2
|
1 |
/*
|
|
2 |
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Sun designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Sun in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
22 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
23 |
* have any questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
package java.awt;
|
|
27 |
|
|
28 |
import java.awt.image.ColorModel;
|
|
29 |
import sun.java2d.SunCompositeContext;
|
|
30 |
|
|
31 |
/**
|
|
32 |
* The <code>AlphaComposite</code> class implements basic alpha
|
|
33 |
* compositing rules for combining source and destination colors
|
|
34 |
* to achieve blending and transparency effects with graphics and
|
|
35 |
* images.
|
|
36 |
* The specific rules implemented by this class are the basic set
|
|
37 |
* of 12 rules described in
|
|
38 |
* T. Porter and T. Duff, "Compositing Digital Images", SIGGRAPH 84,
|
|
39 |
* 253-259.
|
|
40 |
* The rest of this documentation assumes some familiarity with the
|
|
41 |
* definitions and concepts outlined in that paper.
|
|
42 |
*
|
|
43 |
* <p>
|
|
44 |
* This class extends the standard equations defined by Porter and
|
|
45 |
* Duff to include one additional factor.
|
|
46 |
* An instance of the <code>AlphaComposite</code> class can contain
|
|
47 |
* an alpha value that is used to modify the opacity or coverage of
|
|
48 |
* every source pixel before it is used in the blending equations.
|
|
49 |
*
|
|
50 |
* <p>
|
|
51 |
* It is important to note that the equations defined by the Porter
|
|
52 |
* and Duff paper are all defined to operate on color components
|
|
53 |
* that are premultiplied by their corresponding alpha components.
|
|
54 |
* Since the <code>ColorModel</code> and <code>Raster</code> classes
|
|
55 |
* allow the storage of pixel data in either premultiplied or
|
|
56 |
* non-premultiplied form, all input data must be normalized into
|
|
57 |
* premultiplied form before applying the equations and all results
|
|
58 |
* might need to be adjusted back to the form required by the destination
|
|
59 |
* before the pixel values are stored.
|
|
60 |
*
|
|
61 |
* <p>
|
|
62 |
* Also note that this class defines only the equations
|
|
63 |
* for combining color and alpha values in a purely mathematical
|
|
64 |
* sense. The accurate application of its equations depends
|
|
65 |
* on the way the data is retrieved from its sources and stored
|
|
66 |
* in its destinations.
|
|
67 |
* See <a href="#caveats">Implementation Caveats</a>
|
|
68 |
* for further information.
|
|
69 |
*
|
|
70 |
* <p>
|
|
71 |
* The following factors are used in the description of the blending
|
|
72 |
* equation in the Porter and Duff paper:
|
|
73 |
*
|
|
74 |
* <blockquote>
|
|
75 |
* <table summary="layout">
|
|
76 |
* <tr><th align=left>Factor <th align=left>Definition
|
|
77 |
* <tr><td><em>A<sub>s</sub></em><td>the alpha component of the source pixel
|
|
78 |
* <tr><td><em>C<sub>s</sub></em><td>a color component of the source pixel in premultiplied form
|
|
79 |
* <tr><td><em>A<sub>d</sub></em><td>the alpha component of the destination pixel
|
|
80 |
* <tr><td><em>C<sub>d</sub></em><td>a color component of the destination pixel in premultiplied form
|
|
81 |
* <tr><td><em>F<sub>s</sub></em><td>the fraction of the source pixel that contributes to the output
|
|
82 |
* <tr><td><em>F<sub>d</sub></em><td>the fraction of the destination pixel that contributes
|
|
83 |
* to the output
|
|
84 |
* <tr><td><em>A<sub>r</sub></em><td>the alpha component of the result
|
|
85 |
* <tr><td><em>C<sub>r</sub></em><td>a color component of the result in premultiplied form
|
|
86 |
* </table>
|
|
87 |
* </blockquote>
|
|
88 |
*
|
|
89 |
* <p>
|
|
90 |
* Using these factors, Porter and Duff define 12 ways of choosing
|
|
91 |
* the blending factors <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> to
|
|
92 |
* produce each of 12 desirable visual effects.
|
|
93 |
* The equations for determining <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em>
|
|
94 |
* are given in the descriptions of the 12 static fields
|
|
95 |
* that specify visual effects.
|
|
96 |
* For example,
|
|
97 |
* the description for
|
|
98 |
* <a href="#SRC_OVER"><code>SRC_OVER</code></a>
|
|
99 |
* specifies that <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>).
|
|
100 |
* Once a set of equations for determining the blending factors is
|
|
101 |
* known they can then be applied to each pixel to produce a result
|
|
102 |
* using the following set of equations:
|
|
103 |
*
|
|
104 |
* <pre>
|
|
105 |
* <em>F<sub>s</sub></em> = <em>f</em>(<em>A<sub>d</sub></em>)
|
|
106 |
* <em>F<sub>d</sub></em> = <em>f</em>(<em>A<sub>s</sub></em>)
|
|
107 |
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>A<sub>d</sub></em>*<em>F<sub>d</sub></em>
|
|
108 |
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>C<sub>d</sub></em>*<em>F<sub>d</sub></em></pre>
|
|
109 |
*
|
|
110 |
* <p>
|
|
111 |
* The following factors will be used to discuss our extensions to
|
|
112 |
* the blending equation in the Porter and Duff paper:
|
|
113 |
*
|
|
114 |
* <blockquote>
|
|
115 |
* <table summary="layout">
|
|
116 |
* <tr><th align=left>Factor <th align=left>Definition
|
|
117 |
* <tr><td><em>C<sub>sr</sub></em> <td>one of the raw color components of the source pixel
|
|
118 |
* <tr><td><em>C<sub>dr</sub></em> <td>one of the raw color components of the destination pixel
|
|
119 |
* <tr><td><em>A<sub>ac</sub></em> <td>the "extra" alpha component from the AlphaComposite instance
|
|
120 |
* <tr><td><em>A<sub>sr</sub></em> <td>the raw alpha component of the source pixel
|
|
121 |
* <tr><td><em>A<sub>dr</sub></em><td>the raw alpha component of the destination pixel
|
|
122 |
* <tr><td><em>A<sub>df</sub></em> <td>the final alpha component stored in the destination
|
|
123 |
* <tr><td><em>C<sub>df</sub></em> <td>the final raw color component stored in the destination
|
|
124 |
* </table>
|
|
125 |
*</blockquote>
|
|
126 |
*
|
|
127 |
* <h3>Preparing Inputs</h3>
|
|
128 |
*
|
|
129 |
* <p>
|
|
130 |
* The <code>AlphaComposite</code> class defines an additional alpha
|
|
131 |
* value that is applied to the source alpha.
|
|
132 |
* This value is applied as if an implicit SRC_IN rule were first
|
|
133 |
* applied to the source pixel against a pixel with the indicated
|
|
134 |
* alpha by multiplying both the raw source alpha and the raw
|
|
135 |
* source colors by the alpha in the <code>AlphaComposite</code>.
|
|
136 |
* This leads to the following equation for producing the alpha
|
|
137 |
* used in the Porter and Duff blending equation:
|
|
138 |
*
|
|
139 |
* <pre>
|
|
140 |
* <em>A<sub>s</sub></em> = <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em> </pre>
|
|
141 |
*
|
|
142 |
* All of the raw source color components need to be multiplied
|
|
143 |
* by the alpha in the <code>AlphaComposite</code> instance.
|
|
144 |
* Additionally, if the source was not in premultiplied form
|
|
145 |
* then the color components also need to be multiplied by the
|
|
146 |
* source alpha.
|
|
147 |
* Thus, the equation for producing the source color components
|
|
148 |
* for the Porter and Duff equation depends on whether the source
|
|
149 |
* pixels are premultiplied or not:
|
|
150 |
*
|
|
151 |
* <pre>
|
|
152 |
* <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em> (if source is not premultiplied)
|
|
153 |
* <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>ac</sub></em> (if source is premultiplied) </pre>
|
|
154 |
*
|
|
155 |
* No adjustment needs to be made to the destination alpha:
|
|
156 |
*
|
|
157 |
* <pre>
|
|
158 |
* <em>A<sub>d</sub></em> = <em>A<sub>dr</sub></em> </pre>
|
|
159 |
*
|
|
160 |
* <p>
|
|
161 |
* The destination color components need to be adjusted only if
|
|
162 |
* they are not in premultiplied form:
|
|
163 |
*
|
|
164 |
* <pre>
|
|
165 |
* <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em> * <em>A<sub>d</sub></em> (if destination is not premultiplied)
|
|
166 |
* <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em> (if destination is premultiplied) </pre>
|
|
167 |
*
|
|
168 |
* <h3>Applying the Blending Equation</h3>
|
|
169 |
*
|
|
170 |
* <p>
|
|
171 |
* The adjusted <em>A<sub>s</sub></em>, <em>A<sub>d</sub></em>,
|
|
172 |
* <em>C<sub>s</sub></em>, and <em>C<sub>d</sub></em> are used in the standard
|
|
173 |
* Porter and Duff equations to calculate the blending factors
|
|
174 |
* <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> and then the resulting
|
|
175 |
* premultiplied components <em>A<sub>r</sub></em> and <em>C<sub>r</sub></em>.
|
|
176 |
*
|
|
177 |
* <p>
|
|
178 |
* <h3>Preparing Results</h3>
|
|
179 |
*
|
|
180 |
* <p>
|
|
181 |
* The results only need to be adjusted if they are to be stored
|
|
182 |
* back into a destination buffer that holds data that is not
|
|
183 |
* premultiplied, using the following equations:
|
|
184 |
*
|
|
185 |
* <pre>
|
|
186 |
* <em>A<sub>df</sub></em> = <em>A<sub>r</sub></em>
|
|
187 |
* <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em> (if dest is premultiplied)
|
|
188 |
* <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em> / <em>A<sub>r</sub></em> (if dest is not premultiplied) </pre>
|
|
189 |
*
|
|
190 |
* Note that since the division is undefined if the resulting alpha
|
|
191 |
* is zero, the division in that case is omitted to avoid the "divide
|
|
192 |
* by zero" and the color components are left as
|
|
193 |
* all zeros.
|
|
194 |
*
|
|
195 |
* <p>
|
|
196 |
* <h3>Performance Considerations</h3>
|
|
197 |
*
|
|
198 |
* <p>
|
|
199 |
* For performance reasons, it is preferrable that
|
|
200 |
* <code>Raster</code> objects passed to the <code>compose</code>
|
|
201 |
* method of a {@link CompositeContext} object created by the
|
|
202 |
* <code>AlphaComposite</code> class have premultiplied data.
|
|
203 |
* If either the source <code>Raster</code>
|
|
204 |
* or the destination <code>Raster</code>
|
|
205 |
* is not premultiplied, however,
|
|
206 |
* appropriate conversions are performed before and after the compositing
|
|
207 |
* operation.
|
|
208 |
*
|
|
209 |
* <h3><a name="caveats">Implementation Caveats</a></h3>
|
|
210 |
*
|
|
211 |
* <ul>
|
|
212 |
* <li>
|
|
213 |
* Many sources, such as some of the opaque image types listed
|
|
214 |
* in the <code>BufferedImage</code> class, do not store alpha values
|
|
215 |
* for their pixels. Such sources supply an alpha of 1.0 for
|
|
216 |
* all of their pixels.
|
|
217 |
*
|
|
218 |
* <p>
|
|
219 |
* <li>
|
|
220 |
* Many destinations also have no place to store the alpha values
|
|
221 |
* that result from the blending calculations performed by this class.
|
|
222 |
* Such destinations thus implicitly discard the resulting
|
|
223 |
* alpha values that this class produces.
|
|
224 |
* It is recommended that such destinations should treat their stored
|
|
225 |
* color values as non-premultiplied and divide the resulting color
|
|
226 |
* values by the resulting alpha value before storing the color
|
|
227 |
* values and discarding the alpha value.
|
|
228 |
*
|
|
229 |
* <p>
|
|
230 |
* <li>
|
|
231 |
* The accuracy of the results depends on the manner in which pixels
|
|
232 |
* are stored in the destination.
|
|
233 |
* An image format that provides at least 8 bits of storage per color
|
|
234 |
* and alpha component is at least adequate for use as a destination
|
|
235 |
* for a sequence of a few to a dozen compositing operations.
|
|
236 |
* An image format with fewer than 8 bits of storage per component
|
|
237 |
* is of limited use for just one or two compositing operations
|
|
238 |
* before the rounding errors dominate the results.
|
|
239 |
* An image format
|
|
240 |
* that does not separately store
|
|
241 |
* color components is not a
|
|
242 |
* good candidate for any type of translucent blending.
|
|
243 |
* For example, <code>BufferedImage.TYPE_BYTE_INDEXED</code>
|
|
244 |
* should not be used as a destination for a blending operation
|
|
245 |
* because every operation
|
|
246 |
* can introduce large errors, due to
|
|
247 |
* the need to choose a pixel from a limited palette to match the
|
|
248 |
* results of the blending equations.
|
|
249 |
*
|
|
250 |
* <p>
|
|
251 |
* <li>
|
|
252 |
* Nearly all formats store pixels as discrete integers rather than
|
|
253 |
* the floating point values used in the reference equations above.
|
|
254 |
* The implementation can either scale the integer pixel
|
|
255 |
* values into floating point values in the range 0.0 to 1.0 or
|
|
256 |
* use slightly modified versions of the equations
|
|
257 |
* that operate entirely in the integer domain and yet produce
|
|
258 |
* analogous results to the reference equations.
|
|
259 |
*
|
|
260 |
* <p>
|
|
261 |
* Typically the integer values are related to the floating point
|
|
262 |
* values in such a way that the integer 0 is equated
|
|
263 |
* to the floating point value 0.0 and the integer
|
|
264 |
* 2^<em>n</em>-1 (where <em>n</em> is the number of bits
|
|
265 |
* in the representation) is equated to 1.0.
|
|
266 |
* For 8-bit representations, this means that 0x00
|
|
267 |
* represents 0.0 and 0xff represents
|
|
268 |
* 1.0.
|
|
269 |
*
|
|
270 |
* <p>
|
|
271 |
* <li>
|
|
272 |
* The internal implementation can approximate some of the equations
|
|
273 |
* and it can also eliminate some steps to avoid unnecessary operations.
|
|
274 |
* For example, consider a discrete integer image with non-premultiplied
|
|
275 |
* alpha values that uses 8 bits per component for storage.
|
|
276 |
* The stored values for a
|
|
277 |
* nearly transparent darkened red might be:
|
|
278 |
*
|
|
279 |
* <pre>
|
|
280 |
* (A, R, G, B) = (0x01, 0xb0, 0x00, 0x00)</pre>
|
|
281 |
*
|
|
282 |
* <p>
|
|
283 |
* If integer math were being used and this value were being
|
|
284 |
* composited in
|
|
285 |
* <a href="#SRC"><code>SRC</code></a>
|
|
286 |
* mode with no extra alpha, then the math would
|
|
287 |
* indicate that the results were (in integer format):
|
|
288 |
*
|
|
289 |
* <pre>
|
|
290 |
* (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
|
|
291 |
*
|
|
292 |
* <p>
|
|
293 |
* Note that the intermediate values, which are always in premultiplied
|
|
294 |
* form, would only allow the integer red component to be either 0x00
|
|
295 |
* or 0x01. When we try to store this result back into a destination
|
|
296 |
* that is not premultiplied, dividing out the alpha will give us
|
|
297 |
* very few choices for the non-premultiplied red value.
|
|
298 |
* In this case an implementation that performs the math in integer
|
|
299 |
* space without shortcuts is likely to end up with the final pixel
|
|
300 |
* values of:
|
|
301 |
*
|
|
302 |
* <pre>
|
|
303 |
* (A, R, G, B) = (0x01, 0xff, 0x00, 0x00)</pre>
|
|
304 |
*
|
|
305 |
* <p>
|
|
306 |
* (Note that 0x01 divided by 0x01 gives you 1.0, which is equivalent
|
|
307 |
* to the value 0xff in an 8-bit storage format.)
|
|
308 |
*
|
|
309 |
* <p>
|
|
310 |
* Alternately, an implementation that uses floating point math
|
|
311 |
* might produce more accurate results and end up returning to the
|
|
312 |
* original pixel value with little, if any, roundoff error.
|
|
313 |
* Or, an implementation using integer math might decide that since
|
|
314 |
* the equations boil down to a virtual NOP on the color values
|
|
315 |
* if performed in a floating point space, it can transfer the
|
|
316 |
* pixel untouched to the destination and avoid all the math entirely.
|
|
317 |
*
|
|
318 |
* <p>
|
|
319 |
* These implementations all attempt to honor the
|
|
320 |
* same equations, but use different tradeoffs of integer and
|
|
321 |
* floating point math and reduced or full equations.
|
|
322 |
* To account for such differences, it is probably best to
|
|
323 |
* expect only that the premultiplied form of the results to
|
|
324 |
* match between implementations and image formats. In this
|
|
325 |
* case both answers, expressed in premultiplied form would
|
|
326 |
* equate to:
|
|
327 |
*
|
|
328 |
* <pre>
|
|
329 |
* (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
|
|
330 |
*
|
|
331 |
* <p>
|
|
332 |
* and thus they would all match.
|
|
333 |
*
|
|
334 |
* <p>
|
|
335 |
* <li>
|
|
336 |
* Because of the technique of simplifying the equations for
|
|
337 |
* calculation efficiency, some implementations might perform
|
|
338 |
* differently when encountering result alpha values of 0.0
|
|
339 |
* on a non-premultiplied destination.
|
|
340 |
* Note that the simplification of removing the divide by alpha
|
|
341 |
* in the case of the SRC rule is technically not valid if the
|
|
342 |
* denominator (alpha) is 0.
|
|
343 |
* But, since the results should only be expected to be accurate
|
|
344 |
* when viewed in premultiplied form, a resulting alpha of 0
|
|
345 |
* essentially renders the resulting color components irrelevant
|
|
346 |
* and so exact behavior in this case should not be expected.
|
|
347 |
* </ul>
|
|
348 |
* @see Composite
|
|
349 |
* @see CompositeContext
|
|
350 |
*/
|
|
351 |
|
|
352 |
public final class AlphaComposite implements Composite {
|
|
353 |
/**
|
|
354 |
* Both the color and the alpha of the destination are cleared
|
|
355 |
* (Porter-Duff Clear rule).
|
|
356 |
* Neither the source nor the destination is used as input.
|
|
357 |
*<p>
|
|
358 |
* <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 0, thus:
|
|
359 |
*<pre>
|
|
360 |
* <em>A<sub>r</sub></em> = 0
|
|
361 |
* <em>C<sub>r</sub></em> = 0
|
|
362 |
*</pre>
|
|
363 |
*/
|
|
364 |
public static final int CLEAR = 1;
|
|
365 |
|
|
366 |
/**
|
|
367 |
* The source is copied to the destination
|
|
368 |
* (Porter-Duff Source rule).
|
|
369 |
* The destination is not used as input.
|
|
370 |
*<p>
|
|
371 |
* <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = 0, thus:
|
|
372 |
*<pre>
|
|
373 |
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>
|
|
374 |
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>
|
|
375 |
*</pre>
|
|
376 |
*/
|
|
377 |
public static final int SRC = 2;
|
|
378 |
|
|
379 |
/**
|
|
380 |
* The destination is left untouched
|
|
381 |
* (Porter-Duff Destination rule).
|
|
382 |
*<p>
|
|
383 |
* <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 1, thus:
|
|
384 |
*<pre>
|
|
385 |
* <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>
|
|
386 |
* <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>
|
|
387 |
*</pre>
|
|
388 |
* @since 1.4
|
|
389 |
*/
|
|
390 |
public static final int DST = 9;
|
|
391 |
// Note that DST was added in 1.4 so it is numbered out of order...
|
|
392 |
|
|
393 |
/**
|
|
394 |
* The source is composited over the destination
|
|
395 |
* (Porter-Duff Source Over Destination rule).
|
|
396 |
*<p>
|
|
397 |
* <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
|
|
398 |
*<pre>
|
|
399 |
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
|
|
400 |
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
|
|
401 |
*</pre>
|
|
402 |
*/
|
|
403 |
public static final int SRC_OVER = 3;
|
|
404 |
|
|
405 |
/**
|
|
406 |
* The destination is composited over the source and
|
|
407 |
* the result replaces the destination
|
|
408 |
* (Porter-Duff Destination Over Source rule).
|
|
409 |
*<p>
|
|
410 |
* <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 1, thus:
|
|
411 |
*<pre>
|
|
412 |
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>
|
|
413 |
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>
|
|
414 |
*</pre>
|
|
415 |
*/
|
|
416 |
public static final int DST_OVER = 4;
|
|
417 |
|
|
418 |
/**
|
|
419 |
* The part of the source lying inside of the destination replaces
|
|
420 |
* the destination
|
|
421 |
* (Porter-Duff Source In Destination rule).
|
|
422 |
*<p>
|
|
423 |
* <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = 0, thus:
|
|
424 |
*<pre>
|
|
425 |
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em>
|
|
426 |
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em>
|
|
427 |
*</pre>
|
|
428 |
*/
|
|
429 |
public static final int SRC_IN = 5;
|
|
430 |
|
|
431 |
/**
|
|
432 |
* The part of the destination lying inside of the source
|
|
433 |
* replaces the destination
|
|
434 |
* (Porter-Duff Destination In Source rule).
|
|
435 |
*<p>
|
|
436 |
* <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
|
|
437 |
*<pre>
|
|
438 |
* <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em>
|
|
439 |
* <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
|
|
440 |
*</pre>
|
|
441 |
*/
|
|
442 |
public static final int DST_IN = 6;
|
|
443 |
|
|
444 |
/**
|
|
445 |
* The part of the source lying outside of the destination
|
|
446 |
* replaces the destination
|
|
447 |
* (Porter-Duff Source Held Out By Destination rule).
|
|
448 |
*<p>
|
|
449 |
* <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 0, thus:
|
|
450 |
*<pre>
|
|
451 |
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
|
|
452 |
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
|
|
453 |
*</pre>
|
|
454 |
*/
|
|
455 |
public static final int SRC_OUT = 7;
|
|
456 |
|
|
457 |
/**
|
|
458 |
* The part of the destination lying outside of the source
|
|
459 |
* replaces the destination
|
|
460 |
* (Porter-Duff Destination Held Out By Source rule).
|
|
461 |
*<p>
|
|
462 |
* <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
|
|
463 |
*<pre>
|
|
464 |
* <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
|
|
465 |
* <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
|
|
466 |
*</pre>
|
|
467 |
*/
|
|
468 |
public static final int DST_OUT = 8;
|
|
469 |
|
|
470 |
// Rule 9 is DST which is defined above where it fits into the
|
|
471 |
// list logically, rather than numerically
|
|
472 |
//
|
|
473 |
// public static final int DST = 9;
|
|
474 |
|
|
475 |
/**
|
|
476 |
* The part of the source lying inside of the destination
|
|
477 |
* is composited onto the destination
|
|
478 |
* (Porter-Duff Source Atop Destination rule).
|
|
479 |
*<p>
|
|
480 |
* <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
|
|
481 |
*<pre>
|
|
482 |
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) = <em>A<sub>d</sub></em>
|
|
483 |
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
|
|
484 |
*</pre>
|
|
485 |
* @since 1.4
|
|
486 |
*/
|
|
487 |
public static final int SRC_ATOP = 10;
|
|
488 |
|
|
489 |
/**
|
|
490 |
* The part of the destination lying inside of the source
|
|
491 |
* is composited over the source and replaces the destination
|
|
492 |
* (Porter-Duff Destination Atop Source rule).
|
|
493 |
*<p>
|
|
494 |
* <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
|
|
495 |
*<pre>
|
|
496 |
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em> = <em>A<sub>s</sub></em>
|
|
497 |
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
|
|
498 |
*</pre>
|
|
499 |
* @since 1.4
|
|
500 |
*/
|
|
501 |
public static final int DST_ATOP = 11;
|
|
502 |
|
|
503 |
/**
|
|
504 |
* The part of the source that lies outside of the destination
|
|
505 |
* is combined with the part of the destination that lies outside
|
|
506 |
* of the source
|
|
507 |
* (Porter-Duff Source Xor Destination rule).
|
|
508 |
*<p>
|
|
509 |
* <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
|
|
510 |
*<pre>
|
|
511 |
* <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
|
|
512 |
* <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
|
|
513 |
*</pre>
|
|
514 |
* @since 1.4
|
|
515 |
*/
|
|
516 |
public static final int XOR = 12;
|
|
517 |
|
|
518 |
/**
|
|
519 |
* <code>AlphaComposite</code> object that implements the opaque CLEAR rule
|
|
520 |
* with an alpha of 1.0f.
|
|
521 |
* @see #CLEAR
|
|
522 |
*/
|
|
523 |
public static final AlphaComposite Clear = new AlphaComposite(CLEAR);
|
|
524 |
|
|
525 |
/**
|
|
526 |
* <code>AlphaComposite</code> object that implements the opaque SRC rule
|
|
527 |
* with an alpha of 1.0f.
|
|
528 |
* @see #SRC
|
|
529 |
*/
|
|
530 |
public static final AlphaComposite Src = new AlphaComposite(SRC);
|
|
531 |
|
|
532 |
/**
|
|
533 |
* <code>AlphaComposite</code> object that implements the opaque DST rule
|
|
534 |
* with an alpha of 1.0f.
|
|
535 |
* @see #DST
|
|
536 |
* @since 1.4
|
|
537 |
*/
|
|
538 |
public static final AlphaComposite Dst = new AlphaComposite(DST);
|
|
539 |
|
|
540 |
/**
|
|
541 |
* <code>AlphaComposite</code> object that implements the opaque SRC_OVER rule
|
|
542 |
* with an alpha of 1.0f.
|
|
543 |
* @see #SRC_OVER
|
|
544 |
*/
|
|
545 |
public static final AlphaComposite SrcOver = new AlphaComposite(SRC_OVER);
|
|
546 |
|
|
547 |
/**
|
|
548 |
* <code>AlphaComposite</code> object that implements the opaque DST_OVER rule
|
|
549 |
* with an alpha of 1.0f.
|
|
550 |
* @see #DST_OVER
|
|
551 |
*/
|
|
552 |
public static final AlphaComposite DstOver = new AlphaComposite(DST_OVER);
|
|
553 |
|
|
554 |
/**
|
|
555 |
* <code>AlphaComposite</code> object that implements the opaque SRC_IN rule
|
|
556 |
* with an alpha of 1.0f.
|
|
557 |
* @see #SRC_IN
|
|
558 |
*/
|
|
559 |
public static final AlphaComposite SrcIn = new AlphaComposite(SRC_IN);
|
|
560 |
|
|
561 |
/**
|
|
562 |
* <code>AlphaComposite</code> object that implements the opaque DST_IN rule
|
|
563 |
* with an alpha of 1.0f.
|
|
564 |
* @see #DST_IN
|
|
565 |
*/
|
|
566 |
public static final AlphaComposite DstIn = new AlphaComposite(DST_IN);
|
|
567 |
|
|
568 |
/**
|
|
569 |
* <code>AlphaComposite</code> object that implements the opaque SRC_OUT rule
|
|
570 |
* with an alpha of 1.0f.
|
|
571 |
* @see #SRC_OUT
|
|
572 |
*/
|
|
573 |
public static final AlphaComposite SrcOut = new AlphaComposite(SRC_OUT);
|
|
574 |
|
|
575 |
/**
|
|
576 |
* <code>AlphaComposite</code> object that implements the opaque DST_OUT rule
|
|
577 |
* with an alpha of 1.0f.
|
|
578 |
* @see #DST_OUT
|
|
579 |
*/
|
|
580 |
public static final AlphaComposite DstOut = new AlphaComposite(DST_OUT);
|
|
581 |
|
|
582 |
/**
|
|
583 |
* <code>AlphaComposite</code> object that implements the opaque SRC_ATOP rule
|
|
584 |
* with an alpha of 1.0f.
|
|
585 |
* @see #SRC_ATOP
|
|
586 |
* @since 1.4
|
|
587 |
*/
|
|
588 |
public static final AlphaComposite SrcAtop = new AlphaComposite(SRC_ATOP);
|
|
589 |
|
|
590 |
/**
|
|
591 |
* <code>AlphaComposite</code> object that implements the opaque DST_ATOP rule
|
|
592 |
* with an alpha of 1.0f.
|
|
593 |
* @see #DST_ATOP
|
|
594 |
* @since 1.4
|
|
595 |
*/
|
|
596 |
public static final AlphaComposite DstAtop = new AlphaComposite(DST_ATOP);
|
|
597 |
|
|
598 |
/**
|
|
599 |
* <code>AlphaComposite</code> object that implements the opaque XOR rule
|
|
600 |
* with an alpha of 1.0f.
|
|
601 |
* @see #XOR
|
|
602 |
* @since 1.4
|
|
603 |
*/
|
|
604 |
public static final AlphaComposite Xor = new AlphaComposite(XOR);
|
|
605 |
|
|
606 |
private static final int MIN_RULE = CLEAR;
|
|
607 |
private static final int MAX_RULE = XOR;
|
|
608 |
|
|
609 |
float extraAlpha;
|
|
610 |
int rule;
|
|
611 |
|
|
612 |
private AlphaComposite(int rule) {
|
|
613 |
this(rule, 1.0f);
|
|
614 |
}
|
|
615 |
|
|
616 |
private AlphaComposite(int rule, float alpha) {
|
|
617 |
if (alpha < 0.0f || alpha > 1.0f) {
|
|
618 |
throw new IllegalArgumentException("alpha value out of range");
|
|
619 |
}
|
|
620 |
if (rule < MIN_RULE || rule > MAX_RULE) {
|
|
621 |
throw new IllegalArgumentException("unknown composite rule");
|
|
622 |
}
|
|
623 |
this.rule = rule;
|
|
624 |
this.extraAlpha = alpha;
|
|
625 |
}
|
|
626 |
|
|
627 |
/**
|
|
628 |
* Creates an <code>AlphaComposite</code> object with the specified rule.
|
|
629 |
* @param rule the compositing rule
|
|
630 |
* @throws IllegalArgumentException if <code>rule</code> is not one of
|
|
631 |
* the following: {@link #CLEAR}, {@link #SRC}, {@link #DST},
|
|
632 |
* {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
|
|
633 |
* {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
|
|
634 |
* {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
|
|
635 |
*/
|
|
636 |
public static AlphaComposite getInstance(int rule) {
|
|
637 |
switch (rule) {
|
|
638 |
case CLEAR:
|
|
639 |
return Clear;
|
|
640 |
case SRC:
|
|
641 |
return Src;
|
|
642 |
case DST:
|
|
643 |
return Dst;
|
|
644 |
case SRC_OVER:
|
|
645 |
return SrcOver;
|
|
646 |
case DST_OVER:
|
|
647 |
return DstOver;
|
|
648 |
case SRC_IN:
|
|
649 |
return SrcIn;
|
|
650 |
case DST_IN:
|
|
651 |
return DstIn;
|
|
652 |
case SRC_OUT:
|
|
653 |
return SrcOut;
|
|
654 |
case DST_OUT:
|
|
655 |
return DstOut;
|
|
656 |
case SRC_ATOP:
|
|
657 |
return SrcAtop;
|
|
658 |
case DST_ATOP:
|
|
659 |
return DstAtop;
|
|
660 |
case XOR:
|
|
661 |
return Xor;
|
|
662 |
default:
|
|
663 |
throw new IllegalArgumentException("unknown composite rule");
|
|
664 |
}
|
|
665 |
}
|
|
666 |
|
|
667 |
/**
|
|
668 |
* Creates an <code>AlphaComposite</code> object with the specified rule and
|
|
669 |
* the constant alpha to multiply with the alpha of the source.
|
|
670 |
* The source is multiplied with the specified alpha before being composited
|
|
671 |
* with the destination.
|
|
672 |
* @param rule the compositing rule
|
|
673 |
* @param alpha the constant alpha to be multiplied with the alpha of
|
|
674 |
* the source. <code>alpha</code> must be a floating point number in the
|
|
675 |
* inclusive range [0.0, 1.0].
|
|
676 |
* @throws IllegalArgumentException if
|
|
677 |
* <code>alpha</code> is less than 0.0 or greater than 1.0, or if
|
|
678 |
* <code>rule</code> is not one of
|
|
679 |
* the following: {@link #CLEAR}, {@link #SRC}, {@link #DST},
|
|
680 |
* {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
|
|
681 |
* {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
|
|
682 |
* {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
|
|
683 |
*/
|
|
684 |
public static AlphaComposite getInstance(int rule, float alpha) {
|
|
685 |
if (alpha == 1.0f) {
|
|
686 |
return getInstance(rule);
|
|
687 |
}
|
|
688 |
return new AlphaComposite(rule, alpha);
|
|
689 |
}
|
|
690 |
|
|
691 |
/**
|
|
692 |
* Creates a context for the compositing operation.
|
|
693 |
* The context contains state that is used in performing
|
|
694 |
* the compositing operation.
|
|
695 |
* @param srcColorModel the {@link ColorModel} of the source
|
|
696 |
* @param dstColorModel the <code>ColorModel</code> of the destination
|
|
697 |
* @return the <code>CompositeContext</code> object to be used to perform
|
|
698 |
* compositing operations.
|
|
699 |
*/
|
|
700 |
public CompositeContext createContext(ColorModel srcColorModel,
|
|
701 |
ColorModel dstColorModel,
|
|
702 |
RenderingHints hints) {
|
|
703 |
return new SunCompositeContext(this, srcColorModel, dstColorModel);
|
|
704 |
}
|
|
705 |
|
|
706 |
/**
|
|
707 |
* Returns the alpha value of this <code>AlphaComposite</code>. If this
|
|
708 |
* <code>AlphaComposite</code> does not have an alpha value, 1.0 is returned.
|
|
709 |
* @return the alpha value of this <code>AlphaComposite</code>.
|
|
710 |
*/
|
|
711 |
public float getAlpha() {
|
|
712 |
return extraAlpha;
|
|
713 |
}
|
|
714 |
|
|
715 |
/**
|
|
716 |
* Returns the compositing rule of this <code>AlphaComposite</code>.
|
|
717 |
* @return the compositing rule of this <code>AlphaComposite</code>.
|
|
718 |
*/
|
|
719 |
public int getRule() {
|
|
720 |
return rule;
|
|
721 |
}
|
|
722 |
|
|
723 |
/**
|
|
724 |
* Returns a similar <code>AlphaComposite</code> object that uses
|
|
725 |
* the specified compositing rule.
|
|
726 |
* If this object already uses the specified compositing rule,
|
|
727 |
* this object is returned.
|
|
728 |
* @return an <code>AlphaComposite</code> object derived from
|
|
729 |
* this object that uses the specified compositing rule.
|
|
730 |
* @param rule the compositing rule
|
|
731 |
* @throws IllegalArgumentException if
|
|
732 |
* <code>rule</code> is not one of
|
|
733 |
* the following: {@link #CLEAR}, {@link #SRC}, {@link #DST},
|
|
734 |
* {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
|
|
735 |
* {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
|
|
736 |
* {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
|
|
737 |
* @since 1.6
|
|
738 |
*/
|
|
739 |
public AlphaComposite derive(int rule) {
|
|
740 |
return (this.rule == rule)
|
|
741 |
? this
|
|
742 |
: getInstance(rule, this.extraAlpha);
|
|
743 |
}
|
|
744 |
|
|
745 |
/**
|
|
746 |
* Returns a similar <code>AlphaComposite</code> object that uses
|
|
747 |
* the specified alpha value.
|
|
748 |
* If this object already has the specified alpha value,
|
|
749 |
* this object is returned.
|
|
750 |
* @return an <code>AlphaComposite</code> object derived from
|
|
751 |
* this object that uses the specified alpha value.
|
|
752 |
* @param alpha the constant alpha to be multiplied with the alpha of
|
|
753 |
* the source. <code>alpha</code> must be a floating point number in the
|
|
754 |
* inclusive range [0.0, 1.0].
|
|
755 |
* @throws IllegalArgumentException if
|
|
756 |
* <code>alpha</code> is less than 0.0 or greater than 1.0
|
|
757 |
* @since 1.6
|
|
758 |
*/
|
|
759 |
public AlphaComposite derive(float alpha) {
|
|
760 |
return (this.extraAlpha == alpha)
|
|
761 |
? this
|
|
762 |
: getInstance(this.rule, alpha);
|
|
763 |
}
|
|
764 |
|
|
765 |
/**
|
|
766 |
* Returns the hashcode for this composite.
|
|
767 |
* @return a hash code for this composite.
|
|
768 |
*/
|
|
769 |
public int hashCode() {
|
|
770 |
return (Float.floatToIntBits(extraAlpha) * 31 + rule);
|
|
771 |
}
|
|
772 |
|
|
773 |
/**
|
|
774 |
* Determines whether the specified object is equal to this
|
|
775 |
* <code>AlphaComposite</code>.
|
|
776 |
* <p>
|
|
777 |
* The result is <code>true</code> if and only if
|
|
778 |
* the argument is not <code>null</code> and is an
|
|
779 |
* <code>AlphaComposite</code> object that has the same
|
|
780 |
* compositing rule and alpha value as this object.
|
|
781 |
*
|
|
782 |
* @param obj the <code>Object</code> to test for equality
|
|
783 |
* @return <code>true</code> if <code>obj</code> equals this
|
|
784 |
* <code>AlphaComposite</code>; <code>false</code> otherwise.
|
|
785 |
*/
|
|
786 |
public boolean equals(Object obj) {
|
|
787 |
if (!(obj instanceof AlphaComposite)) {
|
|
788 |
return false;
|
|
789 |
}
|
|
790 |
|
|
791 |
AlphaComposite ac = (AlphaComposite) obj;
|
|
792 |
|
|
793 |
if (rule != ac.rule) {
|
|
794 |
return false;
|
|
795 |
}
|
|
796 |
|
|
797 |
if (extraAlpha != ac.extraAlpha) {
|
|
798 |
return false;
|
|
799 |
}
|
|
800 |
|
|
801 |
return true;
|
|
802 |
}
|
|
803 |
|
|
804 |
}
|