2
|
1 |
|
|
2 |
/*
|
5506
|
3 |
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
|
2
|
4 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
5 |
*
|
|
6 |
* This code is free software; you can redistribute it and/or modify it
|
|
7 |
* under the terms of the GNU General Public License version 2 only, as
|
5506
|
8 |
* published by the Free Software Foundation. Oracle designates this
|
2
|
9 |
* particular file as subject to the "Classpath" exception as provided
|
5506
|
10 |
* by Oracle in the LICENSE file that accompanied this code.
|
2
|
11 |
*
|
|
12 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
13 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
16 |
* accompanied this code).
|
|
17 |
*
|
|
18 |
* You should have received a copy of the GNU General Public License version
|
|
19 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
20 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
21 |
*
|
5506
|
22 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
23 |
* or visit www.oracle.com if you need additional information or have any
|
|
24 |
* questions.
|
2
|
25 |
*/
|
|
26 |
|
|
27 |
/*
|
|
28 |
* __kernel_cos( x, y )
|
|
29 |
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
|
30 |
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
31 |
* Input y is the tail of x.
|
|
32 |
*
|
|
33 |
* Algorithm
|
|
34 |
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
|
35 |
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
|
36 |
* 3. cos(x) is approximated by a polynomial of degree 14 on
|
|
37 |
* [0,pi/4]
|
|
38 |
* 4 14
|
|
39 |
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
|
40 |
* where the remez error is
|
|
41 |
*
|
|
42 |
* | 2 4 6 8 10 12 14 | -58
|
|
43 |
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
|
44 |
* | |
|
|
45 |
*
|
|
46 |
* 4 6 8 10 12 14
|
|
47 |
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
|
48 |
* cos(x) = 1 - x*x/2 + r
|
|
49 |
* since cos(x+y) ~ cos(x) - sin(x)*y
|
|
50 |
* ~ cos(x) - x*y,
|
|
51 |
* a correction term is necessary in cos(x) and hence
|
|
52 |
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
|
53 |
* For better accuracy when x > 0.3, let qx = |x|/4 with
|
|
54 |
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
|
55 |
* Then
|
|
56 |
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
|
|
57 |
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the
|
|
58 |
* magnitude of the latter is at least a quarter of x*x/2,
|
|
59 |
* thus, reducing the rounding error in the subtraction.
|
|
60 |
*/
|
|
61 |
|
|
62 |
#include "fdlibm.h"
|
|
63 |
|
|
64 |
#ifdef __STDC__
|
|
65 |
static const double
|
|
66 |
#else
|
|
67 |
static double
|
|
68 |
#endif
|
|
69 |
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
|
70 |
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
|
71 |
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
|
72 |
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
|
73 |
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
|
74 |
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
|
75 |
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
|
76 |
|
|
77 |
#ifdef __STDC__
|
|
78 |
double __kernel_cos(double x, double y)
|
|
79 |
#else
|
|
80 |
double __kernel_cos(x, y)
|
|
81 |
double x,y;
|
|
82 |
#endif
|
|
83 |
{
|
|
84 |
double a,hz,z,r,qx;
|
|
85 |
int ix;
|
|
86 |
ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/
|
|
87 |
if(ix<0x3e400000) { /* if x < 2**27 */
|
|
88 |
if(((int)x)==0) return one; /* generate inexact */
|
|
89 |
}
|
|
90 |
z = x*x;
|
|
91 |
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
|
|
92 |
if(ix < 0x3FD33333) /* if |x| < 0.3 */
|
|
93 |
return one - (0.5*z - (z*r - x*y));
|
|
94 |
else {
|
|
95 |
if(ix > 0x3fe90000) { /* x > 0.78125 */
|
|
96 |
qx = 0.28125;
|
|
97 |
} else {
|
|
98 |
__HI(qx) = ix-0x00200000; /* x/4 */
|
|
99 |
__LO(qx) = 0;
|
|
100 |
}
|
|
101 |
hz = 0.5*z-qx;
|
|
102 |
a = one-qx;
|
|
103 |
return a - (hz - (z*r-x*y));
|
|
104 |
}
|
|
105 |
}
|