process not found"); |
|
1577 |
} |
|
1578 |
||
1579 |
char* filename = get_sharedmem_filename(dirname, vmid); |
|
1580 |
char* objectname = get_sharedmem_objectname(luser, vmid); |
|
1581 |
||
1582 |
// copy heap memory to resource memory. the objectname and |
|
1583 |
// filename are passed to methods that may throw exceptions. |
|
1584 |
// using resource arrays for these names prevents the leaks |
|
1585 |
// that would otherwise occur. |
|
1586 |
// |
|
1587 |
char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1); |
|
1588 |
char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1); |
|
1589 |
strcpy(rfilename, filename); |
|
1590 |
strcpy(robjectname, objectname); |
|
1591 |
||
1592 |
// free the c heap resources that are no longer needed |
|
1593 |
if (luser != user) FREE_C_HEAP_ARRAY(char, luser); |
|
1594 |
FREE_C_HEAP_ARRAY(char, dirname); |
|
1595 |
FREE_C_HEAP_ARRAY(char, filename); |
|
1596 |
FREE_C_HEAP_ARRAY(char, objectname); |
|
1597 |
||
1598 |
if (*sizep == 0) { |
|
1599 |
size = sharedmem_filesize(rfilename, CHECK); |
|
1600 |
assert(size != 0, "unexpected size"); |
|
1601 |
} |
|
1602 |
||
1603 |
// Open the file mapping object with the given name |
|
1604 |
fmh = open_sharedmem_object(robjectname, ofm_access, CHECK); |
|
1605 |
||
1606 |
assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value"); |
|
1607 |
||
1608 |
// map the entire file into the address space |
|
1609 |
mapAddress = MapViewOfFile( |
|
1610 |
fmh, /* HANDLE Handle of file mapping object */ |
|
1611 |
mv_access, /* DWORD access flags */ |
|
1612 |
0, /* DWORD High word of offset */ |
|
1613 |
0, /* DWORD Low word of offset */ |
|
1614 |
size); /* DWORD Number of bytes to map */ |
|
1615 |
||
1616 |
if (mapAddress == NULL) { |
|
1617 |
if (PrintMiscellaneous && Verbose) { |
|
1618 |
warning("MapViewOfFile failed, lasterror = %d\n", GetLastError()); |
|
1619 |
} |
|
1620 |
CloseHandle(fmh); |
|
1621 |
THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(), |
|
1622 |
"Could not map PerfMemory"); |
|
1623 |
} |
|
1624 |
||
1625 |
*addrp = (char*)mapAddress; |
|
1626 |
*sizep = size; |
|
1627 |
||
1628 |
// File mapping object can be closed at this time without |
|
1629 |
// invalidating the mapped view of the file |
|
1630 |
CloseHandle(fmh); |
|
1631 |
||
1632 |
if (PerfTraceMemOps) { |
|
1633 |
tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at " |
|
1634 |
INTPTR_FORMAT "\n", size, vmid, mapAddress); |
|
1635 |
} |
|
1636 |
} |
|
1637 |
||
1638 |
// this method unmaps the the mapped view of the the |
|
1639 |
// file mapping object. |
|
1640 |
// |
|
1641 |
static void remove_file_mapping(char* addr) { |
|
1642 |
||
1643 |
// the file mapping object was closed in open_file_mapping() |
|
1644 |
// after the file map view was created. We only need to |
|
1645 |
// unmap the file view here. |
|
1646 |
UnmapViewOfFile(addr); |
|
1647 |
} |
|
1648 |
||
1649 |
// create the PerfData memory region in shared memory. |
|
1650 |
static char* create_shared_memory(size_t size) { |
|
1651 |
||
1652 |
return mapping_create_shared(size); |
|
1653 |
} |
|
1654 |
||
1655 |
// release a named, shared memory region |
|
1656 |
// |
|
1657 |
void delete_shared_memory(char* addr, size_t size) { |
|
1658 |
||
1659 |
delete_file_mapping(addr, size); |
|
1660 |
} |
|
1661 |
||
1662 |
||
1663 |
||
1664 |
||
1665 |
// create the PerfData memory region |
|
1666 |
// |
|
1667 |
// This method creates the memory region used to store performance |
|
1668 |
// data for the JVM. The memory may be created in standard or |
|
1669 |
// shared memory. |
|
1670 |
// |
|
1671 |
void PerfMemory::create_memory_region(size_t size) { |
|
1672 |
||
1673 |
if (PerfDisableSharedMem || !os::win32::is_nt()) { |
|
1674 |
// do not share the memory for the performance data. |
|
1675 |
PerfDisableSharedMem = true; |
|
1676 |
_start = create_standard_memory(size); |
|
1677 |
} |
|
1678 |
else { |
|
1679 |
_start = create_shared_memory(size); |
|
1680 |
if (_start == NULL) { |
|
1681 |
||
1682 |
// creation of the shared memory region failed, attempt |
|
1683 |
// to create a contiguous, non-shared memory region instead. |
|
1684 |
// |
|
1685 |
if (PrintMiscellaneous && Verbose) { |
|
1686 |
warning("Reverting to non-shared PerfMemory region.\n"); |
|
1687 |
} |
|
1688 |
PerfDisableSharedMem = true; |
|
1689 |
_start = create_standard_memory(size); |
|
1690 |
} |
|
1691 |
} |
|
1692 |
||
1693 |
if (_start != NULL) _capacity = size; |
|
1694 |
||
1695 |
} |
|
1696 |
||
1697 |
// delete the PerfData memory region |
|
1698 |
// |
|
1699 |
// This method deletes the memory region used to store performance |
|
1700 |
// data for the JVM. The memory region indicated by the <address, size> |
|
1701 |
// tuple will be inaccessible after a call to this method. |
|
1702 |
// |
|
1703 |
void PerfMemory::delete_memory_region() { |
|
1704 |
||
1705 |
assert((start() != NULL && capacity() > 0), "verify proper state"); |
|
1706 |
||
1707 |
// If user specifies PerfDataSaveFile, it will save the performance data |
|
1708 |
// to the specified file name no matter whether PerfDataSaveToFile is specified |
|
1709 |
// or not. In other word, -XX:PerfDataSaveFile=.. overrides flag |
|
1710 |
// -XX:+PerfDataSaveToFile. |
|
1711 |
if (PerfDataSaveToFile || PerfDataSaveFile != NULL) { |
|
1712 |
save_memory_to_file(start(), capacity()); |
|
1713 |
} |
|
1714 |
||
1715 |
if (PerfDisableSharedMem) { |
|
1716 |
delete_standard_memory(start(), capacity()); |
|
1717 |
} |
|
1718 |
else { |
|
1719 |
delete_shared_memory(start(), capacity()); |
|
1720 |
} |
|
1721 |
} |
|
1722 |
||
1723 |
// attach to the PerfData memory region for another JVM |
|
1724 |
// |
|
1725 |
// This method returns an <address, size> tuple that points to |
|
1726 |
// a memory buffer that is kept reasonably synchronized with |
|
1727 |
// the PerfData memory region for the indicated JVM. This |
|
1728 |
// buffer may be kept in synchronization via shared memory |
|
1729 |
// or some other mechanism that keeps the buffer updated. |
|
1730 |
// |
|
1731 |
// If the JVM chooses not to support the attachability feature, |
|
1732 |
// this method should throw an UnsupportedOperation exception. |
|
1733 |
// |
|
1734 |
// This implementation utilizes named shared memory to map |
|
1735 |
// the indicated process's PerfData memory region into this JVMs |
|
1736 |
// address space. |
|
1737 |
// |
|
1738 |
void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, |
|
1739 |
char** addrp, size_t* sizep, TRAPS) { |
|
1740 |
||
1741 |
if (vmid == 0 || vmid == os::current_process_id()) { |
|
1742 |
*addrp = start(); |
|
1743 |
*sizep = capacity(); |
|
1744 |
return; |
|
1745 |
} |
|
1746 |
||
1747 |
open_file_mapping(user, vmid, mode, addrp, sizep, CHECK); |
|
1748 |
} |
|
1749 |
||
1750 |
// detach from the PerfData memory region of another JVM |
|
1751 |
// |
|
1752 |
// This method detaches the PerfData memory region of another |
|
1753 |
// JVM, specified as an <address, size> tuple of a buffer |
|
1754 |
// in this process's address space. This method may perform |
|
1755 |
// arbitrary actions to accomplish the detachment. The memory |
|
1756 |
// region specified by <address, size> will be inaccessible after |
|
1757 |
// a call to this method. |
|
1758 |
// |
|
1759 |
// If the JVM chooses not to support the attachability feature, |
|
1760 |
// this method should throw an UnsupportedOperation exception. |
|
1761 |
// |
|
1762 |
// This implementation utilizes named shared memory to detach |
|
1763 |
// the indicated process's PerfData memory region from this |
|
1764 |
// process's address space. |
|
1765 |
// |
|
1766 |
void PerfMemory::detach(char* addr, size_t bytes, TRAPS) { |
|
1767 |
||
1768 |
assert(addr != 0, "address sanity check"); |
|
1769 |
assert(bytes > 0, "capacity sanity check"); |
|
1770 |
||
1771 |
if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) { |
|
1772 |
// prevent accidental detachment of this process's PerfMemory region |
|
1773 |
return; |
|
1774 |
} |
|
1775 |
||
1776 |
remove_file_mapping(addr); |
|
1777 |
} |
|
1778 |
||
1779 |
char* PerfMemory::backing_store_filename() { |
|
1780 |
return sharedmem_fileName; |
|
1781 |
} |