author | bchristi |
Wed, 13 Dec 2017 11:43:57 -0800 | |
changeset 48293 | 2fa0077c4fec |
parent 47216 | 71c04702a3d5 |
child 49364 | 601146c66cad |
permissions | -rw-r--r-- |
42664 | 1 |
/* |
2 |
* Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved. |
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
20 |
* or visit www.oracle.com if you need additional information or have any |
|
21 |
* questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
#ifndef CPU_ARM_VM_ASSEMBLER_ARM_64_HPP |
|
26 |
#define CPU_ARM_VM_ASSEMBLER_ARM_64_HPP |
|
27 |
||
28 |
enum AsmShift12 { |
|
29 |
lsl0, lsl12 |
|
30 |
}; |
|
31 |
||
32 |
enum AsmPrefetchOp { |
|
33 |
pldl1keep = 0b00000, |
|
34 |
pldl1strm, |
|
35 |
pldl2keep, |
|
36 |
pldl2strm, |
|
37 |
pldl3keep, |
|
38 |
pldl3strm, |
|
39 |
||
40 |
plil1keep = 0b01000, |
|
41 |
plil1strm, |
|
42 |
plil2keep, |
|
43 |
plil2strm, |
|
44 |
plil3keep, |
|
45 |
plil3strm, |
|
46 |
||
47 |
pstl1keep = 0b10000, |
|
48 |
pstl1strm, |
|
49 |
pstl2keep, |
|
50 |
pstl2strm, |
|
51 |
pstl3keep, |
|
52 |
pstl3strm, |
|
53 |
}; |
|
54 |
||
55 |
// Shifted register operand for data processing instructions. |
|
56 |
class AsmOperand VALUE_OBJ_CLASS_SPEC { |
|
57 |
private: |
|
58 |
Register _reg; |
|
59 |
AsmShift _shift; |
|
60 |
int _shift_imm; |
|
61 |
||
62 |
public: |
|
63 |
AsmOperand(Register reg) { |
|
64 |
assert(reg != SP, "SP is not allowed in shifted register operand"); |
|
65 |
_reg = reg; |
|
66 |
_shift = lsl; |
|
67 |
_shift_imm = 0; |
|
68 |
} |
|
69 |
||
70 |
AsmOperand(Register reg, AsmShift shift, int shift_imm) { |
|
71 |
assert(reg != SP, "SP is not allowed in shifted register operand"); |
|
72 |
assert(shift_imm >= 0, "shift amount should be non-negative"); |
|
73 |
_reg = reg; |
|
74 |
_shift = shift; |
|
75 |
_shift_imm = shift_imm; |
|
76 |
} |
|
77 |
||
78 |
Register reg() const { |
|
79 |
return _reg; |
|
80 |
} |
|
81 |
||
82 |
AsmShift shift() const { |
|
83 |
return _shift; |
|
84 |
} |
|
85 |
||
86 |
int shift_imm() const { |
|
87 |
return _shift_imm; |
|
88 |
} |
|
89 |
}; |
|
90 |
||
91 |
||
92 |
class Assembler : public AbstractAssembler { |
|
93 |
||
94 |
public: |
|
95 |
||
96 |
static const int LogInstructionSize = 2; |
|
97 |
static const int InstructionSize = 1 << LogInstructionSize; |
|
98 |
||
99 |
Assembler(CodeBuffer* code) : AbstractAssembler(code) {} |
|
100 |
||
101 |
static inline AsmCondition inverse(AsmCondition cond) { |
|
102 |
assert ((cond != al) && (cond != nv), "AL and NV conditions cannot be inversed"); |
|
103 |
return (AsmCondition)((int)cond ^ 1); |
|
104 |
} |
|
105 |
||
106 |
// Returns value of nzcv flags conforming to the given condition. |
|
107 |
static inline int flags_for_condition(AsmCondition cond) { |
|
108 |
switch(cond) { // NZCV |
|
109 |
case mi: case lt: return 0b1000; |
|
110 |
case eq: case le: return 0b0100; |
|
111 |
case hs: case hi: return 0b0010; |
|
112 |
case vs: return 0b0001; |
|
113 |
default: return 0b0000; |
|
114 |
} |
|
115 |
} |
|
116 |
||
117 |
// Immediate, encoded into logical instructions. |
|
118 |
class LogicalImmediate { |
|
119 |
private: |
|
120 |
bool _encoded; |
|
121 |
bool _is32bit; |
|
122 |
int _immN; |
|
123 |
int _immr; |
|
124 |
int _imms; |
|
125 |
||
126 |
static inline bool has_equal_subpatterns(uintx imm, int size); |
|
127 |
static inline int least_pattern_size(uintx imm); |
|
128 |
static inline int population_count(uintx x); |
|
129 |
static inline uintx set_least_zeroes(uintx x); |
|
130 |
||
131 |
#ifdef ASSERT |
|
132 |
uintx decode(); |
|
133 |
#endif |
|
134 |
||
135 |
void construct(uintx imm, bool is32); |
|
136 |
||
137 |
public: |
|
138 |
LogicalImmediate(uintx imm, bool is32 = false) { construct(imm, is32); } |
|
139 |
||
140 |
// Returns true if given immediate can be used in AArch64 logical instruction. |
|
141 |
bool is_encoded() const { return _encoded; } |
|
142 |
||
143 |
bool is32bit() const { return _is32bit; } |
|
144 |
int immN() const { assert(_encoded, "should be"); return _immN; } |
|
145 |
int immr() const { assert(_encoded, "should be"); return _immr; } |
|
146 |
int imms() const { assert(_encoded, "should be"); return _imms; } |
|
147 |
}; |
|
148 |
||
149 |
// Immediate, encoded into arithmetic add/sub instructions. |
|
150 |
class ArithmeticImmediate { |
|
151 |
private: |
|
152 |
bool _encoded; |
|
153 |
int _imm; |
|
154 |
AsmShift12 _shift; |
|
155 |
||
156 |
public: |
|
157 |
ArithmeticImmediate(intx x) { |
|
158 |
if (is_unsigned_imm_in_range(x, 12, 0)) { |
|
159 |
_encoded = true; |
|
160 |
_imm = x; |
|
161 |
_shift = lsl0; |
|
162 |
} else if (is_unsigned_imm_in_range(x, 12, 12)) { |
|
163 |
_encoded = true; |
|
164 |
_imm = x >> 12; |
|
165 |
_shift = lsl12; |
|
166 |
} else { |
|
167 |
_encoded = false; |
|
168 |
} |
|
169 |
} |
|
170 |
||
171 |
ArithmeticImmediate(intx x, AsmShift12 sh) { |
|
172 |
if (is_unsigned_imm_in_range(x, 12, 0)) { |
|
173 |
_encoded = true; |
|
174 |
_imm = x; |
|
175 |
_shift = sh; |
|
176 |
} else { |
|
177 |
_encoded = false; |
|
178 |
} |
|
179 |
} |
|
180 |
||
181 |
// Returns true if this immediate can be used in AArch64 arithmetic (add/sub/cmp/cmn) instructions. |
|
182 |
bool is_encoded() const { return _encoded; } |
|
183 |
||
184 |
int imm() const { assert(_encoded, "should be"); return _imm; } |
|
185 |
AsmShift12 shift() const { assert(_encoded, "should be"); return _shift; } |
|
186 |
}; |
|
187 |
||
188 |
static inline bool is_imm_in_range(intx value, int bits, int align_bits) { |
|
189 |
intx sign_bits = (value >> (bits + align_bits - 1)); |
|
190 |
return ((value & right_n_bits(align_bits)) == 0) && ((sign_bits == 0) || (sign_bits == -1)); |
|
191 |
} |
|
192 |
||
193 |
static inline int encode_imm(intx value, int bits, int align_bits, int low_bit_in_encoding) { |
|
194 |
assert (is_imm_in_range(value, bits, align_bits), "immediate value is out of range"); |
|
195 |
return ((value >> align_bits) & right_n_bits(bits)) << low_bit_in_encoding; |
|
196 |
} |
|
197 |
||
198 |
static inline bool is_unsigned_imm_in_range(intx value, int bits, int align_bits) { |
|
199 |
return (value >= 0) && ((value & right_n_bits(align_bits)) == 0) && ((value >> (align_bits + bits)) == 0); |
|
200 |
} |
|
201 |
||
202 |
static inline int encode_unsigned_imm(intx value, int bits, int align_bits, int low_bit_in_encoding) { |
|
203 |
assert (is_unsigned_imm_in_range(value, bits, align_bits), "immediate value is out of range"); |
|
204 |
return (value >> align_bits) << low_bit_in_encoding; |
|
205 |
} |
|
206 |
||
207 |
static inline bool is_offset_in_range(intx offset, int bits) { |
|
208 |
assert (bits == 14 || bits == 19 || bits == 26, "wrong bits number"); |
|
209 |
return is_imm_in_range(offset, bits, 2); |
|
210 |
} |
|
211 |
||
212 |
static inline int encode_offset(intx offset, int bits, int low_bit_in_encoding) { |
|
213 |
return encode_imm(offset, bits, 2, low_bit_in_encoding); |
|
214 |
} |
|
215 |
||
216 |
// Returns true if given value can be used as immediate in arithmetic (add/sub/cmp/cmn) instructions. |
|
217 |
static inline bool is_arith_imm_in_range(intx value) { |
|
218 |
return ArithmeticImmediate(value).is_encoded(); |
|
219 |
} |
|
220 |
||
221 |
||
222 |
// Load/store instructions |
|
223 |
||
224 |
#define F(mnemonic, opc) \ |
|
225 |
void mnemonic(Register rd, address literal_addr) { \ |
|
226 |
intx offset = literal_addr - pc(); \ |
|
227 |
assert (opc != 0b01 || offset == 0 || ((uintx)literal_addr & 7) == 0, "ldr target should be aligned"); \ |
|
228 |
assert (is_offset_in_range(offset, 19), "offset is out of range"); \ |
|
229 |
emit_int32(opc << 30 | 0b011 << 27 | encode_offset(offset, 19, 5) | rd->encoding_with_zr()); \ |
|
230 |
} |
|
231 |
||
232 |
F(ldr_w, 0b00) |
|
233 |
F(ldr, 0b01) |
|
234 |
F(ldrsw, 0b10) |
|
235 |
#undef F |
|
236 |
||
237 |
#define F(mnemonic, opc) \ |
|
238 |
void mnemonic(FloatRegister rt, address literal_addr) { \ |
|
239 |
intx offset = literal_addr - pc(); \ |
|
240 |
assert (offset == 0 || ((uintx)literal_addr & right_n_bits(2 + opc)) == 0, "ldr target should be aligned"); \ |
|
241 |
assert (is_offset_in_range(offset, 19), "offset is out of range"); \ |
|
242 |
emit_int32(opc << 30 | 0b011100 << 24 | encode_offset(offset, 19, 5) | rt->encoding()); \ |
|
243 |
} |
|
244 |
||
245 |
F(ldr_s, 0b00) |
|
246 |
F(ldr_d, 0b01) |
|
247 |
F(ldr_q, 0b10) |
|
248 |
#undef F |
|
249 |
||
250 |
#define F(mnemonic, size, o2, L, o1, o0) \ |
|
251 |
void mnemonic(Register rt, Register rn) { \ |
|
252 |
emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | 0b11111 << 16 | \ |
|
253 |
o0 << 15 | 0b11111 << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ |
|
254 |
} |
|
255 |
||
256 |
F(ldxrb, 0b00, 0, 1, 0, 0) |
|
257 |
F(ldaxrb, 0b00, 0, 1, 0, 1) |
|
258 |
F(ldarb, 0b00, 1, 1, 0, 1) |
|
259 |
F(ldxrh, 0b01, 0, 1, 0, 0) |
|
260 |
F(ldaxrh, 0b01, 0, 1, 0, 1) |
|
261 |
F(ldarh, 0b01, 1, 1, 0, 1) |
|
262 |
F(ldxr_w, 0b10, 0, 1, 0, 0) |
|
263 |
F(ldaxr_w, 0b10, 0, 1, 0, 1) |
|
264 |
F(ldar_w, 0b10, 1, 1, 0, 1) |
|
265 |
F(ldxr, 0b11, 0, 1, 0, 0) |
|
266 |
F(ldaxr, 0b11, 0, 1, 0, 1) |
|
267 |
F(ldar, 0b11, 1, 1, 0, 1) |
|
268 |
||
269 |
F(stlrb, 0b00, 1, 0, 0, 1) |
|
270 |
F(stlrh, 0b01, 1, 0, 0, 1) |
|
271 |
F(stlr_w, 0b10, 1, 0, 0, 1) |
|
272 |
F(stlr, 0b11, 1, 0, 0, 1) |
|
273 |
#undef F |
|
274 |
||
275 |
#define F(mnemonic, size, o2, L, o1, o0) \ |
|
276 |
void mnemonic(Register rs, Register rt, Register rn) { \ |
|
277 |
assert (rs != rt, "should be different"); \ |
|
278 |
assert (rs != rn, "should be different"); \ |
|
279 |
emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | rs->encoding_with_zr() << 16 | \ |
|
280 |
o0 << 15 | 0b11111 << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ |
|
281 |
} |
|
282 |
||
283 |
F(stxrb, 0b00, 0, 0, 0, 0) |
|
284 |
F(stlxrb, 0b00, 0, 0, 0, 1) |
|
285 |
F(stxrh, 0b01, 0, 0, 0, 0) |
|
286 |
F(stlxrh, 0b01, 0, 0, 0, 1) |
|
287 |
F(stxr_w, 0b10, 0, 0, 0, 0) |
|
288 |
F(stlxr_w, 0b10, 0, 0, 0, 1) |
|
289 |
F(stxr, 0b11, 0, 0, 0, 0) |
|
290 |
F(stlxr, 0b11, 0, 0, 0, 1) |
|
291 |
#undef F |
|
292 |
||
293 |
#define F(mnemonic, size, o2, L, o1, o0) \ |
|
294 |
void mnemonic(Register rt, Register rt2, Register rn) { \ |
|
295 |
assert (rt != rt2, "should be different"); \ |
|
296 |
emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | 0b11111 << 16 | \ |
|
297 |
o0 << 15 | rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ |
|
298 |
} |
|
299 |
||
300 |
F(ldxp_w, 0b10, 0, 1, 1, 0) |
|
301 |
F(ldaxp_w, 0b10, 0, 1, 1, 1) |
|
302 |
F(ldxp, 0b11, 0, 1, 1, 0) |
|
303 |
F(ldaxp, 0b11, 0, 1, 1, 1) |
|
304 |
#undef F |
|
305 |
||
306 |
#define F(mnemonic, size, o2, L, o1, o0) \ |
|
307 |
void mnemonic(Register rs, Register rt, Register rt2, Register rn) { \ |
|
308 |
assert (rs != rt, "should be different"); \ |
|
309 |
assert (rs != rt2, "should be different"); \ |
|
310 |
assert (rs != rn, "should be different"); \ |
|
311 |
emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | rs->encoding_with_zr() << 16 | \ |
|
312 |
o0 << 15 | rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ |
|
313 |
} |
|
314 |
||
315 |
F(stxp_w, 0b10, 0, 0, 1, 0) |
|
316 |
F(stlxp_w, 0b10, 0, 0, 1, 1) |
|
317 |
F(stxp, 0b11, 0, 0, 1, 0) |
|
318 |
F(stlxp, 0b11, 0, 0, 1, 1) |
|
319 |
#undef F |
|
320 |
||
321 |
#define F(mnemonic, opc, V, L) \ |
|
322 |
void mnemonic(Register rt, Register rt2, Register rn, int offset = 0) { \ |
|
323 |
assert (!L || rt != rt2, "should be different"); \ |
|
324 |
int align_bits = 2 + (opc >> 1); \ |
|
325 |
assert (is_imm_in_range(offset, 7, align_bits), "offset is out of range"); \ |
|
326 |
emit_int32(opc << 30 | 0b101 << 27 | V << 26 | L << 22 | encode_imm(offset, 7, align_bits, 15) | \ |
|
327 |
rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ |
|
328 |
} |
|
329 |
||
330 |
F(stnp_w, 0b00, 0, 0) |
|
331 |
F(ldnp_w, 0b00, 0, 1) |
|
332 |
F(stnp, 0b10, 0, 0) |
|
333 |
F(ldnp, 0b10, 0, 1) |
|
334 |
#undef F |
|
335 |
||
336 |
#define F(mnemonic, opc, V, L) \ |
|
337 |
void mnemonic(FloatRegister rt, FloatRegister rt2, Register rn, int offset = 0) { \ |
|
338 |
assert (!L || (rt != rt2), "should be different"); \ |
|
339 |
int align_bits = 2 + opc; \ |
|
340 |
assert (is_imm_in_range(offset, 7, align_bits), "offset is out of range"); \ |
|
341 |
emit_int32(opc << 30 | 0b101 << 27 | V << 26 | L << 22 | encode_imm(offset, 7, align_bits, 15) | \ |
|
342 |
rt2->encoding() << 10 | rn->encoding_with_sp() << 5 | rt->encoding()); \ |
|
343 |
} |
|
344 |
||
345 |
F(stnp_s, 0b00, 1, 0) |
|
346 |
F(stnp_d, 0b01, 1, 0) |
|
347 |
F(stnp_q, 0b10, 1, 0) |
|
348 |
F(ldnp_s, 0b00, 1, 1) |
|
349 |
F(ldnp_d, 0b01, 1, 1) |
|
350 |
F(ldnp_q, 0b10, 1, 1) |
|
351 |
#undef F |
|
352 |
||
353 |
#define F(mnemonic, size, V, opc) \ |
|
354 |
void mnemonic(Register rt, Address addr) { \ |
|
355 |
assert((addr.mode() == basic_offset) || (rt != addr.base()), "should be different"); \ |
|
356 |
if (addr.index() == noreg) { \ |
|
357 |
if ((addr.mode() == basic_offset) && is_unsigned_imm_in_range(addr.disp(), 12, size)) { \ |
|
358 |
emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 | \ |
|
359 |
encode_unsigned_imm(addr.disp(), 12, size, 10) | \ |
|
360 |
addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ |
|
361 |
} else { \ |
|
362 |
assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range"); \ |
|
363 |
emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) | \ |
|
364 |
addr.mode() << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ |
|
365 |
} \ |
|
366 |
} else { \ |
|
367 |
assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode"); \ |
|
368 |
assert ((addr.shift_imm() == 0) || (addr.shift_imm() == size), "invalid shift amount"); \ |
|
369 |
emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 | \ |
|
370 |
addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 | \ |
|
371 |
0b10 << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ |
|
372 |
} \ |
|
373 |
} |
|
374 |
||
375 |
F(strb, 0b00, 0, 0b00) |
|
376 |
F(ldrb, 0b00, 0, 0b01) |
|
377 |
F(ldrsb, 0b00, 0, 0b10) |
|
378 |
F(ldrsb_w, 0b00, 0, 0b11) |
|
379 |
||
380 |
F(strh, 0b01, 0, 0b00) |
|
381 |
F(ldrh, 0b01, 0, 0b01) |
|
382 |
F(ldrsh, 0b01, 0, 0b10) |
|
383 |
F(ldrsh_w, 0b01, 0, 0b11) |
|
384 |
||
385 |
F(str_w, 0b10, 0, 0b00) |
|
386 |
F(ldr_w, 0b10, 0, 0b01) |
|
387 |
F(ldrsw, 0b10, 0, 0b10) |
|
388 |
||
389 |
F(str, 0b11, 0, 0b00) |
|
390 |
F(ldr, 0b11, 0, 0b01) |
|
391 |
#undef F |
|
392 |
||
393 |
#define F(mnemonic, size, V, opc) \ |
|
394 |
void mnemonic(AsmPrefetchOp prfop, Address addr) { \ |
|
395 |
assert (addr.mode() == basic_offset, #mnemonic " supports only basic_offset address mode"); \ |
|
396 |
if (addr.index() == noreg) { \ |
|
397 |
if (is_unsigned_imm_in_range(addr.disp(), 12, size)) { \ |
|
398 |
emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 | \ |
|
399 |
encode_unsigned_imm(addr.disp(), 12, size, 10) | \ |
|
400 |
addr.base()->encoding_with_sp() << 5 | prfop); \ |
|
401 |
} else { \ |
|
402 |
assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range"); \ |
|
403 |
emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) | \ |
|
404 |
addr.base()->encoding_with_sp() << 5 | prfop); \ |
|
405 |
} \ |
|
406 |
} else { \ |
|
407 |
assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode"); \ |
|
408 |
assert ((addr.shift_imm() == 0) || (addr.shift_imm() == size), "invalid shift amount"); \ |
|
409 |
emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 | \ |
|
410 |
addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 | \ |
|
411 |
0b10 << 10 | addr.base()->encoding_with_sp() << 5 | prfop); \ |
|
412 |
} \ |
|
413 |
} |
|
414 |
||
415 |
F(prfm, 0b11, 0, 0b10) |
|
416 |
#undef F |
|
417 |
||
418 |
#define F(mnemonic, size, V, opc) \ |
|
419 |
void mnemonic(FloatRegister rt, Address addr) { \ |
|
420 |
int align_bits = (((opc & 0b10) >> 1) << 2) | size; \ |
|
421 |
if (addr.index() == noreg) { \ |
|
422 |
if ((addr.mode() == basic_offset) && is_unsigned_imm_in_range(addr.disp(), 12, align_bits)) { \ |
|
423 |
emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 | \ |
|
424 |
encode_unsigned_imm(addr.disp(), 12, align_bits, 10) | \ |
|
425 |
addr.base()->encoding_with_sp() << 5 | rt->encoding()); \ |
|
426 |
} else { \ |
|
427 |
assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range"); \ |
|
428 |
emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) | \ |
|
429 |
addr.mode() << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding()); \ |
|
430 |
} \ |
|
431 |
} else { \ |
|
432 |
assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode"); \ |
|
433 |
assert ((addr.shift_imm() == 0) || (addr.shift_imm() == align_bits), "invalid shift amount"); \ |
|
434 |
emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 | \ |
|
435 |
addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 | \ |
|
436 |
0b10 << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding()); \ |
|
437 |
} \ |
|
438 |
} |
|
439 |
||
440 |
F(str_b, 0b00, 1, 0b00) |
|
441 |
F(ldr_b, 0b00, 1, 0b01) |
|
442 |
F(str_h, 0b01, 1, 0b00) |
|
443 |
F(ldr_h, 0b01, 1, 0b01) |
|
444 |
F(str_s, 0b10, 1, 0b00) |
|
445 |
F(ldr_s, 0b10, 1, 0b01) |
|
446 |
F(str_d, 0b11, 1, 0b00) |
|
447 |
F(ldr_d, 0b11, 1, 0b01) |
|
448 |
F(str_q, 0b00, 1, 0b10) |
|
449 |
F(ldr_q, 0b00, 1, 0b11) |
|
450 |
#undef F |
|
451 |
||
452 |
#define F(mnemonic, opc, V, L) \ |
|
453 |
void mnemonic(Register rt, Register rt2, Address addr) { \ |
|
454 |
assert((addr.mode() == basic_offset) || ((rt != addr.base()) && (rt2 != addr.base())), "should be different"); \ |
|
455 |
assert(!L || (rt != rt2), "should be different"); \ |
|
456 |
assert(addr.index() == noreg, "[reg + reg] address mode is not available for load/store pair"); \ |
|
457 |
int align_bits = 2 + (opc >> 1); \ |
|
458 |
int mode_encoding = (addr.mode() == basic_offset) ? 0b10 : addr.mode(); \ |
|
459 |
assert(is_imm_in_range(addr.disp(), 7, align_bits), "offset is out of range"); \ |
|
460 |
emit_int32(opc << 30 | 0b101 << 27 | V << 26 | mode_encoding << 23 | L << 22 | \ |
|
461 |
encode_imm(addr.disp(), 7, align_bits, 15) | rt2->encoding_with_zr() << 10 | \ |
|
462 |
addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ |
|
463 |
} |
|
464 |
||
465 |
F(stp_w, 0b00, 0, 0) |
|
466 |
F(ldp_w, 0b00, 0, 1) |
|
467 |
F(ldpsw, 0b01, 0, 1) |
|
468 |
F(stp, 0b10, 0, 0) |
|
469 |
F(ldp, 0b10, 0, 1) |
|
470 |
#undef F |
|
471 |
||
472 |
#define F(mnemonic, opc, V, L) \ |
|
473 |
void mnemonic(FloatRegister rt, FloatRegister rt2, Address addr) { \ |
|
474 |
assert(!L || (rt != rt2), "should be different"); \ |
|
475 |
assert(addr.index() == noreg, "[reg + reg] address mode is not available for load/store pair"); \ |
|
476 |
int align_bits = 2 + opc; \ |
|
477 |
int mode_encoding = (addr.mode() == basic_offset) ? 0b10 : addr.mode(); \ |
|
478 |
assert(is_imm_in_range(addr.disp(), 7, align_bits), "offset is out of range"); \ |
|
479 |
emit_int32(opc << 30 | 0b101 << 27 | V << 26 | mode_encoding << 23 | L << 22 | \ |
|
480 |
encode_imm(addr.disp(), 7, align_bits, 15) | rt2->encoding() << 10 | \ |
|
481 |
addr.base()->encoding_with_sp() << 5 | rt->encoding()); \ |
|
482 |
} |
|
483 |
||
484 |
F(stp_s, 0b00, 1, 0) |
|
485 |
F(ldp_s, 0b00, 1, 1) |
|
486 |
F(stp_d, 0b01, 1, 0) |
|
487 |
F(ldp_d, 0b01, 1, 1) |
|
488 |
F(stp_q, 0b10, 1, 0) |
|
489 |
F(ldp_q, 0b10, 1, 1) |
|
490 |
#undef F |
|
491 |
||
492 |
// Data processing instructions |
|
493 |
||
494 |
#define F(mnemonic, sf, opc) \ |
|
495 |
void mnemonic(Register rd, Register rn, const LogicalImmediate& imm) { \ |
|
496 |
assert (imm.is_encoded(), "illegal immediate for logical instruction"); \ |
|
497 |
assert (imm.is32bit() == (sf == 0), "immediate size does not match instruction size"); \ |
|
498 |
emit_int32(sf << 31 | opc << 29 | 0b100100 << 23 | imm.immN() << 22 | imm.immr() << 16 | \ |
|
499 |
imm.imms() << 10 | rn->encoding_with_zr() << 5 | \ |
|
500 |
((opc == 0b11) ? rd->encoding_with_zr() : rd->encoding_with_sp())); \ |
|
501 |
} \ |
|
502 |
void mnemonic(Register rd, Register rn, uintx imm) { \ |
|
503 |
LogicalImmediate limm(imm, (sf == 0)); \ |
|
504 |
mnemonic(rd, rn, limm); \ |
|
505 |
} \ |
|
506 |
void mnemonic(Register rd, Register rn, unsigned int imm) { \ |
|
507 |
mnemonic(rd, rn, (uintx)imm); \ |
|
508 |
} |
|
509 |
||
510 |
F(andr_w, 0, 0b00) |
|
511 |
F(orr_w, 0, 0b01) |
|
512 |
F(eor_w, 0, 0b10) |
|
513 |
F(ands_w, 0, 0b11) |
|
514 |
||
515 |
F(andr, 1, 0b00) |
|
516 |
F(orr, 1, 0b01) |
|
517 |
F(eor, 1, 0b10) |
|
518 |
F(ands, 1, 0b11) |
|
519 |
#undef F |
|
520 |
||
521 |
void tst(Register rn, unsigned int imm) { |
|
522 |
ands(ZR, rn, imm); |
|
523 |
} |
|
524 |
||
525 |
void tst_w(Register rn, unsigned int imm) { |
|
526 |
ands_w(ZR, rn, imm); |
|
527 |
} |
|
528 |
||
529 |
#define F(mnemonic, sf, opc, N) \ |
|
530 |
void mnemonic(Register rd, Register rn, AsmOperand operand) { \ |
|
531 |
assert (operand.shift_imm() >> (5 + sf) == 0, "shift amount is too large"); \ |
|
532 |
emit_int32(sf << 31 | opc << 29 | 0b01010 << 24 | operand.shift() << 22 | N << 21 | \ |
|
533 |
operand.reg()->encoding_with_zr() << 16 | operand.shift_imm() << 10 | \ |
|
534 |
rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ |
|
535 |
} |
|
536 |
||
537 |
F(andr_w, 0, 0b00, 0) |
|
538 |
F(bic_w, 0, 0b00, 1) |
|
539 |
F(orr_w, 0, 0b01, 0) |
|
540 |
F(orn_w, 0, 0b01, 1) |
|
541 |
F(eor_w, 0, 0b10, 0) |
|
542 |
F(eon_w, 0, 0b10, 1) |
|
543 |
F(ands_w, 0, 0b11, 0) |
|
544 |
F(bics_w, 0, 0b11, 1) |
|
545 |
||
546 |
F(andr, 1, 0b00, 0) |
|
547 |
F(bic, 1, 0b00, 1) |
|
548 |
F(orr, 1, 0b01, 0) |
|
549 |
F(orn, 1, 0b01, 1) |
|
550 |
F(eor, 1, 0b10, 0) |
|
551 |
F(eon, 1, 0b10, 1) |
|
552 |
F(ands, 1, 0b11, 0) |
|
553 |
F(bics, 1, 0b11, 1) |
|
554 |
#undef F |
|
555 |
||
556 |
void tst(Register rn, AsmOperand operand) { |
|
557 |
ands(ZR, rn, operand); |
|
558 |
} |
|
559 |
||
560 |
void tst_w(Register rn, AsmOperand operand) { |
|
561 |
ands_w(ZR, rn, operand); |
|
562 |
} |
|
563 |
||
564 |
void mvn(Register rd, AsmOperand operand) { |
|
565 |
orn(rd, ZR, operand); |
|
566 |
} |
|
567 |
||
568 |
void mvn_w(Register rd, AsmOperand operand) { |
|
569 |
orn_w(rd, ZR, operand); |
|
570 |
} |
|
571 |
||
572 |
#define F(mnemonic, sf, op, S) \ |
|
573 |
void mnemonic(Register rd, Register rn, const ArithmeticImmediate& imm) { \ |
|
574 |
assert(imm.is_encoded(), "immediate is out of range"); \ |
|
575 |
emit_int32(sf << 31 | op << 30 | S << 29 | 0b10001 << 24 | imm.shift() << 22 | \ |
|
576 |
imm.imm() << 10 | rn->encoding_with_sp() << 5 | \ |
|
577 |
(S == 1 ? rd->encoding_with_zr() : rd->encoding_with_sp())); \ |
|
578 |
} \ |
|
579 |
void mnemonic(Register rd, Register rn, int imm) { \ |
|
580 |
mnemonic(rd, rn, ArithmeticImmediate(imm)); \ |
|
581 |
} \ |
|
582 |
void mnemonic(Register rd, Register rn, int imm, AsmShift12 shift) { \ |
|
583 |
mnemonic(rd, rn, ArithmeticImmediate(imm, shift)); \ |
|
584 |
} \ |
|
585 |
void mnemonic(Register rd, Register rn, Register rm, AsmExtendOp extend, int shift_imm = 0) { \ |
|
586 |
assert ((0 <= shift_imm) && (shift_imm <= 4), "shift amount is out of range"); \ |
|
587 |
emit_int32(sf << 31 | op << 30 | S << 29 | 0b01011001 << 21 | rm->encoding_with_zr() << 16 | \ |
|
588 |
extend << 13 | shift_imm << 10 | rn->encoding_with_sp() << 5 | \ |
|
589 |
(S == 1 ? rd->encoding_with_zr() : rd->encoding_with_sp())); \ |
|
590 |
} \ |
|
591 |
void mnemonic(Register rd, Register rn, AsmOperand operand) { \ |
|
592 |
assert (operand.shift() != ror, "illegal shift type"); \ |
|
593 |
assert (operand.shift_imm() >> (5 + sf) == 0, "shift amount is too large"); \ |
|
594 |
emit_int32(sf << 31 | op << 30 | S << 29 | 0b01011 << 24 | operand.shift() << 22 | \ |
|
595 |
operand.reg()->encoding_with_zr() << 16 | operand.shift_imm() << 10 | \ |
|
596 |
rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ |
|
597 |
} |
|
598 |
||
599 |
F(add_w, 0, 0, 0) |
|
600 |
F(adds_w, 0, 0, 1) |
|
601 |
F(sub_w, 0, 1, 0) |
|
602 |
F(subs_w, 0, 1, 1) |
|
603 |
||
604 |
F(add, 1, 0, 0) |
|
605 |
F(adds, 1, 0, 1) |
|
606 |
F(sub, 1, 1, 0) |
|
607 |
F(subs, 1, 1, 1) |
|
608 |
#undef F |
|
609 |
||
610 |
void mov(Register rd, Register rm) { |
|
611 |
if ((rd == SP) || (rm == SP)) { |
|
612 |
add(rd, rm, 0); |
|
613 |
} else { |
|
614 |
orr(rd, ZR, rm); |
|
615 |
} |
|
616 |
} |
|
617 |
||
618 |
void mov_w(Register rd, Register rm) { |
|
619 |
if ((rd == SP) || (rm == SP)) { |
|
620 |
add_w(rd, rm, 0); |
|
621 |
} else { |
|
622 |
orr_w(rd, ZR, rm); |
|
623 |
} |
|
624 |
} |
|
625 |
||
626 |
void cmp(Register rn, int imm) { |
|
627 |
subs(ZR, rn, imm); |
|
628 |
} |
|
629 |
||
630 |
void cmp_w(Register rn, int imm) { |
|
631 |
subs_w(ZR, rn, imm); |
|
632 |
} |
|
633 |
||
634 |
void cmp(Register rn, Register rm) { |
|
635 |
assert (rm != SP, "SP should not be used as the 2nd operand of cmp"); |
|
636 |
if (rn == SP) { |
|
637 |
subs(ZR, rn, rm, ex_uxtx); |
|
638 |
} else { |
|
639 |
subs(ZR, rn, rm); |
|
640 |
} |
|
641 |
} |
|
642 |
||
643 |
void cmp_w(Register rn, Register rm) { |
|
644 |
assert ((rn != SP) && (rm != SP), "SP should not be used in 32-bit cmp"); |
|
645 |
subs_w(ZR, rn, rm); |
|
646 |
} |
|
647 |
||
648 |
void cmp(Register rn, AsmOperand operand) { |
|
649 |
assert (rn != SP, "SP is not allowed in cmp with shifted register (AsmOperand)"); |
|
650 |
subs(ZR, rn, operand); |
|
651 |
} |
|
652 |
||
653 |
void cmn(Register rn, int imm) { |
|
654 |
adds(ZR, rn, imm); |
|
655 |
} |
|
656 |
||
657 |
void cmn_w(Register rn, int imm) { |
|
658 |
adds_w(ZR, rn, imm); |
|
659 |
} |
|
660 |
||
661 |
void cmn(Register rn, Register rm) { |
|
662 |
assert (rm != SP, "SP should not be used as the 2nd operand of cmp"); |
|
663 |
if (rn == SP) { |
|
664 |
adds(ZR, rn, rm, ex_uxtx); |
|
665 |
} else { |
|
666 |
adds(ZR, rn, rm); |
|
667 |
} |
|
668 |
} |
|
669 |
||
670 |
void cmn_w(Register rn, Register rm) { |
|
671 |
assert ((rn != SP) && (rm != SP), "SP should not be used in 32-bit cmp"); |
|
672 |
adds_w(ZR, rn, rm); |
|
673 |
} |
|
674 |
||
675 |
void neg(Register rd, Register rm) { |
|
676 |
sub(rd, ZR, rm); |
|
677 |
} |
|
678 |
||
679 |
void neg_w(Register rd, Register rm) { |
|
680 |
sub_w(rd, ZR, rm); |
|
681 |
} |
|
682 |
||
683 |
#define F(mnemonic, sf, op, S) \ |
|
684 |
void mnemonic(Register rd, Register rn, Register rm) { \ |
|
685 |
emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010000 << 21 | rm->encoding_with_zr() << 16 | \ |
|
686 |
rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ |
|
687 |
} |
|
688 |
||
689 |
F(adc_w, 0, 0, 0) |
|
690 |
F(adcs_w, 0, 0, 1) |
|
691 |
F(sbc_w, 0, 1, 0) |
|
692 |
F(sbcs_w, 0, 1, 1) |
|
693 |
||
694 |
F(adc, 1, 0, 0) |
|
695 |
F(adcs, 1, 0, 1) |
|
696 |
F(sbc, 1, 1, 0) |
|
697 |
F(sbcs, 1, 1, 1) |
|
698 |
#undef F |
|
699 |
||
700 |
#define F(mnemonic, sf, N) \ |
|
701 |
void mnemonic(Register rd, Register rn, Register rm, int lsb) { \ |
|
702 |
assert ((lsb >> (5 + sf)) == 0, "illegal least significant bit position"); \ |
|
703 |
emit_int32(sf << 31 | 0b100111 << 23 | N << 22 | rm->encoding_with_zr() << 16 | \ |
|
704 |
lsb << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ |
|
705 |
} |
|
706 |
||
707 |
F(extr_w, 0, 0) |
|
708 |
F(extr, 1, 1) |
|
709 |
#undef F |
|
710 |
||
711 |
#define F(mnemonic, sf, opc) \ |
|
712 |
void mnemonic(Register rd, int imm, int shift) { \ |
|
713 |
assert ((imm >> 16) == 0, "immediate is out of range"); \ |
|
714 |
assert (((shift & 0xf) == 0) && ((shift >> (5 + sf)) == 0), "invalid shift"); \ |
|
715 |
emit_int32(sf << 31 | opc << 29 | 0b100101 << 23 | (shift >> 4) << 21 | \ |
|
716 |
imm << 5 | rd->encoding_with_zr()); \ |
|
717 |
} |
|
718 |
||
719 |
F(movn_w, 0, 0b00) |
|
720 |
F(movz_w, 0, 0b10) |
|
721 |
F(movk_w, 0, 0b11) |
|
722 |
F(movn, 1, 0b00) |
|
723 |
F(movz, 1, 0b10) |
|
724 |
F(movk, 1, 0b11) |
|
725 |
#undef F |
|
726 |
||
727 |
void mov(Register rd, int imm) { |
|
728 |
assert ((imm >> 16) == 0, "immediate is out of range"); |
|
729 |
movz(rd, imm, 0); |
|
730 |
} |
|
731 |
||
732 |
void mov_w(Register rd, int imm) { |
|
733 |
assert ((imm >> 16) == 0, "immediate is out of range"); |
|
734 |
movz_w(rd, imm, 0); |
|
735 |
} |
|
736 |
||
737 |
#define F(mnemonic, sf, op, S) \ |
|
738 |
void mnemonic(Register rn, int imm, int nzcv, AsmCondition cond) { \ |
|
739 |
assert ((imm >> 5) == 0, "immediate is out of range"); \ |
|
740 |
assert ((nzcv >> 4) == 0, "illegal nzcv"); \ |
|
741 |
emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010010 << 21 | imm << 16 | \ |
|
742 |
cond << 12 | 1 << 11 | rn->encoding_with_zr() << 5 | nzcv); \ |
|
743 |
} |
|
744 |
||
745 |
F(ccmn_w, 0, 0, 1) |
|
746 |
F(ccmp_w, 0, 1, 1) |
|
747 |
F(ccmn, 1, 0, 1) |
|
748 |
F(ccmp, 1, 1, 1) |
|
749 |
#undef F |
|
750 |
||
751 |
#define F(mnemonic, sf, op, S) \ |
|
752 |
void mnemonic(Register rn, Register rm, int nzcv, AsmCondition cond) { \ |
|
753 |
assert ((nzcv >> 4) == 0, "illegal nzcv"); \ |
|
754 |
emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010010 << 21 | rm->encoding_with_zr() << 16 | \ |
|
755 |
cond << 12 | rn->encoding_with_zr() << 5 | nzcv); \ |
|
756 |
} |
|
757 |
||
758 |
F(ccmn_w, 0, 0, 1) |
|
759 |
F(ccmp_w, 0, 1, 1) |
|
760 |
F(ccmn, 1, 0, 1) |
|
761 |
F(ccmp, 1, 1, 1) |
|
762 |
#undef F |
|
763 |
||
764 |
#define F(mnemonic, sf, op, S, op2) \ |
|
765 |
void mnemonic(Register rd, Register rn, Register rm, AsmCondition cond) { \ |
|
766 |
emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010100 << 21 | rm->encoding_with_zr() << 16 | \ |
|
767 |
cond << 12 | op2 << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ |
|
768 |
} |
|
769 |
||
770 |
F(csel_w, 0, 0, 0, 0b00) |
|
771 |
F(csinc_w, 0, 0, 0, 0b01) |
|
772 |
F(csinv_w, 0, 1, 0, 0b00) |
|
773 |
F(csneg_w, 0, 1, 0, 0b01) |
|
774 |
||
775 |
F(csel, 1, 0, 0, 0b00) |
|
776 |
F(csinc, 1, 0, 0, 0b01) |
|
777 |
F(csinv, 1, 1, 0, 0b00) |
|
778 |
F(csneg, 1, 1, 0, 0b01) |
|
779 |
#undef F |
|
780 |
||
781 |
void cset(Register rd, AsmCondition cond) { |
|
782 |
csinc(rd, ZR, ZR, inverse(cond)); |
|
783 |
} |
|
784 |
||
785 |
void cset_w(Register rd, AsmCondition cond) { |
|
786 |
csinc_w(rd, ZR, ZR, inverse(cond)); |
|
787 |
} |
|
788 |
||
789 |
void csetm(Register rd, AsmCondition cond) { |
|
790 |
csinv(rd, ZR, ZR, inverse(cond)); |
|
791 |
} |
|
792 |
||
793 |
void csetm_w(Register rd, AsmCondition cond) { |
|
794 |
csinv_w(rd, ZR, ZR, inverse(cond)); |
|
795 |
} |
|
796 |
||
797 |
void cinc(Register rd, Register rn, AsmCondition cond) { |
|
798 |
csinc(rd, rn, rn, inverse(cond)); |
|
799 |
} |
|
800 |
||
801 |
void cinc_w(Register rd, Register rn, AsmCondition cond) { |
|
802 |
csinc_w(rd, rn, rn, inverse(cond)); |
|
803 |
} |
|
804 |
||
805 |
void cinv(Register rd, Register rn, AsmCondition cond) { |
|
806 |
csinv(rd, rn, rn, inverse(cond)); |
|
807 |
} |
|
808 |
||
809 |
void cinv_w(Register rd, Register rn, AsmCondition cond) { |
|
810 |
csinv_w(rd, rn, rn, inverse(cond)); |
|
811 |
} |
|
812 |
||
813 |
#define F(mnemonic, sf, S, opcode) \ |
|
814 |
void mnemonic(Register rd, Register rn) { \ |
|
815 |
emit_int32(sf << 31 | 1 << 30 | S << 29 | 0b11010110 << 21 | opcode << 10 | \ |
|
816 |
rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ |
|
817 |
} |
|
818 |
||
819 |
F(rbit_w, 0, 0, 0b000000) |
|
820 |
F(rev16_w, 0, 0, 0b000001) |
|
821 |
F(rev_w, 0, 0, 0b000010) |
|
822 |
F(clz_w, 0, 0, 0b000100) |
|
823 |
F(cls_w, 0, 0, 0b000101) |
|
824 |
||
825 |
F(rbit, 1, 0, 0b000000) |
|
826 |
F(rev16, 1, 0, 0b000001) |
|
827 |
F(rev32, 1, 0, 0b000010) |
|
828 |
F(rev, 1, 0, 0b000011) |
|
829 |
F(clz, 1, 0, 0b000100) |
|
830 |
F(cls, 1, 0, 0b000101) |
|
831 |
#undef F |
|
832 |
||
833 |
#define F(mnemonic, sf, S, opcode) \ |
|
834 |
void mnemonic(Register rd, Register rn, Register rm) { \ |
|
835 |
emit_int32(sf << 31 | S << 29 | 0b11010110 << 21 | rm->encoding_with_zr() << 16 | \ |
|
836 |
opcode << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ |
|
837 |
} |
|
838 |
||
839 |
F(udiv_w, 0, 0, 0b000010) |
|
840 |
F(sdiv_w, 0, 0, 0b000011) |
|
841 |
F(lslv_w, 0, 0, 0b001000) |
|
842 |
F(lsrv_w, 0, 0, 0b001001) |
|
843 |
F(asrv_w, 0, 0, 0b001010) |
|
844 |
F(rorv_w, 0, 0, 0b001011) |
|
845 |
||
846 |
F(udiv, 1, 0, 0b000010) |
|
847 |
F(sdiv, 1, 0, 0b000011) |
|
848 |
F(lslv, 1, 0, 0b001000) |
|
849 |
F(lsrv, 1, 0, 0b001001) |
|
850 |
F(asrv, 1, 0, 0b001010) |
|
851 |
F(rorv, 1, 0, 0b001011) |
|
852 |
#undef F |
|
853 |
||
854 |
#define F(mnemonic, sf, op31, o0) \ |
|
855 |
void mnemonic(Register rd, Register rn, Register rm, Register ra) { \ |
|
856 |
emit_int32(sf << 31 | 0b11011 << 24 | op31 << 21 | rm->encoding_with_zr() << 16 | \ |
|
857 |
o0 << 15 | ra->encoding_with_zr() << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ |
|
858 |
} |
|
859 |
||
860 |
F(madd_w, 0, 0b000, 0) |
|
861 |
F(msub_w, 0, 0b000, 1) |
|
862 |
F(madd, 1, 0b000, 0) |
|
863 |
F(msub, 1, 0b000, 1) |
|
864 |
||
865 |
F(smaddl, 1, 0b001, 0) |
|
866 |
F(smsubl, 1, 0b001, 1) |
|
867 |
F(umaddl, 1, 0b101, 0) |
|
868 |
F(umsubl, 1, 0b101, 1) |
|
869 |
#undef F |
|
870 |
||
871 |
void mul(Register rd, Register rn, Register rm) { |
|
872 |
madd(rd, rn, rm, ZR); |
|
873 |
} |
|
874 |
||
875 |
void mul_w(Register rd, Register rn, Register rm) { |
|
876 |
madd_w(rd, rn, rm, ZR); |
|
877 |
} |
|
878 |
||
879 |
#define F(mnemonic, sf, op31, o0) \ |
|
880 |
void mnemonic(Register rd, Register rn, Register rm) { \ |
|
881 |
emit_int32(sf << 31 | 0b11011 << 24 | op31 << 21 | rm->encoding_with_zr() << 16 | \ |
|
882 |
o0 << 15 | 0b11111 << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ |
|
883 |
} |
|
884 |
||
885 |
F(smulh, 1, 0b010, 0) |
|
886 |
F(umulh, 1, 0b110, 0) |
|
887 |
#undef F |
|
888 |
||
889 |
#define F(mnemonic, op) \ |
|
890 |
void mnemonic(Register rd, address addr) { \ |
|
891 |
intx offset; \ |
|
892 |
if (op == 0) { \ |
|
893 |
offset = addr - pc(); \ |
|
894 |
} else { \ |
|
895 |
offset = (((intx)addr) - (((intx)pc()) & ~0xfff)) >> 12; \ |
|
896 |
} \ |
|
897 |
assert (is_imm_in_range(offset, 21, 0), "offset is out of range"); \ |
|
898 |
emit_int32(op << 31 | (offset & 3) << 29 | 0b10000 << 24 | \ |
|
899 |
encode_imm(offset >> 2, 19, 0, 5) | rd->encoding_with_zr()); \ |
|
900 |
} \ |
|
901 |
||
902 |
F(adr, 0) |
|
903 |
F(adrp, 1) |
|
904 |
#undef F |
|
905 |
||
906 |
void adr(Register rd, Label& L) { |
|
907 |
adr(rd, target(L)); |
|
908 |
} |
|
909 |
||
910 |
#define F(mnemonic, sf, opc, N) \ |
|
911 |
void mnemonic(Register rd, Register rn, int immr, int imms) { \ |
|
912 |
assert ((immr >> (5 + sf)) == 0, "immr is out of range"); \ |
|
913 |
assert ((imms >> (5 + sf)) == 0, "imms is out of range"); \ |
|
914 |
emit_int32(sf << 31 | opc << 29 | 0b100110 << 23 | N << 22 | immr << 16 | \ |
|
915 |
imms << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ |
|
916 |
} |
|
917 |
||
918 |
F(sbfm_w, 0, 0b00, 0) |
|
919 |
F(bfm_w, 0, 0b01, 0) |
|
920 |
F(ubfm_w, 0, 0b10, 0) |
|
921 |
||
922 |
F(sbfm, 1, 0b00, 1) |
|
923 |
F(bfm, 1, 0b01, 1) |
|
924 |
F(ubfm, 1, 0b10, 1) |
|
925 |
#undef F |
|
926 |
||
927 |
#define F(alias, mnemonic, sf, immr, imms) \ |
|
928 |
void alias(Register rd, Register rn, int lsb, int width) { \ |
|
929 |
assert ((lsb >> (5 + sf)) == 0, "lsb is out of range"); \ |
|
930 |
assert ((1 <= width) && (width <= (32 << sf) - lsb), "width is out of range"); \ |
|
931 |
mnemonic(rd, rn, immr, imms); \ |
|
932 |
} |
|
933 |
||
934 |
F(bfi_w, bfm_w, 0, (-lsb) & 0x1f, width - 1) |
|
935 |
F(bfi, bfm, 1, (-lsb) & 0x3f, width - 1) |
|
936 |
F(bfxil_w, bfm_w, 0, lsb, lsb + width - 1) |
|
937 |
F(bfxil, bfm, 1, lsb, lsb + width - 1) |
|
938 |
F(sbfiz_w, sbfm_w, 0, (-lsb) & 0x1f, width - 1) |
|
939 |
F(sbfiz, sbfm, 1, (-lsb) & 0x3f, width - 1) |
|
940 |
F(sbfx_w, sbfm_w, 0, lsb, lsb + width - 1) |
|
941 |
F(sbfx, sbfm, 1, lsb, lsb + width - 1) |
|
942 |
F(ubfiz_w, ubfm_w, 0, (-lsb) & 0x1f, width - 1) |
|
943 |
F(ubfiz, ubfm, 1, (-lsb) & 0x3f, width - 1) |
|
944 |
F(ubfx_w, ubfm_w, 0, lsb, lsb + width - 1) |
|
945 |
F(ubfx, ubfm, 1, lsb, lsb + width - 1) |
|
946 |
#undef F |
|
947 |
||
948 |
#define F(alias, mnemonic, sf, immr, imms) \ |
|
949 |
void alias(Register rd, Register rn, int shift) { \ |
|
950 |
assert ((shift >> (5 + sf)) == 0, "shift is out of range"); \ |
|
951 |
mnemonic(rd, rn, immr, imms); \ |
|
952 |
} |
|
953 |
||
954 |
F(_asr_w, sbfm_w, 0, shift, 31) |
|
955 |
F(_asr, sbfm, 1, shift, 63) |
|
956 |
F(_lsl_w, ubfm_w, 0, (-shift) & 0x1f, 31 - shift) |
|
957 |
F(_lsl, ubfm, 1, (-shift) & 0x3f, 63 - shift) |
|
958 |
F(_lsr_w, ubfm_w, 0, shift, 31) |
|
959 |
F(_lsr, ubfm, 1, shift, 63) |
|
960 |
#undef F |
|
961 |
||
962 |
#define F(alias, mnemonic, immr, imms) \ |
|
963 |
void alias(Register rd, Register rn) { \ |
|
964 |
mnemonic(rd, rn, immr, imms); \ |
|
965 |
} |
|
966 |
||
967 |
F(sxtb_w, sbfm_w, 0, 7) |
|
968 |
F(sxtb, sbfm, 0, 7) |
|
969 |
F(sxth_w, sbfm_w, 0, 15) |
|
970 |
F(sxth, sbfm, 0, 15) |
|
971 |
F(sxtw, sbfm, 0, 31) |
|
972 |
F(uxtb_w, ubfm_w, 0, 7) |
|
973 |
F(uxtb, ubfm, 0, 7) |
|
974 |
F(uxth_w, ubfm_w, 0, 15) |
|
975 |
F(uxth, ubfm, 0, 15) |
|
976 |
#undef F |
|
977 |
||
978 |
// Branch instructions |
|
979 |
||
980 |
#define F(mnemonic, op) \ |
|
981 |
void mnemonic(Register rn) { \ |
|
982 |
emit_int32(0b1101011 << 25 | op << 21 | 0b11111 << 16 | rn->encoding_with_zr() << 5); \ |
|
983 |
} |
|
984 |
||
985 |
F(br, 0b00) |
|
986 |
F(blr, 0b01) |
|
987 |
F(ret, 0b10) |
|
988 |
#undef F |
|
989 |
||
990 |
void ret() { |
|
991 |
ret(LR); |
|
992 |
} |
|
993 |
||
994 |
#define F(mnemonic, op) \ |
|
995 |
void mnemonic(address target) { \ |
|
996 |
intx offset = target - pc(); \ |
|
997 |
assert (is_offset_in_range(offset, 26), "offset is out of range"); \ |
|
998 |
emit_int32(op << 31 | 0b00101 << 26 | encode_offset(offset, 26, 0)); \ |
|
999 |
} |
|
1000 |
||
1001 |
F(b, 0) |
|
1002 |
F(bl, 1) |
|
1003 |
#undef F |
|
1004 |
||
1005 |
void b(address target, AsmCondition cond) { |
|
1006 |
if (cond == al) { |
|
1007 |
b(target); |
|
1008 |
} else { |
|
1009 |
intx offset = target - pc(); |
|
1010 |
assert (is_offset_in_range(offset, 19), "offset is out of range"); |
|
1011 |
emit_int32(0b0101010 << 25 | encode_offset(offset, 19, 5) | cond); |
|
1012 |
} |
|
1013 |
} |
|
1014 |
||
1015 |
||
1016 |
#define F(mnemonic, sf, op) \ |
|
1017 |
void mnemonic(Register rt, address target) { \ |
|
1018 |
intx offset = target - pc(); \ |
|
1019 |
assert (is_offset_in_range(offset, 19), "offset is out of range"); \ |
|
1020 |
emit_int32(sf << 31 | 0b011010 << 25 | op << 24 | encode_offset(offset, 19, 5) | rt->encoding_with_zr()); \ |
|
1021 |
} \ |
|
1022 |
||
1023 |
F(cbz_w, 0, 0) |
|
1024 |
F(cbnz_w, 0, 1) |
|
1025 |
F(cbz, 1, 0) |
|
1026 |
F(cbnz, 1, 1) |
|
1027 |
#undef F |
|
1028 |
||
1029 |
#define F(mnemonic, op) \ |
|
1030 |
void mnemonic(Register rt, int bit, address target) { \ |
|
1031 |
intx offset = target - pc(); \ |
|
1032 |
assert (is_offset_in_range(offset, 14), "offset is out of range"); \ |
|
1033 |
assert (0 <= bit && bit < 64, "bit number is out of range"); \ |
|
1034 |
emit_int32((bit >> 5) << 31 | 0b011011 << 25 | op << 24 | (bit & 0x1f) << 19 | \ |
|
1035 |
encode_offset(offset, 14, 5) | rt->encoding_with_zr()); \ |
|
1036 |
} \ |
|
1037 |
||
1038 |
F(tbz, 0) |
|
1039 |
F(tbnz, 1) |
|
1040 |
#undef F |
|
1041 |
||
1042 |
// System instructions |
|
1043 |
||
1044 |
enum DMB_Opt { |
|
1045 |
DMB_ld = 0b1101, |
|
1046 |
DMB_st = 0b1110, |
|
1047 |
DMB_all = 0b1111 |
|
1048 |
}; |
|
1049 |
||
1050 |
#define F(mnemonic, L, op0, op1, CRn, op2, Rt) \ |
|
1051 |
void mnemonic(DMB_Opt option) { \ |
|
1052 |
emit_int32(0b1101010100 << 22 | L << 21 | op0 << 19 | op1 << 16 | \ |
|
1053 |
CRn << 12 | option << 8 | op2 << 5 | Rt); \ |
|
1054 |
} |
|
1055 |
||
1056 |
F(dsb, 0, 0b00, 0b011, 0b0011, 0b100, 0b11111) |
|
1057 |
F(dmb, 0, 0b00, 0b011, 0b0011, 0b101, 0b11111) |
|
1058 |
#undef F |
|
1059 |
||
1060 |
#define F(mnemonic, L, op0, op1, CRn, Rt) \ |
|
1061 |
void mnemonic(int imm) { \ |
|
1062 |
assert ((imm >> 7) == 0, "immediate is out of range"); \ |
|
1063 |
emit_int32(0b1101010100 << 22 | L << 21 | op0 << 19 | op1 << 16 | \ |
|
1064 |
CRn << 12 | imm << 5 | Rt); \ |
|
1065 |
} |
|
1066 |
||
1067 |
F(hint, 0, 0b00, 0b011, 0b0010, 0b11111) |
|
1068 |
#undef F |
|
1069 |
||
1070 |
void nop() { |
|
1071 |
hint(0); |
|
1072 |
} |
|
1073 |
||
1074 |
void yield() { |
|
1075 |
hint(1); |
|
1076 |
} |
|
1077 |
||
1078 |
#define F(mnemonic, opc, op2, LL) \ |
|
1079 |
void mnemonic(int imm = 0) { \ |
|
1080 |
assert ((imm >> 16) == 0, "immediate is out of range"); \ |
|
1081 |
emit_int32(0b11010100 << 24 | opc << 21 | imm << 5 | op2 << 2 | LL); \ |
|
1082 |
} |
|
1083 |
||
1084 |
F(brk, 0b001, 0b000, 0b00) |
|
1085 |
F(hlt, 0b010, 0b000, 0b00) |
|
46525
3a5c833a43de
8176506: C2: loop unswitching and unsafe accesses cause crash
roland
parents:
42664
diff
changeset
|
1086 |
F(dpcs1, 0b101, 0b000, 0b01) |
42664 | 1087 |
#undef F |
1088 |
||
1089 |
enum SystemRegister { // o0<1> op1<3> CRn<4> CRm<4> op2<3> |
|
1090 |
SysReg_NZCV = 0b101101000010000, |
|
1091 |
SysReg_FPCR = 0b101101000100000, |
|
1092 |
}; |
|
1093 |
||
1094 |
void mrs(Register rt, SystemRegister systemReg) { |
|
1095 |
assert ((systemReg >> 15) == 0, "systemReg is out of range"); |
|
1096 |
emit_int32(0b110101010011 << 20 | systemReg << 5 | rt->encoding_with_zr()); |
|
1097 |
} |
|
1098 |
||
1099 |
void msr(SystemRegister systemReg, Register rt) { |
|
1100 |
assert ((systemReg >> 15) == 0, "systemReg is out of range"); |
|
1101 |
emit_int32(0b110101010001 << 20 | systemReg << 5 | rt->encoding_with_zr()); |
|
1102 |
} |
|
1103 |
||
1104 |
// Floating-point instructions |
|
1105 |
||
1106 |
#define F(mnemonic, M, S, type, opcode2) \ |
|
1107 |
void mnemonic(FloatRegister rn, FloatRegister rm) { \ |
|
1108 |
emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ |
|
1109 |
rm->encoding() << 16 | 0b1000 << 10 | rn->encoding() << 5 | opcode2); \ |
|
1110 |
} |
|
1111 |
||
1112 |
F(fcmp_s, 0, 0, 0b00, 0b00000) |
|
1113 |
F(fcmpe_s, 0, 0, 0b00, 0b01000) |
|
1114 |
F(fcmp_d, 0, 0, 0b01, 0b00000) |
|
1115 |
F(fcmpe_d, 0, 0, 0b01, 0b10000) |
|
1116 |
#undef F |
|
1117 |
||
1118 |
#define F(mnemonic, M, S, type, opcode2) \ |
|
1119 |
void mnemonic(FloatRegister rn) { \ |
|
1120 |
emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ |
|
1121 |
0b1000 << 10 | rn->encoding() << 5 | opcode2); \ |
|
1122 |
} |
|
1123 |
||
1124 |
F(fcmp0_s, 0, 0, 0b00, 0b01000) |
|
1125 |
F(fcmpe0_s, 0, 0, 0b00, 0b11000) |
|
1126 |
F(fcmp0_d, 0, 0, 0b01, 0b01000) |
|
1127 |
F(fcmpe0_d, 0, 0, 0b01, 0b11000) |
|
1128 |
#undef F |
|
1129 |
||
1130 |
#define F(mnemonic, M, S, type, op) \ |
|
1131 |
void mnemonic(FloatRegister rn, FloatRegister rm, int nzcv, AsmCondition cond) { \ |
|
1132 |
assert ((nzcv >> 4) == 0, "illegal nzcv"); \ |
|
1133 |
emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ |
|
1134 |
rm->encoding() << 16 | cond << 12 | 0b01 << 10 | rn->encoding() << 5 | op << 4 | nzcv); \ |
|
1135 |
} |
|
1136 |
||
1137 |
F(fccmp_s, 0, 0, 0b00, 0) |
|
1138 |
F(fccmpe_s, 0, 0, 0b00, 1) |
|
1139 |
F(fccmp_d, 0, 0, 0b01, 0) |
|
1140 |
F(fccmpe_d, 0, 0, 0b01, 1) |
|
1141 |
#undef F |
|
1142 |
||
1143 |
#define F(mnemonic, M, S, type) \ |
|
1144 |
void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm, AsmCondition cond) { \ |
|
1145 |
emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ |
|
1146 |
rm->encoding() << 16 | cond << 12 | 0b11 << 10 | rn->encoding() << 5 | rd->encoding()); \ |
|
1147 |
} |
|
1148 |
||
1149 |
F(fcsel_s, 0, 0, 0b00) |
|
1150 |
F(fcsel_d, 0, 0, 0b01) |
|
1151 |
#undef F |
|
1152 |
||
1153 |
#define F(mnemonic, M, S, type, opcode) \ |
|
1154 |
void mnemonic(FloatRegister rd, FloatRegister rn) { \ |
|
1155 |
emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ |
|
1156 |
opcode << 15 | 0b10000 << 10 | rn->encoding() << 5 | rd->encoding()); \ |
|
1157 |
} |
|
1158 |
||
1159 |
F(fmov_s, 0, 0, 0b00, 0b000000) |
|
1160 |
F(fabs_s, 0, 0, 0b00, 0b000001) |
|
1161 |
F(fneg_s, 0, 0, 0b00, 0b000010) |
|
1162 |
F(fsqrt_s, 0, 0, 0b00, 0b000011) |
|
1163 |
F(fcvt_ds, 0, 0, 0b00, 0b000101) |
|
1164 |
F(fcvt_hs, 0, 0, 0b00, 0b000111) |
|
1165 |
F(frintn_s, 0, 0, 0b00, 0b001000) |
|
1166 |
F(frintp_s, 0, 0, 0b00, 0b001001) |
|
1167 |
F(frintm_s, 0, 0, 0b00, 0b001010) |
|
1168 |
F(frintz_s, 0, 0, 0b00, 0b001011) |
|
1169 |
F(frinta_s, 0, 0, 0b00, 0b001100) |
|
1170 |
F(frintx_s, 0, 0, 0b00, 0b001110) |
|
1171 |
F(frinti_s, 0, 0, 0b00, 0b001111) |
|
1172 |
||
1173 |
F(fmov_d, 0, 0, 0b01, 0b000000) |
|
1174 |
F(fabs_d, 0, 0, 0b01, 0b000001) |
|
1175 |
F(fneg_d, 0, 0, 0b01, 0b000010) |
|
1176 |
F(fsqrt_d, 0, 0, 0b01, 0b000011) |
|
1177 |
F(fcvt_sd, 0, 0, 0b01, 0b000100) |
|
1178 |
F(fcvt_hd, 0, 0, 0b01, 0b000111) |
|
1179 |
F(frintn_d, 0, 0, 0b01, 0b001000) |
|
1180 |
F(frintp_d, 0, 0, 0b01, 0b001001) |
|
1181 |
F(frintm_d, 0, 0, 0b01, 0b001010) |
|
1182 |
F(frintz_d, 0, 0, 0b01, 0b001011) |
|
1183 |
F(frinta_d, 0, 0, 0b01, 0b001100) |
|
1184 |
F(frintx_d, 0, 0, 0b01, 0b001110) |
|
1185 |
F(frinti_d, 0, 0, 0b01, 0b001111) |
|
1186 |
||
1187 |
F(fcvt_sh, 0, 0, 0b11, 0b000100) |
|
1188 |
F(fcvt_dh, 0, 0, 0b11, 0b000101) |
|
1189 |
#undef F |
|
1190 |
||
1191 |
#define F(mnemonic, M, S, type, opcode) \ |
|
1192 |
void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm) { \ |
|
1193 |
emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ |
|
1194 |
rm->encoding() << 16 | opcode << 12 | 0b10 << 10 | rn->encoding() << 5 | rd->encoding()); \ |
|
1195 |
} |
|
1196 |
||
1197 |
F(fmul_s, 0, 0, 0b00, 0b0000) |
|
1198 |
F(fdiv_s, 0, 0, 0b00, 0b0001) |
|
1199 |
F(fadd_s, 0, 0, 0b00, 0b0010) |
|
1200 |
F(fsub_s, 0, 0, 0b00, 0b0011) |
|
1201 |
F(fmax_s, 0, 0, 0b00, 0b0100) |
|
1202 |
F(fmin_s, 0, 0, 0b00, 0b0101) |
|
1203 |
F(fmaxnm_s, 0, 0, 0b00, 0b0110) |
|
1204 |
F(fminnm_s, 0, 0, 0b00, 0b0111) |
|
1205 |
F(fnmul_s, 0, 0, 0b00, 0b1000) |
|
1206 |
||
1207 |
F(fmul_d, 0, 0, 0b01, 0b0000) |
|
1208 |
F(fdiv_d, 0, 0, 0b01, 0b0001) |
|
1209 |
F(fadd_d, 0, 0, 0b01, 0b0010) |
|
1210 |
F(fsub_d, 0, 0, 0b01, 0b0011) |
|
1211 |
F(fmax_d, 0, 0, 0b01, 0b0100) |
|
1212 |
F(fmin_d, 0, 0, 0b01, 0b0101) |
|
1213 |
F(fmaxnm_d, 0, 0, 0b01, 0b0110) |
|
1214 |
F(fminnm_d, 0, 0, 0b01, 0b0111) |
|
1215 |
F(fnmul_d, 0, 0, 0b01, 0b1000) |
|
1216 |
#undef F |
|
1217 |
||
1218 |
#define F(mnemonic, M, S, type, o1, o0) \ |
|
1219 |
void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm, FloatRegister ra) { \ |
|
1220 |
emit_int32(M << 31 | S << 29 | 0b11111 << 24 | type << 22 | o1 << 21 | rm->encoding() << 16 | \ |
|
1221 |
o0 << 15 | ra->encoding() << 10 | rn->encoding() << 5 | rd->encoding()); \ |
|
1222 |
} |
|
1223 |
||
1224 |
F(fmadd_s, 0, 0, 0b00, 0, 0) |
|
1225 |
F(fmsub_s, 0, 0, 0b00, 0, 1) |
|
1226 |
F(fnmadd_s, 0, 0, 0b00, 1, 0) |
|
1227 |
F(fnmsub_s, 0, 0, 0b00, 1, 1) |
|
1228 |
||
1229 |
F(fmadd_d, 0, 0, 0b01, 0, 0) |
|
1230 |
F(fmsub_d, 0, 0, 0b01, 0, 1) |
|
1231 |
F(fnmadd_d, 0, 0, 0b01, 1, 0) |
|
1232 |
F(fnmsub_d, 0, 0, 0b01, 1, 1) |
|
1233 |
#undef F |
|
1234 |
||
1235 |
#define F(mnemonic, M, S, type) \ |
|
1236 |
void mnemonic(FloatRegister rd, int imm8) { \ |
|
1237 |
assert ((imm8 >> 8) == 0, "immediate is out of range"); \ |
|
1238 |
emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ |
|
1239 |
imm8 << 13 | 0b100 << 10 | rd->encoding()); \ |
|
1240 |
} |
|
1241 |
||
1242 |
F(fmov_s, 0, 0, 0b00) |
|
1243 |
F(fmov_d, 0, 0, 0b01) |
|
1244 |
#undef F |
|
1245 |
||
1246 |
#define F(mnemonic, sf, S, type, rmode, opcode) \ |
|
1247 |
void mnemonic(Register rd, FloatRegister rn) { \ |
|
1248 |
emit_int32(sf << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ |
|
1249 |
rmode << 19 | opcode << 16 | rn->encoding() << 5 | rd->encoding_with_zr()); \ |
|
1250 |
} |
|
1251 |
||
1252 |
F(fcvtns_ws, 0, 0, 0b00, 0b00, 0b000) |
|
1253 |
F(fcvtnu_ws, 0, 0, 0b00, 0b00, 0b001) |
|
1254 |
F(fcvtas_ws, 0, 0, 0b00, 0b00, 0b100) |
|
1255 |
F(fcvtau_ws, 0, 0, 0b00, 0b00, 0b101) |
|
1256 |
F(fmov_ws, 0, 0, 0b00, 0b00, 0b110) |
|
1257 |
F(fcvtps_ws, 0, 0, 0b00, 0b01, 0b000) |
|
1258 |
F(fcvtpu_ws, 0, 0, 0b00, 0b01, 0b001) |
|
1259 |
F(fcvtms_ws, 0, 0, 0b00, 0b10, 0b000) |
|
1260 |
F(fcvtmu_ws, 0, 0, 0b00, 0b10, 0b001) |
|
1261 |
F(fcvtzs_ws, 0, 0, 0b00, 0b11, 0b000) |
|
1262 |
F(fcvtzu_ws, 0, 0, 0b00, 0b11, 0b001) |
|
1263 |
||
1264 |
F(fcvtns_wd, 0, 0, 0b01, 0b00, 0b000) |
|
1265 |
F(fcvtnu_wd, 0, 0, 0b01, 0b00, 0b001) |
|
1266 |
F(fcvtas_wd, 0, 0, 0b01, 0b00, 0b100) |
|
1267 |
F(fcvtau_wd, 0, 0, 0b01, 0b00, 0b101) |
|
1268 |
F(fcvtps_wd, 0, 0, 0b01, 0b01, 0b000) |
|
1269 |
F(fcvtpu_wd, 0, 0, 0b01, 0b01, 0b001) |
|
1270 |
F(fcvtms_wd, 0, 0, 0b01, 0b10, 0b000) |
|
1271 |
F(fcvtmu_wd, 0, 0, 0b01, 0b10, 0b001) |
|
1272 |
F(fcvtzs_wd, 0, 0, 0b01, 0b11, 0b000) |
|
1273 |
F(fcvtzu_wd, 0, 0, 0b01, 0b11, 0b001) |
|
1274 |
||
1275 |
F(fcvtns_xs, 1, 0, 0b00, 0b00, 0b000) |
|
1276 |
F(fcvtnu_xs, 1, 0, 0b00, 0b00, 0b001) |
|
1277 |
F(fcvtas_xs, 1, 0, 0b00, 0b00, 0b100) |
|
1278 |
F(fcvtau_xs, 1, 0, 0b00, 0b00, 0b101) |
|
1279 |
F(fcvtps_xs, 1, 0, 0b00, 0b01, 0b000) |
|
1280 |
F(fcvtpu_xs, 1, 0, 0b00, 0b01, 0b001) |
|
1281 |
F(fcvtms_xs, 1, 0, 0b00, 0b10, 0b000) |
|
1282 |
F(fcvtmu_xs, 1, 0, 0b00, 0b10, 0b001) |
|
1283 |
F(fcvtzs_xs, 1, 0, 0b00, 0b11, 0b000) |
|
1284 |
F(fcvtzu_xs, 1, 0, 0b00, 0b11, 0b001) |
|
1285 |
||
1286 |
F(fcvtns_xd, 1, 0, 0b01, 0b00, 0b000) |
|
1287 |
F(fcvtnu_xd, 1, 0, 0b01, 0b00, 0b001) |
|
1288 |
F(fcvtas_xd, 1, 0, 0b01, 0b00, 0b100) |
|
1289 |
F(fcvtau_xd, 1, 0, 0b01, 0b00, 0b101) |
|
1290 |
F(fmov_xd, 1, 0, 0b01, 0b00, 0b110) |
|
1291 |
F(fcvtps_xd, 1, 0, 0b01, 0b01, 0b000) |
|
1292 |
F(fcvtpu_xd, 1, 0, 0b01, 0b01, 0b001) |
|
1293 |
F(fcvtms_xd, 1, 0, 0b01, 0b10, 0b000) |
|
1294 |
F(fcvtmu_xd, 1, 0, 0b01, 0b10, 0b001) |
|
1295 |
F(fcvtzs_xd, 1, 0, 0b01, 0b11, 0b000) |
|
1296 |
F(fcvtzu_xd, 1, 0, 0b01, 0b11, 0b001) |
|
1297 |
||
1298 |
F(fmov_xq, 1, 0, 0b10, 0b01, 0b110) |
|
1299 |
#undef F |
|
1300 |
||
1301 |
#define F(mnemonic, sf, S, type, rmode, opcode) \ |
|
1302 |
void mnemonic(FloatRegister rd, Register rn) { \ |
|
1303 |
emit_int32(sf << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ |
|
1304 |
rmode << 19 | opcode << 16 | rn->encoding_with_zr() << 5 | rd->encoding()); \ |
|
1305 |
} |
|
1306 |
||
1307 |
F(scvtf_sw, 0, 0, 0b00, 0b00, 0b010) |
|
1308 |
F(ucvtf_sw, 0, 0, 0b00, 0b00, 0b011) |
|
1309 |
F(fmov_sw, 0, 0, 0b00, 0b00, 0b111) |
|
1310 |
F(scvtf_dw, 0, 0, 0b01, 0b00, 0b010) |
|
1311 |
F(ucvtf_dw, 0, 0, 0b01, 0b00, 0b011) |
|
1312 |
||
1313 |
F(scvtf_sx, 1, 0, 0b00, 0b00, 0b010) |
|
1314 |
F(ucvtf_sx, 1, 0, 0b00, 0b00, 0b011) |
|
1315 |
F(scvtf_dx, 1, 0, 0b01, 0b00, 0b010) |
|
1316 |
F(ucvtf_dx, 1, 0, 0b01, 0b00, 0b011) |
|
1317 |
F(fmov_dx, 1, 0, 0b01, 0b00, 0b111) |
|
1318 |
||
1319 |
F(fmov_qx, 1, 0, 0b10, 0b01, 0b111) |
|
1320 |
#undef F |
|
1321 |
||
1322 |
#define F(mnemonic, opcode) \ |
|
1323 |
void mnemonic(FloatRegister Vd, FloatRegister Vn) { \ |
|
1324 |
emit_int32( opcode << 10 | Vn->encoding() << 5 | Vd->encoding()); \ |
|
1325 |
} |
|
1326 |
||
1327 |
F(aese, 0b0100111000101000010010); |
|
1328 |
F(aesd, 0b0100111000101000010110); |
|
1329 |
F(aesmc, 0b0100111000101000011010); |
|
1330 |
F(aesimc, 0b0100111000101000011110); |
|
1331 |
#undef F |
|
1332 |
||
1333 |
#ifdef COMPILER2 |
|
1334 |
typedef VFP::double_num double_num; |
|
1335 |
typedef VFP::float_num float_num; |
|
1336 |
#endif |
|
1337 |
||
1338 |
void vcnt(FloatRegister Dd, FloatRegister Dn, int quad = 0, int size = 0) { |
|
1339 |
// emitted at VM startup to detect whether the instruction is available |
|
1340 |
assert(!VM_Version::is_initialized() || VM_Version::has_simd(), "simd instruction"); |
|
1341 |
assert(size == 0, "illegal size value"); |
|
1342 |
emit_int32(0x0e205800 | quad << 30 | size << 22 | Dn->encoding() << 5 | Dd->encoding()); |
|
1343 |
} |
|
1344 |
||
1345 |
#ifdef COMPILER2 |
|
1346 |
void addv(FloatRegister Dd, FloatRegister Dm, int quad, int size) { |
|
1347 |
// emitted at VM startup to detect whether the instruction is available |
|
1348 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1349 |
assert((quad & ~1) == 0, "illegal value"); |
|
1350 |
assert(size >= 0 && size < 3, "illegal value"); |
|
1351 |
assert(((size << 1) | quad) != 4, "illegal values (size 2, quad 0)"); |
|
1352 |
emit_int32(0x0e31b800 | quad << 30 | size << 22 | Dm->encoding() << 5 | Dd->encoding()); |
|
1353 |
} |
|
1354 |
||
1355 |
enum VElem_Size { |
|
1356 |
VELEM_SIZE_8 = 0x00, |
|
1357 |
VELEM_SIZE_16 = 0x01, |
|
1358 |
VELEM_SIZE_32 = 0x02, |
|
1359 |
VELEM_SIZE_64 = 0x03 |
|
1360 |
}; |
|
1361 |
||
1362 |
enum VLD_Type { |
|
1363 |
VLD1_TYPE_1_REG = 0b0111, |
|
1364 |
VLD1_TYPE_2_REGS = 0b1010, |
|
1365 |
VLD1_TYPE_3_REGS = 0b0110, |
|
1366 |
VLD1_TYPE_4_REGS = 0b0010 |
|
1367 |
}; |
|
1368 |
||
1369 |
enum VFloat_Arith_Size { |
|
1370 |
VFA_SIZE_F32 = 0b0, |
|
1371 |
VFA_SIZE_F64 = 0b1 |
|
1372 |
}; |
|
1373 |
||
1374 |
#define F(mnemonic, U, S, P) \ |
|
1375 |
void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \ |
|
1376 |
int size, int quad) { \ |
|
1377 |
assert(VM_Version::has_simd(), "simd instruction"); \ |
|
1378 |
assert(!(size == VFA_SIZE_F64 && !quad), "reserved"); \ |
|
1379 |
assert((size & 1) == size, "overflow"); \ |
|
1380 |
emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | \ |
|
1381 |
S << 23 | size << 22 | 1 << 21 | P << 11 | 1 << 10 | \ |
|
1382 |
fm->encoding() << 16 | \ |
|
1383 |
fn->encoding() << 5 | \ |
|
1384 |
fd->encoding()); \ |
|
1385 |
} |
|
1386 |
||
1387 |
F(vaddF, 0, 0, 0b11010) // Vd = Vn + Vm (float) |
|
1388 |
F(vsubF, 0, 1, 0b11010) // Vd = Vn - Vm (float) |
|
1389 |
F(vmulF, 1, 0, 0b11011) // Vd = Vn - Vm (float) |
|
1390 |
F(vdivF, 1, 0, 0b11111) // Vd = Vn / Vm (float) |
|
1391 |
#undef F |
|
1392 |
||
1393 |
#define F(mnemonic, U) \ |
|
1394 |
void mnemonic(FloatRegister fd, FloatRegister fm, FloatRegister fn, \ |
|
1395 |
int size, int quad) { \ |
|
1396 |
assert(VM_Version::has_simd(), "simd instruction"); \ |
|
1397 |
assert(!(size == VELEM_SIZE_64 && !quad), "reserved"); \ |
|
1398 |
assert((size & 0b11) == size, "overflow"); \ |
|
1399 |
int R = 0; /* rounding */ \ |
|
1400 |
int S = 0; /* saturating */ \ |
|
1401 |
emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | size << 22 | \ |
|
1402 |
1 << 21 | R << 12 | S << 11 | 0b10001 << 10 | \ |
|
1403 |
fm->encoding() << 16 | \ |
|
1404 |
fn->encoding() << 5 | \ |
|
1405 |
fd->encoding()); \ |
|
1406 |
} |
|
1407 |
||
1408 |
F(vshlSI, 0) // Vd = ashift(Vn,Vm) (int) |
|
1409 |
F(vshlUI, 1) // Vd = lshift(Vn,Vm) (int) |
|
1410 |
#undef F |
|
1411 |
||
1412 |
#define F(mnemonic, U, P, M) \ |
|
1413 |
void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \ |
|
1414 |
int size, int quad) { \ |
|
1415 |
assert(VM_Version::has_simd(), "simd instruction"); \ |
|
1416 |
assert(!(size == VELEM_SIZE_64 && !quad), "reserved"); \ |
|
1417 |
assert(!(size == VELEM_SIZE_64 && M), "reserved"); \ |
|
1418 |
assert((size & 0b11) == size, "overflow"); \ |
|
1419 |
emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | size << 22 | \ |
|
1420 |
1 << 21 | P << 11 | 1 << 10 | \ |
|
1421 |
fm->encoding() << 16 | \ |
|
1422 |
fn->encoding() << 5 | \ |
|
1423 |
fd->encoding()); \ |
|
1424 |
} |
|
1425 |
||
1426 |
F(vmulI, 0, 0b10011, true) // Vd = Vn * Vm (int) |
|
1427 |
F(vaddI, 0, 0b10000, false) // Vd = Vn + Vm (int) |
|
1428 |
F(vsubI, 1, 0b10000, false) // Vd = Vn - Vm (int) |
|
1429 |
#undef F |
|
1430 |
||
1431 |
#define F(mnemonic, U, O) \ |
|
1432 |
void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \ |
|
1433 |
int quad) { \ |
|
1434 |
assert(VM_Version::has_simd(), "simd instruction"); \ |
|
1435 |
emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | O << 22 | \ |
|
1436 |
1 << 21 | 0b00011 << 11 | 1 << 10 | \ |
|
1437 |
fm->encoding() << 16 | \ |
|
1438 |
fn->encoding() << 5 | \ |
|
1439 |
fd->encoding()); \ |
|
1440 |
} |
|
1441 |
||
1442 |
F(vandI, 0, 0b00) // Vd = Vn & Vm (int) |
|
1443 |
F(vorI, 0, 0b10) // Vd = Vn | Vm (int) |
|
1444 |
F(vxorI, 1, 0b00) // Vd = Vn ^ Vm (int) |
|
1445 |
#undef F |
|
1446 |
||
1447 |
void vnegI(FloatRegister fd, FloatRegister fn, int size, int quad) { |
|
1448 |
int U = 1; |
|
1449 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1450 |
assert(quad || size != VELEM_SIZE_64, "reserved"); |
|
1451 |
emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | |
|
1452 |
size << 22 | 0b100000101110 << 10 | |
|
1453 |
fn->encoding() << 5 | |
|
1454 |
fd->encoding() << 0); |
|
1455 |
} |
|
1456 |
||
1457 |
void vshli(FloatRegister fd, FloatRegister fn, int esize, int imm, int quad) { |
|
1458 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1459 |
||
1460 |
if (imm >= esize) { |
|
1461 |
// maximum shift gives all zeroes, direction doesn't matter, |
|
1462 |
// but only available for shift right |
|
1463 |
vshri(fd, fn, esize, esize, true /* unsigned */, quad); |
|
1464 |
return; |
|
1465 |
} |
|
1466 |
assert(imm >= 0 && imm < esize, "out of range"); |
|
1467 |
||
1468 |
int imm7 = esize + imm; |
|
1469 |
int immh = imm7 >> 3; |
|
1470 |
assert(immh != 0, "encoding constraint"); |
|
1471 |
assert((uint)immh < 16, "sanity"); |
|
1472 |
assert(((immh >> 2) | quad) != 0b10, "reserved"); |
|
1473 |
emit_int32(quad << 30 | 0b011110 << 23 | imm7 << 16 | |
|
1474 |
0b010101 << 10 | fn->encoding() << 5 | fd->encoding() << 0); |
|
1475 |
} |
|
1476 |
||
1477 |
void vshri(FloatRegister fd, FloatRegister fn, int esize, int imm, |
|
1478 |
bool U /* unsigned */, int quad) { |
|
1479 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1480 |
assert(imm > 0, "out of range"); |
|
1481 |
if (imm >= esize) { |
|
1482 |
// maximum shift (all zeroes) |
|
1483 |
imm = esize; |
|
1484 |
} |
|
1485 |
int imm7 = 2 * esize - imm ; |
|
1486 |
int immh = imm7 >> 3; |
|
1487 |
assert(immh != 0, "encoding constraint"); |
|
1488 |
assert((uint)immh < 16, "sanity"); |
|
1489 |
assert(((immh >> 2) | quad) != 0b10, "reserved"); |
|
1490 |
emit_int32(quad << 30 | U << 29 | 0b011110 << 23 | imm7 << 16 | |
|
1491 |
0b000001 << 10 | fn->encoding() << 5 | fd->encoding() << 0); |
|
1492 |
} |
|
1493 |
void vshrUI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) { |
|
1494 |
vshri(fd, fm, size, imm, true /* unsigned */, quad); |
|
1495 |
} |
|
1496 |
void vshrSI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) { |
|
1497 |
vshri(fd, fm, size, imm, false /* signed */, quad); |
|
1498 |
} |
|
1499 |
||
1500 |
void vld1(FloatRegister Vt, Address addr, VElem_Size size, int bits) { |
|
1501 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1502 |
assert(bits == 128, "unsupported"); |
|
1503 |
assert(addr.disp() == 0 || addr.disp() == 16, "must be"); |
|
1504 |
int type = 0b11; // 2D |
|
1505 |
int quad = 1; |
|
1506 |
int L = 1; |
|
1507 |
int opcode = VLD1_TYPE_1_REG; |
|
1508 |
emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | |
|
1509 |
Vt->encoding() << 0 | addr.encoding_simd()); |
|
1510 |
} |
|
1511 |
||
1512 |
void vst1(FloatRegister Vt, Address addr, VElem_Size size, int bits) { |
|
1513 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1514 |
assert(bits == 128, "unsupported"); |
|
1515 |
assert(addr.disp() == 0 || addr.disp() == 16, "must be"); |
|
1516 |
int type = 0b11; // 2D |
|
1517 |
int quad = 1; |
|
1518 |
int L = 0; |
|
1519 |
int opcode = VLD1_TYPE_1_REG; |
|
1520 |
emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | |
|
1521 |
Vt->encoding() << 0 | addr.encoding_simd()); |
|
1522 |
} |
|
1523 |
||
1524 |
void vld1(FloatRegister Vt, FloatRegister Vt2, Address addr, VElem_Size size, int bits) { |
|
1525 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1526 |
assert(bits == 128, "unsupported"); |
|
1527 |
assert(Vt->successor() == Vt2, "Registers must be ordered"); |
|
1528 |
assert(addr.disp() == 0 || addr.disp() == 32, "must be"); |
|
1529 |
int type = 0b11; // 2D |
|
1530 |
int quad = 1; |
|
1531 |
int L = 1; |
|
1532 |
int opcode = VLD1_TYPE_2_REGS; |
|
1533 |
emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | |
|
1534 |
Vt->encoding() << 0 | addr.encoding_simd()); |
|
1535 |
} |
|
1536 |
||
1537 |
void vst1(FloatRegister Vt, FloatRegister Vt2, Address addr, VElem_Size size, int bits) { |
|
1538 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1539 |
assert(Vt->successor() == Vt2, "Registers must be ordered"); |
|
1540 |
assert(bits == 128, "unsupported"); |
|
1541 |
assert(addr.disp() == 0 || addr.disp() == 32, "must be"); |
|
1542 |
int type = 0b11; // 2D |
|
1543 |
int quad = 1; |
|
1544 |
int L = 0; |
|
1545 |
int opcode = VLD1_TYPE_2_REGS; |
|
1546 |
emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | |
|
1547 |
Vt->encoding() << 0 | addr.encoding_simd()); |
|
1548 |
} |
|
1549 |
||
1550 |
void vld1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, |
|
1551 |
Address addr, VElem_Size size, int bits) { |
|
1552 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1553 |
assert(bits == 128, "unsupported"); |
|
1554 |
assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, |
|
1555 |
"Registers must be ordered"); |
|
1556 |
assert(addr.disp() == 0 || addr.disp() == 48, "must be"); |
|
1557 |
int type = 0b11; // 2D |
|
1558 |
int quad = 1; |
|
1559 |
int L = 1; |
|
1560 |
int opcode = VLD1_TYPE_3_REGS; |
|
1561 |
emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | |
|
1562 |
Vt->encoding() << 0 | addr.encoding_simd()); |
|
1563 |
} |
|
1564 |
||
1565 |
void vst1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, |
|
1566 |
Address addr, VElem_Size size, int bits) { |
|
1567 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1568 |
assert(bits == 128, "unsupported"); |
|
1569 |
assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, |
|
1570 |
"Registers must be ordered"); |
|
1571 |
assert(addr.disp() == 0 || addr.disp() == 48, "must be"); |
|
1572 |
int type = 0b11; // 2D |
|
1573 |
int quad = 1; |
|
1574 |
int L = 0; |
|
1575 |
int opcode = VLD1_TYPE_3_REGS; |
|
1576 |
emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | |
|
1577 |
Vt->encoding() << 0 | addr.encoding_simd()); |
|
1578 |
} |
|
1579 |
||
1580 |
void vld1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, |
|
1581 |
FloatRegister Vt4, Address addr, VElem_Size size, int bits) { |
|
1582 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1583 |
assert(bits == 128, "unsupported"); |
|
1584 |
assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && |
|
1585 |
Vt3->successor() == Vt4, "Registers must be ordered"); |
|
1586 |
assert(addr.disp() == 0 || addr.disp() == 64, "must be"); |
|
1587 |
int type = 0b11; // 2D |
|
1588 |
int quad = 1; |
|
1589 |
int L = 1; |
|
1590 |
int opcode = VLD1_TYPE_4_REGS; |
|
1591 |
emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | |
|
1592 |
Vt->encoding() << 0 | addr.encoding_simd()); |
|
1593 |
} |
|
1594 |
||
1595 |
void vst1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, |
|
1596 |
FloatRegister Vt4, Address addr, VElem_Size size, int bits) { |
|
1597 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1598 |
assert(bits == 128, "unsupported"); |
|
1599 |
assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && |
|
1600 |
Vt3->successor() == Vt4, "Registers must be ordered"); |
|
1601 |
assert(addr.disp() == 0 || addr.disp() == 64, "must be"); |
|
1602 |
int type = 0b11; // 2D |
|
1603 |
int quad = 1; |
|
1604 |
int L = 0; |
|
1605 |
int opcode = VLD1_TYPE_4_REGS; |
|
1606 |
emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | |
|
1607 |
Vt->encoding() << 0 | addr.encoding_simd()); |
|
1608 |
} |
|
1609 |
||
1610 |
void rev32(FloatRegister Vd, FloatRegister Vn, VElem_Size size, int quad) { |
|
1611 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1612 |
assert(size == VELEM_SIZE_8 || size == VELEM_SIZE_16, "must be"); |
|
1613 |
emit_int32(quad << 30 | 0b101110 << 24 | size << 22 | |
|
1614 |
0b100000000010 << 10 | Vn->encoding() << 5 | Vd->encoding()); |
|
1615 |
} |
|
1616 |
||
1617 |
void eor(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, VElem_Size size, int quad) { |
|
1618 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1619 |
assert(size == VELEM_SIZE_8, "must be"); |
|
1620 |
emit_int32(quad << 30 | 0b101110001 << 21 | Vm->encoding() << 16 | |
|
1621 |
0b000111 << 10 | Vn->encoding() << 5 | Vd->encoding()); |
|
1622 |
} |
|
1623 |
||
1624 |
void orr(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, VElem_Size size, int quad) { |
|
1625 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1626 |
assert(size == VELEM_SIZE_8, "must be"); |
|
1627 |
emit_int32(quad << 30 | 0b001110101 << 21 | Vm->encoding() << 16 | |
|
1628 |
0b000111 << 10 | Vn->encoding() << 5 | Vd->encoding()); |
|
1629 |
} |
|
1630 |
||
1631 |
void vmovI(FloatRegister Dd, int imm8, VElem_Size size, int quad) { |
|
1632 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1633 |
assert(imm8 >= 0 && imm8 < 256, "out of range"); |
|
1634 |
int op; |
|
1635 |
int cmode; |
|
1636 |
switch (size) { |
|
1637 |
case VELEM_SIZE_8: |
|
1638 |
op = 0; |
|
1639 |
cmode = 0b1110; |
|
1640 |
break; |
|
1641 |
case VELEM_SIZE_16: |
|
1642 |
op = 0; |
|
1643 |
cmode = 0b1000; |
|
1644 |
break; |
|
1645 |
case VELEM_SIZE_32: |
|
1646 |
op = 0; |
|
1647 |
cmode = 0b0000; |
|
1648 |
break; |
|
1649 |
default: |
|
1650 |
cmode = 0; |
|
1651 |
ShouldNotReachHere(); |
|
1652 |
} |
|
1653 |
int abc = imm8 >> 5; |
|
1654 |
int defgh = imm8 & 0b11111; |
|
1655 |
emit_int32(quad << 30 | op << 29 | 0b1111 << 24 | |
|
1656 |
abc << 16 | cmode << 12 | 0b01 << 10 | |
|
1657 |
defgh << 5 | Dd->encoding() << 0); |
|
1658 |
} |
|
1659 |
||
1660 |
void vdupI(FloatRegister Dd, Register Rn, VElem_Size size, int quad) { |
|
1661 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1662 |
assert(size <= 3, "unallocated encoding"); |
|
1663 |
assert(size != 3 || quad == 1, "reserved"); |
|
1664 |
int imm5 = 1 << size; |
|
1665 |
#ifdef ASSERT |
|
1666 |
switch (size) { |
|
1667 |
case VELEM_SIZE_8: |
|
1668 |
assert(imm5 == 0b00001, "sanity"); |
|
1669 |
break; |
|
1670 |
case VELEM_SIZE_16: |
|
1671 |
assert(imm5 == 0b00010, "sanity"); |
|
1672 |
break; |
|
1673 |
case VELEM_SIZE_32: |
|
1674 |
assert(imm5 == 0b00100, "sanity"); |
|
1675 |
break; |
|
1676 |
case VELEM_SIZE_64: |
|
1677 |
assert(imm5 == 0b01000, "sanity"); |
|
1678 |
break; |
|
1679 |
default: |
|
1680 |
ShouldNotReachHere(); |
|
1681 |
} |
|
1682 |
#endif |
|
1683 |
emit_int32(quad << 30 | 0b111 << 25 | 0b11 << 10 | |
|
1684 |
imm5 << 16 | Rn->encoding() << 5 | |
|
1685 |
Dd->encoding() << 0); |
|
1686 |
} |
|
1687 |
||
1688 |
void vdup(FloatRegister Vd, FloatRegister Vn, VElem_Size size, int quad) { |
|
1689 |
assert(VM_Version::has_simd(), "simd instruction"); |
|
1690 |
int index = 0; |
|
1691 |
int bytes = 1 << size; |
|
1692 |
int range = 16 / bytes; |
|
1693 |
assert(index < range, "overflow"); |
|
1694 |
||
1695 |
assert(size != VELEM_SIZE_64 || quad, "reserved"); |
|
1696 |
assert(8 << VELEM_SIZE_8 == 8, "sanity"); |
|
1697 |
assert(8 << VELEM_SIZE_16 == 16, "sanity"); |
|
1698 |
assert(8 << VELEM_SIZE_32 == 32, "sanity"); |
|
1699 |
assert(8 << VELEM_SIZE_64 == 64, "sanity"); |
|
1700 |
||
1701 |
int imm5 = (index << (size + 1)) | bytes; |
|
1702 |
||
1703 |
emit_int32(quad << 30 | 0b001110000 << 21 | imm5 << 16 | 0b000001 << 10 | |
|
1704 |
Vn->encoding() << 5 | Vd->encoding() << 0); |
|
1705 |
} |
|
1706 |
||
1707 |
void vdupF(FloatRegister Vd, FloatRegister Vn, int quad) { |
|
1708 |
vdup(Vd, Vn, VELEM_SIZE_32, quad); |
|
1709 |
} |
|
1710 |
||
1711 |
void vdupD(FloatRegister Vd, FloatRegister Vn, int quad) { |
|
1712 |
vdup(Vd, Vn, VELEM_SIZE_64, quad); |
|
1713 |
} |
|
1714 |
#endif |
|
1715 |
}; |
|
1716 |
||
1717 |
||
1718 |
#endif // CPU_ARM_VM_ASSEMBLER_ARM_64_HPP |