author | coleenp |
Sun, 13 Apr 2008 17:43:42 -0400 | |
changeset 360 | 21d113ecbf6a |
parent 243 | 79b67a7a584a |
child 670 | ddf3e9583f2f |
permissions | -rw-r--r-- |
1 | 1 |
/* |
2 |
* Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved. |
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
#include "incls/_precompiled.incl" |
|
26 |
#include "incls/_postaloc.cpp.incl" |
|
27 |
||
28 |
// see if this register kind does not requires two registers |
|
29 |
static bool is_single_register(uint x) { |
|
30 |
#ifdef _LP64 |
|
31 |
return (x != Op_RegD && x != Op_RegL && x != Op_RegP); |
|
32 |
#else |
|
33 |
return (x != Op_RegD && x != Op_RegL); |
|
34 |
#endif |
|
35 |
} |
|
36 |
||
37 |
//------------------------------may_be_copy_of_callee----------------------------- |
|
38 |
// Check to see if we can possibly be a copy of a callee-save value. |
|
39 |
bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const { |
|
40 |
// Short circuit if there are no callee save registers |
|
41 |
if (_matcher.number_of_saved_registers() == 0) return false; |
|
42 |
||
43 |
// Expect only a spill-down and reload on exit for callee-save spills. |
|
44 |
// Chains of copies cannot be deep. |
|
45 |
// 5008997 - This is wishful thinking. Register allocator seems to |
|
46 |
// be splitting live ranges for callee save registers to such |
|
47 |
// an extent that in large methods the chains can be very long |
|
48 |
// (50+). The conservative answer is to return true if we don't |
|
49 |
// know as this prevents optimizations from occuring. |
|
50 |
||
51 |
const int limit = 60; |
|
52 |
int i; |
|
53 |
for( i=0; i < limit; i++ ) { |
|
54 |
if( def->is_Proj() && def->in(0)->is_Start() && |
|
55 |
_matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) ) |
|
56 |
return true; // Direct use of callee-save proj |
|
57 |
if( def->is_Copy() ) // Copies carry value through |
|
58 |
def = def->in(def->is_Copy()); |
|
59 |
else if( def->is_Phi() ) // Phis can merge it from any direction |
|
60 |
def = def->in(1); |
|
61 |
else |
|
62 |
break; |
|
63 |
guarantee(def != NULL, "must not resurrect dead copy"); |
|
64 |
} |
|
65 |
// If we reached the end and didn't find a callee save proj |
|
66 |
// then this may be a callee save proj so we return true |
|
67 |
// as the conservative answer. If we didn't reach then end |
|
68 |
// we must have discovered that it was not a callee save |
|
69 |
// else we would have returned. |
|
70 |
return i == limit; |
|
71 |
} |
|
72 |
||
73 |
||
74 |
||
75 |
//------------------------------yank_if_dead----------------------------------- |
|
76 |
// Removed an edge from 'old'. Yank if dead. Return adjustment counts to |
|
77 |
// iterators in the current block. |
|
78 |
int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) { |
|
79 |
int blk_adjust=0; |
|
80 |
while (old->outcnt() == 0 && old != C->top()) { |
|
81 |
Block *oldb = _cfg._bbs[old->_idx]; |
|
82 |
oldb->find_remove(old); |
|
83 |
// Count 1 if deleting an instruction from the current block |
|
84 |
if( oldb == current_block ) blk_adjust++; |
|
85 |
_cfg._bbs.map(old->_idx,NULL); |
|
86 |
OptoReg::Name old_reg = lrgs(n2lidx(old)).reg(); |
|
87 |
if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available? |
|
88 |
value->map(old_reg,NULL); // Yank from value/regnd maps |
|
89 |
regnd->map(old_reg,NULL); // This register's value is now unknown |
|
90 |
} |
|
91 |
Node *tmp = old->req() > 1 ? old->in(1) : NULL; |
|
92 |
old->disconnect_inputs(NULL); |
|
93 |
if( !tmp ) break; |
|
94 |
old = tmp; |
|
95 |
} |
|
96 |
return blk_adjust; |
|
97 |
} |
|
98 |
||
99 |
//------------------------------use_prior_register----------------------------- |
|
100 |
// Use the prior value instead of the current value, in an effort to make |
|
101 |
// the current value go dead. Return block iterator adjustment, in case |
|
102 |
// we yank some instructions from this block. |
|
103 |
int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List ®nd ) { |
|
104 |
// No effect? |
|
105 |
if( def == n->in(idx) ) return 0; |
|
106 |
// Def is currently dead and can be removed? Do not resurrect |
|
107 |
if( def->outcnt() == 0 ) return 0; |
|
108 |
||
109 |
// Not every pair of physical registers are assignment compatible, |
|
110 |
// e.g. on sparc floating point registers are not assignable to integer |
|
111 |
// registers. |
|
112 |
const LRG &def_lrg = lrgs(n2lidx(def)); |
|
113 |
OptoReg::Name def_reg = def_lrg.reg(); |
|
114 |
const RegMask &use_mask = n->in_RegMask(idx); |
|
115 |
bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0) |
|
116 |
: (use_mask.is_AllStack() != 0)); |
|
117 |
// Check for a copy to or from a misaligned pair. |
|
118 |
can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair(); |
|
119 |
||
120 |
if (!can_use) |
|
121 |
return 0; |
|
122 |
||
123 |
// Capture the old def in case it goes dead... |
|
124 |
Node *old = n->in(idx); |
|
125 |
||
126 |
// Save-on-call copies can only be elided if the entire copy chain can go |
|
127 |
// away, lest we get the same callee-save value alive in 2 locations at |
|
128 |
// once. We check for the obvious trivial case here. Although it can |
|
129 |
// sometimes be elided with cooperation outside our scope, here we will just |
|
130 |
// miss the opportunity. :-( |
|
131 |
if( may_be_copy_of_callee(def) ) { |
|
132 |
if( old->outcnt() > 1 ) return 0; // We're the not last user |
|
133 |
int idx = old->is_Copy(); |
|
134 |
assert( idx, "chain of copies being removed" ); |
|
135 |
Node *old2 = old->in(idx); // Chain of copies |
|
136 |
if( old2->outcnt() > 1 ) return 0; // old is not the last user |
|
137 |
int idx2 = old2->is_Copy(); |
|
138 |
if( !idx2 ) return 0; // Not a chain of 2 copies |
|
139 |
if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies |
|
140 |
} |
|
141 |
||
142 |
// Use the new def |
|
143 |
n->set_req(idx,def); |
|
144 |
_post_alloc++; |
|
145 |
||
146 |
// Is old def now dead? We successfully yanked a copy? |
|
147 |
return yank_if_dead(old,current_block,&value,®nd); |
|
148 |
} |
|
149 |
||
150 |
||
151 |
//------------------------------skip_copies------------------------------------ |
|
152 |
// Skip through any number of copies (that don't mod oop-i-ness) |
|
153 |
Node *PhaseChaitin::skip_copies( Node *c ) { |
|
154 |
int idx = c->is_Copy(); |
|
155 |
uint is_oop = lrgs(n2lidx(c))._is_oop; |
|
156 |
while (idx != 0) { |
|
157 |
guarantee(c->in(idx) != NULL, "must not resurrect dead copy"); |
|
158 |
if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop) |
|
159 |
break; // casting copy, not the same value |
|
160 |
c = c->in(idx); |
|
161 |
idx = c->is_Copy(); |
|
162 |
} |
|
163 |
return c; |
|
164 |
} |
|
165 |
||
166 |
//------------------------------elide_copy------------------------------------- |
|
167 |
// Remove (bypass) copies along Node n, edge k. |
|
168 |
int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List ®nd, bool can_change_regs ) { |
|
169 |
int blk_adjust = 0; |
|
170 |
||
171 |
uint nk_idx = n2lidx(n->in(k)); |
|
172 |
OptoReg::Name nk_reg = lrgs(nk_idx ).reg(); |
|
173 |
||
174 |
// Remove obvious same-register copies |
|
175 |
Node *x = n->in(k); |
|
176 |
int idx; |
|
177 |
while( (idx=x->is_Copy()) != 0 ) { |
|
178 |
Node *copy = x->in(idx); |
|
179 |
guarantee(copy != NULL, "must not resurrect dead copy"); |
|
180 |
if( lrgs(n2lidx(copy)).reg() != nk_reg ) break; |
|
181 |
blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd); |
|
182 |
if( n->in(k) != copy ) break; // Failed for some cutout? |
|
183 |
x = copy; // Progress, try again |
|
184 |
} |
|
185 |
||
186 |
// Phis and 2-address instructions cannot change registers so easily - their |
|
187 |
// outputs must match their input. |
|
188 |
if( !can_change_regs ) |
|
189 |
return blk_adjust; // Only check stupid copies! |
|
190 |
||
191 |
// Loop backedges won't have a value-mapping yet |
|
192 |
if( &value == NULL ) return blk_adjust; |
|
193 |
||
194 |
// Skip through all copies to the _value_ being used. Do not change from |
|
195 |
// int to pointer. This attempts to jump through a chain of copies, where |
|
196 |
// intermediate copies might be illegal, i.e., value is stored down to stack |
|
197 |
// then reloaded BUT survives in a register the whole way. |
|
198 |
Node *val = skip_copies(n->in(k)); |
|
199 |
||
200 |
if( val == x ) return blk_adjust; // No progress? |
|
201 |
||
202 |
bool single = is_single_register(val->ideal_reg()); |
|
203 |
uint val_idx = n2lidx(val); |
|
204 |
OptoReg::Name val_reg = lrgs(val_idx).reg(); |
|
205 |
||
206 |
// See if it happens to already be in the correct register! |
|
207 |
// (either Phi's direct register, or the common case of the name |
|
208 |
// never-clobbered original-def register) |
|
209 |
if( value[val_reg] == val && |
|
210 |
// Doubles check both halves |
|
211 |
( single || value[val_reg-1] == val ) ) { |
|
212 |
blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd); |
|
213 |
if( n->in(k) == regnd[val_reg] ) // Success! Quit trying |
|
214 |
return blk_adjust; |
|
215 |
} |
|
216 |
||
217 |
// See if we can skip the copy by changing registers. Don't change from |
|
218 |
// using a register to using the stack unless we know we can remove a |
|
219 |
// copy-load. Otherwise we might end up making a pile of Intel cisc-spill |
|
220 |
// ops reading from memory instead of just loading once and using the |
|
221 |
// register. |
|
222 |
||
223 |
// Also handle duplicate copies here. |
|
224 |
const Type *t = val->is_Con() ? val->bottom_type() : NULL; |
|
225 |
||
226 |
// Scan all registers to see if this value is around already |
|
227 |
for( uint reg = 0; reg < (uint)_max_reg; reg++ ) { |
|
228 |
Node *vv = value[reg]; |
|
229 |
if( !single ) { // Doubles check for aligned-adjacent pair |
|
230 |
if( (reg&1)==0 ) continue; // Wrong half of a pair |
|
231 |
if( vv != value[reg-1] ) continue; // Not a complete pair |
|
232 |
} |
|
233 |
if( vv == val || // Got a direct hit? |
|
234 |
(t && vv && vv->bottom_type() == t && vv->is_Mach() && |
|
235 |
vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant? |
|
236 |
assert( !n->is_Phi(), "cannot change registers at a Phi so easily" ); |
|
237 |
if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR |
|
238 |
OptoReg::is_reg(reg) || // turning into a register use OR |
|
239 |
regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use |
|
240 |
blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd); |
|
241 |
if( n->in(k) == regnd[reg] ) // Success! Quit trying |
|
242 |
return blk_adjust; |
|
243 |
} // End of if not degrading to a stack |
|
244 |
} // End of if found value in another register |
|
245 |
} // End of scan all machine registers |
|
246 |
return blk_adjust; |
|
247 |
} |
|
248 |
||
249 |
||
250 |
// |
|
251 |
// Check if nreg already contains the constant value val. Normal copy |
|
252 |
// elimination doesn't doesn't work on constants because multiple |
|
253 |
// nodes can represent the same constant so the type and rule of the |
|
254 |
// MachNode must be checked to ensure equivalence. |
|
255 |
// |
|
243
79b67a7a584a
6661247: Internal bug in 32-bit HotSpot optimizer while bit manipulations
never
parents:
1
diff
changeset
|
256 |
bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n, |
79b67a7a584a
6661247: Internal bug in 32-bit HotSpot optimizer while bit manipulations
never
parents:
1
diff
changeset
|
257 |
Block *current_block, |
1 | 258 |
Node_List& value, Node_List& regnd, |
259 |
OptoReg::Name nreg, OptoReg::Name nreg2) { |
|
260 |
if (value[nreg] != val && val->is_Con() && |
|
261 |
value[nreg] != NULL && value[nreg]->is_Con() && |
|
262 |
(nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) && |
|
263 |
value[nreg]->bottom_type() == val->bottom_type() && |
|
264 |
value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) { |
|
265 |
// This code assumes that two MachNodes representing constants |
|
266 |
// which have the same rule and the same bottom type will produce |
|
267 |
// identical effects into a register. This seems like it must be |
|
268 |
// objectively true unless there are hidden inputs to the nodes |
|
269 |
// but if that were to change this code would need to updated. |
|
270 |
// Since they are equivalent the second one if redundant and can |
|
271 |
// be removed. |
|
272 |
// |
|
243
79b67a7a584a
6661247: Internal bug in 32-bit HotSpot optimizer while bit manipulations
never
parents:
1
diff
changeset
|
273 |
// n will be replaced with the old value but n might have |
1 | 274 |
// kills projections associated with it so remove them now so that |
275 |
// yank_if_dead will be able to elminate the copy once the uses |
|
276 |
// have been transferred to the old[value]. |
|
243
79b67a7a584a
6661247: Internal bug in 32-bit HotSpot optimizer while bit manipulations
never
parents:
1
diff
changeset
|
277 |
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
79b67a7a584a
6661247: Internal bug in 32-bit HotSpot optimizer while bit manipulations
never
parents:
1
diff
changeset
|
278 |
Node* use = n->fast_out(i); |
1 | 279 |
if (use->is_Proj() && use->outcnt() == 0) { |
280 |
// Kill projections have no users and one input |
|
281 |
use->set_req(0, C->top()); |
|
282 |
yank_if_dead(use, current_block, &value, ®nd); |
|
283 |
--i; --imax; |
|
284 |
} |
|
285 |
} |
|
286 |
_post_alloc++; |
|
287 |
return true; |
|
288 |
} |
|
289 |
return false; |
|
290 |
} |
|
291 |
||
292 |
||
293 |
//------------------------------post_allocate_copy_removal--------------------- |
|
294 |
// Post-Allocation peephole copy removal. We do this in 1 pass over the |
|
295 |
// basic blocks. We maintain a mapping of registers to Nodes (an array of |
|
296 |
// Nodes indexed by machine register or stack slot number). NULL means that a |
|
297 |
// register is not mapped to any Node. We can (want to have!) have several |
|
298 |
// registers map to the same Node. We walk forward over the instructions |
|
299 |
// updating the mapping as we go. At merge points we force a NULL if we have |
|
300 |
// to merge 2 different Nodes into the same register. Phi functions will give |
|
301 |
// us a new Node if there is a proper value merging. Since the blocks are |
|
302 |
// arranged in some RPO, we will visit all parent blocks before visiting any |
|
303 |
// successor blocks (except at loops). |
|
304 |
// |
|
305 |
// If we find a Copy we look to see if the Copy's source register is a stack |
|
306 |
// slot and that value has already been loaded into some machine register; if |
|
307 |
// so we use machine register directly. This turns a Load into a reg-reg |
|
308 |
// Move. We also look for reloads of identical constants. |
|
309 |
// |
|
310 |
// When we see a use from a reg-reg Copy, we will attempt to use the copy's |
|
311 |
// source directly and make the copy go dead. |
|
312 |
void PhaseChaitin::post_allocate_copy_removal() { |
|
313 |
NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); ) |
|
314 |
ResourceMark rm; |
|
315 |
||
316 |
// Need a mapping from basic block Node_Lists. We need a Node_List to |
|
317 |
// map from register number to value-producing Node. |
|
318 |
Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1); |
|
319 |
memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) ); |
|
320 |
// Need a mapping from basic block Node_Lists. We need a Node_List to |
|
321 |
// map from register number to register-defining Node. |
|
322 |
Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1); |
|
323 |
memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) ); |
|
324 |
||
325 |
// We keep unused Node_Lists on a free_list to avoid wasting |
|
326 |
// memory. |
|
327 |
GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16); |
|
328 |
||
329 |
// For all blocks |
|
330 |
for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
331 |
uint j; |
|
332 |
Block *b = _cfg._blocks[i]; |
|
333 |
||
334 |
// Count of Phis in block |
|
335 |
uint phi_dex; |
|
336 |
for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) { |
|
337 |
Node *phi = b->_nodes[phi_dex]; |
|
338 |
if( !phi->is_Phi() ) |
|
339 |
break; |
|
340 |
} |
|
341 |
||
342 |
// If any predecessor has not been visited, we do not know the state |
|
343 |
// of registers at the start. Check for this, while updating copies |
|
344 |
// along Phi input edges |
|
345 |
bool missing_some_inputs = false; |
|
346 |
Block *freed = NULL; |
|
347 |
for( j = 1; j < b->num_preds(); j++ ) { |
|
348 |
Block *pb = _cfg._bbs[b->pred(j)->_idx]; |
|
349 |
// Remove copies along phi edges |
|
350 |
for( uint k=1; k<phi_dex; k++ ) |
|
351 |
elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false ); |
|
352 |
if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge? |
|
353 |
// See if this predecessor's mappings have been used by everybody |
|
354 |
// who wants them. If so, free 'em. |
|
355 |
uint k; |
|
356 |
for( k=0; k<pb->_num_succs; k++ ) { |
|
357 |
Block *pbsucc = pb->_succs[k]; |
|
358 |
if( !blk2value[pbsucc->_pre_order] && pbsucc != b ) |
|
359 |
break; // Found a future user |
|
360 |
} |
|
361 |
if( k >= pb->_num_succs ) { // No more uses, free! |
|
362 |
freed = pb; // Record last block freed |
|
363 |
free_list.push(blk2value[pb->_pre_order]); |
|
364 |
free_list.push(blk2regnd[pb->_pre_order]); |
|
365 |
} |
|
366 |
} else { // This block has unvisited (loopback) inputs |
|
367 |
missing_some_inputs = true; |
|
368 |
} |
|
369 |
} |
|
370 |
||
371 |
||
372 |
// Extract Node_List mappings. If 'freed' is non-zero, we just popped |
|
373 |
// 'freed's blocks off the list |
|
374 |
Node_List ®nd = *(free_list.is_empty() ? new Node_List() : free_list.pop()); |
|
375 |
Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop()); |
|
376 |
assert( !freed || blk2value[freed->_pre_order] == &value, "" ); |
|
377 |
value.map(_max_reg,NULL); |
|
378 |
regnd.map(_max_reg,NULL); |
|
379 |
// Set mappings as OUR mappings |
|
380 |
blk2value[b->_pre_order] = &value; |
|
381 |
blk2regnd[b->_pre_order] = ®nd; |
|
382 |
||
383 |
// Initialize value & regnd for this block |
|
384 |
if( missing_some_inputs ) { |
|
385 |
// Some predecessor has not yet been visited; zap map to empty |
|
386 |
for( uint k = 0; k < (uint)_max_reg; k++ ) { |
|
387 |
value.map(k,NULL); |
|
388 |
regnd.map(k,NULL); |
|
389 |
} |
|
390 |
} else { |
|
391 |
if( !freed ) { // Didn't get a freebie prior block |
|
392 |
// Must clone some data |
|
393 |
freed = _cfg._bbs[b->pred(1)->_idx]; |
|
394 |
Node_List &f_value = *blk2value[freed->_pre_order]; |
|
395 |
Node_List &f_regnd = *blk2regnd[freed->_pre_order]; |
|
396 |
for( uint k = 0; k < (uint)_max_reg; k++ ) { |
|
397 |
value.map(k,f_value[k]); |
|
398 |
regnd.map(k,f_regnd[k]); |
|
399 |
} |
|
400 |
} |
|
401 |
// Merge all inputs together, setting to NULL any conflicts. |
|
402 |
for( j = 1; j < b->num_preds(); j++ ) { |
|
403 |
Block *pb = _cfg._bbs[b->pred(j)->_idx]; |
|
404 |
if( pb == freed ) continue; // Did self already via freelist |
|
405 |
Node_List &p_regnd = *blk2regnd[pb->_pre_order]; |
|
406 |
for( uint k = 0; k < (uint)_max_reg; k++ ) { |
|
407 |
if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs? |
|
408 |
value.map(k,NULL); // Then no value handy |
|
409 |
regnd.map(k,NULL); |
|
410 |
} |
|
411 |
} |
|
412 |
} |
|
413 |
} |
|
414 |
||
415 |
// For all Phi's |
|
416 |
for( j = 1; j < phi_dex; j++ ) { |
|
417 |
uint k; |
|
418 |
Node *phi = b->_nodes[j]; |
|
419 |
uint pidx = n2lidx(phi); |
|
420 |
OptoReg::Name preg = lrgs(n2lidx(phi)).reg(); |
|
421 |
||
422 |
// Remove copies remaining on edges. Check for junk phi. |
|
423 |
Node *u = NULL; |
|
424 |
for( k=1; k<phi->req(); k++ ) { |
|
425 |
Node *x = phi->in(k); |
|
426 |
if( phi != x && u != x ) // Found a different input |
|
427 |
u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input |
|
428 |
} |
|
429 |
if( u != NodeSentinel ) { // Junk Phi. Remove |
|
430 |
b->_nodes.remove(j--); phi_dex--; |
|
431 |
_cfg._bbs.map(phi->_idx,NULL); |
|
432 |
phi->replace_by(u); |
|
433 |
phi->disconnect_inputs(NULL); |
|
434 |
continue; |
|
435 |
} |
|
436 |
// Note that if value[pidx] exists, then we merged no new values here |
|
437 |
// and the phi is useless. This can happen even with the above phi |
|
438 |
// removal for complex flows. I cannot keep the better known value here |
|
439 |
// because locally the phi appears to define a new merged value. If I |
|
440 |
// keep the better value then a copy of the phi, being unable to use the |
|
441 |
// global flow analysis, can't "peek through" the phi to the original |
|
442 |
// reaching value and so will act like it's defining a new value. This |
|
443 |
// can lead to situations where some uses are from the old and some from |
|
444 |
// the new values. Not illegal by itself but throws the over-strong |
|
445 |
// assert in scheduling. |
|
446 |
if( pidx ) { |
|
447 |
value.map(preg,phi); |
|
448 |
regnd.map(preg,phi); |
|
449 |
OptoReg::Name preg_lo = OptoReg::add(preg,-1); |
|
450 |
if( !is_single_register(phi->ideal_reg()) ) { |
|
451 |
value.map(preg_lo,phi); |
|
452 |
regnd.map(preg_lo,phi); |
|
453 |
} |
|
454 |
} |
|
455 |
} |
|
456 |
||
457 |
// For all remaining instructions |
|
458 |
for( j = phi_dex; j < b->_nodes.size(); j++ ) { |
|
459 |
Node *n = b->_nodes[j]; |
|
460 |
||
461 |
if( n->outcnt() == 0 && // Dead? |
|
462 |
n != C->top() && // (ignore TOP, it has no du info) |
|
463 |
!n->is_Proj() ) { // fat-proj kills |
|
464 |
j -= yank_if_dead(n,b,&value,®nd); |
|
465 |
continue; |
|
466 |
} |
|
467 |
||
468 |
// Improve reaching-def info. Occasionally post-alloc's liveness gives |
|
469 |
// up (at loop backedges, because we aren't doing a full flow pass). |
|
470 |
// The presence of a live use essentially asserts that the use's def is |
|
471 |
// alive and well at the use (or else the allocator fubar'd). Take |
|
472 |
// advantage of this info to set a reaching def for the use-reg. |
|
473 |
uint k; |
|
474 |
for( k = 1; k < n->req(); k++ ) { |
|
475 |
Node *def = n->in(k); // n->in(k) is a USE; def is the DEF for this USE |
|
476 |
guarantee(def != NULL, "no disconnected nodes at this point"); |
|
477 |
uint useidx = n2lidx(def); // useidx is the live range index for this USE |
|
478 |
||
479 |
if( useidx ) { |
|
480 |
OptoReg::Name ureg = lrgs(useidx).reg(); |
|
481 |
if( !value[ureg] ) { |
|
482 |
int idx; // Skip occasional useless copy |
|
483 |
while( (idx=def->is_Copy()) != 0 && |
|
484 |
def->in(idx) != NULL && // NULL should not happen |
|
485 |
ureg == lrgs(n2lidx(def->in(idx))).reg() ) |
|
486 |
def = def->in(idx); |
|
487 |
Node *valdef = skip_copies(def); // tighten up val through non-useless copies |
|
488 |
value.map(ureg,valdef); // record improved reaching-def info |
|
489 |
regnd.map(ureg, def); |
|
490 |
// Record other half of doubles |
|
491 |
OptoReg::Name ureg_lo = OptoReg::add(ureg,-1); |
|
492 |
if( !is_single_register(def->ideal_reg()) && |
|
493 |
( !RegMask::can_represent(ureg_lo) || |
|
494 |
lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent |
|
495 |
!value[ureg_lo] ) { |
|
496 |
value.map(ureg_lo,valdef); // record improved reaching-def info |
|
497 |
regnd.map(ureg_lo, def); |
|
498 |
} |
|
499 |
} |
|
500 |
} |
|
501 |
} |
|
502 |
||
503 |
const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0; |
|
504 |
||
505 |
// Remove copies along input edges |
|
506 |
for( k = 1; k < n->req(); k++ ) |
|
507 |
j -= elide_copy( n, k, b, value, regnd, two_adr!=k ); |
|
508 |
||
509 |
// Unallocated Nodes define no registers |
|
510 |
uint lidx = n2lidx(n); |
|
511 |
if( !lidx ) continue; |
|
512 |
||
513 |
// Update the register defined by this instruction |
|
514 |
OptoReg::Name nreg = lrgs(lidx).reg(); |
|
515 |
// Skip through all copies to the _value_ being defined. |
|
516 |
// Do not change from int to pointer |
|
517 |
Node *val = skip_copies(n); |
|
518 |
||
519 |
uint n_ideal_reg = n->ideal_reg(); |
|
520 |
if( is_single_register(n_ideal_reg) ) { |
|
521 |
// If Node 'n' does not change the value mapped by the register, |
|
522 |
// then 'n' is a useless copy. Do not update the register->node |
|
523 |
// mapping so 'n' will go dead. |
|
524 |
if( value[nreg] != val ) { |
|
243
79b67a7a584a
6661247: Internal bug in 32-bit HotSpot optimizer while bit manipulations
never
parents:
1
diff
changeset
|
525 |
if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) { |
1 | 526 |
n->replace_by(regnd[nreg]); |
527 |
j -= yank_if_dead(n,b,&value,®nd); |
|
528 |
} else { |
|
529 |
// Update the mapping: record new Node defined by the register |
|
530 |
regnd.map(nreg,n); |
|
531 |
// Update mapping for defined *value*, which is the defined |
|
532 |
// Node after skipping all copies. |
|
533 |
value.map(nreg,val); |
|
534 |
} |
|
535 |
} else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) { |
|
536 |
assert( n->is_Copy(), "" ); |
|
537 |
n->replace_by(regnd[nreg]); |
|
538 |
j -= yank_if_dead(n,b,&value,®nd); |
|
539 |
} |
|
540 |
} else { |
|
541 |
// If the value occupies a register pair, record same info |
|
542 |
// in both registers. |
|
543 |
OptoReg::Name nreg_lo = OptoReg::add(nreg,-1); |
|
544 |
if( RegMask::can_represent(nreg_lo) && // Either a spill slot, or |
|
545 |
!lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent |
|
546 |
// Sparc occasionally has non-adjacent pairs. |
|
547 |
// Find the actual other value |
|
548 |
RegMask tmp = lrgs(lidx).mask(); |
|
549 |
tmp.Remove(nreg); |
|
550 |
nreg_lo = tmp.find_first_elem(); |
|
551 |
} |
|
552 |
if( value[nreg] != val || value[nreg_lo] != val ) { |
|
243
79b67a7a584a
6661247: Internal bug in 32-bit HotSpot optimizer while bit manipulations
never
parents:
1
diff
changeset
|
553 |
if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) { |
1 | 554 |
n->replace_by(regnd[nreg]); |
555 |
j -= yank_if_dead(n,b,&value,®nd); |
|
556 |
} else { |
|
557 |
regnd.map(nreg , n ); |
|
558 |
regnd.map(nreg_lo, n ); |
|
559 |
value.map(nreg ,val); |
|
560 |
value.map(nreg_lo,val); |
|
561 |
} |
|
562 |
} else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) { |
|
563 |
assert( n->is_Copy(), "" ); |
|
564 |
n->replace_by(regnd[nreg]); |
|
565 |
j -= yank_if_dead(n,b,&value,®nd); |
|
566 |
} |
|
567 |
} |
|
568 |
||
569 |
// Fat projections kill many registers |
|
570 |
if( n_ideal_reg == MachProjNode::fat_proj ) { |
|
571 |
RegMask rm = n->out_RegMask(); |
|
572 |
// wow, what an expensive iterator... |
|
573 |
nreg = rm.find_first_elem(); |
|
574 |
while( OptoReg::is_valid(nreg)) { |
|
575 |
rm.Remove(nreg); |
|
576 |
value.map(nreg,n); |
|
577 |
regnd.map(nreg,n); |
|
578 |
nreg = rm.find_first_elem(); |
|
579 |
} |
|
580 |
} |
|
581 |
||
582 |
} // End of for all instructions in the block |
|
583 |
||
584 |
} // End for all blocks |
|
585 |
} |