author | jwilhelm |
Tue, 20 Mar 2018 04:36:44 +0100 | |
changeset 49412 | 2c3b9dbba7bc |
parent 48117 | src/hotspot/share/gc/g1/g1DefaultPolicy.cpp@d64722b0b371 |
parent 49392 | src/hotspot/share/gc/g1/g1DefaultPolicy.cpp@2956d0ece7a9 |
child 49607 | acffe6ff3ae7 |
permissions | -rw-r--r-- |
38076 | 1 |
/* |
49375 | 2 |
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. |
38076 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
20 |
* or visit www.oracle.com if you need additional information or have any |
|
21 |
* questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
#include "precompiled.hpp" |
|
26 |
#include "gc/g1/concurrentMarkThread.inline.hpp" |
|
27 |
#include "gc/g1/g1Analytics.hpp" |
|
28 |
#include "gc/g1/g1CollectedHeap.inline.hpp" |
|
29 |
#include "gc/g1/g1CollectionSet.hpp" |
|
30 |
#include "gc/g1/g1ConcurrentMark.hpp" |
|
47789
a77a7d3bc4f6
8149127: Rename g1/concurrentMarkThread.* to g1/g1ConcurrentMarkThread.*
tschatzl
parents:
47681
diff
changeset
|
31 |
#include "gc/g1/g1ConcurrentRefine.hpp" |
38172
90f405aac699
8155524: HotCardCache shouldn't be part of ConcurrentG1Refine
kbarrett
parents:
38162
diff
changeset
|
32 |
#include "gc/g1/g1HotCardCache.hpp" |
38076 | 33 |
#include "gc/g1/g1IHOPControl.hpp" |
34 |
#include "gc/g1/g1GCPhaseTimes.hpp" |
|
35 |
#include "gc/g1/g1Policy.hpp" |
|
38186
ccaa890f8617
8155943: Move G1Eden/SurvivorRegions into their own source files
mgerdin
parents:
38185
diff
changeset
|
36 |
#include "gc/g1/g1SurvivorRegions.hpp" |
38076 | 37 |
#include "gc/g1/g1YoungGenSizer.hpp" |
38 |
#include "gc/g1/heapRegion.inline.hpp" |
|
39 |
#include "gc/g1/heapRegionRemSet.hpp" |
|
40 |
#include "gc/shared/gcPolicyCounters.hpp" |
|
38183
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
41 |
#include "logging/logStream.hpp" |
38076 | 42 |
#include "runtime/arguments.hpp" |
43 |
#include "runtime/java.hpp" |
|
44 |
#include "runtime/mutexLocker.hpp" |
|
45 |
#include "utilities/debug.hpp" |
|
38162
4e2c3433a3ae
8150393: Maintain the set of survivor regions in an array between GCs
mgerdin
parents:
38107
diff
changeset
|
46 |
#include "utilities/growableArray.hpp" |
38076 | 47 |
#include "utilities/pair.hpp" |
48 |
||
49375 | 49 |
G1Policy::G1Policy(STWGCTimer* gc_timer) : |
38076 | 50 |
_predictor(G1ConfidencePercent / 100.0), |
51 |
_analytics(new G1Analytics(&_predictor)), |
|
52 |
_mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)), |
|
53 |
_ihop_control(create_ihop_control(&_predictor)), |
|
48117
d64722b0b371
8080345: With perm gen gone, perfdata counter sun.gc.policy.generations should be 2, not 3
ehelin
parents:
47789
diff
changeset
|
54 |
_policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)), |
38076 | 55 |
_young_list_fixed_length(0), |
38185
c432f8466c73
8155634: Clean out old logging and dead code from SurvRateGroup
mgerdin
parents:
38183
diff
changeset
|
56 |
_short_lived_surv_rate_group(new SurvRateGroup()), |
c432f8466c73
8155634: Clean out old logging and dead code from SurvRateGroup
mgerdin
parents:
38183
diff
changeset
|
57 |
_survivor_surv_rate_group(new SurvRateGroup()), |
38076 | 58 |
_reserve_factor((double) G1ReservePercent / 100.0), |
59 |
_reserve_regions(0), |
|
60 |
_rs_lengths_prediction(0), |
|
61 |
_bytes_allocated_in_old_since_last_gc(0), |
|
62 |
_initial_mark_to_mixed(), |
|
63 |
_collection_set(NULL), |
|
64 |
_g1(NULL), |
|
46795
623a5e42deb6
8173335: Improve logging for j.l.ref.reference processing
sangheki
parents:
41284
diff
changeset
|
65 |
_phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)), |
38076 | 66 |
_tenuring_threshold(MaxTenuringThreshold), |
67 |
_max_survivor_regions(0), |
|
41284
b4276ec89d0d
8164482: [REDO] G1 does not implement millis_since_last_gc which is needed by RMI GC
jprovino
parents:
40914
diff
changeset
|
68 |
_survivors_age_table(true), |
b4276ec89d0d
8164482: [REDO] G1 does not implement millis_since_last_gc which is needed by RMI GC
jprovino
parents:
40914
diff
changeset
|
69 |
_collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC) { } |
38076 | 70 |
|
49375 | 71 |
G1Policy::~G1Policy() { |
38076 | 72 |
delete _ihop_control; |
73 |
} |
|
74 |
||
49375 | 75 |
G1CollectorState* G1Policy::collector_state() const { return _g1->collector_state(); } |
38076 | 76 |
|
49375 | 77 |
void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) { |
38076 | 78 |
_g1 = g1h; |
79 |
_collection_set = collection_set; |
|
80 |
||
81 |
assert(Heap_lock->owned_by_self(), "Locking discipline."); |
|
82 |
||
83 |
if (!adaptive_young_list_length()) { |
|
84 |
_young_list_fixed_length = _young_gen_sizer.min_desired_young_length(); |
|
85 |
} |
|
86 |
_young_gen_sizer.adjust_max_new_size(_g1->max_regions()); |
|
87 |
||
88 |
_free_regions_at_end_of_collection = _g1->num_free_regions(); |
|
89 |
||
90 |
update_young_list_max_and_target_length(); |
|
91 |
// We may immediately start allocating regions and placing them on the |
|
92 |
// collection set list. Initialize the per-collection set info |
|
93 |
_collection_set->start_incremental_building(); |
|
94 |
} |
|
95 |
||
49375 | 96 |
void G1Policy::note_gc_start() { |
38076 | 97 |
phase_times()->note_gc_start(); |
98 |
} |
|
99 |
||
49392
2956d0ece7a9
8199282: Remove ValueObj class for allocation subclassing for gc code
coleenp
parents:
49375
diff
changeset
|
100 |
class G1YoungLengthPredictor { |
40000 | 101 |
const bool _during_cm; |
102 |
const double _base_time_ms; |
|
103 |
const double _base_free_regions; |
|
104 |
const double _target_pause_time_ms; |
|
49375 | 105 |
const G1Policy* const _policy; |
38076 | 106 |
|
40000 | 107 |
public: |
108 |
G1YoungLengthPredictor(bool during_cm, |
|
109 |
double base_time_ms, |
|
110 |
double base_free_regions, |
|
111 |
double target_pause_time_ms, |
|
49375 | 112 |
const G1Policy* policy) : |
40000 | 113 |
_during_cm(during_cm), |
114 |
_base_time_ms(base_time_ms), |
|
115 |
_base_free_regions(base_free_regions), |
|
116 |
_target_pause_time_ms(target_pause_time_ms), |
|
117 |
_policy(policy) {} |
|
118 |
||
119 |
bool will_fit(uint young_length) const { |
|
120 |
if (young_length >= _base_free_regions) { |
|
121 |
// end condition 1: not enough space for the young regions |
|
122 |
return false; |
|
123 |
} |
|
38076 | 124 |
|
40000 | 125 |
const double accum_surv_rate = _policy->accum_yg_surv_rate_pred((int) young_length - 1); |
126 |
const size_t bytes_to_copy = |
|
127 |
(size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes); |
|
128 |
const double copy_time_ms = |
|
129 |
_policy->analytics()->predict_object_copy_time_ms(bytes_to_copy, _during_cm); |
|
130 |
const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length); |
|
131 |
const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms; |
|
132 |
if (pause_time_ms > _target_pause_time_ms) { |
|
133 |
// end condition 2: prediction is over the target pause time |
|
134 |
return false; |
|
135 |
} |
|
136 |
||
137 |
const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes; |
|
38076 | 138 |
|
40000 | 139 |
// When copying, we will likely need more bytes free than is live in the region. |
140 |
// Add some safety margin to factor in the confidence of our guess, and the |
|
141 |
// natural expected waste. |
|
142 |
// (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty |
|
143 |
// of the calculation: the lower the confidence, the more headroom. |
|
144 |
// (100 + TargetPLABWastePct) represents the increase in expected bytes during |
|
145 |
// copying due to anticipated waste in the PLABs. |
|
146 |
const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0; |
|
147 |
const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy); |
|
38076 | 148 |
|
40000 | 149 |
if (expected_bytes_to_copy > free_bytes) { |
150 |
// end condition 3: out-of-space |
|
151 |
return false; |
|
152 |
} |
|
153 |
||
154 |
// success! |
|
155 |
return true; |
|
38076 | 156 |
} |
40000 | 157 |
}; |
38076 | 158 |
|
49375 | 159 |
void G1Policy::record_new_heap_size(uint new_number_of_regions) { |
38076 | 160 |
// re-calculate the necessary reserve |
161 |
double reserve_regions_d = (double) new_number_of_regions * _reserve_factor; |
|
162 |
// We use ceiling so that if reserve_regions_d is > 0.0 (but |
|
163 |
// smaller than 1.0) we'll get 1. |
|
164 |
_reserve_regions = (uint) ceil(reserve_regions_d); |
|
165 |
||
166 |
_young_gen_sizer.heap_size_changed(new_number_of_regions); |
|
167 |
||
168 |
_ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes); |
|
169 |
} |
|
170 |
||
49375 | 171 |
uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const { |
38076 | 172 |
uint desired_min_length = 0; |
173 |
if (adaptive_young_list_length()) { |
|
174 |
if (_analytics->num_alloc_rate_ms() > 3) { |
|
175 |
double now_sec = os::elapsedTime(); |
|
176 |
double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0; |
|
177 |
double alloc_rate_ms = _analytics->predict_alloc_rate_ms(); |
|
178 |
desired_min_length = (uint) ceil(alloc_rate_ms * when_ms); |
|
179 |
} else { |
|
180 |
// otherwise we don't have enough info to make the prediction |
|
181 |
} |
|
182 |
} |
|
183 |
desired_min_length += base_min_length; |
|
184 |
// make sure we don't go below any user-defined minimum bound |
|
185 |
return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length); |
|
186 |
} |
|
187 |
||
49375 | 188 |
uint G1Policy::calculate_young_list_desired_max_length() const { |
38076 | 189 |
// Here, we might want to also take into account any additional |
190 |
// constraints (i.e., user-defined minimum bound). Currently, we |
|
191 |
// effectively don't set this bound. |
|
192 |
return _young_gen_sizer.max_desired_young_length(); |
|
193 |
} |
|
194 |
||
49375 | 195 |
uint G1Policy::update_young_list_max_and_target_length() { |
38076 | 196 |
return update_young_list_max_and_target_length(_analytics->predict_rs_lengths()); |
197 |
} |
|
198 |
||
49375 | 199 |
uint G1Policy::update_young_list_max_and_target_length(size_t rs_lengths) { |
38076 | 200 |
uint unbounded_target_length = update_young_list_target_length(rs_lengths); |
201 |
update_max_gc_locker_expansion(); |
|
202 |
return unbounded_target_length; |
|
203 |
} |
|
204 |
||
49375 | 205 |
uint G1Policy::update_young_list_target_length(size_t rs_lengths) { |
38076 | 206 |
YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths); |
207 |
_young_list_target_length = young_lengths.first; |
|
208 |
return young_lengths.second; |
|
209 |
} |
|
210 |
||
49375 | 211 |
G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_lengths) const { |
38076 | 212 |
YoungTargetLengths result; |
213 |
||
214 |
// Calculate the absolute and desired min bounds first. |
|
215 |
||
216 |
// This is how many young regions we already have (currently: the survivors). |
|
38183
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
217 |
const uint base_min_length = _g1->survivor_regions_count(); |
38076 | 218 |
uint desired_min_length = calculate_young_list_desired_min_length(base_min_length); |
219 |
// This is the absolute minimum young length. Ensure that we |
|
220 |
// will at least have one eden region available for allocation. |
|
38183
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
221 |
uint absolute_min_length = base_min_length + MAX2(_g1->eden_regions_count(), (uint)1); |
38076 | 222 |
// If we shrank the young list target it should not shrink below the current size. |
223 |
desired_min_length = MAX2(desired_min_length, absolute_min_length); |
|
224 |
// Calculate the absolute and desired max bounds. |
|
225 |
||
226 |
uint desired_max_length = calculate_young_list_desired_max_length(); |
|
227 |
||
228 |
uint young_list_target_length = 0; |
|
229 |
if (adaptive_young_list_length()) { |
|
230 |
if (collector_state()->gcs_are_young()) { |
|
231 |
young_list_target_length = |
|
232 |
calculate_young_list_target_length(rs_lengths, |
|
233 |
base_min_length, |
|
234 |
desired_min_length, |
|
235 |
desired_max_length); |
|
236 |
} else { |
|
237 |
// Don't calculate anything and let the code below bound it to |
|
238 |
// the desired_min_length, i.e., do the next GC as soon as |
|
239 |
// possible to maximize how many old regions we can add to it. |
|
240 |
} |
|
241 |
} else { |
|
242 |
// The user asked for a fixed young gen so we'll fix the young gen |
|
243 |
// whether the next GC is young or mixed. |
|
244 |
young_list_target_length = _young_list_fixed_length; |
|
245 |
} |
|
246 |
||
247 |
result.second = young_list_target_length; |
|
248 |
||
249 |
// We will try our best not to "eat" into the reserve. |
|
250 |
uint absolute_max_length = 0; |
|
251 |
if (_free_regions_at_end_of_collection > _reserve_regions) { |
|
252 |
absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions; |
|
253 |
} |
|
254 |
if (desired_max_length > absolute_max_length) { |
|
255 |
desired_max_length = absolute_max_length; |
|
256 |
} |
|
257 |
||
258 |
// Make sure we don't go over the desired max length, nor under the |
|
259 |
// desired min length. In case they clash, desired_min_length wins |
|
260 |
// which is why that test is second. |
|
261 |
if (young_list_target_length > desired_max_length) { |
|
262 |
young_list_target_length = desired_max_length; |
|
263 |
} |
|
264 |
if (young_list_target_length < desired_min_length) { |
|
265 |
young_list_target_length = desired_min_length; |
|
266 |
} |
|
267 |
||
268 |
assert(young_list_target_length > base_min_length, |
|
269 |
"we should be able to allocate at least one eden region"); |
|
270 |
assert(young_list_target_length >= absolute_min_length, "post-condition"); |
|
271 |
||
272 |
result.first = young_list_target_length; |
|
273 |
return result; |
|
274 |
} |
|
275 |
||
276 |
uint |
|
49375 | 277 |
G1Policy::calculate_young_list_target_length(size_t rs_lengths, |
38076 | 278 |
uint base_min_length, |
279 |
uint desired_min_length, |
|
280 |
uint desired_max_length) const { |
|
281 |
assert(adaptive_young_list_length(), "pre-condition"); |
|
282 |
assert(collector_state()->gcs_are_young(), "only call this for young GCs"); |
|
283 |
||
284 |
// In case some edge-condition makes the desired max length too small... |
|
285 |
if (desired_max_length <= desired_min_length) { |
|
286 |
return desired_min_length; |
|
287 |
} |
|
288 |
||
289 |
// We'll adjust min_young_length and max_young_length not to include |
|
290 |
// the already allocated young regions (i.e., so they reflect the |
|
291 |
// min and max eden regions we'll allocate). The base_min_length |
|
292 |
// will be reflected in the predictions by the |
|
293 |
// survivor_regions_evac_time prediction. |
|
294 |
assert(desired_min_length > base_min_length, "invariant"); |
|
295 |
uint min_young_length = desired_min_length - base_min_length; |
|
296 |
assert(desired_max_length > base_min_length, "invariant"); |
|
297 |
uint max_young_length = desired_max_length - base_min_length; |
|
298 |
||
40000 | 299 |
const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0; |
300 |
const double survivor_regions_evac_time = predict_survivor_regions_evac_time(); |
|
301 |
const size_t pending_cards = _analytics->predict_pending_cards(); |
|
302 |
const size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff(); |
|
303 |
const size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, /* gcs_are_young */ true); |
|
304 |
const double base_time_ms = |
|
38076 | 305 |
predict_base_elapsed_time_ms(pending_cards, scanned_cards) + |
306 |
survivor_regions_evac_time; |
|
40000 | 307 |
const uint available_free_regions = _free_regions_at_end_of_collection; |
308 |
const uint base_free_regions = |
|
309 |
available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0; |
|
38076 | 310 |
|
311 |
// Here, we will make sure that the shortest young length that |
|
312 |
// makes sense fits within the target pause time. |
|
313 |
||
40000 | 314 |
G1YoungLengthPredictor p(collector_state()->during_concurrent_mark(), |
315 |
base_time_ms, |
|
316 |
base_free_regions, |
|
317 |
target_pause_time_ms, |
|
318 |
this); |
|
319 |
if (p.will_fit(min_young_length)) { |
|
38076 | 320 |
// The shortest young length will fit into the target pause time; |
321 |
// we'll now check whether the absolute maximum number of young |
|
322 |
// regions will fit in the target pause time. If not, we'll do |
|
323 |
// a binary search between min_young_length and max_young_length. |
|
40000 | 324 |
if (p.will_fit(max_young_length)) { |
38076 | 325 |
// The maximum young length will fit into the target pause time. |
326 |
// We are done so set min young length to the maximum length (as |
|
327 |
// the result is assumed to be returned in min_young_length). |
|
328 |
min_young_length = max_young_length; |
|
329 |
} else { |
|
330 |
// The maximum possible number of young regions will not fit within |
|
331 |
// the target pause time so we'll search for the optimal |
|
332 |
// length. The loop invariants are: |
|
333 |
// |
|
334 |
// min_young_length < max_young_length |
|
335 |
// min_young_length is known to fit into the target pause time |
|
336 |
// max_young_length is known not to fit into the target pause time |
|
337 |
// |
|
338 |
// Going into the loop we know the above hold as we've just |
|
339 |
// checked them. Every time around the loop we check whether |
|
340 |
// the middle value between min_young_length and |
|
341 |
// max_young_length fits into the target pause time. If it |
|
342 |
// does, it becomes the new min. If it doesn't, it becomes |
|
343 |
// the new max. This way we maintain the loop invariants. |
|
344 |
||
345 |
assert(min_young_length < max_young_length, "invariant"); |
|
346 |
uint diff = (max_young_length - min_young_length) / 2; |
|
347 |
while (diff > 0) { |
|
348 |
uint young_length = min_young_length + diff; |
|
40000 | 349 |
if (p.will_fit(young_length)) { |
38076 | 350 |
min_young_length = young_length; |
351 |
} else { |
|
352 |
max_young_length = young_length; |
|
353 |
} |
|
354 |
assert(min_young_length < max_young_length, "invariant"); |
|
355 |
diff = (max_young_length - min_young_length) / 2; |
|
356 |
} |
|
357 |
// The results is min_young_length which, according to the |
|
358 |
// loop invariants, should fit within the target pause time. |
|
359 |
||
360 |
// These are the post-conditions of the binary search above: |
|
361 |
assert(min_young_length < max_young_length, |
|
362 |
"otherwise we should have discovered that max_young_length " |
|
363 |
"fits into the pause target and not done the binary search"); |
|
40000 | 364 |
assert(p.will_fit(min_young_length), |
38076 | 365 |
"min_young_length, the result of the binary search, should " |
366 |
"fit into the pause target"); |
|
40000 | 367 |
assert(!p.will_fit(min_young_length + 1), |
38076 | 368 |
"min_young_length, the result of the binary search, should be " |
369 |
"optimal, so no larger length should fit into the pause target"); |
|
370 |
} |
|
371 |
} else { |
|
372 |
// Even the minimum length doesn't fit into the pause time |
|
373 |
// target, return it as the result nevertheless. |
|
374 |
} |
|
375 |
return base_min_length + min_young_length; |
|
376 |
} |
|
377 |
||
49375 | 378 |
double G1Policy::predict_survivor_regions_evac_time() const { |
38076 | 379 |
double survivor_regions_evac_time = 0.0; |
38183
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
380 |
const GrowableArray<HeapRegion*>* survivor_regions = _g1->survivor()->regions(); |
38162
4e2c3433a3ae
8150393: Maintain the set of survivor regions in an array between GCs
mgerdin
parents:
38107
diff
changeset
|
381 |
|
4e2c3433a3ae
8150393: Maintain the set of survivor regions in an array between GCs
mgerdin
parents:
38107
diff
changeset
|
382 |
for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin(); |
4e2c3433a3ae
8150393: Maintain the set of survivor regions in an array between GCs
mgerdin
parents:
38107
diff
changeset
|
383 |
it != survivor_regions->end(); |
4e2c3433a3ae
8150393: Maintain the set of survivor regions in an array between GCs
mgerdin
parents:
38107
diff
changeset
|
384 |
++it) { |
4e2c3433a3ae
8150393: Maintain the set of survivor regions in an array between GCs
mgerdin
parents:
38107
diff
changeset
|
385 |
survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->gcs_are_young()); |
38076 | 386 |
} |
387 |
return survivor_regions_evac_time; |
|
388 |
} |
|
389 |
||
49375 | 390 |
void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_lengths) { |
38076 | 391 |
guarantee( adaptive_young_list_length(), "should not call this otherwise" ); |
392 |
||
393 |
if (rs_lengths > _rs_lengths_prediction) { |
|
394 |
// add 10% to avoid having to recalculate often |
|
395 |
size_t rs_lengths_prediction = rs_lengths * 1100 / 1000; |
|
396 |
update_rs_lengths_prediction(rs_lengths_prediction); |
|
397 |
||
398 |
update_young_list_max_and_target_length(rs_lengths_prediction); |
|
399 |
} |
|
400 |
} |
|
401 |
||
49375 | 402 |
void G1Policy::update_rs_lengths_prediction() { |
38076 | 403 |
update_rs_lengths_prediction(_analytics->predict_rs_lengths()); |
404 |
} |
|
405 |
||
49375 | 406 |
void G1Policy::update_rs_lengths_prediction(size_t prediction) { |
38076 | 407 |
if (collector_state()->gcs_are_young() && adaptive_young_list_length()) { |
408 |
_rs_lengths_prediction = prediction; |
|
409 |
} |
|
410 |
} |
|
411 |
||
49375 | 412 |
void G1Policy::record_full_collection_start() { |
38076 | 413 |
_full_collection_start_sec = os::elapsedTime(); |
414 |
// Release the future to-space so that it is available for compaction into. |
|
415 |
collector_state()->set_full_collection(true); |
|
416 |
} |
|
417 |
||
49375 | 418 |
void G1Policy::record_full_collection_end() { |
38076 | 419 |
// Consider this like a collection pause for the purposes of allocation |
420 |
// since last pause. |
|
421 |
double end_sec = os::elapsedTime(); |
|
422 |
double full_gc_time_sec = end_sec - _full_collection_start_sec; |
|
423 |
double full_gc_time_ms = full_gc_time_sec * 1000.0; |
|
424 |
||
425 |
_analytics->update_recent_gc_times(end_sec, full_gc_time_ms); |
|
426 |
||
427 |
collector_state()->set_full_collection(false); |
|
428 |
||
429 |
// "Nuke" the heuristics that control the young/mixed GC |
|
430 |
// transitions and make sure we start with young GCs after the Full GC. |
|
431 |
collector_state()->set_gcs_are_young(true); |
|
432 |
collector_state()->set_last_young_gc(false); |
|
433 |
collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0)); |
|
434 |
collector_state()->set_during_initial_mark_pause(false); |
|
435 |
collector_state()->set_in_marking_window(false); |
|
436 |
collector_state()->set_in_marking_window_im(false); |
|
437 |
||
438 |
_short_lived_surv_rate_group->start_adding_regions(); |
|
439 |
// also call this on any additional surv rate groups |
|
440 |
||
441 |
_free_regions_at_end_of_collection = _g1->num_free_regions(); |
|
442 |
// Reset survivors SurvRateGroup. |
|
443 |
_survivor_surv_rate_group->reset(); |
|
444 |
update_young_list_max_and_target_length(); |
|
445 |
update_rs_lengths_prediction(); |
|
446 |
cset_chooser()->clear(); |
|
447 |
||
448 |
_bytes_allocated_in_old_since_last_gc = 0; |
|
449 |
||
450 |
record_pause(FullGC, _full_collection_start_sec, end_sec); |
|
451 |
} |
|
452 |
||
49375 | 453 |
void G1Policy::record_collection_pause_start(double start_time_sec) { |
38076 | 454 |
// We only need to do this here as the policy will only be applied |
455 |
// to the GC we're about to start. so, no point is calculating this |
|
456 |
// every time we calculate / recalculate the target young length. |
|
457 |
update_survivors_policy(); |
|
458 |
||
459 |
assert(_g1->used() == _g1->recalculate_used(), |
|
460 |
"sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT, |
|
461 |
_g1->used(), _g1->recalculate_used()); |
|
462 |
||
463 |
phase_times()->record_cur_collection_start_sec(start_time_sec); |
|
464 |
_pending_cards = _g1->pending_card_num(); |
|
465 |
||
466 |
_collection_set->reset_bytes_used_before(); |
|
467 |
_bytes_copied_during_gc = 0; |
|
468 |
||
469 |
collector_state()->set_last_gc_was_young(false); |
|
470 |
||
471 |
// do that for any other surv rate groups |
|
472 |
_short_lived_surv_rate_group->stop_adding_regions(); |
|
473 |
_survivors_age_table.clear(); |
|
474 |
||
39698
4016de4e596b
8159978: Use an array to store the collection set regions instead of linking through regions
tschatzl
parents:
38201
diff
changeset
|
475 |
assert(_g1->collection_set()->verify_young_ages(), "region age verification failed"); |
38076 | 476 |
} |
477 |
||
49375 | 478 |
void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) { |
38076 | 479 |
collector_state()->set_during_marking(true); |
480 |
assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now"); |
|
481 |
collector_state()->set_during_initial_mark_pause(false); |
|
482 |
} |
|
483 |
||
49375 | 484 |
void G1Policy::record_concurrent_mark_remark_start() { |
38076 | 485 |
_mark_remark_start_sec = os::elapsedTime(); |
486 |
collector_state()->set_during_marking(false); |
|
487 |
} |
|
488 |
||
49375 | 489 |
void G1Policy::record_concurrent_mark_remark_end() { |
38076 | 490 |
double end_time_sec = os::elapsedTime(); |
491 |
double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0; |
|
492 |
_analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms); |
|
493 |
_analytics->append_prev_collection_pause_end_ms(elapsed_time_ms); |
|
494 |
||
495 |
record_pause(Remark, _mark_remark_start_sec, end_time_sec); |
|
496 |
} |
|
497 |
||
49375 | 498 |
void G1Policy::record_concurrent_mark_cleanup_start() { |
38076 | 499 |
_mark_cleanup_start_sec = os::elapsedTime(); |
500 |
} |
|
501 |
||
49375 | 502 |
void G1Policy::record_concurrent_mark_cleanup_completed() { |
38076 | 503 |
bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc", |
504 |
"skip last young-only gc"); |
|
505 |
collector_state()->set_last_young_gc(should_continue_with_reclaim); |
|
506 |
// We skip the marking phase. |
|
507 |
if (!should_continue_with_reclaim) { |
|
508 |
abort_time_to_mixed_tracking(); |
|
509 |
} |
|
510 |
collector_state()->set_in_marking_window(false); |
|
511 |
} |
|
512 |
||
49375 | 513 |
double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const { |
38076 | 514 |
return phase_times()->average_time_ms(phase); |
515 |
} |
|
516 |
||
49375 | 517 |
double G1Policy::young_other_time_ms() const { |
38076 | 518 |
return phase_times()->young_cset_choice_time_ms() + |
39979 | 519 |
phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet); |
38076 | 520 |
} |
521 |
||
49375 | 522 |
double G1Policy::non_young_other_time_ms() const { |
38076 | 523 |
return phase_times()->non_young_cset_choice_time_ms() + |
39979 | 524 |
phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet); |
38076 | 525 |
} |
526 |
||
49375 | 527 |
double G1Policy::other_time_ms(double pause_time_ms) const { |
38107
aee6db99b6c7
8155087: Calculation in other_time_ms() is incorrect
sjohanss
parents:
38106
diff
changeset
|
528 |
return pause_time_ms - phase_times()->cur_collection_par_time_ms(); |
38076 | 529 |
} |
530 |
||
49375 | 531 |
double G1Policy::constant_other_time_ms(double pause_time_ms) const { |
39979 | 532 |
return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms(); |
38076 | 533 |
} |
534 |
||
49375 | 535 |
CollectionSetChooser* G1Policy::cset_chooser() const { |
38076 | 536 |
return _collection_set->cset_chooser(); |
537 |
} |
|
538 |
||
49375 | 539 |
bool G1Policy::about_to_start_mixed_phase() const { |
47678 | 540 |
return _g1->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->last_young_gc(); |
38076 | 541 |
} |
542 |
||
49375 | 543 |
bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) { |
38076 | 544 |
if (about_to_start_mixed_phase()) { |
545 |
return false; |
|
546 |
} |
|
547 |
||
548 |
size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold(); |
|
549 |
||
550 |
size_t cur_used_bytes = _g1->non_young_capacity_bytes(); |
|
551 |
size_t alloc_byte_size = alloc_word_size * HeapWordSize; |
|
552 |
size_t marking_request_bytes = cur_used_bytes + alloc_byte_size; |
|
553 |
||
554 |
bool result = false; |
|
555 |
if (marking_request_bytes > marking_initiating_used_threshold) { |
|
556 |
result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc(); |
|
557 |
log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s", |
|
558 |
result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)", |
|
559 |
cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source); |
|
560 |
} |
|
561 |
||
562 |
return result; |
|
563 |
} |
|
564 |
||
565 |
// Anything below that is considered to be zero |
|
566 |
#define MIN_TIMER_GRANULARITY 0.0000001 |
|
567 |
||
49375 | 568 |
void G1Policy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) { |
38076 | 569 |
double end_time_sec = os::elapsedTime(); |
570 |
||
571 |
size_t cur_used_bytes = _g1->used(); |
|
572 |
assert(cur_used_bytes == _g1->recalculate_used(), "It should!"); |
|
573 |
bool last_pause_included_initial_mark = false; |
|
574 |
bool update_stats = !_g1->evacuation_failed(); |
|
575 |
||
576 |
record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec); |
|
577 |
||
41284
b4276ec89d0d
8164482: [REDO] G1 does not implement millis_since_last_gc which is needed by RMI GC
jprovino
parents:
40914
diff
changeset
|
578 |
_collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; |
b4276ec89d0d
8164482: [REDO] G1 does not implement millis_since_last_gc which is needed by RMI GC
jprovino
parents:
40914
diff
changeset
|
579 |
|
38076 | 580 |
last_pause_included_initial_mark = collector_state()->during_initial_mark_pause(); |
581 |
if (last_pause_included_initial_mark) { |
|
582 |
record_concurrent_mark_init_end(0.0); |
|
583 |
} else { |
|
584 |
maybe_start_marking(); |
|
585 |
} |
|
586 |
||
587 |
double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms()); |
|
588 |
if (app_time_ms < MIN_TIMER_GRANULARITY) { |
|
589 |
// This usually happens due to the timer not having the required |
|
590 |
// granularity. Some Linuxes are the usual culprits. |
|
591 |
// We'll just set it to something (arbitrarily) small. |
|
592 |
app_time_ms = 1.0; |
|
593 |
} |
|
594 |
||
595 |
if (update_stats) { |
|
596 |
// We maintain the invariant that all objects allocated by mutator |
|
597 |
// threads will be allocated out of eden regions. So, we can use |
|
598 |
// the eden region number allocated since the previous GC to |
|
599 |
// calculate the application's allocate rate. The only exception |
|
600 |
// to that is humongous objects that are allocated separately. But |
|
601 |
// given that humongous object allocations do not really affect |
|
602 |
// either the pause's duration nor when the next pause will take |
|
603 |
// place we can safely ignore them here. |
|
604 |
uint regions_allocated = _collection_set->eden_region_length(); |
|
605 |
double alloc_rate_ms = (double) regions_allocated / app_time_ms; |
|
606 |
_analytics->report_alloc_rate_ms(alloc_rate_ms); |
|
607 |
||
608 |
double interval_ms = |
|
40523
20873f6704de
8164124: [BACKOUT] G1 does not implement millis_since_last_gc which is needed by RMI GC
jwilhelm
parents:
40328
diff
changeset
|
609 |
(end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0; |
38076 | 610 |
_analytics->update_recent_gc_times(end_time_sec, pause_time_ms); |
611 |
_analytics->compute_pause_time_ratio(interval_ms, pause_time_ms); |
|
612 |
} |
|
613 |
||
614 |
bool new_in_marking_window = collector_state()->in_marking_window(); |
|
615 |
bool new_in_marking_window_im = false; |
|
616 |
if (last_pause_included_initial_mark) { |
|
617 |
new_in_marking_window = true; |
|
618 |
new_in_marking_window_im = true; |
|
619 |
} |
|
620 |
||
621 |
if (collector_state()->last_young_gc()) { |
|
622 |
// This is supposed to to be the "last young GC" before we start |
|
623 |
// doing mixed GCs. Here we decide whether to start mixed GCs or not. |
|
624 |
assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC"); |
|
625 |
||
626 |
if (next_gc_should_be_mixed("start mixed GCs", |
|
627 |
"do not start mixed GCs")) { |
|
628 |
collector_state()->set_gcs_are_young(false); |
|
629 |
} else { |
|
630 |
// We aborted the mixed GC phase early. |
|
631 |
abort_time_to_mixed_tracking(); |
|
632 |
} |
|
633 |
||
634 |
collector_state()->set_last_young_gc(false); |
|
635 |
} |
|
636 |
||
637 |
if (!collector_state()->last_gc_was_young()) { |
|
638 |
// This is a mixed GC. Here we decide whether to continue doing |
|
639 |
// mixed GCs or not. |
|
640 |
if (!next_gc_should_be_mixed("continue mixed GCs", |
|
641 |
"do not continue mixed GCs")) { |
|
642 |
collector_state()->set_gcs_are_young(true); |
|
643 |
||
644 |
maybe_start_marking(); |
|
645 |
} |
|
646 |
} |
|
647 |
||
648 |
_short_lived_surv_rate_group->start_adding_regions(); |
|
649 |
// Do that for any other surv rate groups |
|
650 |
||
38172
90f405aac699
8155524: HotCardCache shouldn't be part of ConcurrentG1Refine
kbarrett
parents:
38162
diff
changeset
|
651 |
double scan_hcc_time_ms = G1HotCardCache::default_use_cache() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0; |
38076 | 652 |
|
653 |
if (update_stats) { |
|
654 |
double cost_per_card_ms = 0.0; |
|
655 |
if (_pending_cards > 0) { |
|
656 |
cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards; |
|
657 |
_analytics->report_cost_per_card_ms(cost_per_card_ms); |
|
658 |
} |
|
659 |
_analytics->report_cost_scan_hcc(scan_hcc_time_ms); |
|
660 |
||
661 |
double cost_per_entry_ms = 0.0; |
|
662 |
if (cards_scanned > 10) { |
|
663 |
cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned; |
|
664 |
_analytics->report_cost_per_entry_ms(cost_per_entry_ms, collector_state()->last_gc_was_young()); |
|
665 |
} |
|
666 |
||
667 |
if (_max_rs_lengths > 0) { |
|
668 |
double cards_per_entry_ratio = |
|
669 |
(double) cards_scanned / (double) _max_rs_lengths; |
|
670 |
_analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, collector_state()->last_gc_was_young()); |
|
671 |
} |
|
672 |
||
673 |
// This is defensive. For a while _max_rs_lengths could get |
|
674 |
// smaller than _recorded_rs_lengths which was causing |
|
675 |
// rs_length_diff to get very large and mess up the RSet length |
|
676 |
// predictions. The reason was unsafe concurrent updates to the |
|
677 |
// _inc_cset_recorded_rs_lengths field which the code below guards |
|
678 |
// against (see CR 7118202). This bug has now been fixed (see CR |
|
679 |
// 7119027). However, I'm still worried that |
|
680 |
// _inc_cset_recorded_rs_lengths might still end up somewhat |
|
681 |
// inaccurate. The concurrent refinement thread calculates an |
|
682 |
// RSet's length concurrently with other CR threads updating it |
|
683 |
// which might cause it to calculate the length incorrectly (if, |
|
684 |
// say, it's in mid-coarsening). So I'll leave in the defensive |
|
685 |
// conditional below just in case. |
|
686 |
size_t rs_length_diff = 0; |
|
687 |
size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths(); |
|
688 |
if (_max_rs_lengths > recorded_rs_lengths) { |
|
689 |
rs_length_diff = _max_rs_lengths - recorded_rs_lengths; |
|
690 |
} |
|
691 |
_analytics->report_rs_length_diff((double) rs_length_diff); |
|
692 |
||
693 |
size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes; |
|
694 |
size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes; |
|
695 |
double cost_per_byte_ms = 0.0; |
|
696 |
||
697 |
if (copied_bytes > 0) { |
|
698 |
cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes; |
|
699 |
_analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->in_marking_window()); |
|
700 |
} |
|
701 |
||
702 |
if (_collection_set->young_region_length() > 0) { |
|
703 |
_analytics->report_young_other_cost_per_region_ms(young_other_time_ms() / |
|
704 |
_collection_set->young_region_length()); |
|
705 |
} |
|
706 |
||
707 |
if (_collection_set->old_region_length() > 0) { |
|
708 |
_analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() / |
|
709 |
_collection_set->old_region_length()); |
|
710 |
} |
|
711 |
||
712 |
_analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms)); |
|
713 |
||
714 |
_analytics->report_pending_cards((double) _pending_cards); |
|
715 |
_analytics->report_rs_lengths((double) _max_rs_lengths); |
|
716 |
} |
|
717 |
||
718 |
collector_state()->set_in_marking_window(new_in_marking_window); |
|
719 |
collector_state()->set_in_marking_window_im(new_in_marking_window_im); |
|
720 |
_free_regions_at_end_of_collection = _g1->num_free_regions(); |
|
721 |
// IHOP control wants to know the expected young gen length if it were not |
|
722 |
// restrained by the heap reserve. Using the actual length would make the |
|
723 |
// prediction too small and the limit the young gen every time we get to the |
|
724 |
// predicted target occupancy. |
|
725 |
size_t last_unrestrained_young_length = update_young_list_max_and_target_length(); |
|
726 |
update_rs_lengths_prediction(); |
|
727 |
||
728 |
update_ihop_prediction(app_time_ms / 1000.0, |
|
729 |
_bytes_allocated_in_old_since_last_gc, |
|
730 |
last_unrestrained_young_length * HeapRegion::GrainBytes); |
|
731 |
_bytes_allocated_in_old_since_last_gc = 0; |
|
732 |
||
733 |
_ihop_control->send_trace_event(_g1->gc_tracer_stw()); |
|
734 |
||
735 |
// Note that _mmu_tracker->max_gc_time() returns the time in seconds. |
|
736 |
double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0; |
|
737 |
||
738 |
if (update_rs_time_goal_ms < scan_hcc_time_ms) { |
|
739 |
log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)." |
|
740 |
"Update RS time goal: %1.2fms Scan HCC time: %1.2fms", |
|
741 |
update_rs_time_goal_ms, scan_hcc_time_ms); |
|
742 |
||
743 |
update_rs_time_goal_ms = 0; |
|
744 |
} else { |
|
745 |
update_rs_time_goal_ms -= scan_hcc_time_ms; |
|
746 |
} |
|
47789
a77a7d3bc4f6
8149127: Rename g1/concurrentMarkThread.* to g1/g1ConcurrentMarkThread.*
tschatzl
parents:
47681
diff
changeset
|
747 |
_g1->concurrent_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms, |
38076 | 748 |
phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS), |
749 |
update_rs_time_goal_ms); |
|
750 |
||
751 |
cset_chooser()->verify(); |
|
752 |
} |
|
753 |
||
49375 | 754 |
G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){ |
38076 | 755 |
if (G1UseAdaptiveIHOP) { |
756 |
return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent, |
|
757 |
predictor, |
|
758 |
G1ReservePercent, |
|
759 |
G1HeapWastePercent); |
|
760 |
} else { |
|
761 |
return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent); |
|
762 |
} |
|
763 |
} |
|
764 |
||
49375 | 765 |
void G1Policy::update_ihop_prediction(double mutator_time_s, |
38076 | 766 |
size_t mutator_alloc_bytes, |
767 |
size_t young_gen_size) { |
|
768 |
// Always try to update IHOP prediction. Even evacuation failures give information |
|
769 |
// about e.g. whether to start IHOP earlier next time. |
|
770 |
||
771 |
// Avoid using really small application times that might create samples with |
|
772 |
// very high or very low values. They may be caused by e.g. back-to-back gcs. |
|
773 |
double const min_valid_time = 1e-6; |
|
774 |
||
775 |
bool report = false; |
|
776 |
||
777 |
double marking_to_mixed_time = -1.0; |
|
778 |
if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) { |
|
779 |
marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time(); |
|
780 |
assert(marking_to_mixed_time > 0.0, |
|
781 |
"Initial mark to mixed time must be larger than zero but is %.3f", |
|
782 |
marking_to_mixed_time); |
|
783 |
if (marking_to_mixed_time > min_valid_time) { |
|
784 |
_ihop_control->update_marking_length(marking_to_mixed_time); |
|
785 |
report = true; |
|
786 |
} |
|
787 |
} |
|
788 |
||
789 |
// As an approximation for the young gc promotion rates during marking we use |
|
790 |
// all of them. In many applications there are only a few if any young gcs during |
|
791 |
// marking, which makes any prediction useless. This increases the accuracy of the |
|
792 |
// prediction. |
|
793 |
if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) { |
|
794 |
_ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size); |
|
795 |
report = true; |
|
796 |
} |
|
797 |
||
798 |
if (report) { |
|
799 |
report_ihop_statistics(); |
|
800 |
} |
|
801 |
} |
|
802 |
||
49375 | 803 |
void G1Policy::report_ihop_statistics() { |
38076 | 804 |
_ihop_control->print(); |
805 |
} |
|
806 |
||
49375 | 807 |
void G1Policy::print_phases() { |
38076 | 808 |
phase_times()->print(); |
809 |
} |
|
810 |
||
49375 | 811 |
double G1Policy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const { |
38076 | 812 |
TruncatedSeq* seq = surv_rate_group->get_seq(age); |
813 |
guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age); |
|
814 |
double pred = _predictor.get_new_prediction(seq); |
|
815 |
if (pred > 1.0) { |
|
816 |
pred = 1.0; |
|
817 |
} |
|
818 |
return pred; |
|
819 |
} |
|
820 |
||
49375 | 821 |
double G1Policy::accum_yg_surv_rate_pred(int age) const { |
38076 | 822 |
return _short_lived_surv_rate_group->accum_surv_rate_pred(age); |
823 |
} |
|
824 |
||
49375 | 825 |
double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards, |
38076 | 826 |
size_t scanned_cards) const { |
827 |
return |
|
828 |
_analytics->predict_rs_update_time_ms(pending_cards) + |
|
829 |
_analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->gcs_are_young()) + |
|
830 |
_analytics->predict_constant_other_time_ms(); |
|
831 |
} |
|
832 |
||
49375 | 833 |
double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const { |
38076 | 834 |
size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff(); |
835 |
size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->gcs_are_young()); |
|
836 |
return predict_base_elapsed_time_ms(pending_cards, card_num); |
|
837 |
} |
|
838 |
||
49375 | 839 |
size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const { |
38076 | 840 |
size_t bytes_to_copy; |
841 |
if (hr->is_marked()) |
|
842 |
bytes_to_copy = hr->max_live_bytes(); |
|
843 |
else { |
|
844 |
assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant"); |
|
845 |
int age = hr->age_in_surv_rate_group(); |
|
846 |
double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group()); |
|
847 |
bytes_to_copy = (size_t) (hr->used() * yg_surv_rate); |
|
848 |
} |
|
849 |
return bytes_to_copy; |
|
850 |
} |
|
851 |
||
49375 | 852 |
double G1Policy::predict_region_elapsed_time_ms(HeapRegion* hr, |
38076 | 853 |
bool for_young_gc) const { |
854 |
size_t rs_length = hr->rem_set()->occupied(); |
|
855 |
// Predicting the number of cards is based on which type of GC |
|
856 |
// we're predicting for. |
|
857 |
size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc); |
|
858 |
size_t bytes_to_copy = predict_bytes_to_copy(hr); |
|
859 |
||
860 |
double region_elapsed_time_ms = |
|
861 |
_analytics->predict_rs_scan_time_ms(card_num, collector_state()->gcs_are_young()) + |
|
862 |
_analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->during_concurrent_mark()); |
|
863 |
||
864 |
// The prediction of the "other" time for this region is based |
|
865 |
// upon the region type and NOT the GC type. |
|
866 |
if (hr->is_young()) { |
|
867 |
region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1); |
|
868 |
} else { |
|
869 |
region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1); |
|
870 |
} |
|
871 |
return region_elapsed_time_ms; |
|
872 |
} |
|
873 |
||
49375 | 874 |
bool G1Policy::should_allocate_mutator_region() const { |
38183
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
875 |
uint young_list_length = _g1->young_regions_count(); |
38076 | 876 |
uint young_list_target_length = _young_list_target_length; |
38106 | 877 |
return young_list_length < young_list_target_length; |
38076 | 878 |
} |
879 |
||
49375 | 880 |
bool G1Policy::can_expand_young_list() const { |
38183
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
881 |
uint young_list_length = _g1->young_regions_count(); |
38076 | 882 |
uint young_list_max_length = _young_list_max_length; |
883 |
return young_list_length < young_list_max_length; |
|
884 |
} |
|
885 |
||
49375 | 886 |
bool G1Policy::adaptive_young_list_length() const { |
38076 | 887 |
return _young_gen_sizer.adaptive_young_list_length(); |
888 |
} |
|
889 |
||
49375 | 890 |
size_t G1Policy::desired_survivor_size() const { |
40914
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
891 |
size_t const survivor_capacity = HeapRegion::GrainWords * _max_survivor_regions; |
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
892 |
return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100); |
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
893 |
} |
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
894 |
|
49375 | 895 |
void G1Policy::print_age_table() { |
40914
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
896 |
_survivors_age_table.print_age_table(_tenuring_threshold); |
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
897 |
} |
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
898 |
|
49375 | 899 |
void G1Policy::update_max_gc_locker_expansion() { |
38076 | 900 |
uint expansion_region_num = 0; |
901 |
if (GCLockerEdenExpansionPercent > 0) { |
|
902 |
double perc = (double) GCLockerEdenExpansionPercent / 100.0; |
|
903 |
double expansion_region_num_d = perc * (double) _young_list_target_length; |
|
904 |
// We use ceiling so that if expansion_region_num_d is > 0.0 (but |
|
905 |
// less than 1.0) we'll get 1. |
|
906 |
expansion_region_num = (uint) ceil(expansion_region_num_d); |
|
907 |
} else { |
|
908 |
assert(expansion_region_num == 0, "sanity"); |
|
909 |
} |
|
910 |
_young_list_max_length = _young_list_target_length + expansion_region_num; |
|
911 |
assert(_young_list_target_length <= _young_list_max_length, "post-condition"); |
|
912 |
} |
|
913 |
||
914 |
// Calculates survivor space parameters. |
|
49375 | 915 |
void G1Policy::update_survivors_policy() { |
38076 | 916 |
double max_survivor_regions_d = |
917 |
(double) _young_list_target_length / (double) SurvivorRatio; |
|
918 |
// We use ceiling so that if max_survivor_regions_d is > 0.0 (but |
|
919 |
// smaller than 1.0) we'll get 1. |
|
920 |
_max_survivor_regions = (uint) ceil(max_survivor_regions_d); |
|
921 |
||
40914
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
922 |
_tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(desired_survivor_size()); |
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
923 |
if (UsePerfData) { |
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
924 |
_policy_counters->tenuring_threshold()->set_value(_tenuring_threshold); |
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
925 |
_policy_counters->desired_survivor_size()->set_value(desired_survivor_size() * oopSize); |
90c87069b39c
8164936: G1 age table printout contains contents from previous GC
tschatzl
parents:
40523
diff
changeset
|
926 |
} |
38076 | 927 |
} |
928 |
||
49375 | 929 |
bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) { |
38076 | 930 |
// We actually check whether we are marking here and not if we are in a |
931 |
// reclamation phase. This means that we will schedule a concurrent mark |
|
932 |
// even while we are still in the process of reclaiming memory. |
|
47678 | 933 |
bool during_cycle = _g1->concurrent_mark()->cm_thread()->during_cycle(); |
38076 | 934 |
if (!during_cycle) { |
935 |
log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause)); |
|
936 |
collector_state()->set_initiate_conc_mark_if_possible(true); |
|
937 |
return true; |
|
938 |
} else { |
|
939 |
log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause)); |
|
940 |
return false; |
|
941 |
} |
|
942 |
} |
|
943 |
||
49375 | 944 |
void G1Policy::initiate_conc_mark() { |
38076 | 945 |
collector_state()->set_during_initial_mark_pause(true); |
946 |
collector_state()->set_initiate_conc_mark_if_possible(false); |
|
947 |
} |
|
948 |
||
49375 | 949 |
void G1Policy::decide_on_conc_mark_initiation() { |
38076 | 950 |
// We are about to decide on whether this pause will be an |
951 |
// initial-mark pause. |
|
952 |
||
953 |
// First, collector_state()->during_initial_mark_pause() should not be already set. We |
|
954 |
// will set it here if we have to. However, it should be cleared by |
|
955 |
// the end of the pause (it's only set for the duration of an |
|
956 |
// initial-mark pause). |
|
957 |
assert(!collector_state()->during_initial_mark_pause(), "pre-condition"); |
|
958 |
||
959 |
if (collector_state()->initiate_conc_mark_if_possible()) { |
|
960 |
// We had noticed on a previous pause that the heap occupancy has |
|
961 |
// gone over the initiating threshold and we should start a |
|
962 |
// concurrent marking cycle. So we might initiate one. |
|
963 |
||
964 |
if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) { |
|
965 |
// Initiate a new initial mark if there is no marking or reclamation going on. |
|
966 |
initiate_conc_mark(); |
|
967 |
log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)"); |
|
968 |
} else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) { |
|
969 |
// Initiate a user requested initial mark. An initial mark must be young only |
|
970 |
// GC, so the collector state must be updated to reflect this. |
|
971 |
collector_state()->set_gcs_are_young(true); |
|
972 |
collector_state()->set_last_young_gc(false); |
|
973 |
||
974 |
abort_time_to_mixed_tracking(); |
|
975 |
initiate_conc_mark(); |
|
976 |
log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)"); |
|
977 |
} else { |
|
978 |
// The concurrent marking thread is still finishing up the |
|
979 |
// previous cycle. If we start one right now the two cycles |
|
980 |
// overlap. In particular, the concurrent marking thread might |
|
981 |
// be in the process of clearing the next marking bitmap (which |
|
982 |
// we will use for the next cycle if we start one). Starting a |
|
983 |
// cycle now will be bad given that parts of the marking |
|
984 |
// information might get cleared by the marking thread. And we |
|
985 |
// cannot wait for the marking thread to finish the cycle as it |
|
986 |
// periodically yields while clearing the next marking bitmap |
|
987 |
// and, if it's in a yield point, it's waiting for us to |
|
988 |
// finish. So, at this point we will not start a cycle and we'll |
|
989 |
// let the concurrent marking thread complete the last one. |
|
990 |
log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)"); |
|
991 |
} |
|
992 |
} |
|
993 |
} |
|
994 |
||
49375 | 995 |
void G1Policy::record_concurrent_mark_cleanup_end() { |
38076 | 996 |
cset_chooser()->rebuild(_g1->workers(), _g1->num_regions()); |
997 |
||
998 |
double end_sec = os::elapsedTime(); |
|
999 |
double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0; |
|
1000 |
_analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms); |
|
1001 |
_analytics->append_prev_collection_pause_end_ms(elapsed_time_ms); |
|
1002 |
||
1003 |
record_pause(Cleanup, _mark_cleanup_start_sec, end_sec); |
|
1004 |
} |
|
1005 |
||
49375 | 1006 |
double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const { |
47679
4cfcb7be4984
8189666: Replace various inlined percentage calculations with global percent_of()
tschatzl
parents:
47678
diff
changeset
|
1007 |
return percent_of(reclaimable_bytes, _g1->capacity()); |
38076 | 1008 |
} |
1009 |
||
49375 | 1010 |
void G1Policy::maybe_start_marking() { |
38076 | 1011 |
if (need_to_start_conc_mark("end of GC")) { |
1012 |
// Note: this might have already been set, if during the last |
|
1013 |
// pause we decided to start a cycle but at the beginning of |
|
1014 |
// this pause we decided to postpone it. That's OK. |
|
1015 |
collector_state()->set_initiate_conc_mark_if_possible(true); |
|
1016 |
} |
|
1017 |
} |
|
1018 |
||
49375 | 1019 |
G1Policy::PauseKind G1Policy::young_gc_pause_kind() const { |
38076 | 1020 |
assert(!collector_state()->full_collection(), "must be"); |
1021 |
if (collector_state()->during_initial_mark_pause()) { |
|
1022 |
assert(collector_state()->last_gc_was_young(), "must be"); |
|
1023 |
assert(!collector_state()->last_young_gc(), "must be"); |
|
1024 |
return InitialMarkGC; |
|
1025 |
} else if (collector_state()->last_young_gc()) { |
|
1026 |
assert(!collector_state()->during_initial_mark_pause(), "must be"); |
|
1027 |
assert(collector_state()->last_gc_was_young(), "must be"); |
|
1028 |
return LastYoungGC; |
|
1029 |
} else if (!collector_state()->last_gc_was_young()) { |
|
1030 |
assert(!collector_state()->during_initial_mark_pause(), "must be"); |
|
1031 |
assert(!collector_state()->last_young_gc(), "must be"); |
|
1032 |
return MixedGC; |
|
1033 |
} else { |
|
1034 |
assert(collector_state()->last_gc_was_young(), "must be"); |
|
1035 |
assert(!collector_state()->during_initial_mark_pause(), "must be"); |
|
1036 |
assert(!collector_state()->last_young_gc(), "must be"); |
|
1037 |
return YoungOnlyGC; |
|
1038 |
} |
|
1039 |
} |
|
1040 |
||
49375 | 1041 |
void G1Policy::record_pause(PauseKind kind, double start, double end) { |
38076 | 1042 |
// Manage the MMU tracker. For some reason it ignores Full GCs. |
1043 |
if (kind != FullGC) { |
|
1044 |
_mmu_tracker->add_pause(start, end); |
|
1045 |
} |
|
1046 |
// Manage the mutator time tracking from initial mark to first mixed gc. |
|
1047 |
switch (kind) { |
|
1048 |
case FullGC: |
|
1049 |
abort_time_to_mixed_tracking(); |
|
1050 |
break; |
|
1051 |
case Cleanup: |
|
1052 |
case Remark: |
|
1053 |
case YoungOnlyGC: |
|
1054 |
case LastYoungGC: |
|
1055 |
_initial_mark_to_mixed.add_pause(end - start); |
|
1056 |
break; |
|
1057 |
case InitialMarkGC: |
|
1058 |
_initial_mark_to_mixed.record_initial_mark_end(end); |
|
1059 |
break; |
|
1060 |
case MixedGC: |
|
1061 |
_initial_mark_to_mixed.record_mixed_gc_start(start); |
|
1062 |
break; |
|
1063 |
default: |
|
1064 |
ShouldNotReachHere(); |
|
1065 |
} |
|
1066 |
} |
|
1067 |
||
49375 | 1068 |
void G1Policy::abort_time_to_mixed_tracking() { |
38076 | 1069 |
_initial_mark_to_mixed.reset(); |
1070 |
} |
|
1071 |
||
49375 | 1072 |
bool G1Policy::next_gc_should_be_mixed(const char* true_action_str, |
38076 | 1073 |
const char* false_action_str) const { |
1074 |
if (cset_chooser()->is_empty()) { |
|
1075 |
log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str); |
|
1076 |
return false; |
|
1077 |
} |
|
1078 |
||
1079 |
// Is the amount of uncollected reclaimable space above G1HeapWastePercent? |
|
1080 |
size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes(); |
|
47681
149745044e48
8189729: Change _perc suffixes in identifiers to _percent
tschatzl
parents:
47679
diff
changeset
|
1081 |
double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes); |
38076 | 1082 |
double threshold = (double) G1HeapWastePercent; |
47681
149745044e48
8189729: Change _perc suffixes in identifiers to _percent
tschatzl
parents:
47679
diff
changeset
|
1083 |
if (reclaimable_percent <= threshold) { |
38076 | 1084 |
log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT, |
47681
149745044e48
8189729: Change _perc suffixes in identifiers to _percent
tschatzl
parents:
47679
diff
changeset
|
1085 |
false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent); |
38076 | 1086 |
return false; |
1087 |
} |
|
1088 |
log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT, |
|
47681
149745044e48
8189729: Change _perc suffixes in identifiers to _percent
tschatzl
parents:
47679
diff
changeset
|
1089 |
true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent); |
38076 | 1090 |
return true; |
1091 |
} |
|
1092 |
||
49375 | 1093 |
uint G1Policy::calc_min_old_cset_length() const { |
38076 | 1094 |
// The min old CSet region bound is based on the maximum desired |
1095 |
// number of mixed GCs after a cycle. I.e., even if some old regions |
|
1096 |
// look expensive, we should add them to the CSet anyway to make |
|
1097 |
// sure we go through the available old regions in no more than the |
|
1098 |
// maximum desired number of mixed GCs. |
|
1099 |
// |
|
1100 |
// The calculation is based on the number of marked regions we added |
|
1101 |
// to the CSet chooser in the first place, not how many remain, so |
|
1102 |
// that the result is the same during all mixed GCs that follow a cycle. |
|
1103 |
||
1104 |
const size_t region_num = (size_t) cset_chooser()->length(); |
|
1105 |
const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1); |
|
1106 |
size_t result = region_num / gc_num; |
|
1107 |
// emulate ceiling |
|
1108 |
if (result * gc_num < region_num) { |
|
1109 |
result += 1; |
|
1110 |
} |
|
1111 |
return (uint) result; |
|
1112 |
} |
|
1113 |
||
49375 | 1114 |
uint G1Policy::calc_max_old_cset_length() const { |
38076 | 1115 |
// The max old CSet region bound is based on the threshold expressed |
1116 |
// as a percentage of the heap size. I.e., it should bound the |
|
1117 |
// number of old regions added to the CSet irrespective of how many |
|
1118 |
// of them are available. |
|
1119 |
||
1120 |
const G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
|
1121 |
const size_t region_num = g1h->num_regions(); |
|
1122 |
const size_t perc = (size_t) G1OldCSetRegionThresholdPercent; |
|
1123 |
size_t result = region_num * perc / 100; |
|
1124 |
// emulate ceiling |
|
1125 |
if (100 * result < region_num * perc) { |
|
1126 |
result += 1; |
|
1127 |
} |
|
1128 |
return (uint) result; |
|
1129 |
} |
|
1130 |
||
49375 | 1131 |
void G1Policy::finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor) { |
38183
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1132 |
double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms, survivor); |
38076 | 1133 |
_collection_set->finalize_old_part(time_remaining_ms); |
1134 |
} |
|
38183
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1135 |
|
49375 | 1136 |
void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) { |
38183
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1137 |
|
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1138 |
// Add survivor regions to SurvRateGroup. |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1139 |
note_start_adding_survivor_regions(); |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1140 |
finished_recalculating_age_indexes(true /* is_survivors */); |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1141 |
|
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1142 |
HeapRegion* last = NULL; |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1143 |
for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin(); |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1144 |
it != survivors->regions()->end(); |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1145 |
++it) { |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1146 |
HeapRegion* curr = *it; |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1147 |
set_region_survivor(curr); |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1148 |
|
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1149 |
// The region is a non-empty survivor so let's add it to |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1150 |
// the incremental collection set for the next evacuation |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1151 |
// pause. |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1152 |
_collection_set->add_survivor_regions(curr); |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1153 |
|
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1154 |
last = curr; |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1155 |
} |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1156 |
note_stop_adding_survivor_regions(); |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1157 |
|
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1158 |
// Don't clear the survivor list handles until the start of |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1159 |
// the next evacuation pause - we need it in order to re-tag |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1160 |
// the survivor regions from this evacuation pause as 'young' |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1161 |
// at the start of the next. |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1162 |
|
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1163 |
finished_recalculating_age_indexes(false /* is_survivors */); |
cb68e4923223
8150721: Don't explicitly manage G1 young regions in YoungList
mgerdin
parents:
38172
diff
changeset
|
1164 |
} |