1
|
1 |
/*
|
|
2 |
* Copyright 2002 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// Inline interpreter functions for sparc
|
|
26 |
|
|
27 |
inline jfloat BytecodeInterpreter::VMfloatAdd(jfloat op1, jfloat op2) { return op1 + op2; }
|
|
28 |
inline jfloat BytecodeInterpreter::VMfloatSub(jfloat op1, jfloat op2) { return op1 - op2; }
|
|
29 |
inline jfloat BytecodeInterpreter::VMfloatMul(jfloat op1, jfloat op2) { return op1 * op2; }
|
|
30 |
inline jfloat BytecodeInterpreter::VMfloatDiv(jfloat op1, jfloat op2) { return op1 / op2; }
|
|
31 |
inline jfloat BytecodeInterpreter::VMfloatRem(jfloat op1, jfloat op2) { return fmod(op1, op2); }
|
|
32 |
|
|
33 |
inline jfloat BytecodeInterpreter::VMfloatNeg(jfloat op) { return -op; }
|
|
34 |
|
|
35 |
inline int32_t BytecodeInterpreter::VMfloatCompare(jfloat op1, jfloat op2, int32_t direction) {
|
|
36 |
return ( op1 < op2 ? -1 :
|
|
37 |
op1 > op2 ? 1 :
|
|
38 |
op1 == op2 ? 0 :
|
|
39 |
(direction == -1 || direction == 1) ? direction : 0);
|
|
40 |
|
|
41 |
}
|
|
42 |
|
|
43 |
inline void BytecodeInterpreter::VMmemCopy64(uint32_t to[2], const uint32_t from[2]) {
|
|
44 |
// x86 can do unaligned copies but not 64bits at a time
|
|
45 |
to[0] = from[0]; to[1] = from[1];
|
|
46 |
}
|
|
47 |
|
|
48 |
// The long operations depend on compiler support for "long long" on x86
|
|
49 |
|
|
50 |
inline jlong BytecodeInterpreter::VMlongAdd(jlong op1, jlong op2) {
|
|
51 |
return op1 + op2;
|
|
52 |
}
|
|
53 |
|
|
54 |
inline jlong BytecodeInterpreter::VMlongAnd(jlong op1, jlong op2) {
|
|
55 |
return op1 & op2;
|
|
56 |
}
|
|
57 |
|
|
58 |
inline jlong BytecodeInterpreter::VMlongDiv(jlong op1, jlong op2) {
|
|
59 |
// QQQ what about check and throw...
|
|
60 |
return op1 / op2;
|
|
61 |
}
|
|
62 |
|
|
63 |
inline jlong BytecodeInterpreter::VMlongMul(jlong op1, jlong op2) {
|
|
64 |
return op1 * op2;
|
|
65 |
}
|
|
66 |
|
|
67 |
inline jlong BytecodeInterpreter::VMlongOr(jlong op1, jlong op2) {
|
|
68 |
return op1 | op2;
|
|
69 |
}
|
|
70 |
|
|
71 |
inline jlong BytecodeInterpreter::VMlongSub(jlong op1, jlong op2) {
|
|
72 |
return op1 - op2;
|
|
73 |
}
|
|
74 |
|
|
75 |
inline jlong BytecodeInterpreter::VMlongXor(jlong op1, jlong op2) {
|
|
76 |
return op1 ^ op2;
|
|
77 |
}
|
|
78 |
|
|
79 |
inline jlong BytecodeInterpreter::VMlongRem(jlong op1, jlong op2) {
|
|
80 |
return op1 % op2;
|
|
81 |
}
|
|
82 |
|
|
83 |
inline jlong BytecodeInterpreter::VMlongUshr(jlong op1, jint op2) {
|
|
84 |
// CVM did this 0x3f mask, is the really needed??? QQQ
|
|
85 |
return ((unsigned long long) op1) >> (op2 & 0x3F);
|
|
86 |
}
|
|
87 |
|
|
88 |
inline jlong BytecodeInterpreter::VMlongShr(jlong op1, jint op2) {
|
|
89 |
return op1 >> (op2 & 0x3F);
|
|
90 |
}
|
|
91 |
|
|
92 |
inline jlong BytecodeInterpreter::VMlongShl(jlong op1, jint op2) {
|
|
93 |
return op1 << (op2 & 0x3F);
|
|
94 |
}
|
|
95 |
|
|
96 |
inline jlong BytecodeInterpreter::VMlongNeg(jlong op) {
|
|
97 |
return -op;
|
|
98 |
}
|
|
99 |
|
|
100 |
inline jlong BytecodeInterpreter::VMlongNot(jlong op) {
|
|
101 |
return ~op;
|
|
102 |
}
|
|
103 |
|
|
104 |
inline int32_t BytecodeInterpreter::VMlongLtz(jlong op) {
|
|
105 |
return (op <= 0);
|
|
106 |
}
|
|
107 |
|
|
108 |
inline int32_t BytecodeInterpreter::VMlongGez(jlong op) {
|
|
109 |
return (op >= 0);
|
|
110 |
}
|
|
111 |
|
|
112 |
inline int32_t BytecodeInterpreter::VMlongEqz(jlong op) {
|
|
113 |
return (op == 0);
|
|
114 |
}
|
|
115 |
|
|
116 |
inline int32_t BytecodeInterpreter::VMlongEq(jlong op1, jlong op2) {
|
|
117 |
return (op1 == op2);
|
|
118 |
}
|
|
119 |
|
|
120 |
inline int32_t BytecodeInterpreter::VMlongNe(jlong op1, jlong op2) {
|
|
121 |
return (op1 != op2);
|
|
122 |
}
|
|
123 |
|
|
124 |
inline int32_t BytecodeInterpreter::VMlongGe(jlong op1, jlong op2) {
|
|
125 |
return (op1 >= op2);
|
|
126 |
}
|
|
127 |
|
|
128 |
inline int32_t BytecodeInterpreter::VMlongLe(jlong op1, jlong op2) {
|
|
129 |
return (op1 <= op2);
|
|
130 |
}
|
|
131 |
|
|
132 |
inline int32_t BytecodeInterpreter::VMlongLt(jlong op1, jlong op2) {
|
|
133 |
return (op1 < op2);
|
|
134 |
}
|
|
135 |
|
|
136 |
inline int32_t BytecodeInterpreter::VMlongGt(jlong op1, jlong op2) {
|
|
137 |
return (op1 > op2);
|
|
138 |
}
|
|
139 |
|
|
140 |
inline int32_t BytecodeInterpreter::VMlongCompare(jlong op1, jlong op2) {
|
|
141 |
return (VMlongLt(op1, op2) ? -1 : VMlongGt(op1, op2) ? 1 : 0);
|
|
142 |
}
|
|
143 |
|
|
144 |
// Long conversions
|
|
145 |
|
|
146 |
inline jdouble BytecodeInterpreter::VMlong2Double(jlong val) {
|
|
147 |
return (jdouble) val;
|
|
148 |
}
|
|
149 |
|
|
150 |
inline jfloat BytecodeInterpreter::VMlong2Float(jlong val) {
|
|
151 |
return (jfloat) val;
|
|
152 |
}
|
|
153 |
|
|
154 |
inline jint BytecodeInterpreter::VMlong2Int(jlong val) {
|
|
155 |
return (jint) val;
|
|
156 |
}
|
|
157 |
|
|
158 |
// Double Arithmetic
|
|
159 |
|
|
160 |
inline jdouble BytecodeInterpreter::VMdoubleAdd(jdouble op1, jdouble op2) {
|
|
161 |
return op1 + op2;
|
|
162 |
}
|
|
163 |
|
|
164 |
inline jdouble BytecodeInterpreter::VMdoubleDiv(jdouble op1, jdouble op2) {
|
|
165 |
// Divide by zero... QQQ
|
|
166 |
return op1 / op2;
|
|
167 |
}
|
|
168 |
|
|
169 |
inline jdouble BytecodeInterpreter::VMdoubleMul(jdouble op1, jdouble op2) {
|
|
170 |
return op1 * op2;
|
|
171 |
}
|
|
172 |
|
|
173 |
inline jdouble BytecodeInterpreter::VMdoubleNeg(jdouble op) {
|
|
174 |
return -op;
|
|
175 |
}
|
|
176 |
|
|
177 |
inline jdouble BytecodeInterpreter::VMdoubleRem(jdouble op1, jdouble op2) {
|
|
178 |
return fmod(op1, op2);
|
|
179 |
}
|
|
180 |
|
|
181 |
inline jdouble BytecodeInterpreter::VMdoubleSub(jdouble op1, jdouble op2) {
|
|
182 |
return op1 - op2;
|
|
183 |
}
|
|
184 |
|
|
185 |
inline int32_t BytecodeInterpreter::VMdoubleCompare(jdouble op1, jdouble op2, int32_t direction) {
|
|
186 |
return ( op1 < op2 ? -1 :
|
|
187 |
op1 > op2 ? 1 :
|
|
188 |
op1 == op2 ? 0 :
|
|
189 |
(direction == -1 || direction == 1) ? direction : 0);
|
|
190 |
}
|
|
191 |
|
|
192 |
// Double Conversions
|
|
193 |
|
|
194 |
inline jfloat BytecodeInterpreter::VMdouble2Float(jdouble val) {
|
|
195 |
return (jfloat) val;
|
|
196 |
}
|
|
197 |
|
|
198 |
// Float Conversions
|
|
199 |
|
|
200 |
inline jdouble BytecodeInterpreter::VMfloat2Double(jfloat op) {
|
|
201 |
return (jdouble) op;
|
|
202 |
}
|
|
203 |
|
|
204 |
// Integer Arithmetic
|
|
205 |
|
|
206 |
inline jint BytecodeInterpreter::VMintAdd(jint op1, jint op2) {
|
|
207 |
return op1 + op2;
|
|
208 |
}
|
|
209 |
|
|
210 |
inline jint BytecodeInterpreter::VMintAnd(jint op1, jint op2) {
|
|
211 |
return op1 & op2;
|
|
212 |
}
|
|
213 |
|
|
214 |
inline jint BytecodeInterpreter::VMintDiv(jint op1, jint op2) {
|
|
215 |
/* it's possible we could catch this special case implicitly */
|
|
216 |
if (op1 == 0x80000000 && op2 == -1) return op1;
|
|
217 |
else return op1 / op2;
|
|
218 |
}
|
|
219 |
|
|
220 |
inline jint BytecodeInterpreter::VMintMul(jint op1, jint op2) {
|
|
221 |
return op1 * op2;
|
|
222 |
}
|
|
223 |
|
|
224 |
inline jint BytecodeInterpreter::VMintNeg(jint op) {
|
|
225 |
return -op;
|
|
226 |
}
|
|
227 |
|
|
228 |
inline jint BytecodeInterpreter::VMintOr(jint op1, jint op2) {
|
|
229 |
return op1 | op2;
|
|
230 |
}
|
|
231 |
|
|
232 |
inline jint BytecodeInterpreter::VMintRem(jint op1, jint op2) {
|
|
233 |
/* it's possible we could catch this special case implicitly */
|
|
234 |
if (op1 == 0x80000000 && op2 == -1) return 0;
|
|
235 |
else return op1 % op2;
|
|
236 |
}
|
|
237 |
|
|
238 |
inline jint BytecodeInterpreter::VMintShl(jint op1, jint op2) {
|
|
239 |
return op1 << op2;
|
|
240 |
}
|
|
241 |
|
|
242 |
inline jint BytecodeInterpreter::VMintShr(jint op1, jint op2) {
|
|
243 |
return op1 >> op2; // QQ op2 & 0x1f??
|
|
244 |
}
|
|
245 |
|
|
246 |
inline jint BytecodeInterpreter::VMintSub(jint op1, jint op2) {
|
|
247 |
return op1 - op2;
|
|
248 |
}
|
|
249 |
|
|
250 |
inline jint BytecodeInterpreter::VMintUshr(jint op1, jint op2) {
|
|
251 |
return ((juint) op1) >> op2; // QQ op2 & 0x1f??
|
|
252 |
}
|
|
253 |
|
|
254 |
inline jint BytecodeInterpreter::VMintXor(jint op1, jint op2) {
|
|
255 |
return op1 ^ op2;
|
|
256 |
}
|
|
257 |
|
|
258 |
inline jdouble BytecodeInterpreter::VMint2Double(jint val) {
|
|
259 |
return (jdouble) val;
|
|
260 |
}
|
|
261 |
|
|
262 |
inline jfloat BytecodeInterpreter::VMint2Float(jint val) {
|
|
263 |
return (jfloat) val;
|
|
264 |
}
|
|
265 |
|
|
266 |
inline jlong BytecodeInterpreter::VMint2Long(jint val) {
|
|
267 |
return (jlong) val;
|
|
268 |
}
|
|
269 |
|
|
270 |
inline jchar BytecodeInterpreter::VMint2Char(jint val) {
|
|
271 |
return (jchar) val;
|
|
272 |
}
|
|
273 |
|
|
274 |
inline jshort BytecodeInterpreter::VMint2Short(jint val) {
|
|
275 |
return (jshort) val;
|
|
276 |
}
|
|
277 |
|
|
278 |
inline jbyte BytecodeInterpreter::VMint2Byte(jint val) {
|
|
279 |
return (jbyte) val;
|
|
280 |
}
|
|
281 |
|
|
282 |
// The implementations are platform dependent. We have to worry about alignment
|
|
283 |
// issues on some machines which can change on the same platform depending on
|
|
284 |
// whether it is an LP64 machine also.
|
|
285 |
|
|
286 |
// We know that on LP32 mode that longs/doubles are the only thing that gives
|
|
287 |
// us alignment headaches. We also know that the worst we have is 32bit alignment
|
|
288 |
// so thing are not really too bad.
|
|
289 |
// (Also sparcworks compiler does the right thing for free if we don't use -arch..
|
|
290 |
// switches. Only gcc gives us a hard time. In LP64 mode I think we have no issue
|
|
291 |
// with alignment.
|
|
292 |
|
|
293 |
#ifdef _GNU_SOURCE
|
|
294 |
#define ALIGN_CONVERTER /* Needs alignment converter */
|
|
295 |
#else
|
|
296 |
#undef ALIGN_CONVERTER /* No alignment converter */
|
|
297 |
#endif /* _GNU_SOURCE */
|
|
298 |
|
|
299 |
#ifdef ALIGN_CONVERTER
|
|
300 |
class u8_converter {
|
|
301 |
|
|
302 |
private:
|
|
303 |
|
|
304 |
public:
|
|
305 |
static jdouble get_jdouble(address p) {
|
|
306 |
VMJavaVal64 tmp;
|
|
307 |
tmp.v[0] = ((uint32_t*)p)[0];
|
|
308 |
tmp.v[1] = ((uint32_t*)p)[1];
|
|
309 |
return tmp.d;
|
|
310 |
}
|
|
311 |
|
|
312 |
static void put_jdouble(address p, jdouble d) {
|
|
313 |
VMJavaVal64 tmp;
|
|
314 |
tmp.d = d;
|
|
315 |
((uint32_t*)p)[0] = tmp.v[0];
|
|
316 |
((uint32_t*)p)[1] = tmp.v[1];
|
|
317 |
}
|
|
318 |
|
|
319 |
static jlong get_jlong(address p) {
|
|
320 |
VMJavaVal64 tmp;
|
|
321 |
tmp.v[0] = ((uint32_t*)p)[0];
|
|
322 |
tmp.v[1] = ((uint32_t*)p)[1];
|
|
323 |
return tmp.l;
|
|
324 |
}
|
|
325 |
|
|
326 |
static void put_jlong(address p, jlong l) {
|
|
327 |
VMJavaVal64 tmp;
|
|
328 |
tmp.l = l;
|
|
329 |
((uint32_t*)p)[0] = tmp.v[0];
|
|
330 |
((uint32_t*)p)[1] = tmp.v[1];
|
|
331 |
}
|
|
332 |
};
|
|
333 |
#endif /* ALIGN_CONVERTER */
|