author | twisti |
Fri, 13 Feb 2009 09:09:35 -0800 | |
changeset 2031 | 24e034f56dcb |
parent 1500 | bea9a90f3e8f |
child 2148 | 09c7f703773b |
permissions | -rw-r--r-- |
1 | 1 |
/* |
670 | 2 |
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
class BiasedLockingCounters; |
|
26 |
||
27 |
// <sys/trap.h> promises that the system will not use traps 16-31 |
|
28 |
#define ST_RESERVED_FOR_USER_0 0x10 |
|
29 |
||
30 |
/* Written: David Ungar 4/19/97 */ |
|
31 |
||
32 |
// Contains all the definitions needed for sparc assembly code generation. |
|
33 |
||
34 |
// Register aliases for parts of the system: |
|
35 |
||
36 |
// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe |
|
37 |
// across context switches in V8+ ABI. Of course, there are no 64 bit regs |
|
38 |
// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers. |
|
39 |
||
40 |
// g2-g4 are scratch registers called "application globals". Their |
|
41 |
// meaning is reserved to the "compilation system"--which means us! |
|
42 |
// They are are not supposed to be touched by ordinary C code, although |
|
43 |
// highly-optimized C code might steal them for temps. They are safe |
|
44 |
// across thread switches, and the ABI requires that they be safe |
|
45 |
// across function calls. |
|
46 |
// |
|
47 |
// g1 and g3 are touched by more modules. V8 allows g1 to be clobbered |
|
48 |
// across func calls, and V8+ also allows g5 to be clobbered across |
|
49 |
// func calls. Also, g1 and g5 can get touched while doing shared |
|
50 |
// library loading. |
|
51 |
// |
|
52 |
// We must not touch g7 (it is the thread-self register) and g6 is |
|
53 |
// reserved for certain tools. g0, of course, is always zero. |
|
54 |
// |
|
55 |
// (Sources: SunSoft Compilers Group, thread library engineers.) |
|
56 |
||
57 |
// %%%% The interpreter should be revisited to reduce global scratch regs. |
|
58 |
||
59 |
// This global always holds the current JavaThread pointer: |
|
60 |
||
61 |
REGISTER_DECLARATION(Register, G2_thread , G2); |
|
360
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
62 |
REGISTER_DECLARATION(Register, G6_heapbase , G6); |
1 | 63 |
|
64 |
// The following globals are part of the Java calling convention: |
|
65 |
||
66 |
REGISTER_DECLARATION(Register, G5_method , G5); |
|
67 |
REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method); |
|
68 |
REGISTER_DECLARATION(Register, G5_inline_cache_reg , G5_method); |
|
69 |
||
70 |
// The following globals are used for the new C1 & interpreter calling convention: |
|
71 |
REGISTER_DECLARATION(Register, Gargs , G4); // pointing to the last argument |
|
72 |
||
73 |
// This local is used to preserve G2_thread in the interpreter and in stubs: |
|
74 |
REGISTER_DECLARATION(Register, L7_thread_cache , L7); |
|
75 |
||
76 |
// These globals are used as scratch registers in the interpreter: |
|
77 |
||
78 |
REGISTER_DECLARATION(Register, Gframe_size , G1); // SAME REG as G1_scratch |
|
79 |
REGISTER_DECLARATION(Register, G1_scratch , G1); // also SAME |
|
80 |
REGISTER_DECLARATION(Register, G3_scratch , G3); |
|
81 |
REGISTER_DECLARATION(Register, G4_scratch , G4); |
|
82 |
||
83 |
// These globals are used as short-lived scratch registers in the compiler: |
|
84 |
||
85 |
REGISTER_DECLARATION(Register, Gtemp , G5); |
|
86 |
||
87 |
// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass, |
|
88 |
// because a single patchable "set" instruction (NativeMovConstReg, |
|
89 |
// or NativeMovConstPatching for compiler1) instruction |
|
90 |
// serves to set up either quantity, depending on whether the compiled |
|
91 |
// call site is an inline cache or is megamorphic. See the function |
|
92 |
// CompiledIC::set_to_megamorphic. |
|
93 |
// |
|
94 |
// On the other hand, G5_inline_cache_klass must differ from G5_method, |
|
95 |
// because both registers are needed for an inline cache that calls |
|
96 |
// an interpreted method. |
|
97 |
// |
|
98 |
// Note that G5_method is only the method-self for the interpreter, |
|
99 |
// and is logically unrelated to G5_megamorphic_method. |
|
100 |
// |
|
101 |
// Invariants on G2_thread (the JavaThread pointer): |
|
102 |
// - it should not be used for any other purpose anywhere |
|
103 |
// - it must be re-initialized by StubRoutines::call_stub() |
|
104 |
// - it must be preserved around every use of call_VM |
|
105 |
||
106 |
// We can consider using g2/g3/g4 to cache more values than the |
|
107 |
// JavaThread, such as the card-marking base or perhaps pointers into |
|
108 |
// Eden. It's something of a waste to use them as scratch temporaries, |
|
109 |
// since they are not supposed to be volatile. (Of course, if we find |
|
110 |
// that Java doesn't benefit from application globals, then we can just |
|
111 |
// use them as ordinary temporaries.) |
|
112 |
// |
|
113 |
// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers, |
|
114 |
// it makes sense to use them routinely for procedure linkage, |
|
115 |
// whenever the On registers are not applicable. Examples: G5_method, |
|
116 |
// G5_inline_cache_klass, and a double handful of miscellaneous compiler |
|
117 |
// stubs. This means that compiler stubs, etc., should be kept to a |
|
118 |
// maximum of two or three G-register arguments. |
|
119 |
||
120 |
||
121 |
// stub frames |
|
122 |
||
123 |
REGISTER_DECLARATION(Register, Lentry_args , L0); // pointer to args passed to callee (interpreter) not stub itself |
|
124 |
||
125 |
// Interpreter frames |
|
126 |
||
127 |
#ifdef CC_INTERP |
|
128 |
REGISTER_DECLARATION(Register, Lstate , L0); // interpreter state object pointer |
|
129 |
REGISTER_DECLARATION(Register, L1_scratch , L1); // scratch |
|
130 |
REGISTER_DECLARATION(Register, Lmirror , L1); // mirror (for native methods only) |
|
131 |
REGISTER_DECLARATION(Register, L2_scratch , L2); |
|
132 |
REGISTER_DECLARATION(Register, L3_scratch , L3); |
|
133 |
REGISTER_DECLARATION(Register, L4_scratch , L4); |
|
134 |
REGISTER_DECLARATION(Register, Lscratch , L5); // C1 uses |
|
135 |
REGISTER_DECLARATION(Register, Lscratch2 , L6); // C1 uses |
|
136 |
REGISTER_DECLARATION(Register, L7_scratch , L7); // constant pool cache |
|
137 |
REGISTER_DECLARATION(Register, O5_savedSP , O5); |
|
138 |
REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply |
|
139 |
// a copy SP, so in 64-bit it's a biased value. The bias |
|
140 |
// is added and removed as needed in the frame code. |
|
141 |
// Interface to signature handler |
|
142 |
REGISTER_DECLARATION(Register, Llocals , L7); // pointer to locals for signature handler |
|
143 |
REGISTER_DECLARATION(Register, Lmethod , L6); // methodOop when calling signature handler |
|
144 |
||
145 |
#else |
|
146 |
REGISTER_DECLARATION(Register, Lesp , L0); // expression stack pointer |
|
147 |
REGISTER_DECLARATION(Register, Lbcp , L1); // pointer to next bytecode |
|
148 |
REGISTER_DECLARATION(Register, Lmethod , L2); |
|
149 |
REGISTER_DECLARATION(Register, Llocals , L3); |
|
150 |
REGISTER_DECLARATION(Register, Largs , L3); // pointer to locals for signature handler |
|
151 |
// must match Llocals in asm interpreter |
|
152 |
REGISTER_DECLARATION(Register, Lmonitors , L4); |
|
153 |
REGISTER_DECLARATION(Register, Lbyte_code , L5); |
|
154 |
// When calling out from the interpreter we record SP so that we can remove any extra stack |
|
155 |
// space allocated during adapter transitions. This register is only live from the point |
|
156 |
// of the call until we return. |
|
157 |
REGISTER_DECLARATION(Register, Llast_SP , L5); |
|
158 |
REGISTER_DECLARATION(Register, Lscratch , L5); |
|
159 |
REGISTER_DECLARATION(Register, Lscratch2 , L6); |
|
160 |
REGISTER_DECLARATION(Register, LcpoolCache , L6); // constant pool cache |
|
161 |
||
162 |
REGISTER_DECLARATION(Register, O5_savedSP , O5); |
|
163 |
REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply |
|
164 |
// a copy SP, so in 64-bit it's a biased value. The bias |
|
165 |
// is added and removed as needed in the frame code. |
|
166 |
REGISTER_DECLARATION(Register, IdispatchTables , I4); // Base address of the bytecode dispatch tables |
|
167 |
REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode |
|
168 |
REGISTER_DECLARATION(Register, ImethodDataPtr , I2); // Pointer to the current method data |
|
169 |
#endif /* CC_INTERP */ |
|
170 |
||
171 |
// NOTE: Lscratch2 and LcpoolCache point to the same registers in |
|
172 |
// the interpreter code. If Lscratch2 needs to be used for some |
|
173 |
// purpose than LcpoolCache should be restore after that for |
|
174 |
// the interpreter to work right |
|
175 |
// (These assignments must be compatible with L7_thread_cache; see above.) |
|
176 |
||
177 |
// Since Lbcp points into the middle of the method object, |
|
178 |
// it is temporarily converted into a "bcx" during GC. |
|
179 |
||
180 |
// Exception processing |
|
181 |
// These registers are passed into exception handlers. |
|
182 |
// All exception handlers require the exception object being thrown. |
|
183 |
// In addition, an nmethod's exception handler must be passed |
|
184 |
// the address of the call site within the nmethod, to allow |
|
185 |
// proper selection of the applicable catch block. |
|
186 |
// (Interpreter frames use their own bcp() for this purpose.) |
|
187 |
// |
|
188 |
// The Oissuing_pc value is not always needed. When jumping to a |
|
189 |
// handler that is known to be interpreted, the Oissuing_pc value can be |
|
190 |
// omitted. An actual catch block in compiled code receives (from its |
|
191 |
// nmethod's exception handler) the thrown exception in the Oexception, |
|
192 |
// but it doesn't need the Oissuing_pc. |
|
193 |
// |
|
194 |
// If an exception handler (either interpreted or compiled) |
|
195 |
// discovers there is no applicable catch block, it updates |
|
196 |
// the Oissuing_pc to the continuation PC of its own caller, |
|
197 |
// pops back to that caller's stack frame, and executes that |
|
198 |
// caller's exception handler. Obviously, this process will |
|
199 |
// iterate until the control stack is popped back to a method |
|
200 |
// containing an applicable catch block. A key invariant is |
|
201 |
// that the Oissuing_pc value is always a value local to |
|
202 |
// the method whose exception handler is currently executing. |
|
203 |
// |
|
204 |
// Note: The issuing PC value is __not__ a raw return address (I7 value). |
|
205 |
// It is a "return pc", the address __following__ the call. |
|
206 |
// Raw return addresses are converted to issuing PCs by frame::pc(), |
|
207 |
// or by stubs. Issuing PCs can be used directly with PC range tables. |
|
208 |
// |
|
209 |
REGISTER_DECLARATION(Register, Oexception , O0); // exception being thrown |
|
210 |
REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from |
|
211 |
||
212 |
||
213 |
// These must occur after the declarations above |
|
214 |
#ifndef DONT_USE_REGISTER_DEFINES |
|
215 |
||
216 |
#define Gthread AS_REGISTER(Register, Gthread) |
|
217 |
#define Gmethod AS_REGISTER(Register, Gmethod) |
|
218 |
#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method) |
|
219 |
#define Ginline_cache_reg AS_REGISTER(Register, Ginline_cache_reg) |
|
220 |
#define Gargs AS_REGISTER(Register, Gargs) |
|
221 |
#define Lthread_cache AS_REGISTER(Register, Lthread_cache) |
|
222 |
#define Gframe_size AS_REGISTER(Register, Gframe_size) |
|
223 |
#define Gtemp AS_REGISTER(Register, Gtemp) |
|
224 |
||
225 |
#ifdef CC_INTERP |
|
226 |
#define Lstate AS_REGISTER(Register, Lstate) |
|
227 |
#define Lesp AS_REGISTER(Register, Lesp) |
|
228 |
#define L1_scratch AS_REGISTER(Register, L1_scratch) |
|
229 |
#define Lmirror AS_REGISTER(Register, Lmirror) |
|
230 |
#define L2_scratch AS_REGISTER(Register, L2_scratch) |
|
231 |
#define L3_scratch AS_REGISTER(Register, L3_scratch) |
|
232 |
#define L4_scratch AS_REGISTER(Register, L4_scratch) |
|
233 |
#define Lscratch AS_REGISTER(Register, Lscratch) |
|
234 |
#define Lscratch2 AS_REGISTER(Register, Lscratch2) |
|
235 |
#define L7_scratch AS_REGISTER(Register, L7_scratch) |
|
236 |
#define Ostate AS_REGISTER(Register, Ostate) |
|
237 |
#else |
|
238 |
#define Lesp AS_REGISTER(Register, Lesp) |
|
239 |
#define Lbcp AS_REGISTER(Register, Lbcp) |
|
240 |
#define Lmethod AS_REGISTER(Register, Lmethod) |
|
241 |
#define Llocals AS_REGISTER(Register, Llocals) |
|
242 |
#define Lmonitors AS_REGISTER(Register, Lmonitors) |
|
243 |
#define Lbyte_code AS_REGISTER(Register, Lbyte_code) |
|
244 |
#define Lscratch AS_REGISTER(Register, Lscratch) |
|
245 |
#define Lscratch2 AS_REGISTER(Register, Lscratch2) |
|
246 |
#define LcpoolCache AS_REGISTER(Register, LcpoolCache) |
|
247 |
#endif /* ! CC_INTERP */ |
|
248 |
||
249 |
#define Lentry_args AS_REGISTER(Register, Lentry_args) |
|
250 |
#define I5_savedSP AS_REGISTER(Register, I5_savedSP) |
|
251 |
#define O5_savedSP AS_REGISTER(Register, O5_savedSP) |
|
252 |
#define IdispatchAddress AS_REGISTER(Register, IdispatchAddress) |
|
253 |
#define ImethodDataPtr AS_REGISTER(Register, ImethodDataPtr) |
|
254 |
#define IdispatchTables AS_REGISTER(Register, IdispatchTables) |
|
255 |
||
256 |
#define Oexception AS_REGISTER(Register, Oexception) |
|
257 |
#define Oissuing_pc AS_REGISTER(Register, Oissuing_pc) |
|
258 |
||
259 |
||
260 |
#endif |
|
261 |
||
262 |
// Address is an abstraction used to represent a memory location. |
|
263 |
// |
|
264 |
// Note: A register location is represented via a Register, not |
|
265 |
// via an address for efficiency & simplicity reasons. |
|
266 |
||
267 |
class Address VALUE_OBJ_CLASS_SPEC { |
|
268 |
private: |
|
269 |
Register _base; |
|
270 |
#ifdef _LP64 |
|
271 |
int _hi32; // bits 63::32 |
|
272 |
int _low32; // bits 31::0 |
|
273 |
#endif |
|
274 |
int _hi; |
|
275 |
int _disp; |
|
276 |
RelocationHolder _rspec; |
|
277 |
||
278 |
RelocationHolder rspec_from_rtype(relocInfo::relocType rt, address a = NULL) { |
|
279 |
switch (rt) { |
|
280 |
case relocInfo::external_word_type: |
|
281 |
return external_word_Relocation::spec(a); |
|
282 |
case relocInfo::internal_word_type: |
|
283 |
return internal_word_Relocation::spec(a); |
|
284 |
#ifdef _LP64 |
|
285 |
case relocInfo::opt_virtual_call_type: |
|
286 |
return opt_virtual_call_Relocation::spec(); |
|
287 |
case relocInfo::static_call_type: |
|
288 |
return static_call_Relocation::spec(); |
|
289 |
case relocInfo::runtime_call_type: |
|
290 |
return runtime_call_Relocation::spec(); |
|
291 |
#endif |
|
292 |
case relocInfo::none: |
|
293 |
return RelocationHolder(); |
|
294 |
default: |
|
295 |
ShouldNotReachHere(); |
|
296 |
return RelocationHolder(); |
|
297 |
} |
|
298 |
} |
|
299 |
||
300 |
public: |
|
301 |
Address(Register b, address a, relocInfo::relocType rt = relocInfo::none) |
|
302 |
: _rspec(rspec_from_rtype(rt, a)) |
|
303 |
{ |
|
304 |
_base = b; |
|
305 |
#ifdef _LP64 |
|
306 |
_hi32 = (intptr_t)a >> 32; // top 32 bits in 64 bit word |
|
307 |
_low32 = (intptr_t)a & ~0; // low 32 bits in 64 bit word |
|
308 |
#endif |
|
309 |
_hi = (intptr_t)a & ~0x3ff; // top 22 bits in low word |
|
310 |
_disp = (intptr_t)a & 0x3ff; // bottom 10 bits |
|
311 |
} |
|
312 |
||
313 |
Address(Register b, address a, RelocationHolder const& rspec) |
|
314 |
: _rspec(rspec) |
|
315 |
{ |
|
316 |
_base = b; |
|
317 |
#ifdef _LP64 |
|
318 |
_hi32 = (intptr_t)a >> 32; // top 32 bits in 64 bit word |
|
319 |
_low32 = (intptr_t)a & ~0; // low 32 bits in 64 bit word |
|
320 |
#endif |
|
321 |
_hi = (intptr_t)a & ~0x3ff; // top 22 bits |
|
322 |
_disp = (intptr_t)a & 0x3ff; // bottom 10 bits |
|
323 |
} |
|
324 |
||
325 |
Address(Register b, intptr_t h, intptr_t d, RelocationHolder const& rspec = RelocationHolder()) |
|
326 |
: _rspec(rspec) |
|
327 |
{ |
|
328 |
_base = b; |
|
329 |
#ifdef _LP64 |
|
330 |
// [RGV] Put in Assert to force me to check usage of this constructor |
|
331 |
assert( h == 0, "Check usage of this constructor" ); |
|
332 |
_hi32 = h; |
|
333 |
_low32 = d; |
|
334 |
_hi = h; |
|
335 |
_disp = d; |
|
336 |
#else |
|
337 |
_hi = h; |
|
338 |
_disp = d; |
|
339 |
#endif |
|
340 |
} |
|
341 |
||
342 |
Address() |
|
343 |
: _rspec(RelocationHolder()) |
|
344 |
{ |
|
345 |
_base = G0; |
|
346 |
#ifdef _LP64 |
|
347 |
_hi32 = 0; |
|
348 |
_low32 = 0; |
|
349 |
#endif |
|
350 |
_hi = 0; |
|
351 |
_disp = 0; |
|
352 |
} |
|
353 |
||
354 |
// fancier constructors |
|
355 |
||
356 |
enum addr_type { |
|
357 |
extra_in_argument, // in the In registers |
|
358 |
extra_out_argument // in the Outs |
|
359 |
}; |
|
360 |
||
361 |
Address( addr_type, int ); |
|
362 |
||
363 |
// accessors |
|
364 |
||
365 |
Register base() const { return _base; } |
|
366 |
#ifdef _LP64 |
|
367 |
int hi32() const { return _hi32; } |
|
368 |
int low32() const { return _low32; } |
|
369 |
#endif |
|
370 |
int hi() const { return _hi; } |
|
371 |
int disp() const { return _disp; } |
|
372 |
#ifdef _LP64 |
|
373 |
intptr_t value() const { return ((intptr_t)_hi32 << 32) | |
|
374 |
(intptr_t)(uint32_t)_low32; } |
|
375 |
#else |
|
376 |
int value() const { return _hi | _disp; } |
|
377 |
#endif |
|
378 |
const relocInfo::relocType rtype() { return _rspec.type(); } |
|
379 |
const RelocationHolder& rspec() { return _rspec; } |
|
380 |
||
381 |
RelocationHolder rspec(int offset) const { |
|
382 |
return offset == 0 ? _rspec : _rspec.plus(offset); |
|
383 |
} |
|
384 |
||
385 |
inline bool is_simm13(int offset = 0); // check disp+offset for overflow |
|
386 |
||
387 |
Address split_disp() const { // deal with disp overflow |
|
388 |
Address a = (*this); |
|
389 |
int hi_disp = _disp & ~0x3ff; |
|
390 |
if (hi_disp != 0) { |
|
391 |
a._disp -= hi_disp; |
|
392 |
a._hi += hi_disp; |
|
393 |
} |
|
394 |
return a; |
|
395 |
} |
|
396 |
||
397 |
Address after_save() const { |
|
398 |
Address a = (*this); |
|
399 |
a._base = a._base->after_save(); |
|
400 |
return a; |
|
401 |
} |
|
402 |
||
403 |
Address after_restore() const { |
|
404 |
Address a = (*this); |
|
405 |
a._base = a._base->after_restore(); |
|
406 |
return a; |
|
407 |
} |
|
408 |
||
409 |
friend class Assembler; |
|
410 |
}; |
|
411 |
||
412 |
||
413 |
inline Address RegisterImpl::address_in_saved_window() const { |
|
414 |
return (Address(SP, 0, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS)); |
|
415 |
} |
|
416 |
||
417 |
||
418 |
||
419 |
// Argument is an abstraction used to represent an outgoing |
|
420 |
// actual argument or an incoming formal parameter, whether |
|
421 |
// it resides in memory or in a register, in a manner consistent |
|
422 |
// with the SPARC Application Binary Interface, or ABI. This is |
|
423 |
// often referred to as the native or C calling convention. |
|
424 |
||
425 |
class Argument VALUE_OBJ_CLASS_SPEC { |
|
426 |
private: |
|
427 |
int _number; |
|
428 |
bool _is_in; |
|
429 |
||
430 |
public: |
|
431 |
#ifdef _LP64 |
|
432 |
enum { |
|
433 |
n_register_parameters = 6, // only 6 registers may contain integer parameters |
|
434 |
n_float_register_parameters = 16 // Can have up to 16 floating registers |
|
435 |
}; |
|
436 |
#else |
|
437 |
enum { |
|
438 |
n_register_parameters = 6 // only 6 registers may contain integer parameters |
|
439 |
}; |
|
440 |
#endif |
|
441 |
||
442 |
// creation |
|
443 |
Argument(int number, bool is_in) : _number(number), _is_in(is_in) {} |
|
444 |
||
445 |
int number() const { return _number; } |
|
446 |
bool is_in() const { return _is_in; } |
|
447 |
bool is_out() const { return !is_in(); } |
|
448 |
||
449 |
Argument successor() const { return Argument(number() + 1, is_in()); } |
|
450 |
Argument as_in() const { return Argument(number(), true ); } |
|
451 |
Argument as_out() const { return Argument(number(), false); } |
|
452 |
||
453 |
// locating register-based arguments: |
|
454 |
bool is_register() const { return _number < n_register_parameters; } |
|
455 |
||
456 |
#ifdef _LP64 |
|
457 |
// locating Floating Point register-based arguments: |
|
458 |
bool is_float_register() const { return _number < n_float_register_parameters; } |
|
459 |
||
460 |
FloatRegister as_float_register() const { |
|
461 |
assert(is_float_register(), "must be a register argument"); |
|
462 |
return as_FloatRegister(( number() *2 ) + 1); |
|
463 |
} |
|
464 |
FloatRegister as_double_register() const { |
|
465 |
assert(is_float_register(), "must be a register argument"); |
|
466 |
return as_FloatRegister(( number() *2 )); |
|
467 |
} |
|
468 |
#endif |
|
469 |
||
470 |
Register as_register() const { |
|
471 |
assert(is_register(), "must be a register argument"); |
|
472 |
return is_in() ? as_iRegister(number()) : as_oRegister(number()); |
|
473 |
} |
|
474 |
||
475 |
// locating memory-based arguments |
|
476 |
Address as_address() const { |
|
477 |
assert(!is_register(), "must be a memory argument"); |
|
478 |
return address_in_frame(); |
|
479 |
} |
|
480 |
||
481 |
// When applied to a register-based argument, give the corresponding address |
|
482 |
// into the 6-word area "into which callee may store register arguments" |
|
483 |
// (This is a different place than the corresponding register-save area location.) |
|
484 |
Address address_in_frame() const { |
|
485 |
return Address( is_in() ? Address::extra_in_argument |
|
486 |
: Address::extra_out_argument, |
|
487 |
_number ); |
|
488 |
} |
|
489 |
||
490 |
// debugging |
|
491 |
const char* name() const; |
|
492 |
||
493 |
friend class Assembler; |
|
494 |
}; |
|
495 |
||
496 |
||
497 |
// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction |
|
498 |
// level; i.e., what you write |
|
499 |
// is what you get. The Assembler is generating code into a CodeBuffer. |
|
500 |
||
501 |
class Assembler : public AbstractAssembler { |
|
502 |
protected: |
|
503 |
||
504 |
static void print_instruction(int inst); |
|
505 |
static int patched_branch(int dest_pos, int inst, int inst_pos); |
|
506 |
static int branch_destination(int inst, int pos); |
|
507 |
||
508 |
||
509 |
friend class AbstractAssembler; |
|
510 |
||
511 |
// code patchers need various routines like inv_wdisp() |
|
512 |
friend class NativeInstruction; |
|
513 |
friend class NativeGeneralJump; |
|
514 |
friend class Relocation; |
|
515 |
friend class Label; |
|
516 |
||
517 |
public: |
|
518 |
// op carries format info; see page 62 & 267 |
|
519 |
||
520 |
enum ops { |
|
521 |
call_op = 1, // fmt 1 |
|
522 |
branch_op = 0, // also sethi (fmt2) |
|
523 |
arith_op = 2, // fmt 3, arith & misc |
|
524 |
ldst_op = 3 // fmt 3, load/store |
|
525 |
}; |
|
526 |
||
527 |
enum op2s { |
|
528 |
bpr_op2 = 3, |
|
529 |
fb_op2 = 6, |
|
530 |
fbp_op2 = 5, |
|
531 |
br_op2 = 2, |
|
532 |
bp_op2 = 1, |
|
533 |
cb_op2 = 7, // V8 |
|
534 |
sethi_op2 = 4 |
|
535 |
}; |
|
536 |
||
537 |
enum op3s { |
|
538 |
// selected op3s |
|
539 |
add_op3 = 0x00, |
|
540 |
and_op3 = 0x01, |
|
541 |
or_op3 = 0x02, |
|
542 |
xor_op3 = 0x03, |
|
543 |
sub_op3 = 0x04, |
|
544 |
andn_op3 = 0x05, |
|
545 |
orn_op3 = 0x06, |
|
546 |
xnor_op3 = 0x07, |
|
547 |
addc_op3 = 0x08, |
|
548 |
mulx_op3 = 0x09, |
|
549 |
umul_op3 = 0x0a, |
|
550 |
smul_op3 = 0x0b, |
|
551 |
subc_op3 = 0x0c, |
|
552 |
udivx_op3 = 0x0d, |
|
553 |
udiv_op3 = 0x0e, |
|
554 |
sdiv_op3 = 0x0f, |
|
555 |
||
556 |
addcc_op3 = 0x10, |
|
557 |
andcc_op3 = 0x11, |
|
558 |
orcc_op3 = 0x12, |
|
559 |
xorcc_op3 = 0x13, |
|
560 |
subcc_op3 = 0x14, |
|
561 |
andncc_op3 = 0x15, |
|
562 |
orncc_op3 = 0x16, |
|
563 |
xnorcc_op3 = 0x17, |
|
564 |
addccc_op3 = 0x18, |
|
565 |
umulcc_op3 = 0x1a, |
|
566 |
smulcc_op3 = 0x1b, |
|
567 |
subccc_op3 = 0x1c, |
|
568 |
udivcc_op3 = 0x1e, |
|
569 |
sdivcc_op3 = 0x1f, |
|
570 |
||
571 |
taddcc_op3 = 0x20, |
|
572 |
tsubcc_op3 = 0x21, |
|
573 |
taddcctv_op3 = 0x22, |
|
574 |
tsubcctv_op3 = 0x23, |
|
575 |
mulscc_op3 = 0x24, |
|
576 |
sll_op3 = 0x25, |
|
577 |
sllx_op3 = 0x25, |
|
578 |
srl_op3 = 0x26, |
|
579 |
srlx_op3 = 0x26, |
|
580 |
sra_op3 = 0x27, |
|
581 |
srax_op3 = 0x27, |
|
582 |
rdreg_op3 = 0x28, |
|
583 |
membar_op3 = 0x28, |
|
584 |
||
585 |
flushw_op3 = 0x2b, |
|
586 |
movcc_op3 = 0x2c, |
|
587 |
sdivx_op3 = 0x2d, |
|
588 |
popc_op3 = 0x2e, |
|
589 |
movr_op3 = 0x2f, |
|
590 |
||
591 |
sir_op3 = 0x30, |
|
592 |
wrreg_op3 = 0x30, |
|
593 |
saved_op3 = 0x31, |
|
594 |
||
595 |
fpop1_op3 = 0x34, |
|
596 |
fpop2_op3 = 0x35, |
|
597 |
impdep1_op3 = 0x36, |
|
598 |
impdep2_op3 = 0x37, |
|
599 |
jmpl_op3 = 0x38, |
|
600 |
rett_op3 = 0x39, |
|
601 |
trap_op3 = 0x3a, |
|
602 |
flush_op3 = 0x3b, |
|
603 |
save_op3 = 0x3c, |
|
604 |
restore_op3 = 0x3d, |
|
605 |
done_op3 = 0x3e, |
|
606 |
retry_op3 = 0x3e, |
|
607 |
||
608 |
lduw_op3 = 0x00, |
|
609 |
ldub_op3 = 0x01, |
|
610 |
lduh_op3 = 0x02, |
|
611 |
ldd_op3 = 0x03, |
|
612 |
stw_op3 = 0x04, |
|
613 |
stb_op3 = 0x05, |
|
614 |
sth_op3 = 0x06, |
|
615 |
std_op3 = 0x07, |
|
616 |
ldsw_op3 = 0x08, |
|
617 |
ldsb_op3 = 0x09, |
|
618 |
ldsh_op3 = 0x0a, |
|
619 |
ldx_op3 = 0x0b, |
|
620 |
||
621 |
ldstub_op3 = 0x0d, |
|
622 |
stx_op3 = 0x0e, |
|
623 |
swap_op3 = 0x0f, |
|
624 |
||
625 |
lduwa_op3 = 0x10, |
|
626 |
ldxa_op3 = 0x1b, |
|
627 |
||
628 |
stwa_op3 = 0x14, |
|
629 |
stxa_op3 = 0x1e, |
|
630 |
||
631 |
ldf_op3 = 0x20, |
|
632 |
ldfsr_op3 = 0x21, |
|
633 |
ldqf_op3 = 0x22, |
|
634 |
lddf_op3 = 0x23, |
|
635 |
stf_op3 = 0x24, |
|
636 |
stfsr_op3 = 0x25, |
|
637 |
stqf_op3 = 0x26, |
|
638 |
stdf_op3 = 0x27, |
|
639 |
||
640 |
prefetch_op3 = 0x2d, |
|
641 |
||
642 |
||
643 |
ldc_op3 = 0x30, |
|
644 |
ldcsr_op3 = 0x31, |
|
645 |
lddc_op3 = 0x33, |
|
646 |
stc_op3 = 0x34, |
|
647 |
stcsr_op3 = 0x35, |
|
648 |
stdcq_op3 = 0x36, |
|
649 |
stdc_op3 = 0x37, |
|
650 |
||
651 |
casa_op3 = 0x3c, |
|
652 |
casxa_op3 = 0x3e, |
|
653 |
||
654 |
alt_bit_op3 = 0x10, |
|
655 |
cc_bit_op3 = 0x10 |
|
656 |
}; |
|
657 |
||
658 |
enum opfs { |
|
659 |
// selected opfs |
|
660 |
fmovs_opf = 0x01, |
|
661 |
fmovd_opf = 0x02, |
|
662 |
||
663 |
fnegs_opf = 0x05, |
|
664 |
fnegd_opf = 0x06, |
|
665 |
||
666 |
fadds_opf = 0x41, |
|
667 |
faddd_opf = 0x42, |
|
668 |
fsubs_opf = 0x45, |
|
669 |
fsubd_opf = 0x46, |
|
670 |
||
671 |
fmuls_opf = 0x49, |
|
672 |
fmuld_opf = 0x4a, |
|
673 |
fdivs_opf = 0x4d, |
|
674 |
fdivd_opf = 0x4e, |
|
675 |
||
676 |
fcmps_opf = 0x51, |
|
677 |
fcmpd_opf = 0x52, |
|
678 |
||
679 |
fstox_opf = 0x81, |
|
680 |
fdtox_opf = 0x82, |
|
681 |
fxtos_opf = 0x84, |
|
682 |
fxtod_opf = 0x88, |
|
683 |
fitos_opf = 0xc4, |
|
684 |
fdtos_opf = 0xc6, |
|
685 |
fitod_opf = 0xc8, |
|
686 |
fstod_opf = 0xc9, |
|
687 |
fstoi_opf = 0xd1, |
|
688 |
fdtoi_opf = 0xd2 |
|
689 |
}; |
|
690 |
||
691 |
enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7 }; |
|
692 |
||
693 |
enum Condition { |
|
694 |
// for FBfcc & FBPfcc instruction |
|
695 |
f_never = 0, |
|
696 |
f_notEqual = 1, |
|
697 |
f_notZero = 1, |
|
698 |
f_lessOrGreater = 2, |
|
699 |
f_unorderedOrLess = 3, |
|
700 |
f_less = 4, |
|
701 |
f_unorderedOrGreater = 5, |
|
702 |
f_greater = 6, |
|
703 |
f_unordered = 7, |
|
704 |
f_always = 8, |
|
705 |
f_equal = 9, |
|
706 |
f_zero = 9, |
|
707 |
f_unorderedOrEqual = 10, |
|
708 |
f_greaterOrEqual = 11, |
|
709 |
f_unorderedOrGreaterOrEqual = 12, |
|
710 |
f_lessOrEqual = 13, |
|
711 |
f_unorderedOrLessOrEqual = 14, |
|
712 |
f_ordered = 15, |
|
713 |
||
714 |
// V8 coproc, pp 123 v8 manual |
|
715 |
||
716 |
cp_always = 8, |
|
717 |
cp_never = 0, |
|
718 |
cp_3 = 7, |
|
719 |
cp_2 = 6, |
|
720 |
cp_2or3 = 5, |
|
721 |
cp_1 = 4, |
|
722 |
cp_1or3 = 3, |
|
723 |
cp_1or2 = 2, |
|
724 |
cp_1or2or3 = 1, |
|
725 |
cp_0 = 9, |
|
726 |
cp_0or3 = 10, |
|
727 |
cp_0or2 = 11, |
|
728 |
cp_0or2or3 = 12, |
|
729 |
cp_0or1 = 13, |
|
730 |
cp_0or1or3 = 14, |
|
731 |
cp_0or1or2 = 15, |
|
732 |
||
733 |
||
734 |
// for integers |
|
735 |
||
736 |
never = 0, |
|
737 |
equal = 1, |
|
738 |
zero = 1, |
|
739 |
lessEqual = 2, |
|
740 |
less = 3, |
|
741 |
lessEqualUnsigned = 4, |
|
742 |
lessUnsigned = 5, |
|
743 |
carrySet = 5, |
|
744 |
negative = 6, |
|
745 |
overflowSet = 7, |
|
746 |
always = 8, |
|
747 |
notEqual = 9, |
|
748 |
notZero = 9, |
|
749 |
greater = 10, |
|
750 |
greaterEqual = 11, |
|
751 |
greaterUnsigned = 12, |
|
752 |
greaterEqualUnsigned = 13, |
|
753 |
carryClear = 13, |
|
754 |
positive = 14, |
|
755 |
overflowClear = 15 |
|
756 |
}; |
|
757 |
||
758 |
enum CC { |
|
759 |
icc = 0, xcc = 2, |
|
760 |
// ptr_cc is the correct condition code for a pointer or intptr_t: |
|
761 |
ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc), |
|
762 |
fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3 |
|
763 |
}; |
|
764 |
||
765 |
enum PrefetchFcn { |
|
766 |
severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4 |
|
767 |
}; |
|
768 |
||
769 |
public: |
|
770 |
// Helper functions for groups of instructions |
|
771 |
||
772 |
enum Predict { pt = 1, pn = 0 }; // pt = predict taken |
|
773 |
||
774 |
enum Membar_mask_bits { // page 184, v9 |
|
775 |
StoreStore = 1 << 3, |
|
776 |
LoadStore = 1 << 2, |
|
777 |
StoreLoad = 1 << 1, |
|
778 |
LoadLoad = 1 << 0, |
|
779 |
||
780 |
Sync = 1 << 6, |
|
781 |
MemIssue = 1 << 5, |
|
782 |
Lookaside = 1 << 4 |
|
783 |
}; |
|
784 |
||
785 |
// test if x is within signed immediate range for nbits |
|
786 |
static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 ) <= x && x < ( 1 << nbits-1 ); } |
|
787 |
||
788 |
// test if -4096 <= x <= 4095 |
|
789 |
static bool is_simm13(int x) { return is_simm(x, 13); } |
|
790 |
||
791 |
enum ASIs { // page 72, v9 |
|
792 |
ASI_PRIMARY = 0x80, |
|
793 |
ASI_PRIMARY_LITTLE = 0x88 |
|
794 |
// add more from book as needed |
|
795 |
}; |
|
796 |
||
797 |
protected: |
|
798 |
// helpers |
|
799 |
||
800 |
// x is supposed to fit in a field "nbits" wide |
|
801 |
// and be sign-extended. Check the range. |
|
802 |
||
803 |
static void assert_signed_range(intptr_t x, int nbits) { |
|
804 |
assert( nbits == 32 |
|
805 |
|| -(1 << nbits-1) <= x && x < ( 1 << nbits-1), |
|
806 |
"value out of range"); |
|
807 |
} |
|
808 |
||
809 |
static void assert_signed_word_disp_range(intptr_t x, int nbits) { |
|
810 |
assert( (x & 3) == 0, "not word aligned"); |
|
811 |
assert_signed_range(x, nbits + 2); |
|
812 |
} |
|
813 |
||
814 |
static void assert_unsigned_const(int x, int nbits) { |
|
815 |
assert( juint(x) < juint(1 << nbits), "unsigned constant out of range"); |
|
816 |
} |
|
817 |
||
818 |
// fields: note bits numbered from LSB = 0, |
|
819 |
// fields known by inclusive bit range |
|
820 |
||
821 |
static int fmask(juint hi_bit, juint lo_bit) { |
|
822 |
assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits"); |
|
823 |
return (1 << ( hi_bit-lo_bit + 1 )) - 1; |
|
824 |
} |
|
825 |
||
826 |
// inverse of u_field |
|
827 |
||
828 |
static int inv_u_field(int x, int hi_bit, int lo_bit) { |
|
829 |
juint r = juint(x) >> lo_bit; |
|
830 |
r &= fmask( hi_bit, lo_bit); |
|
831 |
return int(r); |
|
832 |
} |
|
833 |
||
834 |
||
835 |
// signed version: extract from field and sign-extend |
|
836 |
||
837 |
static int inv_s_field(int x, int hi_bit, int lo_bit) { |
|
838 |
int sign_shift = 31 - hi_bit; |
|
839 |
return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit); |
|
840 |
} |
|
841 |
||
842 |
// given a field that ranges from hi_bit to lo_bit (inclusive, |
|
843 |
// LSB = 0), and an unsigned value for the field, |
|
844 |
// shift it into the field |
|
845 |
||
846 |
#ifdef ASSERT |
|
847 |
static int u_field(int x, int hi_bit, int lo_bit) { |
|
848 |
assert( ( x & ~fmask(hi_bit, lo_bit)) == 0, |
|
849 |
"value out of range"); |
|
850 |
int r = x << lo_bit; |
|
851 |
assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking"); |
|
852 |
return r; |
|
853 |
} |
|
854 |
#else |
|
855 |
// make sure this is inlined as it will reduce code size significantly |
|
856 |
#define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit)) |
|
857 |
#endif |
|
858 |
||
859 |
static int inv_op( int x ) { return inv_u_field(x, 31, 30); } |
|
860 |
static int inv_op2( int x ) { return inv_u_field(x, 24, 22); } |
|
861 |
static int inv_op3( int x ) { return inv_u_field(x, 24, 19); } |
|
862 |
static int inv_cond( int x ){ return inv_u_field(x, 28, 25); } |
|
863 |
||
864 |
static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; } |
|
865 |
||
866 |
static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); } |
|
867 |
static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); } |
|
868 |
static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); } |
|
869 |
||
870 |
static int op( int x) { return u_field(x, 31, 30); } |
|
871 |
static int rd( Register r) { return u_field(r->encoding(), 29, 25); } |
|
872 |
static int fcn( int x) { return u_field(x, 29, 25); } |
|
873 |
static int op3( int x) { return u_field(x, 24, 19); } |
|
874 |
static int rs1( Register r) { return u_field(r->encoding(), 18, 14); } |
|
875 |
static int rs2( Register r) { return u_field(r->encoding(), 4, 0); } |
|
876 |
static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); } |
|
877 |
static int cond( int x) { return u_field(x, 28, 25); } |
|
878 |
static int cond_mov( int x) { return u_field(x, 17, 14); } |
|
879 |
static int rcond( RCondition x) { return u_field(x, 12, 10); } |
|
880 |
static int op2( int x) { return u_field(x, 24, 22); } |
|
881 |
static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); } |
|
882 |
static int branchcc( CC fcca) { return u_field(fcca, 21, 20); } |
|
883 |
static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); } |
|
884 |
static int imm_asi( int x) { return u_field(x, 12, 5); } |
|
885 |
static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); } |
|
886 |
static int opf_low6( int w) { return u_field(w, 10, 5); } |
|
887 |
static int opf_low5( int w) { return u_field(w, 9, 5); } |
|
888 |
static int trapcc( CC cc) { return u_field(cc, 12, 11); } |
|
889 |
static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit |
|
890 |
static int opf( int x) { return u_field(x, 13, 5); } |
|
891 |
||
892 |
static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); } |
|
893 |
static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); } |
|
894 |
||
895 |
static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); }; |
|
896 |
static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); }; |
|
897 |
static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); }; |
|
898 |
||
899 |
// some float instructions use this encoding on the op3 field |
|
900 |
static int alt_op3(int op, FloatRegisterImpl::Width w) { |
|
901 |
int r; |
|
902 |
switch(w) { |
|
903 |
case FloatRegisterImpl::S: r = op + 0; break; |
|
904 |
case FloatRegisterImpl::D: r = op + 3; break; |
|
905 |
case FloatRegisterImpl::Q: r = op + 2; break; |
|
906 |
default: ShouldNotReachHere(); break; |
|
907 |
} |
|
908 |
return op3(r); |
|
909 |
} |
|
910 |
||
911 |
||
912 |
// compute inverse of simm |
|
913 |
static int inv_simm(int x, int nbits) { |
|
914 |
return (int)(x << (32 - nbits)) >> (32 - nbits); |
|
915 |
} |
|
916 |
||
917 |
static int inv_simm13( int x ) { return inv_simm(x, 13); } |
|
918 |
||
919 |
// signed immediate, in low bits, nbits long |
|
920 |
static int simm(int x, int nbits) { |
|
921 |
assert_signed_range(x, nbits); |
|
922 |
return x & (( 1 << nbits ) - 1); |
|
923 |
} |
|
924 |
||
925 |
// compute inverse of wdisp16 |
|
926 |
static intptr_t inv_wdisp16(int x, intptr_t pos) { |
|
927 |
int lo = x & (( 1 << 14 ) - 1); |
|
928 |
int hi = (x >> 20) & 3; |
|
929 |
if (hi >= 2) hi |= ~1; |
|
930 |
return (((hi << 14) | lo) << 2) + pos; |
|
931 |
} |
|
932 |
||
933 |
// word offset, 14 bits at LSend, 2 bits at B21, B20 |
|
934 |
static int wdisp16(intptr_t x, intptr_t off) { |
|
935 |
intptr_t xx = x - off; |
|
936 |
assert_signed_word_disp_range(xx, 16); |
|
937 |
int r = (xx >> 2) & ((1 << 14) - 1) |
|
938 |
| ( ( (xx>>(2+14)) & 3 ) << 20 ); |
|
939 |
assert( inv_wdisp16(r, off) == x, "inverse is not inverse"); |
|
940 |
return r; |
|
941 |
} |
|
942 |
||
943 |
||
944 |
// word displacement in low-order nbits bits |
|
945 |
||
946 |
static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) { |
|
947 |
int pre_sign_extend = x & (( 1 << nbits ) - 1); |
|
948 |
int r = pre_sign_extend >= ( 1 << (nbits-1) ) |
|
949 |
? pre_sign_extend | ~(( 1 << nbits ) - 1) |
|
950 |
: pre_sign_extend; |
|
951 |
return (r << 2) + pos; |
|
952 |
} |
|
953 |
||
954 |
static int wdisp( intptr_t x, intptr_t off, int nbits ) { |
|
955 |
intptr_t xx = x - off; |
|
956 |
assert_signed_word_disp_range(xx, nbits); |
|
957 |
int r = (xx >> 2) & (( 1 << nbits ) - 1); |
|
958 |
assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse"); |
|
959 |
return r; |
|
960 |
} |
|
961 |
||
962 |
||
963 |
// Extract the top 32 bits in a 64 bit word |
|
964 |
static int32_t hi32( int64_t x ) { |
|
965 |
int32_t r = int32_t( (uint64_t)x >> 32 ); |
|
966 |
return r; |
|
967 |
} |
|
968 |
||
969 |
// given a sethi instruction, extract the constant, left-justified |
|
970 |
static int inv_hi22( int x ) { |
|
971 |
return x << 10; |
|
972 |
} |
|
973 |
||
974 |
// create an imm22 field, given a 32-bit left-justified constant |
|
975 |
static int hi22( int x ) { |
|
976 |
int r = int( juint(x) >> 10 ); |
|
977 |
assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'"); |
|
978 |
return r; |
|
979 |
} |
|
980 |
||
981 |
// create a low10 __value__ (not a field) for a given a 32-bit constant |
|
982 |
static int low10( int x ) { |
|
983 |
return x & ((1 << 10) - 1); |
|
984 |
} |
|
985 |
||
986 |
// instruction only in v9 |
|
987 |
static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); } |
|
988 |
||
989 |
// instruction only in v8 |
|
990 |
static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); } |
|
991 |
||
992 |
// instruction deprecated in v9 |
|
993 |
static void v9_dep() { } // do nothing for now |
|
994 |
||
995 |
// some float instructions only exist for single prec. on v8 |
|
996 |
static void v8_s_only(FloatRegisterImpl::Width w) { if (w != FloatRegisterImpl::S) v9_only(); } |
|
997 |
||
998 |
// v8 has no CC field |
|
999 |
static void v8_no_cc(CC cc) { if (cc) v9_only(); } |
|
1000 |
||
1001 |
protected: |
|
1002 |
// Simple delay-slot scheme: |
|
1003 |
// In order to check the programmer, the assembler keeps track of deley slots. |
|
1004 |
// It forbids CTIs in delay slots (conservative, but should be OK). |
|
1005 |
// Also, when putting an instruction into a delay slot, you must say |
|
1006 |
// asm->delayed()->add(...), in order to check that you don't omit |
|
1007 |
// delay-slot instructions. |
|
1008 |
// To implement this, we use a simple FSA |
|
1009 |
||
1010 |
#ifdef ASSERT |
|
1011 |
#define CHECK_DELAY |
|
1012 |
#endif |
|
1013 |
#ifdef CHECK_DELAY |
|
1014 |
enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state; |
|
1015 |
#endif |
|
1016 |
||
1017 |
public: |
|
1018 |
// Tells assembler next instruction must NOT be in delay slot. |
|
1019 |
// Use at start of multinstruction macros. |
|
1020 |
void assert_not_delayed() { |
|
1021 |
// This is a separate overloading to avoid creation of string constants |
|
1022 |
// in non-asserted code--with some compilers this pollutes the object code. |
|
1023 |
#ifdef CHECK_DELAY |
|
1024 |
assert_not_delayed("next instruction should not be a delay slot"); |
|
1025 |
#endif |
|
1026 |
} |
|
1027 |
void assert_not_delayed(const char* msg) { |
|
1028 |
#ifdef CHECK_DELAY |
|
1029 |
assert_msg ( delay_state == no_delay, msg); |
|
1030 |
#endif |
|
1031 |
} |
|
1032 |
||
1033 |
protected: |
|
1034 |
// Delay slot helpers |
|
1035 |
// cti is called when emitting control-transfer instruction, |
|
1036 |
// BEFORE doing the emitting. |
|
1037 |
// Only effective when assertion-checking is enabled. |
|
1038 |
void cti() { |
|
1039 |
#ifdef CHECK_DELAY |
|
1040 |
assert_not_delayed("cti should not be in delay slot"); |
|
1041 |
#endif |
|
1042 |
} |
|
1043 |
||
1044 |
// called when emitting cti with a delay slot, AFTER emitting |
|
1045 |
void has_delay_slot() { |
|
1046 |
#ifdef CHECK_DELAY |
|
1047 |
assert_not_delayed("just checking"); |
|
1048 |
delay_state = at_delay_slot; |
|
1049 |
#endif |
|
1050 |
} |
|
1051 |
||
1052 |
public: |
|
1053 |
// Tells assembler you know that next instruction is delayed |
|
1054 |
Assembler* delayed() { |
|
1055 |
#ifdef CHECK_DELAY |
|
1056 |
assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot"); |
|
1057 |
delay_state = filling_delay_slot; |
|
1058 |
#endif |
|
1059 |
return this; |
|
1060 |
} |
|
1061 |
||
1062 |
void flush() { |
|
1063 |
#ifdef CHECK_DELAY |
|
1064 |
assert ( delay_state == no_delay, "ending code with a delay slot"); |
|
1065 |
#endif |
|
1066 |
AbstractAssembler::flush(); |
|
1067 |
} |
|
1068 |
||
1069 |
inline void emit_long(int); // shadows AbstractAssembler::emit_long |
|
1070 |
inline void emit_data(int x) { emit_long(x); } |
|
1071 |
inline void emit_data(int, RelocationHolder const&); |
|
1072 |
inline void emit_data(int, relocInfo::relocType rtype); |
|
1073 |
// helper for above fcns |
|
1074 |
inline void check_delay(); |
|
1075 |
||
1076 |
||
1077 |
public: |
|
1078 |
// instructions, refer to page numbers in the SPARC Architecture Manual, V9 |
|
1079 |
||
1080 |
// pp 135 (addc was addx in v8) |
|
1081 |
||
1082 |
inline void add( Register s1, Register s2, Register d ); |
|
1083 |
inline void add( Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none); |
|
1084 |
inline void add( Register s1, int simm13a, Register d, RelocationHolder const& rspec); |
|
1085 |
inline void add( const Address& a, Register d, int offset = 0); |
|
1086 |
||
1087 |
void addcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1088 |
void addcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1089 |
void addc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1090 |
void addc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1091 |
void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1092 |
void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1093 |
||
1094 |
// pp 136 |
|
1095 |
||
1096 |
inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none ); |
|
1097 |
inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L); |
|
1098 |
||
1099 |
protected: // use MacroAssembler::br instead |
|
1100 |
||
1101 |
// pp 138 |
|
1102 |
||
1103 |
inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none ); |
|
1104 |
inline void fb( Condition c, bool a, Label& L ); |
|
1105 |
||
1106 |
// pp 141 |
|
1107 |
||
1108 |
inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); |
|
1109 |
inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L ); |
|
1110 |
||
1111 |
public: |
|
1112 |
||
1113 |
// pp 144 |
|
1114 |
||
1115 |
inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none ); |
|
1116 |
inline void br( Condition c, bool a, Label& L ); |
|
1117 |
||
1118 |
// pp 146 |
|
1119 |
||
1120 |
inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); |
|
1121 |
inline void bp( Condition c, bool a, CC cc, Predict p, Label& L ); |
|
1122 |
||
1123 |
// pp 121 (V8) |
|
1124 |
||
1125 |
inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none ); |
|
1126 |
inline void cb( Condition c, bool a, Label& L ); |
|
1127 |
||
1128 |
// pp 149 |
|
1129 |
||
1130 |
inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type ); |
|
1131 |
inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type ); |
|
1132 |
||
1133 |
// pp 150 |
|
1134 |
||
1135 |
// These instructions compare the contents of s2 with the contents of |
|
1136 |
// memory at address in s1. If the values are equal, the contents of memory |
|
1137 |
// at address s1 is swapped with the data in d. If the values are not equal, |
|
1138 |
// the the contents of memory at s1 is loaded into d, without the swap. |
|
1139 |
||
1140 |
void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); } |
|
1141 |
void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); } |
|
1142 |
||
1143 |
// pp 152 |
|
1144 |
||
1145 |
void udiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); } |
|
1146 |
void udiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1147 |
void sdiv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); } |
|
1148 |
void sdiv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1149 |
void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); } |
|
1150 |
void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1151 |
void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); } |
|
1152 |
void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1153 |
||
1154 |
// pp 155 |
|
1155 |
||
1156 |
void done() { v9_only(); cti(); emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); } |
|
1157 |
void retry() { v9_only(); cti(); emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); } |
|
1158 |
||
1159 |
// pp 156 |
|
1160 |
||
1161 |
void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); } |
|
1162 |
void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); } |
|
1163 |
||
1164 |
// pp 157 |
|
1165 |
||
1166 |
void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); } |
|
1167 |
void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); } |
|
1168 |
||
1169 |
// pp 159 |
|
1170 |
||
1171 |
void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); } |
|
1172 |
void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); } |
|
1173 |
||
1174 |
// pp 160 |
|
1175 |
||
1176 |
void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); } |
|
1177 |
||
1178 |
// pp 161 |
|
1179 |
||
1180 |
void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); } |
|
1181 |
void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); } |
|
1182 |
||
1183 |
// pp 162 |
|
1184 |
||
1185 |
void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); } |
|
1186 |
||
1187 |
void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); } |
|
1188 |
||
1189 |
// page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available |
|
1190 |
// on v8 to do negation of single, double and quad precision floats. |
|
1191 |
||
1192 |
void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x05) | fs2(sd, w)); } |
|
1193 |
||
1194 |
void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); } |
|
1195 |
||
1196 |
// page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available |
|
1197 |
// on v8 to do abs operation on single/double/quad precision floats. |
|
1198 |
||
1199 |
void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); } |
|
1200 |
||
1201 |
// pp 163 |
|
1202 |
||
1203 |
void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); } |
|
1204 |
void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); } |
|
1205 |
void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); } |
|
1206 |
||
1207 |
// pp 164 |
|
1208 |
||
1209 |
void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); } |
|
1210 |
||
1211 |
// pp 165 |
|
1212 |
||
1213 |
inline void flush( Register s1, Register s2 ); |
|
1214 |
inline void flush( Register s1, int simm13a); |
|
1215 |
||
1216 |
// pp 167 |
|
1217 |
||
1218 |
void flushw() { v9_only(); emit_long( op(arith_op) | op3(flushw_op3) ); } |
|
1219 |
||
1220 |
// pp 168 |
|
1221 |
||
1222 |
void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_long( op(branch_op) | u_field(const22a, 21, 0) ); } |
|
1223 |
// v8 unimp == illtrap(0) |
|
1224 |
||
1225 |
// pp 169 |
|
1226 |
||
1227 |
void impdep1( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); } |
|
1228 |
void impdep2( int id1, int const19a ) { v9_only(); emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); } |
|
1229 |
||
1230 |
// pp 149 (v8) |
|
1231 |
||
1232 |
void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); } |
|
1233 |
void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); } |
|
1234 |
||
1235 |
// pp 170 |
|
1236 |
||
1237 |
void jmpl( Register s1, Register s2, Register d ); |
|
1238 |
void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() ); |
|
1239 |
||
1240 |
inline void jmpl( Address& a, Register d, int offset = 0); |
|
1241 |
||
1242 |
// 171 |
|
1243 |
||
1244 |
inline void ldf( FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d ); |
|
1245 |
inline void ldf( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ); |
|
1246 |
||
1247 |
inline void ldf( FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0); |
|
1248 |
||
1249 |
||
1250 |
inline void ldfsr( Register s1, Register s2 ); |
|
1251 |
inline void ldfsr( Register s1, int simm13a); |
|
1252 |
inline void ldxfsr( Register s1, Register s2 ); |
|
1253 |
inline void ldxfsr( Register s1, int simm13a); |
|
1254 |
||
1255 |
// pp 94 (v8) |
|
1256 |
||
1257 |
inline void ldc( Register s1, Register s2, int crd ); |
|
1258 |
inline void ldc( Register s1, int simm13a, int crd); |
|
1259 |
inline void lddc( Register s1, Register s2, int crd ); |
|
1260 |
inline void lddc( Register s1, int simm13a, int crd); |
|
1261 |
inline void ldcsr( Register s1, Register s2, int crd ); |
|
1262 |
inline void ldcsr( Register s1, int simm13a, int crd); |
|
1263 |
||
1264 |
||
1265 |
// 173 |
|
1266 |
||
1267 |
void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1268 |
void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1269 |
||
1270 |
// pp 175, lduw is ld on v8 |
|
1271 |
||
1272 |
inline void ldsb( Register s1, Register s2, Register d ); |
|
1273 |
inline void ldsb( Register s1, int simm13a, Register d); |
|
1274 |
inline void ldsh( Register s1, Register s2, Register d ); |
|
1275 |
inline void ldsh( Register s1, int simm13a, Register d); |
|
1276 |
inline void ldsw( Register s1, Register s2, Register d ); |
|
1277 |
inline void ldsw( Register s1, int simm13a, Register d); |
|
1278 |
inline void ldub( Register s1, Register s2, Register d ); |
|
1279 |
inline void ldub( Register s1, int simm13a, Register d); |
|
1280 |
inline void lduh( Register s1, Register s2, Register d ); |
|
1281 |
inline void lduh( Register s1, int simm13a, Register d); |
|
1282 |
inline void lduw( Register s1, Register s2, Register d ); |
|
1283 |
inline void lduw( Register s1, int simm13a, Register d); |
|
1284 |
inline void ldx( Register s1, Register s2, Register d ); |
|
1285 |
inline void ldx( Register s1, int simm13a, Register d); |
|
1286 |
inline void ld( Register s1, Register s2, Register d ); |
|
1287 |
inline void ld( Register s1, int simm13a, Register d); |
|
1288 |
inline void ldd( Register s1, Register s2, Register d ); |
|
1289 |
inline void ldd( Register s1, int simm13a, Register d); |
|
1290 |
||
1291 |
inline void ldsb( const Address& a, Register d, int offset = 0 ); |
|
1292 |
inline void ldsh( const Address& a, Register d, int offset = 0 ); |
|
1293 |
inline void ldsw( const Address& a, Register d, int offset = 0 ); |
|
1294 |
inline void ldub( const Address& a, Register d, int offset = 0 ); |
|
1295 |
inline void lduh( const Address& a, Register d, int offset = 0 ); |
|
1296 |
inline void lduw( const Address& a, Register d, int offset = 0 ); |
|
1297 |
inline void ldx( const Address& a, Register d, int offset = 0 ); |
|
1298 |
inline void ld( const Address& a, Register d, int offset = 0 ); |
|
1299 |
inline void ldd( const Address& a, Register d, int offset = 0 ); |
|
1300 |
||
1301 |
// pp 177 |
|
1302 |
||
1303 |
void ldsba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1304 |
void ldsba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1305 |
void ldsha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1306 |
void ldsha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1307 |
void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1308 |
void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1309 |
void lduba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1310 |
void lduba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1311 |
void lduha( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1312 |
void lduha( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1313 |
void lduwa( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1314 |
void lduwa( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1315 |
void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1316 |
void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1317 |
void ldda( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1318 |
void ldda( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1319 |
||
1320 |
// pp 179 |
|
1321 |
||
1322 |
inline void ldstub( Register s1, Register s2, Register d ); |
|
1323 |
inline void ldstub( Register s1, int simm13a, Register d); |
|
1324 |
||
1325 |
// pp 180 |
|
1326 |
||
1327 |
void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1328 |
void ldstuba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1329 |
||
1330 |
// pp 181 |
|
1331 |
||
1332 |
void and3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1333 |
void and3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1334 |
void andcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1335 |
void andcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1336 |
void andn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1337 |
void andn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1338 |
void andncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1339 |
void andncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1340 |
void or3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1341 |
void or3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1342 |
void orcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1343 |
void orcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1344 |
void orn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); } |
|
1345 |
void orn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1346 |
void orncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1347 |
void orncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1348 |
void xor3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1349 |
void xor3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1350 |
void xorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1351 |
void xorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1352 |
void xnor( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1353 |
void xnor( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1354 |
void xnorcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1355 |
void xnorcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1356 |
||
1357 |
// pp 183 |
|
1358 |
||
1359 |
void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); } |
|
1360 |
||
1361 |
// pp 185 |
|
1362 |
||
1363 |
void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); } |
|
1364 |
||
1365 |
// pp 189 |
|
1366 |
||
1367 |
void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); } |
|
1368 |
||
1369 |
// pp 191 |
|
1370 |
||
1371 |
void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); } |
|
1372 |
void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); } |
|
1373 |
||
1374 |
// pp 195 |
|
1375 |
||
1376 |
void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); } |
|
1377 |
void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); } |
|
1378 |
||
1379 |
// pp 196 |
|
1380 |
||
1381 |
void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1382 |
void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1383 |
void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); } |
|
1384 |
void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1385 |
void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); } |
|
1386 |
void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1387 |
||
1388 |
// pp 197 |
|
1389 |
||
1390 |
void umul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1391 |
void umul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1392 |
void smul( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1393 |
void smul( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1394 |
void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1395 |
void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1396 |
void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1397 |
void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1398 |
||
1399 |
// pp 199 |
|
1400 |
||
1401 |
void mulscc( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); } |
|
1402 |
void mulscc( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1403 |
||
1404 |
// pp 201 |
|
1405 |
||
1406 |
void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); } |
|
1407 |
||
1408 |
||
1409 |
// pp 202 |
|
1410 |
||
1411 |
void popc( Register s, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); } |
|
1412 |
void popc( int simm13a, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); } |
|
1413 |
||
1414 |
// pp 203 |
|
1415 |
||
1416 |
void prefetch( Register s1, Register s2, PrefetchFcn f); |
|
1417 |
void prefetch( Register s1, int simm13a, PrefetchFcn f); |
|
1418 |
void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1419 |
void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1420 |
||
1421 |
inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0); |
|
1422 |
||
1423 |
// pp 208 |
|
1424 |
||
1425 |
// not implementing read privileged register |
|
1426 |
||
1427 |
inline void rdy( Register d) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); } |
|
1428 |
inline void rdccr( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); } |
|
1429 |
inline void rdasi( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); } |
|
1430 |
inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon! |
|
1431 |
inline void rdpc( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); } |
|
1432 |
inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); } |
|
1433 |
||
1434 |
// pp 213 |
|
1435 |
||
1436 |
inline void rett( Register s1, Register s2); |
|
1437 |
inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none); |
|
1438 |
||
1439 |
// pp 214 |
|
1440 |
||
1441 |
void save( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); } |
|
1374
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1442 |
void save( Register s1, int simm13a, Register d ) { |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1443 |
// make sure frame is at least large enough for the register save area |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1444 |
assert(-simm13a >= 16 * wordSize, "frame too small"); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1445 |
emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1446 |
} |
1 | 1447 |
|
1448 |
void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); } |
|
1449 |
void restore( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1450 |
||
1451 |
// pp 216 |
|
1452 |
||
1453 |
void saved() { v9_only(); emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); } |
|
1454 |
void restored() { v9_only(); emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); } |
|
1455 |
||
1456 |
// pp 217 |
|
1457 |
||
1458 |
inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() ); |
|
1459 |
// pp 218 |
|
1460 |
||
1461 |
void sll( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); } |
|
1462 |
void sll( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); } |
|
1463 |
void srl( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); } |
|
1464 |
void srl( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); } |
|
1465 |
void sra( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); } |
|
1466 |
void sra( Register s1, int imm5a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); } |
|
1467 |
||
1468 |
void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); } |
|
1469 |
void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); } |
|
1470 |
void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); } |
|
1471 |
void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); } |
|
1472 |
void srax( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); } |
|
1473 |
void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); } |
|
1474 |
||
1475 |
// pp 220 |
|
1476 |
||
1477 |
void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); } |
|
1478 |
||
1479 |
// pp 221 |
|
1480 |
||
1481 |
void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); } |
|
1482 |
||
1483 |
// pp 222 |
|
1484 |
||
1485 |
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2 ); |
|
1486 |
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a); |
|
1487 |
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0); |
|
1488 |
||
1489 |
inline void stfsr( Register s1, Register s2 ); |
|
1490 |
inline void stfsr( Register s1, int simm13a); |
|
1491 |
inline void stxfsr( Register s1, Register s2 ); |
|
1492 |
inline void stxfsr( Register s1, int simm13a); |
|
1493 |
||
1494 |
// pp 224 |
|
1495 |
||
1496 |
void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1497 |
void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1498 |
||
1499 |
// p 226 |
|
1500 |
||
1501 |
inline void stb( Register d, Register s1, Register s2 ); |
|
1502 |
inline void stb( Register d, Register s1, int simm13a); |
|
1503 |
inline void sth( Register d, Register s1, Register s2 ); |
|
1504 |
inline void sth( Register d, Register s1, int simm13a); |
|
1505 |
inline void stw( Register d, Register s1, Register s2 ); |
|
1506 |
inline void stw( Register d, Register s1, int simm13a); |
|
1507 |
inline void st( Register d, Register s1, Register s2 ); |
|
1508 |
inline void st( Register d, Register s1, int simm13a); |
|
1509 |
inline void stx( Register d, Register s1, Register s2 ); |
|
1510 |
inline void stx( Register d, Register s1, int simm13a); |
|
1511 |
inline void std( Register d, Register s1, Register s2 ); |
|
1512 |
inline void std( Register d, Register s1, int simm13a); |
|
1513 |
||
1514 |
inline void stb( Register d, const Address& a, int offset = 0 ); |
|
1515 |
inline void sth( Register d, const Address& a, int offset = 0 ); |
|
1516 |
inline void stw( Register d, const Address& a, int offset = 0 ); |
|
1517 |
inline void stx( Register d, const Address& a, int offset = 0 ); |
|
1518 |
inline void st( Register d, const Address& a, int offset = 0 ); |
|
1519 |
inline void std( Register d, const Address& a, int offset = 0 ); |
|
1520 |
||
1521 |
// pp 177 |
|
1522 |
||
1523 |
void stba( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1524 |
void stba( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1525 |
void stha( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1526 |
void stha( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1527 |
void stwa( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1528 |
void stwa( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1529 |
void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1530 |
void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1531 |
void stda( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1532 |
void stda( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1533 |
||
1534 |
// pp 97 (v8) |
|
1535 |
||
1536 |
inline void stc( int crd, Register s1, Register s2 ); |
|
1537 |
inline void stc( int crd, Register s1, int simm13a); |
|
1538 |
inline void stdc( int crd, Register s1, Register s2 ); |
|
1539 |
inline void stdc( int crd, Register s1, int simm13a); |
|
1540 |
inline void stcsr( int crd, Register s1, Register s2 ); |
|
1541 |
inline void stcsr( int crd, Register s1, int simm13a); |
|
1542 |
inline void stdcq( int crd, Register s1, Register s2 ); |
|
1543 |
inline void stdcq( int crd, Register s1, int simm13a); |
|
1544 |
||
1545 |
// pp 230 |
|
1546 |
||
1547 |
void sub( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1548 |
void sub( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1549 |
void subcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1550 |
void subcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1551 |
void subc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1552 |
void subc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1553 |
void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } |
|
1554 |
void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1555 |
||
1556 |
// pp 231 |
|
1557 |
||
1558 |
inline void swap( Register s1, Register s2, Register d ); |
|
1559 |
inline void swap( Register s1, int simm13a, Register d); |
|
1560 |
inline void swap( Address& a, Register d, int offset = 0 ); |
|
1561 |
||
1562 |
// pp 232 |
|
1563 |
||
1564 |
void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } |
|
1565 |
void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1566 |
||
1567 |
// pp 234, note op in book is wrong, see pp 268 |
|
1568 |
||
1569 |
void taddcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1570 |
void taddcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1571 |
void taddcctv( Register s1, Register s2, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); } |
|
1572 |
void taddcctv( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1573 |
||
1574 |
// pp 235 |
|
1575 |
||
1576 |
void tsubcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); } |
|
1577 |
void tsubcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1578 |
void tsubcctv( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); } |
|
1579 |
void tsubcctv( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } |
|
1580 |
||
1581 |
// pp 237 |
|
1582 |
||
1583 |
void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); } |
|
1584 |
void trap( Condition c, CC cc, Register s1, int trapa ) { v8_no_cc(cc); emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); } |
|
1585 |
// simple uncond. trap |
|
1586 |
void trap( int trapa ) { trap( always, icc, G0, trapa ); } |
|
1587 |
||
1588 |
// pp 239 omit write priv register for now |
|
1589 |
||
1590 |
inline void wry( Register d) { v9_dep(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); } |
|
1591 |
inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); } |
|
1592 |
inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) | |
|
1593 |
rs1(s) | |
|
1594 |
op3(wrreg_op3) | |
|
1595 |
u_field(2, 29, 25) | |
|
1596 |
u_field(1, 13, 13) | |
|
1597 |
simm(simm13a, 13)); } |
|
1598 |
inline void wrasi( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); } |
|
1599 |
inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); } |
|
1600 |
||
1374
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1601 |
// For a given register condition, return the appropriate condition code |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1602 |
// Condition (the one you would use to get the same effect after "tst" on |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1603 |
// the target register.) |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1604 |
Assembler::Condition reg_cond_to_cc_cond(RCondition in); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1605 |
|
1 | 1606 |
|
1607 |
// Creation |
|
1608 |
Assembler(CodeBuffer* code) : AbstractAssembler(code) { |
|
1609 |
#ifdef CHECK_DELAY |
|
1610 |
delay_state = no_delay; |
|
1611 |
#endif |
|
1612 |
} |
|
1613 |
||
1614 |
// Testing |
|
1615 |
#ifndef PRODUCT |
|
1616 |
void test_v9(); |
|
1617 |
void test_v8_onlys(); |
|
1618 |
#endif |
|
1619 |
}; |
|
1620 |
||
1621 |
||
1622 |
class RegistersForDebugging : public StackObj { |
|
1623 |
public: |
|
1624 |
intptr_t i[8], l[8], o[8], g[8]; |
|
1625 |
float f[32]; |
|
1626 |
double d[32]; |
|
1627 |
||
1628 |
void print(outputStream* s); |
|
1629 |
||
1630 |
static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); } |
|
1631 |
static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); } |
|
1632 |
static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); } |
|
1633 |
static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); } |
|
1634 |
static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); } |
|
1635 |
static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); } |
|
1636 |
||
1637 |
// gen asm code to save regs |
|
1638 |
static void save_registers(MacroAssembler* a); |
|
1639 |
||
1640 |
// restore global registers in case C code disturbed them |
|
1641 |
static void restore_registers(MacroAssembler* a, Register r); |
|
1374
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1642 |
|
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1643 |
|
1 | 1644 |
}; |
1645 |
||
1646 |
||
1647 |
// MacroAssembler extends Assembler by a few frequently used macros. |
|
1648 |
// |
|
1649 |
// Most of the standard SPARC synthetic ops are defined here. |
|
1650 |
// Instructions for which a 'better' code sequence exists depending |
|
1651 |
// on arguments should also go in here. |
|
1652 |
||
1653 |
#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__) |
|
1654 |
#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__) |
|
1655 |
#define JUMP(a, off) jump(a, off, __FILE__, __LINE__) |
|
1656 |
#define JUMPL(a, d, off) jumpl(a, d, off, __FILE__, __LINE__) |
|
1657 |
||
1658 |
||
1659 |
class MacroAssembler: public Assembler { |
|
1660 |
protected: |
|
1661 |
// Support for VM calls |
|
1662 |
// This is the base routine called by the different versions of call_VM_leaf. The interpreter |
|
1663 |
// may customize this version by overriding it for its purposes (e.g., to save/restore |
|
1664 |
// additional registers when doing a VM call). |
|
1665 |
#ifdef CC_INTERP |
|
1666 |
#define VIRTUAL |
|
1667 |
#else |
|
1668 |
#define VIRTUAL virtual |
|
1669 |
#endif |
|
1670 |
||
1671 |
VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments); |
|
1672 |
||
1673 |
// |
|
1674 |
// It is imperative that all calls into the VM are handled via the call_VM macros. |
|
1675 |
// They make sure that the stack linkage is setup correctly. call_VM's correspond |
|
1676 |
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. |
|
1677 |
// |
|
1678 |
// This is the base routine called by the different versions of call_VM. The interpreter |
|
1679 |
// may customize this version by overriding it for its purposes (e.g., to save/restore |
|
1680 |
// additional registers when doing a VM call). |
|
1681 |
// |
|
1682 |
// A non-volatile java_thread_cache register should be specified so |
|
1683 |
// that the G2_thread value can be preserved across the call. |
|
1684 |
// (If java_thread_cache is noreg, then a slow get_thread call |
|
1685 |
// will re-initialize the G2_thread.) call_VM_base returns the register that contains the |
|
1686 |
// thread. |
|
1687 |
// |
|
1688 |
// If no last_java_sp is specified (noreg) than SP will be used instead. |
|
1689 |
||
1690 |
virtual void call_VM_base( |
|
1691 |
Register oop_result, // where an oop-result ends up if any; use noreg otherwise |
|
1692 |
Register java_thread_cache, // the thread if computed before ; use noreg otherwise |
|
1693 |
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise |
|
1694 |
address entry_point, // the entry point |
|
1695 |
int number_of_arguments, // the number of arguments (w/o thread) to pop after call |
|
1696 |
bool check_exception=true // flag which indicates if exception should be checked |
|
1697 |
); |
|
1698 |
||
1699 |
// This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code. |
|
1700 |
// The implementation is only non-empty for the InterpreterMacroAssembler, |
|
1701 |
// as only the interpreter handles and ForceEarlyReturn PopFrame requests. |
|
1702 |
virtual void check_and_handle_popframe(Register scratch_reg); |
|
1703 |
virtual void check_and_handle_earlyret(Register scratch_reg); |
|
1704 |
||
1705 |
public: |
|
1706 |
MacroAssembler(CodeBuffer* code) : Assembler(code) {} |
|
1707 |
||
1708 |
// Support for NULL-checks |
|
1709 |
// |
|
1710 |
// Generates code that causes a NULL OS exception if the content of reg is NULL. |
|
1711 |
// If the accessed location is M[reg + offset] and the offset is known, provide the |
|
1712 |
// offset. No explicit code generation is needed if the offset is within a certain |
|
1713 |
// range (0 <= offset <= page_size). |
|
1714 |
// |
|
1715 |
// %%%%%% Currently not done for SPARC |
|
1716 |
||
1717 |
void null_check(Register reg, int offset = -1); |
|
1718 |
static bool needs_explicit_null_check(intptr_t offset); |
|
1719 |
||
1720 |
// support for delayed instructions |
|
1721 |
MacroAssembler* delayed() { Assembler::delayed(); return this; } |
|
1722 |
||
1723 |
// branches that use right instruction for v8 vs. v9 |
|
1724 |
inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); |
|
1725 |
inline void br( Condition c, bool a, Predict p, Label& L ); |
|
1726 |
inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); |
|
1727 |
inline void fb( Condition c, bool a, Predict p, Label& L ); |
|
1728 |
||
1729 |
// compares register with zero and branches (V9 and V8 instructions) |
|
1730 |
void br_zero( Condition c, bool a, Predict p, Register s1, Label& L); |
|
1731 |
// Compares a pointer register with zero and branches on (not)null. |
|
1732 |
// Does a test & branch on 32-bit systems and a register-branch on 64-bit. |
|
1733 |
void br_null ( Register s1, bool a, Predict p, Label& L ); |
|
1734 |
void br_notnull( Register s1, bool a, Predict p, Label& L ); |
|
1735 |
||
1374
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1736 |
// These versions will do the most efficient thing on v8 and v9. Perhaps |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1737 |
// this is what the routine above was meant to do, but it didn't (and |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1738 |
// didn't cover both target address kinds.) |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1739 |
void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none ); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1740 |
void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, Label& L); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
1741 |
|
1 | 1742 |
inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); |
1743 |
inline void bp( Condition c, bool a, CC cc, Predict p, Label& L ); |
|
1744 |
||
1745 |
// Branch that tests xcc in LP64 and icc in !LP64 |
|
1746 |
inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); |
|
1747 |
inline void brx( Condition c, bool a, Predict p, Label& L ); |
|
1748 |
||
1749 |
// unconditional short branch |
|
1750 |
inline void ba( bool a, Label& L ); |
|
1751 |
||
1752 |
// Branch that tests fp condition codes |
|
1753 |
inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); |
|
1754 |
inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L ); |
|
1755 |
||
1756 |
// get PC the best way |
|
1757 |
inline int get_pc( Register d ); |
|
1758 |
||
1759 |
// Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual) |
|
1760 |
inline void cmp( Register s1, Register s2 ) { subcc( s1, s2, G0 ); } |
|
1761 |
inline void cmp( Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); } |
|
1762 |
||
1763 |
inline void jmp( Register s1, Register s2 ); |
|
1764 |
inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() ); |
|
1765 |
||
1766 |
inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type ); |
|
1767 |
inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type ); |
|
1768 |
inline void callr( Register s1, Register s2 ); |
|
1769 |
inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() ); |
|
1770 |
||
1771 |
// Emits nothing on V8 |
|
1772 |
inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none ); |
|
1773 |
inline void iprefetch( Label& L); |
|
1774 |
||
1775 |
inline void tst( Register s ) { orcc( G0, s, G0 ); } |
|
1776 |
||
1777 |
#ifdef PRODUCT |
|
1778 |
inline void ret( bool trace = TraceJumps ) { if (trace) { |
|
1779 |
mov(I7, O7); // traceable register |
|
1780 |
JMP(O7, 2 * BytesPerInstWord); |
|
1781 |
} else { |
|
1782 |
jmpl( I7, 2 * BytesPerInstWord, G0 ); |
|
1783 |
} |
|
1784 |
} |
|
1785 |
||
1786 |
inline void retl( bool trace = TraceJumps ) { if (trace) JMP(O7, 2 * BytesPerInstWord); |
|
1787 |
else jmpl( O7, 2 * BytesPerInstWord, G0 ); } |
|
1788 |
#else |
|
1789 |
void ret( bool trace = TraceJumps ); |
|
1790 |
void retl( bool trace = TraceJumps ); |
|
1791 |
#endif /* PRODUCT */ |
|
1792 |
||
1793 |
// Required platform-specific helpers for Label::patch_instructions. |
|
1794 |
// They _shadow_ the declarations in AbstractAssembler, which are undefined. |
|
1795 |
void pd_patch_instruction(address branch, address target); |
|
1796 |
#ifndef PRODUCT |
|
1797 |
static void pd_print_patched_instruction(address branch); |
|
1798 |
#endif |
|
1799 |
||
1800 |
// sethi Macro handles optimizations and relocations |
|
1801 |
void sethi( Address& a, bool ForceRelocatable = false ); |
|
1802 |
void sethi( intptr_t imm22a, Register d, bool ForceRelocatable = false, RelocationHolder const& rspec = RelocationHolder()); |
|
1803 |
||
1804 |
// compute the size of a sethi/set |
|
1805 |
static int size_of_sethi( address a, bool worst_case = false ); |
|
1806 |
static int worst_case_size_of_set(); |
|
1807 |
||
1808 |
// set may be either setsw or setuw (high 32 bits may be zero or sign) |
|
1809 |
void set( intptr_t value, Register d, RelocationHolder const& rspec = RelocationHolder() ); |
|
1810 |
void setsw( int value, Register d, RelocationHolder const& rspec = RelocationHolder() ); |
|
1811 |
void set64( jlong value, Register d, Register tmp); |
|
1812 |
||
1813 |
// sign-extend 32 to 64 |
|
1814 |
inline void signx( Register s, Register d ) { sra( s, G0, d); } |
|
1815 |
inline void signx( Register d ) { sra( d, G0, d); } |
|
1816 |
||
1817 |
inline void not1( Register s, Register d ) { xnor( s, G0, d ); } |
|
1818 |
inline void not1( Register d ) { xnor( d, G0, d ); } |
|
1819 |
||
1820 |
inline void neg( Register s, Register d ) { sub( G0, s, d ); } |
|
1821 |
inline void neg( Register d ) { sub( G0, d, d ); } |
|
1822 |
||
1823 |
inline void cas( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); } |
|
1824 |
inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); } |
|
1825 |
// Functions for isolating 64 bit atomic swaps for LP64 |
|
1826 |
// cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's |
|
1827 |
inline void cas_ptr( Register s1, Register s2, Register d) { |
|
1828 |
#ifdef _LP64 |
|
1829 |
casx( s1, s2, d ); |
|
1830 |
#else |
|
1831 |
cas( s1, s2, d ); |
|
1832 |
#endif |
|
1833 |
} |
|
1834 |
||
1835 |
// Functions for isolating 64 bit shifts for LP64 |
|
1836 |
inline void sll_ptr( Register s1, Register s2, Register d ); |
|
1837 |
inline void sll_ptr( Register s1, int imm6a, Register d ); |
|
1838 |
inline void srl_ptr( Register s1, Register s2, Register d ); |
|
1839 |
inline void srl_ptr( Register s1, int imm6a, Register d ); |
|
1840 |
||
1841 |
// little-endian |
|
1842 |
inline void casl( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); } |
|
1843 |
inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); } |
|
1844 |
||
1845 |
inline void inc( Register d, int const13 = 1 ) { add( d, const13, d); } |
|
1846 |
inline void inccc( Register d, int const13 = 1 ) { addcc( d, const13, d); } |
|
1847 |
||
1848 |
inline void dec( Register d, int const13 = 1 ) { sub( d, const13, d); } |
|
1849 |
inline void deccc( Register d, int const13 = 1 ) { subcc( d, const13, d); } |
|
1850 |
||
1851 |
inline void btst( Register s1, Register s2 ) { andcc( s1, s2, G0 ); } |
|
1852 |
inline void btst( int simm13a, Register s ) { andcc( s, simm13a, G0 ); } |
|
1853 |
||
1854 |
inline void bset( Register s1, Register s2 ) { or3( s1, s2, s2 ); } |
|
1855 |
inline void bset( int simm13a, Register s ) { or3( s, simm13a, s ); } |
|
1856 |
||
1857 |
inline void bclr( Register s1, Register s2 ) { andn( s1, s2, s2 ); } |
|
1858 |
inline void bclr( int simm13a, Register s ) { andn( s, simm13a, s ); } |
|
1859 |
||
1860 |
inline void btog( Register s1, Register s2 ) { xor3( s1, s2, s2 ); } |
|
1861 |
inline void btog( int simm13a, Register s ) { xor3( s, simm13a, s ); } |
|
1862 |
||
1863 |
inline void clr( Register d ) { or3( G0, G0, d ); } |
|
1864 |
||
1865 |
inline void clrb( Register s1, Register s2); |
|
1866 |
inline void clrh( Register s1, Register s2); |
|
1867 |
inline void clr( Register s1, Register s2); |
|
1868 |
inline void clrx( Register s1, Register s2); |
|
1869 |
||
1870 |
inline void clrb( Register s1, int simm13a); |
|
1871 |
inline void clrh( Register s1, int simm13a); |
|
1872 |
inline void clr( Register s1, int simm13a); |
|
1873 |
inline void clrx( Register s1, int simm13a); |
|
1874 |
||
1875 |
// copy & clear upper word |
|
1876 |
inline void clruw( Register s, Register d ) { srl( s, G0, d); } |
|
1877 |
// clear upper word |
|
1878 |
inline void clruwu( Register d ) { srl( d, G0, d); } |
|
1879 |
||
1880 |
// membar psuedo instruction. takes into account target memory model. |
|
1881 |
inline void membar( Assembler::Membar_mask_bits const7a ); |
|
1882 |
||
1883 |
// returns if membar generates anything. |
|
1884 |
inline bool membar_has_effect( Assembler::Membar_mask_bits const7a ); |
|
1885 |
||
1886 |
// mov pseudo instructions |
|
1887 |
inline void mov( Register s, Register d) { |
|
1888 |
if ( s != d ) or3( G0, s, d); |
|
1889 |
else assert_not_delayed(); // Put something useful in the delay slot! |
|
1890 |
} |
|
1891 |
||
1892 |
inline void mov_or_nop( Register s, Register d) { |
|
1893 |
if ( s != d ) or3( G0, s, d); |
|
1894 |
else nop(); |
|
1895 |
} |
|
1896 |
||
1897 |
inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); } |
|
1898 |
||
1899 |
// address pseudos: make these names unlike instruction names to avoid confusion |
|
1900 |
inline void split_disp( Address& a, Register temp ); |
|
1901 |
inline intptr_t load_pc_address( Register reg, int bytes_to_skip ); |
|
1902 |
inline void load_address( Address& a, int offset = 0 ); |
|
1903 |
inline void load_contents( Address& a, Register d, int offset = 0 ); |
|
1904 |
inline void load_ptr_contents( Address& a, Register d, int offset = 0 ); |
|
1905 |
inline void store_contents( Register s, Address& a, int offset = 0 ); |
|
1906 |
inline void store_ptr_contents( Register s, Address& a, int offset = 0 ); |
|
1907 |
inline void jumpl_to( Address& a, Register d, int offset = 0 ); |
|
1908 |
inline void jump_to( Address& a, int offset = 0 ); |
|
1909 |
||
1910 |
// ring buffer traceable jumps |
|
1911 |
||
1912 |
void jmp2( Register r1, Register r2, const char* file, int line ); |
|
1913 |
void jmp ( Register r1, int offset, const char* file, int line ); |
|
1914 |
||
1915 |
void jumpl( Address& a, Register d, int offset, const char* file, int line ); |
|
1916 |
void jump ( Address& a, int offset, const char* file, int line ); |
|
1917 |
||
1918 |
||
1919 |
// argument pseudos: |
|
1920 |
||
1921 |
inline void load_argument( Argument& a, Register d ); |
|
1922 |
inline void store_argument( Register s, Argument& a ); |
|
1923 |
inline void store_ptr_argument( Register s, Argument& a ); |
|
1924 |
inline void store_float_argument( FloatRegister s, Argument& a ); |
|
1925 |
inline void store_double_argument( FloatRegister s, Argument& a ); |
|
1926 |
inline void store_long_argument( Register s, Argument& a ); |
|
1927 |
||
1928 |
// handy macros: |
|
1929 |
||
1930 |
inline void round_to( Register r, int modulus ) { |
|
1931 |
assert_not_delayed(); |
|
1932 |
inc( r, modulus - 1 ); |
|
1933 |
and3( r, -modulus, r ); |
|
1934 |
} |
|
1935 |
||
1936 |
// -------------------------------------------------- |
|
1937 |
||
1938 |
// Functions for isolating 64 bit loads for LP64 |
|
1939 |
// ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's |
|
1940 |
// st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's |
|
1941 |
inline void ld_ptr( Register s1, Register s2, Register d ); |
|
1942 |
inline void ld_ptr( Register s1, int simm13a, Register d); |
|
1943 |
inline void ld_ptr( const Address& a, Register d, int offset = 0 ); |
|
1944 |
inline void st_ptr( Register d, Register s1, Register s2 ); |
|
1945 |
inline void st_ptr( Register d, Register s1, int simm13a); |
|
1946 |
inline void st_ptr( Register d, const Address& a, int offset = 0 ); |
|
1947 |
||
1948 |
// ld_long will perform ld for 32 bit VM's and ldx for 64 bit VM's |
|
1949 |
// st_long will perform st for 32 bit VM's and stx for 64 bit VM's |
|
1950 |
inline void ld_long( Register s1, Register s2, Register d ); |
|
1951 |
inline void ld_long( Register s1, int simm13a, Register d ); |
|
1952 |
inline void ld_long( const Address& a, Register d, int offset = 0 ); |
|
1953 |
inline void st_long( Register d, Register s1, Register s2 ); |
|
1954 |
inline void st_long( Register d, Register s1, int simm13a ); |
|
1955 |
inline void st_long( Register d, const Address& a, int offset = 0 ); |
|
1956 |
||
1957 |
// -------------------------------------------------- |
|
1958 |
||
1959 |
public: |
|
1960 |
// traps as per trap.h (SPARC ABI?) |
|
1961 |
||
1962 |
void breakpoint_trap(); |
|
1963 |
void breakpoint_trap(Condition c, CC cc = icc); |
|
1964 |
void flush_windows_trap(); |
|
1965 |
void clean_windows_trap(); |
|
1966 |
void get_psr_trap(); |
|
1967 |
void set_psr_trap(); |
|
1968 |
||
1969 |
// V8/V9 flush_windows |
|
1970 |
void flush_windows(); |
|
1971 |
||
1972 |
// Support for serializing memory accesses between threads |
|
1973 |
void serialize_memory(Register thread, Register tmp1, Register tmp2); |
|
1974 |
||
1975 |
// Stack frame creation/removal |
|
1976 |
void enter(); |
|
1977 |
void leave(); |
|
1978 |
||
1979 |
// V8/V9 integer multiply |
|
1980 |
void mult(Register s1, Register s2, Register d); |
|
1981 |
void mult(Register s1, int simm13a, Register d); |
|
1982 |
||
1983 |
// V8/V9 read and write of condition codes. |
|
1984 |
void read_ccr(Register d); |
|
1985 |
void write_ccr(Register s); |
|
1986 |
||
1987 |
// Manipulation of C++ bools |
|
1988 |
// These are idioms to flag the need for care with accessing bools but on |
|
1989 |
// this platform we assume byte size |
|
1990 |
||
1991 |
inline void stbool( Register d, const Address& a, int offset = 0 ) { stb(d, a, offset); } |
|
1992 |
inline void ldbool( const Address& a, Register d, int offset = 0 ) { ldsb( a, d, offset ); } |
|
1993 |
inline void tstbool( Register s ) { tst(s); } |
|
1994 |
inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); } |
|
1995 |
||
360
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
1996 |
// klass oop manipulations if compressed |
590
2954744d7bba
6703890: Compressed Oops: add LoadNKlass node to generate narrow oops (32-bits) compare instructions
kvn
parents:
371
diff
changeset
|
1997 |
void load_klass(Register src_oop, Register klass); |
2954744d7bba
6703890: Compressed Oops: add LoadNKlass node to generate narrow oops (32-bits) compare instructions
kvn
parents:
371
diff
changeset
|
1998 |
void store_klass(Register klass, Register dst_oop); |
593
803947e176bd
6696264: assert("narrow oop can never be zero") for GCBasher & ParNewGC
coleenp
parents:
590
diff
changeset
|
1999 |
void store_klass_gap(Register s, Register dst_oop); |
360
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2000 |
|
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2001 |
// oop manipulations |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2002 |
void load_heap_oop(const Address& s, Register d, int offset = 0); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2003 |
void load_heap_oop(Register s1, Register s2, Register d); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2004 |
void load_heap_oop(Register s1, int simm13a, Register d); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2005 |
void store_heap_oop(Register d, Register s1, Register s2); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2006 |
void store_heap_oop(Register d, Register s1, int simm13a); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2007 |
void store_heap_oop(Register d, const Address& a, int offset = 0); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2008 |
|
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2009 |
void encode_heap_oop(Register src, Register dst); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2010 |
void encode_heap_oop(Register r) { |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2011 |
encode_heap_oop(r, r); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2012 |
} |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2013 |
void decode_heap_oop(Register src, Register dst); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2014 |
void decode_heap_oop(Register r) { |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2015 |
decode_heap_oop(r, r); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2016 |
} |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2017 |
void encode_heap_oop_not_null(Register r); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2018 |
void decode_heap_oop_not_null(Register r); |
371
1aacedc9db7c
6689060: Escape Analysis does not work with Compressed Oops
kvn
parents:
360
diff
changeset
|
2019 |
void encode_heap_oop_not_null(Register src, Register dst); |
1aacedc9db7c
6689060: Escape Analysis does not work with Compressed Oops
kvn
parents:
360
diff
changeset
|
2020 |
void decode_heap_oop_not_null(Register src, Register dst); |
360
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2021 |
|
1 | 2022 |
// Support for managing the JavaThread pointer (i.e.; the reference to |
2023 |
// thread-local information). |
|
2024 |
void get_thread(); // load G2_thread |
|
2025 |
void verify_thread(); // verify G2_thread contents |
|
2026 |
void save_thread (const Register threache); // save to cache |
|
2027 |
void restore_thread(const Register thread_cache); // restore from cache |
|
2028 |
||
2029 |
// Support for last Java frame (but use call_VM instead where possible) |
|
2030 |
void set_last_Java_frame(Register last_java_sp, Register last_Java_pc); |
|
2031 |
void reset_last_Java_frame(void); |
|
2032 |
||
2033 |
// Call into the VM. |
|
2034 |
// Passes the thread pointer (in O0) as a prepended argument. |
|
2035 |
// Makes sure oop return values are visible to the GC. |
|
2036 |
void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); |
|
2037 |
void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true); |
|
2038 |
void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); |
|
2039 |
void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); |
|
2040 |
||
2041 |
// these overloadings are not presently used on SPARC: |
|
2042 |
void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); |
|
2043 |
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); |
|
2044 |
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); |
|
2045 |
void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); |
|
2046 |
||
2047 |
void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0); |
|
2048 |
void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1); |
|
2049 |
void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2); |
|
2050 |
void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3); |
|
2051 |
||
2052 |
void get_vm_result (Register oop_result); |
|
2053 |
void get_vm_result_2(Register oop_result); |
|
2054 |
||
2055 |
// vm result is currently getting hijacked to for oop preservation |
|
2056 |
void set_vm_result(Register oop_result); |
|
2057 |
||
2058 |
// if call_VM_base was called with check_exceptions=false, then call |
|
2059 |
// check_and_forward_exception to handle exceptions when it is safe |
|
2060 |
void check_and_forward_exception(Register scratch_reg); |
|
2061 |
||
2062 |
private: |
|
2063 |
// For V8 |
|
2064 |
void read_ccr_trap(Register ccr_save); |
|
2065 |
void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2); |
|
2066 |
||
2067 |
#ifdef ASSERT |
|
2068 |
// For V8 debugging. Uses V8 instruction sequence and checks |
|
2069 |
// result with V9 insturctions rdccr and wrccr. |
|
2070 |
// Uses Gscatch and Gscatch2 |
|
2071 |
void read_ccr_v8_assert(Register ccr_save); |
|
2072 |
void write_ccr_v8_assert(Register ccr_save); |
|
2073 |
#endif // ASSERT |
|
2074 |
||
2075 |
public: |
|
1374
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2076 |
|
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2077 |
// Write to card table for - register is destroyed afterwards. |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2078 |
void card_table_write(jbyte* byte_map_base, Register tmp, Register obj); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2079 |
|
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2080 |
void card_write_barrier_post(Register store_addr, Register new_val, Register tmp); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2081 |
|
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2082 |
#ifndef SERIALGC |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2083 |
// Array store and offset |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2084 |
void g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2085 |
|
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2086 |
void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2087 |
|
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2088 |
// May do filtering, depending on the boolean arguments. |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2089 |
void g1_card_table_write(jbyte* byte_map_base, |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2090 |
Register tmp, Register obj, Register new_val, |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2091 |
bool region_filter, bool null_filter); |
4c24294029a9
6711316: Open source the Garbage-First garbage collector
ysr
parents:
371
diff
changeset
|
2092 |
#endif // SERIALGC |
1 | 2093 |
|
2094 |
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack |
|
2095 |
void push_fTOS(); |
|
2096 |
||
2097 |
// pops double TOS element from CPU stack and pushes on FPU stack |
|
2098 |
void pop_fTOS(); |
|
2099 |
||
2100 |
void empty_FPU_stack(); |
|
2101 |
||
2102 |
void push_IU_state(); |
|
2103 |
void pop_IU_state(); |
|
2104 |
||
2105 |
void push_FPU_state(); |
|
2106 |
void pop_FPU_state(); |
|
2107 |
||
2108 |
void push_CPU_state(); |
|
2109 |
void pop_CPU_state(); |
|
2110 |
||
360
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2111 |
// if heap base register is used - reinit it with the correct value |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2112 |
void reinit_heapbase(); |
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
2113 |
|
1 | 2114 |
// Debugging |
2115 |
void _verify_oop(Register reg, const char * msg, const char * file, int line); |
|
2116 |
void _verify_oop_addr(Address addr, const char * msg, const char * file, int line); |
|
2117 |
||
2118 |
#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__) |
|
2119 |
#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__) |
|
2120 |
||
2121 |
// only if +VerifyOops |
|
2122 |
void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); |
|
2123 |
// only if +VerifyFPU |
|
2124 |
void stop(const char* msg); // prints msg, dumps registers and stops execution |
|
2125 |
void warn(const char* msg); // prints msg, but don't stop |
|
2126 |
void untested(const char* what = ""); |
|
2127 |
void unimplemented(const char* what = "") { char* b = new char[1024]; sprintf(b, "unimplemented: %s", what); stop(b); } |
|
2128 |
void should_not_reach_here() { stop("should not reach here"); } |
|
2129 |
void print_CPU_state(); |
|
2130 |
||
2131 |
// oops in code |
|
2132 |
Address allocate_oop_address( jobject obj, Register d ); // allocate_index |
|
2133 |
Address constant_oop_address( jobject obj, Register d ); // find_index |
|
2134 |
inline void set_oop ( jobject obj, Register d ); // uses allocate_oop_address |
|
2135 |
inline void set_oop_constant( jobject obj, Register d ); // uses constant_oop_address |
|
2136 |
inline void set_oop ( Address obj_addr ); // same as load_address |
|
2137 |
||
590
2954744d7bba
6703890: Compressed Oops: add LoadNKlass node to generate narrow oops (32-bits) compare instructions
kvn
parents:
371
diff
changeset
|
2138 |
void set_narrow_oop( jobject obj, Register d ); |
2954744d7bba
6703890: Compressed Oops: add LoadNKlass node to generate narrow oops (32-bits) compare instructions
kvn
parents:
371
diff
changeset
|
2139 |
|
1 | 2140 |
// nop padding |
2141 |
void align(int modulus); |
|
2142 |
||
2143 |
// declare a safepoint |
|
2144 |
void safepoint(); |
|
2145 |
||
2146 |
// factor out part of stop into subroutine to save space |
|
2147 |
void stop_subroutine(); |
|
2148 |
// factor out part of verify_oop into subroutine to save space |
|
2149 |
void verify_oop_subroutine(); |
|
2150 |
||
2151 |
// side-door communication with signalHandler in os_solaris.cpp |
|
2152 |
static address _verify_oop_implicit_branch[3]; |
|
2153 |
||
2154 |
#ifndef PRODUCT |
|
2155 |
static void test(); |
|
2156 |
#endif |
|
2157 |
||
2158 |
// convert an incoming arglist to varargs format; put the pointer in d |
|
2159 |
void set_varargs( Argument a, Register d ); |
|
2160 |
||
2161 |
int total_frame_size_in_bytes(int extraWords); |
|
2162 |
||
2163 |
// used when extraWords known statically |
|
2164 |
void save_frame(int extraWords); |
|
2165 |
void save_frame_c1(int size_in_bytes); |
|
2166 |
// make a frame, and simultaneously pass up one or two register value |
|
2167 |
// into the new register window |
|
2168 |
void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register()); |
|
2169 |
||
2170 |
// give no. (outgoing) params, calc # of words will need on frame |
|
2171 |
void calc_mem_param_words(Register Rparam_words, Register Rresult); |
|
2172 |
||
2173 |
// used to calculate frame size dynamically |
|
2174 |
// result is in bytes and must be negated for save inst |
|
2175 |
void calc_frame_size(Register extraWords, Register resultReg); |
|
2176 |
||
2177 |
// calc and also save |
|
2178 |
void calc_frame_size_and_save(Register extraWords, Register resultReg); |
|
2179 |
||
2180 |
static void debug(char* msg, RegistersForDebugging* outWindow); |
|
2181 |
||
2182 |
// implementations of bytecodes used by both interpreter and compiler |
|
2183 |
||
2184 |
void lcmp( Register Ra_hi, Register Ra_low, |
|
2185 |
Register Rb_hi, Register Rb_low, |
|
2186 |
Register Rresult); |
|
2187 |
||
2188 |
void lneg( Register Rhi, Register Rlow ); |
|
2189 |
||
2190 |
void lshl( Register Rin_high, Register Rin_low, Register Rcount, |
|
2191 |
Register Rout_high, Register Rout_low, Register Rtemp ); |
|
2192 |
||
2193 |
void lshr( Register Rin_high, Register Rin_low, Register Rcount, |
|
2194 |
Register Rout_high, Register Rout_low, Register Rtemp ); |
|
2195 |
||
2196 |
void lushr( Register Rin_high, Register Rin_low, Register Rcount, |
|
2197 |
Register Rout_high, Register Rout_low, Register Rtemp ); |
|
2198 |
||
2199 |
#ifdef _LP64 |
|
2200 |
void lcmp( Register Ra, Register Rb, Register Rresult); |
|
2201 |
#endif |
|
2202 |
||
2203 |
void float_cmp( bool is_float, int unordered_result, |
|
2204 |
FloatRegister Fa, FloatRegister Fb, |
|
2205 |
Register Rresult); |
|
2206 |
||
2207 |
void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d); |
|
2208 |
void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); } |
|
2209 |
void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d); |
|
2210 |
void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d); |
|
2211 |
||
2212 |
void save_all_globals_into_locals(); |
|
2213 |
void restore_globals_from_locals(); |
|
2214 |
||
2215 |
void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, |
|
2216 |
address lock_addr=0, bool use_call_vm=false); |
|
2217 |
void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, |
|
2218 |
address lock_addr=0, bool use_call_vm=false); |
|
2219 |
void casn (Register addr_reg, Register cmp_reg, Register set_reg) ; |
|
2220 |
||
2221 |
// These set the icc condition code to equal if the lock succeeded |
|
2222 |
// and notEqual if it failed and requires a slow case |
|
1500
bea9a90f3e8f
6462850: generate biased locking code in C2 ideal graph
kvn
parents:
1388
diff
changeset
|
2223 |
void compiler_lock_object(Register Roop, Register Rmark, Register Rbox, |
bea9a90f3e8f
6462850: generate biased locking code in C2 ideal graph
kvn
parents:
1388
diff
changeset
|
2224 |
Register Rscratch, |
bea9a90f3e8f
6462850: generate biased locking code in C2 ideal graph
kvn
parents:
1388
diff
changeset
|
2225 |
BiasedLockingCounters* counters = NULL, |
bea9a90f3e8f
6462850: generate biased locking code in C2 ideal graph
kvn
parents:
1388
diff
changeset
|
2226 |
bool try_bias = UseBiasedLocking); |
bea9a90f3e8f
6462850: generate biased locking code in C2 ideal graph
kvn
parents:
1388
diff
changeset
|
2227 |
void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, |
bea9a90f3e8f
6462850: generate biased locking code in C2 ideal graph
kvn
parents:
1388
diff
changeset
|
2228 |
Register Rscratch, |
bea9a90f3e8f
6462850: generate biased locking code in C2 ideal graph
kvn
parents:
1388
diff
changeset
|
2229 |
bool try_bias = UseBiasedLocking); |
1 | 2230 |
|
2231 |
// Biased locking support |
|
2232 |
// Upon entry, lock_reg must point to the lock record on the stack, |
|
2233 |
// obj_reg must contain the target object, and mark_reg must contain |
|
2234 |
// the target object's header. |
|
2235 |
// Destroys mark_reg if an attempt is made to bias an anonymously |
|
2236 |
// biased lock. In this case a failure will go either to the slow |
|
2237 |
// case or fall through with the notEqual condition code set with |
|
2238 |
// the expectation that the slow case in the runtime will be called. |
|
2239 |
// In the fall-through case where the CAS-based lock is done, |
|
2240 |
// mark_reg is not destroyed. |
|
2241 |
void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg, |
|
2242 |
Label& done, Label* slow_case = NULL, |
|
2243 |
BiasedLockingCounters* counters = NULL); |
|
2244 |
// Upon entry, the base register of mark_addr must contain the oop. |
|
2245 |
// Destroys temp_reg. |
|
2246 |
||
2247 |
// If allow_delay_slot_filling is set to true, the next instruction |
|
2248 |
// emitted after this one will go in an annulled delay slot if the |
|
2249 |
// biased locking exit case failed. |
|
2250 |
void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false); |
|
2251 |
||
2252 |
// allocation |
|
2253 |
void eden_allocate( |
|
2254 |
Register obj, // result: pointer to object after successful allocation |
|
2255 |
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise |
|
2256 |
int con_size_in_bytes, // object size in bytes if known at compile time |
|
2257 |
Register t1, // temp register |
|
2258 |
Register t2, // temp register |
|
2259 |
Label& slow_case // continuation point if fast allocation fails |
|
2260 |
); |
|
2261 |
void tlab_allocate( |
|
2262 |
Register obj, // result: pointer to object after successful allocation |
|
2263 |
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise |
|
2264 |
int con_size_in_bytes, // object size in bytes if known at compile time |
|
2265 |
Register t1, // temp register |
|
2266 |
Label& slow_case // continuation point if fast allocation fails |
|
2267 |
); |
|
2268 |
void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); |
|
2269 |
||
2270 |
// Stack overflow checking |
|
2271 |
||
2272 |
// Note: this clobbers G3_scratch |
|
2273 |
void bang_stack_with_offset(int offset) { |
|
2274 |
// stack grows down, caller passes positive offset |
|
2275 |
assert(offset > 0, "must bang with negative offset"); |
|
2276 |
set((-offset)+STACK_BIAS, G3_scratch); |
|
2277 |
st(G0, SP, G3_scratch); |
|
2278 |
} |
|
2279 |
||
2280 |
// Writes to stack successive pages until offset reached to check for |
|
2281 |
// stack overflow + shadow pages. Clobbers tsp and scratch registers. |
|
2282 |
void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch); |
|
2283 |
||
2284 |
void verify_tlab(); |
|
2285 |
||
2286 |
Condition negate_condition(Condition cond); |
|
2287 |
||
2288 |
// Helper functions for statistics gathering. |
|
2289 |
// Conditionally (non-atomically) increments passed counter address, preserving condition codes. |
|
2290 |
void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2); |
|
2291 |
// Unconditional increment. |
|
2292 |
void inc_counter(address counter_addr, Register Rtemp1, Register Rtemp2); |
|
2293 |
||
2294 |
#undef VIRTUAL |
|
2295 |
||
2296 |
}; |
|
2297 |
||
2298 |
/** |
|
2299 |
* class SkipIfEqual: |
|
2300 |
* |
|
2301 |
* Instantiating this class will result in assembly code being output that will |
|
2302 |
* jump around any code emitted between the creation of the instance and it's |
|
2303 |
* automatic destruction at the end of a scope block, depending on the value of |
|
2304 |
* the flag passed to the constructor, which will be checked at run-time. |
|
2305 |
*/ |
|
2306 |
class SkipIfEqual : public StackObj { |
|
2307 |
private: |
|
2308 |
MacroAssembler* _masm; |
|
2309 |
Label _label; |
|
2310 |
||
2311 |
public: |
|
2312 |
// 'temp' is a temp register that this object can use (and trash) |
|
2313 |
SkipIfEqual(MacroAssembler*, Register temp, |
|
2314 |
const bool* flag_addr, Assembler::Condition condition); |
|
2315 |
~SkipIfEqual(); |
|
2316 |
}; |
|
2317 |
||
2318 |
#ifdef ASSERT |
|
2319 |
// On RISC, there's no benefit to verifying instruction boundaries. |
|
2320 |
inline bool AbstractAssembler::pd_check_instruction_mark() { return false; } |
|
2321 |
#endif |