author | coleenp |
Sun, 13 Apr 2008 17:43:42 -0400 | |
changeset 360 | 21d113ecbf6a |
parent 212 | cd4963e67949 |
child 595 | a2be4c89de81 |
permissions | -rw-r--r-- |
1 | 1 |
/* |
2 |
* Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved. |
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
#include "incls/_precompiled.incl" |
|
26 |
#include "incls/_loopnode.cpp.incl" |
|
27 |
||
28 |
//============================================================================= |
|
29 |
//------------------------------is_loop_iv------------------------------------- |
|
30 |
// Determine if a node is Counted loop induction variable. |
|
31 |
// The method is declared in node.hpp. |
|
32 |
const Node* Node::is_loop_iv() const { |
|
33 |
if (this->is_Phi() && !this->as_Phi()->is_copy() && |
|
34 |
this->as_Phi()->region()->is_CountedLoop() && |
|
35 |
this->as_Phi()->region()->as_CountedLoop()->phi() == this) { |
|
36 |
return this; |
|
37 |
} else { |
|
38 |
return NULL; |
|
39 |
} |
|
40 |
} |
|
41 |
||
42 |
//============================================================================= |
|
43 |
//------------------------------dump_spec-------------------------------------- |
|
44 |
// Dump special per-node info |
|
45 |
#ifndef PRODUCT |
|
46 |
void LoopNode::dump_spec(outputStream *st) const { |
|
47 |
if( is_inner_loop () ) st->print( "inner " ); |
|
48 |
if( is_partial_peel_loop () ) st->print( "partial_peel " ); |
|
49 |
if( partial_peel_has_failed () ) st->print( "partial_peel_failed " ); |
|
50 |
} |
|
51 |
#endif |
|
52 |
||
53 |
//------------------------------get_early_ctrl--------------------------------- |
|
54 |
// Compute earliest legal control |
|
55 |
Node *PhaseIdealLoop::get_early_ctrl( Node *n ) { |
|
56 |
assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" ); |
|
57 |
uint i; |
|
58 |
Node *early; |
|
59 |
if( n->in(0) ) { |
|
60 |
early = n->in(0); |
|
61 |
if( !early->is_CFG() ) // Might be a non-CFG multi-def |
|
62 |
early = get_ctrl(early); // So treat input as a straight data input |
|
63 |
i = 1; |
|
64 |
} else { |
|
65 |
early = get_ctrl(n->in(1)); |
|
66 |
i = 2; |
|
67 |
} |
|
68 |
uint e_d = dom_depth(early); |
|
69 |
assert( early, "" ); |
|
70 |
for( ; i < n->req(); i++ ) { |
|
71 |
Node *cin = get_ctrl(n->in(i)); |
|
72 |
assert( cin, "" ); |
|
73 |
// Keep deepest dominator depth |
|
74 |
uint c_d = dom_depth(cin); |
|
75 |
if( c_d > e_d ) { // Deeper guy? |
|
76 |
early = cin; // Keep deepest found so far |
|
77 |
e_d = c_d; |
|
78 |
} else if( c_d == e_d && // Same depth? |
|
79 |
early != cin ) { // If not equal, must use slower algorithm |
|
80 |
// If same depth but not equal, one _must_ dominate the other |
|
81 |
// and we want the deeper (i.e., dominated) guy. |
|
82 |
Node *n1 = early; |
|
83 |
Node *n2 = cin; |
|
84 |
while( 1 ) { |
|
85 |
n1 = idom(n1); // Walk up until break cycle |
|
86 |
n2 = idom(n2); |
|
87 |
if( n1 == cin || // Walked early up to cin |
|
88 |
dom_depth(n2) < c_d ) |
|
89 |
break; // early is deeper; keep him |
|
90 |
if( n2 == early || // Walked cin up to early |
|
91 |
dom_depth(n1) < c_d ) { |
|
92 |
early = cin; // cin is deeper; keep him |
|
93 |
break; |
|
94 |
} |
|
95 |
} |
|
96 |
e_d = dom_depth(early); // Reset depth register cache |
|
97 |
} |
|
98 |
} |
|
99 |
||
100 |
// Return earliest legal location |
|
101 |
assert(early == find_non_split_ctrl(early), "unexpected early control"); |
|
102 |
||
103 |
return early; |
|
104 |
} |
|
105 |
||
106 |
//------------------------------set_early_ctrl--------------------------------- |
|
107 |
// Set earliest legal control |
|
108 |
void PhaseIdealLoop::set_early_ctrl( Node *n ) { |
|
109 |
Node *early = get_early_ctrl(n); |
|
110 |
||
111 |
// Record earliest legal location |
|
112 |
set_ctrl(n, early); |
|
113 |
} |
|
114 |
||
115 |
//------------------------------set_subtree_ctrl------------------------------- |
|
116 |
// set missing _ctrl entries on new nodes |
|
117 |
void PhaseIdealLoop::set_subtree_ctrl( Node *n ) { |
|
118 |
// Already set? Get out. |
|
119 |
if( _nodes[n->_idx] ) return; |
|
120 |
// Recursively set _nodes array to indicate where the Node goes |
|
121 |
uint i; |
|
122 |
for( i = 0; i < n->req(); ++i ) { |
|
123 |
Node *m = n->in(i); |
|
124 |
if( m && m != C->root() ) |
|
125 |
set_subtree_ctrl( m ); |
|
126 |
} |
|
127 |
||
128 |
// Fixup self |
|
129 |
set_early_ctrl( n ); |
|
130 |
} |
|
131 |
||
132 |
//------------------------------is_counted_loop-------------------------------- |
|
133 |
Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) { |
|
134 |
PhaseGVN *gvn = &_igvn; |
|
135 |
||
136 |
// Counted loop head must be a good RegionNode with only 3 not NULL |
|
137 |
// control input edges: Self, Entry, LoopBack. |
|
138 |
if ( x->in(LoopNode::Self) == NULL || x->req() != 3 ) |
|
139 |
return NULL; |
|
140 |
||
141 |
Node *init_control = x->in(LoopNode::EntryControl); |
|
142 |
Node *back_control = x->in(LoopNode::LoopBackControl); |
|
143 |
if( init_control == NULL || back_control == NULL ) // Partially dead |
|
144 |
return NULL; |
|
145 |
// Must also check for TOP when looking for a dead loop |
|
146 |
if( init_control->is_top() || back_control->is_top() ) |
|
147 |
return NULL; |
|
148 |
||
149 |
// Allow funny placement of Safepoint |
|
150 |
if( back_control->Opcode() == Op_SafePoint ) |
|
151 |
back_control = back_control->in(TypeFunc::Control); |
|
152 |
||
153 |
// Controlling test for loop |
|
154 |
Node *iftrue = back_control; |
|
155 |
uint iftrue_op = iftrue->Opcode(); |
|
156 |
if( iftrue_op != Op_IfTrue && |
|
157 |
iftrue_op != Op_IfFalse ) |
|
158 |
// I have a weird back-control. Probably the loop-exit test is in |
|
159 |
// the middle of the loop and I am looking at some trailing control-flow |
|
160 |
// merge point. To fix this I would have to partially peel the loop. |
|
161 |
return NULL; // Obscure back-control |
|
162 |
||
163 |
// Get boolean guarding loop-back test |
|
164 |
Node *iff = iftrue->in(0); |
|
165 |
if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL; |
|
166 |
BoolNode *test = iff->in(1)->as_Bool(); |
|
167 |
BoolTest::mask bt = test->_test._test; |
|
168 |
float cl_prob = iff->as_If()->_prob; |
|
169 |
if( iftrue_op == Op_IfFalse ) { |
|
170 |
bt = BoolTest(bt).negate(); |
|
171 |
cl_prob = 1.0 - cl_prob; |
|
172 |
} |
|
173 |
// Get backedge compare |
|
174 |
Node *cmp = test->in(1); |
|
175 |
int cmp_op = cmp->Opcode(); |
|
176 |
if( cmp_op != Op_CmpI ) |
|
177 |
return NULL; // Avoid pointer & float compares |
|
178 |
||
179 |
// Find the trip-counter increment & limit. Limit must be loop invariant. |
|
180 |
Node *incr = cmp->in(1); |
|
181 |
Node *limit = cmp->in(2); |
|
182 |
||
183 |
// --------- |
|
184 |
// need 'loop()' test to tell if limit is loop invariant |
|
185 |
// --------- |
|
186 |
||
187 |
if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit? |
|
188 |
Node *tmp = incr; // Then reverse order into the CmpI |
|
189 |
incr = limit; |
|
190 |
limit = tmp; |
|
191 |
bt = BoolTest(bt).commute(); // And commute the exit test |
|
192 |
} |
|
193 |
if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant |
|
194 |
return NULL; |
|
195 |
||
196 |
// Trip-counter increment must be commutative & associative. |
|
197 |
uint incr_op = incr->Opcode(); |
|
198 |
if( incr_op == Op_Phi && incr->req() == 3 ) { |
|
199 |
incr = incr->in(2); // Assume incr is on backedge of Phi |
|
200 |
incr_op = incr->Opcode(); |
|
201 |
} |
|
202 |
Node* trunc1 = NULL; |
|
203 |
Node* trunc2 = NULL; |
|
204 |
const TypeInt* iv_trunc_t = NULL; |
|
205 |
if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) { |
|
206 |
return NULL; // Funny increment opcode |
|
207 |
} |
|
208 |
||
209 |
// Get merge point |
|
210 |
Node *xphi = incr->in(1); |
|
211 |
Node *stride = incr->in(2); |
|
212 |
if( !stride->is_Con() ) { // Oops, swap these |
|
213 |
if( !xphi->is_Con() ) // Is the other guy a constant? |
|
214 |
return NULL; // Nope, unknown stride, bail out |
|
215 |
Node *tmp = xphi; // 'incr' is commutative, so ok to swap |
|
216 |
xphi = stride; |
|
217 |
stride = tmp; |
|
218 |
} |
|
219 |
//if( loop(xphi) != l) return NULL;// Merge point is in inner loop?? |
|
220 |
if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter |
|
221 |
PhiNode *phi = xphi->as_Phi(); |
|
222 |
||
223 |
// Stride must be constant |
|
224 |
const Type *stride_t = stride->bottom_type(); |
|
225 |
int stride_con = stride_t->is_int()->get_con(); |
|
226 |
assert( stride_con, "missed some peephole opt" ); |
|
227 |
||
228 |
// Phi must be of loop header; backedge must wrap to increment |
|
229 |
if( phi->region() != x ) return NULL; |
|
230 |
if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr || |
|
231 |
trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) { |
|
232 |
return NULL; |
|
233 |
} |
|
234 |
Node *init_trip = phi->in(LoopNode::EntryControl); |
|
235 |
//if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT |
|
236 |
||
237 |
// If iv trunc type is smaller than int, check for possible wrap. |
|
238 |
if (!TypeInt::INT->higher_equal(iv_trunc_t)) { |
|
239 |
assert(trunc1 != NULL, "must have found some truncation"); |
|
240 |
||
241 |
// Get a better type for the phi (filtered thru if's) |
|
242 |
const TypeInt* phi_ft = filtered_type(phi); |
|
243 |
||
244 |
// Can iv take on a value that will wrap? |
|
245 |
// |
|
246 |
// Ensure iv's limit is not within "stride" of the wrap value. |
|
247 |
// |
|
248 |
// Example for "short" type |
|
249 |
// Truncation ensures value is in the range -32768..32767 (iv_trunc_t) |
|
250 |
// If the stride is +10, then the last value of the induction |
|
251 |
// variable before the increment (phi_ft->_hi) must be |
|
252 |
// <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to |
|
253 |
// ensure no truncation occurs after the increment. |
|
254 |
||
255 |
if (stride_con > 0) { |
|
256 |
if (iv_trunc_t->_hi - phi_ft->_hi < stride_con || |
|
257 |
iv_trunc_t->_lo > phi_ft->_lo) { |
|
258 |
return NULL; // truncation may occur |
|
259 |
} |
|
260 |
} else if (stride_con < 0) { |
|
261 |
if (iv_trunc_t->_lo - phi_ft->_lo > stride_con || |
|
262 |
iv_trunc_t->_hi < phi_ft->_hi) { |
|
263 |
return NULL; // truncation may occur |
|
264 |
} |
|
265 |
} |
|
266 |
// No possibility of wrap so truncation can be discarded |
|
267 |
// Promote iv type to Int |
|
268 |
} else { |
|
269 |
assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int"); |
|
270 |
} |
|
271 |
||
272 |
// ================================================= |
|
273 |
// ---- SUCCESS! Found A Trip-Counted Loop! ----- |
|
274 |
// |
|
275 |
// Canonicalize the condition on the test. If we can exactly determine |
|
276 |
// the trip-counter exit value, then set limit to that value and use |
|
277 |
// a '!=' test. Otherwise use conditon '<' for count-up loops and |
|
278 |
// '>' for count-down loops. If the condition is inverted and we will |
|
279 |
// be rolling through MININT to MAXINT, then bail out. |
|
280 |
||
281 |
C->print_method("Before CountedLoop", 3); |
|
282 |
||
283 |
// Check for SafePoint on backedge and remove |
|
284 |
Node *sfpt = x->in(LoopNode::LoopBackControl); |
|
285 |
if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) { |
|
286 |
lazy_replace( sfpt, iftrue ); |
|
287 |
loop->_tail = iftrue; |
|
288 |
} |
|
289 |
||
290 |
||
291 |
// If compare points to incr, we are ok. Otherwise the compare |
|
292 |
// can directly point to the phi; in this case adjust the compare so that |
|
293 |
// it points to the incr by adusting the limit. |
|
294 |
if( cmp->in(1) == phi || cmp->in(2) == phi ) |
|
295 |
limit = gvn->transform(new (C, 3) AddINode(limit,stride)); |
|
296 |
||
297 |
// trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride. |
|
298 |
// Final value for iterator should be: trip_count * stride + init_trip. |
|
299 |
const Type *limit_t = limit->bottom_type(); |
|
300 |
const Type *init_t = init_trip->bottom_type(); |
|
301 |
Node *one_p = gvn->intcon( 1); |
|
302 |
Node *one_m = gvn->intcon(-1); |
|
303 |
||
304 |
Node *trip_count = NULL; |
|
305 |
Node *hook = new (C, 6) Node(6); |
|
306 |
switch( bt ) { |
|
307 |
case BoolTest::eq: |
|
308 |
return NULL; // Bail out, but this loop trips at most twice! |
|
309 |
case BoolTest::ne: // Ahh, the case we desire |
|
310 |
if( stride_con == 1 ) |
|
311 |
trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip)); |
|
312 |
else if( stride_con == -1 ) |
|
313 |
trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit)); |
|
314 |
else |
|
315 |
return NULL; // Odd stride; must prove we hit limit exactly |
|
316 |
set_subtree_ctrl( trip_count ); |
|
317 |
//_loop.map(trip_count->_idx,loop(limit)); |
|
318 |
break; |
|
319 |
case BoolTest::le: // Maybe convert to '<' case |
|
320 |
limit = gvn->transform(new (C, 3) AddINode(limit,one_p)); |
|
321 |
set_subtree_ctrl( limit ); |
|
322 |
hook->init_req(4, limit); |
|
323 |
||
324 |
bt = BoolTest::lt; |
|
325 |
// Make the new limit be in the same loop nest as the old limit |
|
326 |
//_loop.map(limit->_idx,limit_loop); |
|
327 |
// Fall into next case |
|
328 |
case BoolTest::lt: { // Maybe convert to '!=' case |
|
329 |
if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT |
|
330 |
Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip)); |
|
331 |
set_subtree_ctrl( range ); |
|
332 |
hook->init_req(0, range); |
|
333 |
||
334 |
Node *bias = gvn->transform(new (C, 3) AddINode(range,stride)); |
|
335 |
set_subtree_ctrl( bias ); |
|
336 |
hook->init_req(1, bias); |
|
337 |
||
338 |
Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m)); |
|
339 |
set_subtree_ctrl( bias1 ); |
|
340 |
hook->init_req(2, bias1); |
|
341 |
||
342 |
trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride)); |
|
343 |
set_subtree_ctrl( trip_count ); |
|
344 |
hook->init_req(3, trip_count); |
|
345 |
break; |
|
346 |
} |
|
347 |
||
348 |
case BoolTest::ge: // Maybe convert to '>' case |
|
349 |
limit = gvn->transform(new (C, 3) AddINode(limit,one_m)); |
|
350 |
set_subtree_ctrl( limit ); |
|
351 |
hook->init_req(4 ,limit); |
|
352 |
||
353 |
bt = BoolTest::gt; |
|
354 |
// Make the new limit be in the same loop nest as the old limit |
|
355 |
//_loop.map(limit->_idx,limit_loop); |
|
356 |
// Fall into next case |
|
357 |
case BoolTest::gt: { // Maybe convert to '!=' case |
|
358 |
if( stride_con > 0 ) return NULL; // count up loop rolls through MININT |
|
359 |
Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip)); |
|
360 |
set_subtree_ctrl( range ); |
|
361 |
hook->init_req(0, range); |
|
362 |
||
363 |
Node *bias = gvn->transform(new (C, 3) AddINode(range,stride)); |
|
364 |
set_subtree_ctrl( bias ); |
|
365 |
hook->init_req(1, bias); |
|
366 |
||
367 |
Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p)); |
|
368 |
set_subtree_ctrl( bias1 ); |
|
369 |
hook->init_req(2, bias1); |
|
370 |
||
371 |
trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride)); |
|
372 |
set_subtree_ctrl( trip_count ); |
|
373 |
hook->init_req(3, trip_count); |
|
374 |
break; |
|
375 |
} |
|
376 |
} |
|
377 |
||
378 |
Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride)); |
|
379 |
set_subtree_ctrl( span ); |
|
380 |
hook->init_req(5, span); |
|
381 |
||
382 |
limit = gvn->transform(new (C, 3) AddINode(span,init_trip)); |
|
383 |
set_subtree_ctrl( limit ); |
|
384 |
||
385 |
// Build a canonical trip test. |
|
386 |
// Clone code, as old values may be in use. |
|
387 |
incr = incr->clone(); |
|
388 |
incr->set_req(1,phi); |
|
389 |
incr->set_req(2,stride); |
|
390 |
incr = _igvn.register_new_node_with_optimizer(incr); |
|
391 |
set_early_ctrl( incr ); |
|
392 |
_igvn.hash_delete(phi); |
|
393 |
phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn ); |
|
394 |
||
395 |
// If phi type is more restrictive than Int, raise to |
|
396 |
// Int to prevent (almost) infinite recursion in igvn |
|
397 |
// which can only handle integer types for constants or minint..maxint. |
|
398 |
if (!TypeInt::INT->higher_equal(phi->bottom_type())) { |
|
399 |
Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT); |
|
400 |
nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl)); |
|
401 |
nphi = _igvn.register_new_node_with_optimizer(nphi); |
|
402 |
set_ctrl(nphi, get_ctrl(phi)); |
|
403 |
_igvn.subsume_node(phi, nphi); |
|
404 |
phi = nphi->as_Phi(); |
|
405 |
} |
|
406 |
cmp = cmp->clone(); |
|
407 |
cmp->set_req(1,incr); |
|
408 |
cmp->set_req(2,limit); |
|
409 |
cmp = _igvn.register_new_node_with_optimizer(cmp); |
|
410 |
set_ctrl(cmp, iff->in(0)); |
|
411 |
||
412 |
Node *tmp = test->clone(); |
|
413 |
assert( tmp->is_Bool(), "" ); |
|
414 |
test = (BoolNode*)tmp; |
|
415 |
(*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne; |
|
416 |
test->set_req(1,cmp); |
|
417 |
_igvn.register_new_node_with_optimizer(test); |
|
418 |
set_ctrl(test, iff->in(0)); |
|
419 |
// If the exit test is dead, STOP! |
|
420 |
if( test == NULL ) return NULL; |
|
421 |
_igvn.hash_delete(iff); |
|
422 |
iff->set_req_X( 1, test, &_igvn ); |
|
423 |
||
424 |
// Replace the old IfNode with a new LoopEndNode |
|
425 |
Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt )); |
|
426 |
IfNode *le = lex->as_If(); |
|
427 |
uint dd = dom_depth(iff); |
|
428 |
set_idom(le, le->in(0), dd); // Update dominance for loop exit |
|
429 |
set_loop(le, loop); |
|
430 |
||
431 |
// Get the loop-exit control |
|
432 |
Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue)); |
|
433 |
||
434 |
// Need to swap loop-exit and loop-back control? |
|
435 |
if( iftrue_op == Op_IfFalse ) { |
|
436 |
Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le)); |
|
437 |
Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le)); |
|
438 |
||
439 |
loop->_tail = back_control = ift2; |
|
440 |
set_loop(ift2, loop); |
|
441 |
set_loop(iff2, get_loop(if_f)); |
|
442 |
||
443 |
// Lazy update of 'get_ctrl' mechanism. |
|
444 |
lazy_replace_proj( if_f , iff2 ); |
|
445 |
lazy_replace_proj( iftrue, ift2 ); |
|
446 |
||
447 |
// Swap names |
|
448 |
if_f = iff2; |
|
449 |
iftrue = ift2; |
|
450 |
} else { |
|
451 |
_igvn.hash_delete(if_f ); |
|
452 |
_igvn.hash_delete(iftrue); |
|
453 |
if_f ->set_req_X( 0, le, &_igvn ); |
|
454 |
iftrue->set_req_X( 0, le, &_igvn ); |
|
455 |
} |
|
456 |
||
457 |
set_idom(iftrue, le, dd+1); |
|
458 |
set_idom(if_f, le, dd+1); |
|
459 |
||
460 |
// Now setup a new CountedLoopNode to replace the existing LoopNode |
|
461 |
CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control); |
|
462 |
// The following assert is approximately true, and defines the intention |
|
463 |
// of can_be_counted_loop. It fails, however, because phase->type |
|
464 |
// is not yet initialized for this loop and its parts. |
|
465 |
//assert(l->can_be_counted_loop(this), "sanity"); |
|
466 |
_igvn.register_new_node_with_optimizer(l); |
|
467 |
set_loop(l, loop); |
|
468 |
loop->_head = l; |
|
469 |
// Fix all data nodes placed at the old loop head. |
|
470 |
// Uses the lazy-update mechanism of 'get_ctrl'. |
|
471 |
lazy_replace( x, l ); |
|
472 |
set_idom(l, init_control, dom_depth(x)); |
|
473 |
||
474 |
// Check for immediately preceeding SafePoint and remove |
|
475 |
Node *sfpt2 = le->in(0); |
|
476 |
if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) |
|
477 |
lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control)); |
|
478 |
||
479 |
// Free up intermediate goo |
|
480 |
_igvn.remove_dead_node(hook); |
|
481 |
||
482 |
C->print_method("After CountedLoop", 3); |
|
483 |
||
484 |
// Return trip counter |
|
485 |
return trip_count; |
|
486 |
} |
|
487 |
||
488 |
||
489 |
//------------------------------Ideal------------------------------------------ |
|
490 |
// Return a node which is more "ideal" than the current node. |
|
491 |
// Attempt to convert into a counted-loop. |
|
492 |
Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
493 |
if (!can_be_counted_loop(phase)) { |
|
494 |
phase->C->set_major_progress(); |
|
495 |
} |
|
496 |
return RegionNode::Ideal(phase, can_reshape); |
|
497 |
} |
|
498 |
||
499 |
||
500 |
//============================================================================= |
|
501 |
//------------------------------Ideal------------------------------------------ |
|
502 |
// Return a node which is more "ideal" than the current node. |
|
503 |
// Attempt to convert into a counted-loop. |
|
504 |
Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
505 |
return RegionNode::Ideal(phase, can_reshape); |
|
506 |
} |
|
507 |
||
508 |
//------------------------------dump_spec-------------------------------------- |
|
509 |
// Dump special per-node info |
|
510 |
#ifndef PRODUCT |
|
511 |
void CountedLoopNode::dump_spec(outputStream *st) const { |
|
512 |
LoopNode::dump_spec(st); |
|
513 |
if( stride_is_con() ) { |
|
514 |
st->print("stride: %d ",stride_con()); |
|
515 |
} else { |
|
516 |
st->print("stride: not constant "); |
|
517 |
} |
|
518 |
if( is_pre_loop () ) st->print("pre of N%d" , _main_idx ); |
|
519 |
if( is_main_loop() ) st->print("main of N%d", _idx ); |
|
520 |
if( is_post_loop() ) st->print("post of N%d", _main_idx ); |
|
521 |
} |
|
522 |
#endif |
|
523 |
||
524 |
//============================================================================= |
|
525 |
int CountedLoopEndNode::stride_con() const { |
|
526 |
return stride()->bottom_type()->is_int()->get_con(); |
|
527 |
} |
|
528 |
||
529 |
||
530 |
//----------------------match_incr_with_optional_truncation-------------------- |
|
531 |
// Match increment with optional truncation: |
|
532 |
// CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16 |
|
533 |
// Return NULL for failure. Success returns the increment node. |
|
534 |
Node* CountedLoopNode::match_incr_with_optional_truncation( |
|
535 |
Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) { |
|
536 |
// Quick cutouts: |
|
537 |
if (expr == NULL || expr->req() != 3) return false; |
|
538 |
||
539 |
Node *t1 = NULL; |
|
540 |
Node *t2 = NULL; |
|
541 |
const TypeInt* trunc_t = TypeInt::INT; |
|
542 |
Node* n1 = expr; |
|
543 |
int n1op = n1->Opcode(); |
|
544 |
||
545 |
// Try to strip (n1 & M) or (n1 << N >> N) from n1. |
|
546 |
if (n1op == Op_AndI && |
|
547 |
n1->in(2)->is_Con() && |
|
548 |
n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) { |
|
549 |
// %%% This check should match any mask of 2**K-1. |
|
550 |
t1 = n1; |
|
551 |
n1 = t1->in(1); |
|
552 |
n1op = n1->Opcode(); |
|
553 |
trunc_t = TypeInt::CHAR; |
|
554 |
} else if (n1op == Op_RShiftI && |
|
555 |
n1->in(1) != NULL && |
|
556 |
n1->in(1)->Opcode() == Op_LShiftI && |
|
557 |
n1->in(2) == n1->in(1)->in(2) && |
|
558 |
n1->in(2)->is_Con()) { |
|
559 |
jint shift = n1->in(2)->bottom_type()->is_int()->get_con(); |
|
560 |
// %%% This check should match any shift in [1..31]. |
|
561 |
if (shift == 16 || shift == 8) { |
|
562 |
t1 = n1; |
|
563 |
t2 = t1->in(1); |
|
564 |
n1 = t2->in(1); |
|
565 |
n1op = n1->Opcode(); |
|
566 |
if (shift == 16) { |
|
567 |
trunc_t = TypeInt::SHORT; |
|
568 |
} else if (shift == 8) { |
|
569 |
trunc_t = TypeInt::BYTE; |
|
570 |
} |
|
571 |
} |
|
572 |
} |
|
573 |
||
574 |
// If (maybe after stripping) it is an AddI, we won: |
|
575 |
if (n1op == Op_AddI) { |
|
576 |
*trunc1 = t1; |
|
577 |
*trunc2 = t2; |
|
578 |
*trunc_type = trunc_t; |
|
579 |
return n1; |
|
580 |
} |
|
581 |
||
582 |
// failed |
|
583 |
return NULL; |
|
584 |
} |
|
585 |
||
586 |
||
587 |
//------------------------------filtered_type-------------------------------- |
|
588 |
// Return a type based on condition control flow |
|
589 |
// A successful return will be a type that is restricted due |
|
590 |
// to a series of dominating if-tests, such as: |
|
591 |
// if (i < 10) { |
|
592 |
// if (i > 0) { |
|
593 |
// here: "i" type is [1..10) |
|
594 |
// } |
|
595 |
// } |
|
596 |
// or a control flow merge |
|
597 |
// if (i < 10) { |
|
598 |
// do { |
|
599 |
// phi( , ) -- at top of loop type is [min_int..10) |
|
600 |
// i = ? |
|
601 |
// } while ( i < 10) |
|
602 |
// |
|
603 |
const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) { |
|
604 |
assert(n && n->bottom_type()->is_int(), "must be int"); |
|
605 |
const TypeInt* filtered_t = NULL; |
|
606 |
if (!n->is_Phi()) { |
|
607 |
assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control"); |
|
608 |
filtered_t = filtered_type_from_dominators(n, n_ctrl); |
|
609 |
||
610 |
} else { |
|
611 |
Node* phi = n->as_Phi(); |
|
612 |
Node* region = phi->in(0); |
|
613 |
assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region"); |
|
614 |
if (region && region != C->top()) { |
|
615 |
for (uint i = 1; i < phi->req(); i++) { |
|
616 |
Node* val = phi->in(i); |
|
617 |
Node* use_c = region->in(i); |
|
618 |
const TypeInt* val_t = filtered_type_from_dominators(val, use_c); |
|
619 |
if (val_t != NULL) { |
|
620 |
if (filtered_t == NULL) { |
|
621 |
filtered_t = val_t; |
|
622 |
} else { |
|
623 |
filtered_t = filtered_t->meet(val_t)->is_int(); |
|
624 |
} |
|
625 |
} |
|
626 |
} |
|
627 |
} |
|
628 |
} |
|
629 |
const TypeInt* n_t = _igvn.type(n)->is_int(); |
|
630 |
if (filtered_t != NULL) { |
|
631 |
n_t = n_t->join(filtered_t)->is_int(); |
|
632 |
} |
|
633 |
return n_t; |
|
634 |
} |
|
635 |
||
636 |
||
637 |
//------------------------------filtered_type_from_dominators-------------------------------- |
|
638 |
// Return a possibly more restrictive type for val based on condition control flow of dominators |
|
639 |
const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) { |
|
640 |
if (val->is_Con()) { |
|
641 |
return val->bottom_type()->is_int(); |
|
642 |
} |
|
643 |
uint if_limit = 10; // Max number of dominating if's visited |
|
644 |
const TypeInt* rtn_t = NULL; |
|
645 |
||
646 |
if (use_ctrl && use_ctrl != C->top()) { |
|
647 |
Node* val_ctrl = get_ctrl(val); |
|
648 |
uint val_dom_depth = dom_depth(val_ctrl); |
|
649 |
Node* pred = use_ctrl; |
|
650 |
uint if_cnt = 0; |
|
651 |
while (if_cnt < if_limit) { |
|
652 |
if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) { |
|
653 |
if_cnt++; |
|
190
e9a0a9dcd4f6
6395208: Elide autoboxing for calls to HashMap.get(int) and HashMap.get(long)
never
parents:
1
diff
changeset
|
654 |
const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred); |
1 | 655 |
if (if_t != NULL) { |
656 |
if (rtn_t == NULL) { |
|
657 |
rtn_t = if_t; |
|
658 |
} else { |
|
659 |
rtn_t = rtn_t->join(if_t)->is_int(); |
|
660 |
} |
|
661 |
} |
|
662 |
} |
|
663 |
pred = idom(pred); |
|
664 |
if (pred == NULL || pred == C->top()) { |
|
665 |
break; |
|
666 |
} |
|
667 |
// Stop if going beyond definition block of val |
|
668 |
if (dom_depth(pred) < val_dom_depth) { |
|
669 |
break; |
|
670 |
} |
|
671 |
} |
|
672 |
} |
|
673 |
return rtn_t; |
|
674 |
} |
|
675 |
||
676 |
||
677 |
//------------------------------dump_spec-------------------------------------- |
|
678 |
// Dump special per-node info |
|
679 |
#ifndef PRODUCT |
|
680 |
void CountedLoopEndNode::dump_spec(outputStream *st) const { |
|
681 |
if( in(TestValue)->is_Bool() ) { |
|
682 |
BoolTest bt( test_trip()); // Added this for g++. |
|
683 |
||
684 |
st->print("["); |
|
685 |
bt.dump_on(st); |
|
686 |
st->print("]"); |
|
687 |
} |
|
688 |
st->print(" "); |
|
689 |
IfNode::dump_spec(st); |
|
690 |
} |
|
691 |
#endif |
|
692 |
||
693 |
//============================================================================= |
|
694 |
//------------------------------is_member-------------------------------------- |
|
695 |
// Is 'l' a member of 'this'? |
|
696 |
int IdealLoopTree::is_member( const IdealLoopTree *l ) const { |
|
697 |
while( l->_nest > _nest ) l = l->_parent; |
|
698 |
return l == this; |
|
699 |
} |
|
700 |
||
701 |
//------------------------------set_nest--------------------------------------- |
|
702 |
// Set loop tree nesting depth. Accumulate _has_call bits. |
|
703 |
int IdealLoopTree::set_nest( uint depth ) { |
|
704 |
_nest = depth; |
|
705 |
int bits = _has_call; |
|
706 |
if( _child ) bits |= _child->set_nest(depth+1); |
|
707 |
if( bits ) _has_call = 1; |
|
708 |
if( _next ) bits |= _next ->set_nest(depth ); |
|
709 |
return bits; |
|
710 |
} |
|
711 |
||
712 |
//------------------------------split_fall_in---------------------------------- |
|
713 |
// Split out multiple fall-in edges from the loop header. Move them to a |
|
714 |
// private RegionNode before the loop. This becomes the loop landing pad. |
|
715 |
void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) { |
|
716 |
PhaseIterGVN &igvn = phase->_igvn; |
|
717 |
uint i; |
|
718 |
||
719 |
// Make a new RegionNode to be the landing pad. |
|
720 |
Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 ); |
|
721 |
phase->set_loop(landing_pad,_parent); |
|
722 |
// Gather all the fall-in control paths into the landing pad |
|
723 |
uint icnt = fall_in_cnt; |
|
724 |
uint oreq = _head->req(); |
|
725 |
for( i = oreq-1; i>0; i-- ) |
|
726 |
if( !phase->is_member( this, _head->in(i) ) ) |
|
727 |
landing_pad->set_req(icnt--,_head->in(i)); |
|
728 |
||
729 |
// Peel off PhiNode edges as well |
|
730 |
for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { |
|
731 |
Node *oj = _head->fast_out(j); |
|
732 |
if( oj->is_Phi() ) { |
|
733 |
PhiNode* old_phi = oj->as_Phi(); |
|
734 |
assert( old_phi->region() == _head, "" ); |
|
735 |
igvn.hash_delete(old_phi); // Yank from hash before hacking edges |
|
736 |
Node *p = PhiNode::make_blank(landing_pad, old_phi); |
|
737 |
uint icnt = fall_in_cnt; |
|
738 |
for( i = oreq-1; i>0; i-- ) { |
|
739 |
if( !phase->is_member( this, _head->in(i) ) ) { |
|
740 |
p->init_req(icnt--, old_phi->in(i)); |
|
741 |
// Go ahead and clean out old edges from old phi |
|
742 |
old_phi->del_req(i); |
|
743 |
} |
|
744 |
} |
|
745 |
// Search for CSE's here, because ZKM.jar does a lot of |
|
746 |
// loop hackery and we need to be a little incremental |
|
747 |
// with the CSE to avoid O(N^2) node blow-up. |
|
748 |
Node *p2 = igvn.hash_find_insert(p); // Look for a CSE |
|
749 |
if( p2 ) { // Found CSE |
|
750 |
p->destruct(); // Recover useless new node |
|
751 |
p = p2; // Use old node |
|
752 |
} else { |
|
753 |
igvn.register_new_node_with_optimizer(p, old_phi); |
|
754 |
} |
|
755 |
// Make old Phi refer to new Phi. |
|
756 |
old_phi->add_req(p); |
|
757 |
// Check for the special case of making the old phi useless and |
|
758 |
// disappear it. In JavaGrande I have a case where this useless |
|
759 |
// Phi is the loop limit and prevents recognizing a CountedLoop |
|
760 |
// which in turn prevents removing an empty loop. |
|
761 |
Node *id_old_phi = old_phi->Identity( &igvn ); |
|
762 |
if( id_old_phi != old_phi ) { // Found a simple identity? |
|
763 |
// Note that I cannot call 'subsume_node' here, because |
|
764 |
// that will yank the edge from old_phi to the Region and |
|
765 |
// I'm mid-iteration over the Region's uses. |
|
766 |
for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) { |
|
767 |
Node* use = old_phi->last_out(i); |
|
768 |
igvn.hash_delete(use); |
|
769 |
igvn._worklist.push(use); |
|
770 |
uint uses_found = 0; |
|
771 |
for (uint j = 0; j < use->len(); j++) { |
|
772 |
if (use->in(j) == old_phi) { |
|
773 |
if (j < use->req()) use->set_req (j, id_old_phi); |
|
774 |
else use->set_prec(j, id_old_phi); |
|
775 |
uses_found++; |
|
776 |
} |
|
777 |
} |
|
778 |
i -= uses_found; // we deleted 1 or more copies of this edge |
|
779 |
} |
|
780 |
} |
|
781 |
igvn._worklist.push(old_phi); |
|
782 |
} |
|
783 |
} |
|
784 |
// Finally clean out the fall-in edges from the RegionNode |
|
785 |
for( i = oreq-1; i>0; i-- ) { |
|
786 |
if( !phase->is_member( this, _head->in(i) ) ) { |
|
787 |
_head->del_req(i); |
|
788 |
} |
|
789 |
} |
|
790 |
// Transform landing pad |
|
791 |
igvn.register_new_node_with_optimizer(landing_pad, _head); |
|
792 |
// Insert landing pad into the header |
|
793 |
_head->add_req(landing_pad); |
|
794 |
} |
|
795 |
||
796 |
//------------------------------split_outer_loop------------------------------- |
|
797 |
// Split out the outermost loop from this shared header. |
|
798 |
void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) { |
|
799 |
PhaseIterGVN &igvn = phase->_igvn; |
|
800 |
||
801 |
// Find index of outermost loop; it should also be my tail. |
|
802 |
uint outer_idx = 1; |
|
803 |
while( _head->in(outer_idx) != _tail ) outer_idx++; |
|
804 |
||
805 |
// Make a LoopNode for the outermost loop. |
|
806 |
Node *ctl = _head->in(LoopNode::EntryControl); |
|
807 |
Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) ); |
|
808 |
outer = igvn.register_new_node_with_optimizer(outer, _head); |
|
809 |
phase->set_created_loop_node(); |
|
810 |
// Outermost loop falls into '_head' loop |
|
811 |
_head->set_req(LoopNode::EntryControl, outer); |
|
812 |
_head->del_req(outer_idx); |
|
813 |
// Split all the Phis up between '_head' loop and 'outer' loop. |
|
814 |
for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { |
|
815 |
Node *out = _head->fast_out(j); |
|
816 |
if( out->is_Phi() ) { |
|
817 |
PhiNode *old_phi = out->as_Phi(); |
|
818 |
assert( old_phi->region() == _head, "" ); |
|
819 |
Node *phi = PhiNode::make_blank(outer, old_phi); |
|
820 |
phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl)); |
|
821 |
phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx)); |
|
822 |
phi = igvn.register_new_node_with_optimizer(phi, old_phi); |
|
823 |
// Make old Phi point to new Phi on the fall-in path |
|
824 |
igvn.hash_delete(old_phi); |
|
825 |
old_phi->set_req(LoopNode::EntryControl, phi); |
|
826 |
old_phi->del_req(outer_idx); |
|
827 |
igvn._worklist.push(old_phi); |
|
828 |
} |
|
829 |
} |
|
830 |
||
831 |
// Use the new loop head instead of the old shared one |
|
832 |
_head = outer; |
|
833 |
phase->set_loop(_head, this); |
|
834 |
} |
|
835 |
||
836 |
//------------------------------fix_parent------------------------------------- |
|
837 |
static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) { |
|
838 |
loop->_parent = parent; |
|
839 |
if( loop->_child ) fix_parent( loop->_child, loop ); |
|
840 |
if( loop->_next ) fix_parent( loop->_next , parent ); |
|
841 |
} |
|
842 |
||
843 |
//------------------------------estimate_path_freq----------------------------- |
|
844 |
static float estimate_path_freq( Node *n ) { |
|
845 |
// Try to extract some path frequency info |
|
846 |
IfNode *iff; |
|
847 |
for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests |
|
848 |
uint nop = n->Opcode(); |
|
849 |
if( nop == Op_SafePoint ) { // Skip any safepoint |
|
850 |
n = n->in(0); |
|
851 |
continue; |
|
852 |
} |
|
853 |
if( nop == Op_CatchProj ) { // Get count from a prior call |
|
854 |
// Assume call does not always throw exceptions: means the call-site |
|
855 |
// count is also the frequency of the fall-through path. |
|
856 |
assert( n->is_CatchProj(), "" ); |
|
857 |
if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index ) |
|
858 |
return 0.0f; // Assume call exception path is rare |
|
859 |
Node *call = n->in(0)->in(0)->in(0); |
|
860 |
assert( call->is_Call(), "expect a call here" ); |
|
861 |
const JVMState *jvms = ((CallNode*)call)->jvms(); |
|
862 |
ciMethodData* methodData = jvms->method()->method_data(); |
|
863 |
if (!methodData->is_mature()) return 0.0f; // No call-site data |
|
864 |
ciProfileData* data = methodData->bci_to_data(jvms->bci()); |
|
865 |
if ((data == NULL) || !data->is_CounterData()) { |
|
866 |
// no call profile available, try call's control input |
|
867 |
n = n->in(0); |
|
868 |
continue; |
|
869 |
} |
|
870 |
return data->as_CounterData()->count()/FreqCountInvocations; |
|
871 |
} |
|
872 |
// See if there's a gating IF test |
|
873 |
Node *n_c = n->in(0); |
|
874 |
if( !n_c->is_If() ) break; // No estimate available |
|
875 |
iff = n_c->as_If(); |
|
876 |
if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count? |
|
877 |
// Compute how much count comes on this path |
|
878 |
return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt; |
|
879 |
// Have no count info. Skip dull uncommon-trap like branches. |
|
880 |
if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) || |
|
881 |
(nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) ) |
|
882 |
break; |
|
883 |
// Skip through never-taken branch; look for a real loop exit. |
|
884 |
n = iff->in(0); |
|
885 |
} |
|
886 |
return 0.0f; // No estimate available |
|
887 |
} |
|
888 |
||
889 |
//------------------------------merge_many_backedges--------------------------- |
|
890 |
// Merge all the backedges from the shared header into a private Region. |
|
891 |
// Feed that region as the one backedge to this loop. |
|
892 |
void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) { |
|
893 |
uint i; |
|
894 |
||
895 |
// Scan for the top 2 hottest backedges |
|
896 |
float hotcnt = 0.0f; |
|
897 |
float warmcnt = 0.0f; |
|
898 |
uint hot_idx = 0; |
|
899 |
// Loop starts at 2 because slot 1 is the fall-in path |
|
900 |
for( i = 2; i < _head->req(); i++ ) { |
|
901 |
float cnt = estimate_path_freq(_head->in(i)); |
|
902 |
if( cnt > hotcnt ) { // Grab hottest path |
|
903 |
warmcnt = hotcnt; |
|
904 |
hotcnt = cnt; |
|
905 |
hot_idx = i; |
|
906 |
} else if( cnt > warmcnt ) { // And 2nd hottest path |
|
907 |
warmcnt = cnt; |
|
908 |
} |
|
909 |
} |
|
910 |
||
911 |
// See if the hottest backedge is worthy of being an inner loop |
|
912 |
// by being much hotter than the next hottest backedge. |
|
913 |
if( hotcnt <= 0.0001 || |
|
914 |
hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge |
|
915 |
||
916 |
// Peel out the backedges into a private merge point; peel |
|
917 |
// them all except optionally hot_idx. |
|
918 |
PhaseIterGVN &igvn = phase->_igvn; |
|
919 |
||
920 |
Node *hot_tail = NULL; |
|
921 |
// Make a Region for the merge point |
|
922 |
Node *r = new (phase->C, 1) RegionNode(1); |
|
923 |
for( i = 2; i < _head->req(); i++ ) { |
|
924 |
if( i != hot_idx ) |
|
925 |
r->add_req( _head->in(i) ); |
|
926 |
else hot_tail = _head->in(i); |
|
927 |
} |
|
928 |
igvn.register_new_node_with_optimizer(r, _head); |
|
929 |
// Plug region into end of loop _head, followed by hot_tail |
|
930 |
while( _head->req() > 3 ) _head->del_req( _head->req()-1 ); |
|
931 |
_head->set_req(2, r); |
|
932 |
if( hot_idx ) _head->add_req(hot_tail); |
|
933 |
||
934 |
// Split all the Phis up between '_head' loop and the Region 'r' |
|
935 |
for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) { |
|
936 |
Node *out = _head->fast_out(j); |
|
937 |
if( out->is_Phi() ) { |
|
938 |
PhiNode* n = out->as_Phi(); |
|
939 |
igvn.hash_delete(n); // Delete from hash before hacking edges |
|
940 |
Node *hot_phi = NULL; |
|
941 |
Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type()); |
|
942 |
// Check all inputs for the ones to peel out |
|
943 |
uint j = 1; |
|
944 |
for( uint i = 2; i < n->req(); i++ ) { |
|
945 |
if( i != hot_idx ) |
|
946 |
phi->set_req( j++, n->in(i) ); |
|
947 |
else hot_phi = n->in(i); |
|
948 |
} |
|
949 |
// Register the phi but do not transform until whole place transforms |
|
950 |
igvn.register_new_node_with_optimizer(phi, n); |
|
951 |
// Add the merge phi to the old Phi |
|
952 |
while( n->req() > 3 ) n->del_req( n->req()-1 ); |
|
953 |
n->set_req(2, phi); |
|
954 |
if( hot_idx ) n->add_req(hot_phi); |
|
955 |
} |
|
956 |
} |
|
957 |
||
958 |
||
959 |
// Insert a new IdealLoopTree inserted below me. Turn it into a clone |
|
960 |
// of self loop tree. Turn self into a loop headed by _head and with |
|
961 |
// tail being the new merge point. |
|
962 |
IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail ); |
|
963 |
phase->set_loop(_tail,ilt); // Adjust tail |
|
964 |
_tail = r; // Self's tail is new merge point |
|
965 |
phase->set_loop(r,this); |
|
966 |
ilt->_child = _child; // New guy has my children |
|
967 |
_child = ilt; // Self has new guy as only child |
|
968 |
ilt->_parent = this; // new guy has self for parent |
|
969 |
ilt->_nest = _nest; // Same nesting depth (for now) |
|
970 |
||
971 |
// Starting with 'ilt', look for child loop trees using the same shared |
|
972 |
// header. Flatten these out; they will no longer be loops in the end. |
|
973 |
IdealLoopTree **pilt = &_child; |
|
974 |
while( ilt ) { |
|
975 |
if( ilt->_head == _head ) { |
|
976 |
uint i; |
|
977 |
for( i = 2; i < _head->req(); i++ ) |
|
978 |
if( _head->in(i) == ilt->_tail ) |
|
979 |
break; // Still a loop |
|
980 |
if( i == _head->req() ) { // No longer a loop |
|
981 |
// Flatten ilt. Hang ilt's "_next" list from the end of |
|
982 |
// ilt's '_child' list. Move the ilt's _child up to replace ilt. |
|
983 |
IdealLoopTree **cp = &ilt->_child; |
|
984 |
while( *cp ) cp = &(*cp)->_next; // Find end of child list |
|
985 |
*cp = ilt->_next; // Hang next list at end of child list |
|
986 |
*pilt = ilt->_child; // Move child up to replace ilt |
|
987 |
ilt->_head = NULL; // Flag as a loop UNIONED into parent |
|
988 |
ilt = ilt->_child; // Repeat using new ilt |
|
989 |
continue; // do not advance over ilt->_child |
|
990 |
} |
|
991 |
assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" ); |
|
992 |
phase->set_loop(_head,ilt); |
|
993 |
} |
|
994 |
pilt = &ilt->_child; // Advance to next |
|
995 |
ilt = *pilt; |
|
996 |
} |
|
997 |
||
998 |
if( _child ) fix_parent( _child, this ); |
|
999 |
} |
|
1000 |
||
1001 |
//------------------------------beautify_loops--------------------------------- |
|
1002 |
// Split shared headers and insert loop landing pads. |
|
1003 |
// Insert a LoopNode to replace the RegionNode. |
|
1004 |
// Return TRUE if loop tree is structurally changed. |
|
1005 |
bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) { |
|
1006 |
bool result = false; |
|
1007 |
// Cache parts in locals for easy |
|
1008 |
PhaseIterGVN &igvn = phase->_igvn; |
|
1009 |
||
1010 |
phase->C->print_method("Before beautify loops", 3); |
|
1011 |
||
1012 |
igvn.hash_delete(_head); // Yank from hash before hacking edges |
|
1013 |
||
1014 |
// Check for multiple fall-in paths. Peel off a landing pad if need be. |
|
1015 |
int fall_in_cnt = 0; |
|
1016 |
for( uint i = 1; i < _head->req(); i++ ) |
|
1017 |
if( !phase->is_member( this, _head->in(i) ) ) |
|
1018 |
fall_in_cnt++; |
|
1019 |
assert( fall_in_cnt, "at least 1 fall-in path" ); |
|
1020 |
if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins |
|
1021 |
split_fall_in( phase, fall_in_cnt ); |
|
1022 |
||
1023 |
// Swap inputs to the _head and all Phis to move the fall-in edge to |
|
1024 |
// the left. |
|
1025 |
fall_in_cnt = 1; |
|
1026 |
while( phase->is_member( this, _head->in(fall_in_cnt) ) ) |
|
1027 |
fall_in_cnt++; |
|
1028 |
if( fall_in_cnt > 1 ) { |
|
1029 |
// Since I am just swapping inputs I do not need to update def-use info |
|
1030 |
Node *tmp = _head->in(1); |
|
1031 |
_head->set_req( 1, _head->in(fall_in_cnt) ); |
|
1032 |
_head->set_req( fall_in_cnt, tmp ); |
|
1033 |
// Swap also all Phis |
|
1034 |
for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) { |
|
1035 |
Node* phi = _head->fast_out(i); |
|
1036 |
if( phi->is_Phi() ) { |
|
1037 |
igvn.hash_delete(phi); // Yank from hash before hacking edges |
|
1038 |
tmp = phi->in(1); |
|
1039 |
phi->set_req( 1, phi->in(fall_in_cnt) ); |
|
1040 |
phi->set_req( fall_in_cnt, tmp ); |
|
1041 |
} |
|
1042 |
} |
|
1043 |
} |
|
1044 |
assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" ); |
|
1045 |
assert( phase->is_member( this, _head->in(2) ), "right edge is loop" ); |
|
1046 |
||
1047 |
// If I am a shared header (multiple backedges), peel off the many |
|
1048 |
// backedges into a private merge point and use the merge point as |
|
1049 |
// the one true backedge. |
|
1050 |
if( _head->req() > 3 ) { |
|
1051 |
// Merge the many backedges into a single backedge. |
|
1052 |
merge_many_backedges( phase ); |
|
1053 |
result = true; |
|
1054 |
} |
|
1055 |
||
1056 |
// If I am a shared header (multiple backedges), peel off myself loop. |
|
1057 |
// I better be the outermost loop. |
|
1058 |
if( _head->req() > 3 ) { |
|
1059 |
split_outer_loop( phase ); |
|
1060 |
result = true; |
|
1061 |
||
1062 |
} else if( !_head->is_Loop() && !_irreducible ) { |
|
1063 |
// Make a new LoopNode to replace the old loop head |
|
1064 |
Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) ); |
|
1065 |
l = igvn.register_new_node_with_optimizer(l, _head); |
|
1066 |
phase->set_created_loop_node(); |
|
1067 |
// Go ahead and replace _head |
|
1068 |
phase->_igvn.subsume_node( _head, l ); |
|
1069 |
_head = l; |
|
1070 |
phase->set_loop(_head, this); |
|
1071 |
for (DUIterator_Fast imax, i = l->fast_outs(imax); i < imax; i++) |
|
1072 |
phase->_igvn.add_users_to_worklist(l->fast_out(i)); |
|
1073 |
} |
|
1074 |
||
1075 |
phase->C->print_method("After beautify loops", 3); |
|
1076 |
||
1077 |
// Now recursively beautify nested loops |
|
1078 |
if( _child ) result |= _child->beautify_loops( phase ); |
|
1079 |
if( _next ) result |= _next ->beautify_loops( phase ); |
|
1080 |
return result; |
|
1081 |
} |
|
1082 |
||
1083 |
//------------------------------allpaths_check_safepts---------------------------- |
|
1084 |
// Allpaths backwards scan from loop tail, terminating each path at first safepoint |
|
1085 |
// encountered. Helper for check_safepts. |
|
1086 |
void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) { |
|
1087 |
assert(stack.size() == 0, "empty stack"); |
|
1088 |
stack.push(_tail); |
|
1089 |
visited.Clear(); |
|
1090 |
visited.set(_tail->_idx); |
|
1091 |
while (stack.size() > 0) { |
|
1092 |
Node* n = stack.pop(); |
|
1093 |
if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { |
|
1094 |
// Terminate this path |
|
1095 |
} else if (n->Opcode() == Op_SafePoint) { |
|
1096 |
if (_phase->get_loop(n) != this) { |
|
1097 |
if (_required_safept == NULL) _required_safept = new Node_List(); |
|
1098 |
_required_safept->push(n); // save the one closest to the tail |
|
1099 |
} |
|
1100 |
// Terminate this path |
|
1101 |
} else { |
|
1102 |
uint start = n->is_Region() ? 1 : 0; |
|
1103 |
uint end = n->is_Region() && !n->is_Loop() ? n->req() : start + 1; |
|
1104 |
for (uint i = start; i < end; i++) { |
|
1105 |
Node* in = n->in(i); |
|
1106 |
assert(in->is_CFG(), "must be"); |
|
1107 |
if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) { |
|
1108 |
stack.push(in); |
|
1109 |
} |
|
1110 |
} |
|
1111 |
} |
|
1112 |
} |
|
1113 |
} |
|
1114 |
||
1115 |
//------------------------------check_safepts---------------------------- |
|
1116 |
// Given dominators, try to find loops with calls that must always be |
|
1117 |
// executed (call dominates loop tail). These loops do not need non-call |
|
1118 |
// safepoints (ncsfpt). |
|
1119 |
// |
|
1120 |
// A complication is that a safepoint in a inner loop may be needed |
|
1121 |
// by an outer loop. In the following, the inner loop sees it has a |
|
1122 |
// call (block 3) on every path from the head (block 2) to the |
|
1123 |
// backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint) |
|
1124 |
// in block 2, _but_ this leaves the outer loop without a safepoint. |
|
1125 |
// |
|
1126 |
// entry 0 |
|
1127 |
// | |
|
1128 |
// v |
|
1129 |
// outer 1,2 +->1 |
|
1130 |
// | | |
|
1131 |
// | v |
|
1132 |
// | 2<---+ ncsfpt in 2 |
|
1133 |
// |_/|\ | |
|
1134 |
// | v | |
|
1135 |
// inner 2,3 / 3 | call in 3 |
|
1136 |
// / | | |
|
1137 |
// v +--+ |
|
1138 |
// exit 4 |
|
1139 |
// |
|
1140 |
// |
|
1141 |
// This method creates a list (_required_safept) of ncsfpt nodes that must |
|
1142 |
// be protected is created for each loop. When a ncsfpt maybe deleted, it |
|
1143 |
// is first looked for in the lists for the outer loops of the current loop. |
|
1144 |
// |
|
1145 |
// The insights into the problem: |
|
1146 |
// A) counted loops are okay |
|
1147 |
// B) innermost loops are okay (only an inner loop can delete |
|
1148 |
// a ncsfpt needed by an outer loop) |
|
1149 |
// C) a loop is immune from an inner loop deleting a safepoint |
|
1150 |
// if the loop has a call on the idom-path |
|
1151 |
// D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the |
|
1152 |
// idom-path that is not in a nested loop |
|
1153 |
// E) otherwise, an ncsfpt on the idom-path that is nested in an inner |
|
1154 |
// loop needs to be prevented from deletion by an inner loop |
|
1155 |
// |
|
1156 |
// There are two analyses: |
|
1157 |
// 1) The first, and cheaper one, scans the loop body from |
|
1158 |
// tail to head following the idom (immediate dominator) |
|
1159 |
// chain, looking for the cases (C,D,E) above. |
|
1160 |
// Since inner loops are scanned before outer loops, there is summary |
|
1161 |
// information about inner loops. Inner loops can be skipped over |
|
1162 |
// when the tail of an inner loop is encountered. |
|
1163 |
// |
|
1164 |
// 2) The second, invoked if the first fails to find a call or ncsfpt on |
|
1165 |
// the idom path (which is rare), scans all predecessor control paths |
|
1166 |
// from the tail to the head, terminating a path when a call or sfpt |
|
1167 |
// is encountered, to find the ncsfpt's that are closest to the tail. |
|
1168 |
// |
|
1169 |
void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) { |
|
1170 |
// Bottom up traversal |
|
1171 |
IdealLoopTree* ch = _child; |
|
1172 |
while (ch != NULL) { |
|
1173 |
ch->check_safepts(visited, stack); |
|
1174 |
ch = ch->_next; |
|
1175 |
} |
|
1176 |
||
1177 |
if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) { |
|
1178 |
bool has_call = false; // call on dom-path |
|
1179 |
bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth |
|
1180 |
Node* nonlocal_ncsfpt = NULL; // ncsfpt on dom-path at a deeper depth |
|
1181 |
// Scan the dom-path nodes from tail to head |
|
1182 |
for (Node* n = tail(); n != _head; n = _phase->idom(n)) { |
|
1183 |
if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) { |
|
1184 |
has_call = true; |
|
1185 |
_has_sfpt = 1; // Then no need for a safept! |
|
1186 |
break; |
|
1187 |
} else if (n->Opcode() == Op_SafePoint) { |
|
1188 |
if (_phase->get_loop(n) == this) { |
|
1189 |
has_local_ncsfpt = true; |
|
1190 |
break; |
|
1191 |
} |
|
1192 |
if (nonlocal_ncsfpt == NULL) { |
|
1193 |
nonlocal_ncsfpt = n; // save the one closest to the tail |
|
1194 |
} |
|
1195 |
} else { |
|
1196 |
IdealLoopTree* nlpt = _phase->get_loop(n); |
|
1197 |
if (this != nlpt) { |
|
1198 |
// If at an inner loop tail, see if the inner loop has already |
|
1199 |
// recorded seeing a call on the dom-path (and stop.) If not, |
|
1200 |
// jump to the head of the inner loop. |
|
1201 |
assert(is_member(nlpt), "nested loop"); |
|
1202 |
Node* tail = nlpt->_tail; |
|
1203 |
if (tail->in(0)->is_If()) tail = tail->in(0); |
|
1204 |
if (n == tail) { |
|
1205 |
// If inner loop has call on dom-path, so does outer loop |
|
1206 |
if (nlpt->_has_sfpt) { |
|
1207 |
has_call = true; |
|
1208 |
_has_sfpt = 1; |
|
1209 |
break; |
|
1210 |
} |
|
1211 |
// Skip to head of inner loop |
|
1212 |
assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head"); |
|
1213 |
n = nlpt->_head; |
|
1214 |
} |
|
1215 |
} |
|
1216 |
} |
|
1217 |
} |
|
1218 |
// Record safept's that this loop needs preserved when an |
|
1219 |
// inner loop attempts to delete it's safepoints. |
|
1220 |
if (_child != NULL && !has_call && !has_local_ncsfpt) { |
|
1221 |
if (nonlocal_ncsfpt != NULL) { |
|
1222 |
if (_required_safept == NULL) _required_safept = new Node_List(); |
|
1223 |
_required_safept->push(nonlocal_ncsfpt); |
|
1224 |
} else { |
|
1225 |
// Failed to find a suitable safept on the dom-path. Now use |
|
1226 |
// an all paths walk from tail to head, looking for safepoints to preserve. |
|
1227 |
allpaths_check_safepts(visited, stack); |
|
1228 |
} |
|
1229 |
} |
|
1230 |
} |
|
1231 |
} |
|
1232 |
||
1233 |
//---------------------------is_deleteable_safept---------------------------- |
|
1234 |
// Is safept not required by an outer loop? |
|
1235 |
bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) { |
|
1236 |
assert(sfpt->Opcode() == Op_SafePoint, ""); |
|
1237 |
IdealLoopTree* lp = get_loop(sfpt)->_parent; |
|
1238 |
while (lp != NULL) { |
|
1239 |
Node_List* sfpts = lp->_required_safept; |
|
1240 |
if (sfpts != NULL) { |
|
1241 |
for (uint i = 0; i < sfpts->size(); i++) { |
|
1242 |
if (sfpt == sfpts->at(i)) |
|
1243 |
return false; |
|
1244 |
} |
|
1245 |
} |
|
1246 |
lp = lp->_parent; |
|
1247 |
} |
|
1248 |
return true; |
|
1249 |
} |
|
1250 |
||
1251 |
//------------------------------counted_loop----------------------------------- |
|
1252 |
// Convert to counted loops where possible |
|
1253 |
void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) { |
|
1254 |
||
1255 |
// For grins, set the inner-loop flag here |
|
1256 |
if( !_child ) { |
|
1257 |
if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop(); |
|
1258 |
} |
|
1259 |
||
1260 |
if( _head->is_CountedLoop() || |
|
1261 |
phase->is_counted_loop( _head, this ) ) { |
|
1262 |
_has_sfpt = 1; // Indicate we do not need a safepoint here |
|
1263 |
||
1264 |
// Look for a safepoint to remove |
|
1265 |
for (Node* n = tail(); n != _head; n = phase->idom(n)) |
|
1266 |
if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this && |
|
1267 |
phase->is_deleteable_safept(n)) |
|
1268 |
phase->lazy_replace(n,n->in(TypeFunc::Control)); |
|
1269 |
||
1270 |
CountedLoopNode *cl = _head->as_CountedLoop(); |
|
1271 |
Node *incr = cl->incr(); |
|
1272 |
if( !incr ) return; // Dead loop? |
|
1273 |
Node *init = cl->init_trip(); |
|
1274 |
Node *phi = cl->phi(); |
|
1275 |
// protect against stride not being a constant |
|
1276 |
if( !cl->stride_is_con() ) return; |
|
1277 |
int stride_con = cl->stride_con(); |
|
1278 |
||
1279 |
// Look for induction variables |
|
1280 |
||
1281 |
// Visit all children, looking for Phis |
|
1282 |
for (DUIterator i = cl->outs(); cl->has_out(i); i++) { |
|
1283 |
Node *out = cl->out(i); |
|
1284 |
if (!out->is_Phi()) continue; // Looking for phis |
|
1285 |
PhiNode* phi2 = out->as_Phi(); |
|
1286 |
Node *incr2 = phi2->in( LoopNode::LoopBackControl ); |
|
1287 |
// Look for induction variables of the form: X += constant |
|
1288 |
if( phi2->region() != _head || |
|
1289 |
incr2->req() != 3 || |
|
1290 |
incr2->in(1) != phi2 || |
|
1291 |
incr2 == incr || |
|
1292 |
incr2->Opcode() != Op_AddI || |
|
1293 |
!incr2->in(2)->is_Con() ) |
|
1294 |
continue; |
|
1295 |
||
1296 |
// Check for parallel induction variable (parallel to trip counter) |
|
1297 |
// via an affine function. In particular, count-down loops with |
|
1298 |
// count-up array indices are common. We only RCE references off |
|
1299 |
// the trip-counter, so we need to convert all these to trip-counter |
|
1300 |
// expressions. |
|
1301 |
Node *init2 = phi2->in( LoopNode::EntryControl ); |
|
1302 |
int stride_con2 = incr2->in(2)->get_int(); |
|
1303 |
||
1304 |
// The general case here gets a little tricky. We want to find the |
|
1305 |
// GCD of all possible parallel IV's and make a new IV using this |
|
1306 |
// GCD for the loop. Then all possible IVs are simple multiples of |
|
1307 |
// the GCD. In practice, this will cover very few extra loops. |
|
1308 |
// Instead we require 'stride_con2' to be a multiple of 'stride_con', |
|
1309 |
// where +/-1 is the common case, but other integer multiples are |
|
1310 |
// also easy to handle. |
|
1311 |
int ratio_con = stride_con2/stride_con; |
|
1312 |
||
1313 |
if( ratio_con * stride_con == stride_con2 ) { // Check for exact |
|
1314 |
// Convert to using the trip counter. The parallel induction |
|
1315 |
// variable differs from the trip counter by a loop-invariant |
|
1316 |
// amount, the difference between their respective initial values. |
|
1317 |
// It is scaled by the 'ratio_con'. |
|
1318 |
Compile* C = phase->C; |
|
1319 |
Node* ratio = phase->_igvn.intcon(ratio_con); |
|
1320 |
phase->set_ctrl(ratio, C->root()); |
|
1321 |
Node* ratio_init = new (C, 3) MulINode(init, ratio); |
|
1322 |
phase->_igvn.register_new_node_with_optimizer(ratio_init, init); |
|
1323 |
phase->set_early_ctrl(ratio_init); |
|
1324 |
Node* diff = new (C, 3) SubINode(init2, ratio_init); |
|
1325 |
phase->_igvn.register_new_node_with_optimizer(diff, init2); |
|
1326 |
phase->set_early_ctrl(diff); |
|
1327 |
Node* ratio_idx = new (C, 3) MulINode(phi, ratio); |
|
1328 |
phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi); |
|
1329 |
phase->set_ctrl(ratio_idx, cl); |
|
1330 |
Node* add = new (C, 3) AddINode(ratio_idx, diff); |
|
1331 |
phase->_igvn.register_new_node_with_optimizer(add); |
|
1332 |
phase->set_ctrl(add, cl); |
|
1333 |
phase->_igvn.hash_delete( phi2 ); |
|
1334 |
phase->_igvn.subsume_node( phi2, add ); |
|
1335 |
// Sometimes an induction variable is unused |
|
1336 |
if (add->outcnt() == 0) { |
|
1337 |
phase->_igvn.remove_dead_node(add); |
|
1338 |
} |
|
1339 |
--i; // deleted this phi; rescan starting with next position |
|
1340 |
continue; |
|
1341 |
} |
|
1342 |
} |
|
1343 |
} else if (_parent != NULL && !_irreducible) { |
|
1344 |
// Not a counted loop. |
|
1345 |
// Look for a safepoint on the idom-path to remove, preserving the first one |
|
1346 |
bool found = false; |
|
1347 |
Node* n = tail(); |
|
1348 |
for (; n != _head && !found; n = phase->idom(n)) { |
|
1349 |
if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this) |
|
1350 |
found = true; // Found one |
|
1351 |
} |
|
1352 |
// Skip past it and delete the others |
|
1353 |
for (; n != _head; n = phase->idom(n)) { |
|
1354 |
if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this && |
|
1355 |
phase->is_deleteable_safept(n)) |
|
1356 |
phase->lazy_replace(n,n->in(TypeFunc::Control)); |
|
1357 |
} |
|
1358 |
} |
|
1359 |
||
1360 |
// Recursively |
|
1361 |
if( _child ) _child->counted_loop( phase ); |
|
1362 |
if( _next ) _next ->counted_loop( phase ); |
|
1363 |
} |
|
1364 |
||
1365 |
#ifndef PRODUCT |
|
1366 |
//------------------------------dump_head-------------------------------------- |
|
1367 |
// Dump 1 liner for loop header info |
|
1368 |
void IdealLoopTree::dump_head( ) const { |
|
1369 |
for( uint i=0; i<_nest; i++ ) |
|
1370 |
tty->print(" "); |
|
1371 |
tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx); |
|
1372 |
if( _irreducible ) tty->print(" IRREDUCIBLE"); |
|
1373 |
if( _head->is_CountedLoop() ) { |
|
1374 |
CountedLoopNode *cl = _head->as_CountedLoop(); |
|
1375 |
tty->print(" counted"); |
|
1376 |
if( cl->is_pre_loop () ) tty->print(" pre" ); |
|
1377 |
if( cl->is_main_loop() ) tty->print(" main"); |
|
1378 |
if( cl->is_post_loop() ) tty->print(" post"); |
|
1379 |
} |
|
1380 |
tty->cr(); |
|
1381 |
} |
|
1382 |
||
1383 |
//------------------------------dump------------------------------------------- |
|
1384 |
// Dump loops by loop tree |
|
1385 |
void IdealLoopTree::dump( ) const { |
|
1386 |
dump_head(); |
|
1387 |
if( _child ) _child->dump(); |
|
1388 |
if( _next ) _next ->dump(); |
|
1389 |
} |
|
1390 |
||
1391 |
#endif |
|
1392 |
||
1393 |
//============================================================================= |
|
1394 |
//------------------------------PhaseIdealLoop--------------------------------- |
|
1395 |
// Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to |
|
1396 |
// its corresponding LoopNode. If 'optimize' is true, do some loop cleanups. |
|
1397 |
PhaseIdealLoop::PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me, bool do_split_ifs ) |
|
1398 |
: PhaseTransform(Ideal_Loop), |
|
1399 |
_igvn(igvn), |
|
1400 |
_dom_lca_tags(C->comp_arena()) { |
|
1401 |
// Reset major-progress flag for the driver's heuristics |
|
1402 |
C->clear_major_progress(); |
|
1403 |
||
1404 |
#ifndef PRODUCT |
|
1405 |
// Capture for later assert |
|
1406 |
uint unique = C->unique(); |
|
1407 |
_loop_invokes++; |
|
1408 |
_loop_work += unique; |
|
1409 |
#endif |
|
1410 |
||
1411 |
// True if the method has at least 1 irreducible loop |
|
1412 |
_has_irreducible_loops = false; |
|
1413 |
||
1414 |
_created_loop_node = false; |
|
1415 |
||
1416 |
Arena *a = Thread::current()->resource_area(); |
|
1417 |
VectorSet visited(a); |
|
1418 |
// Pre-grow the mapping from Nodes to IdealLoopTrees. |
|
1419 |
_nodes.map(C->unique(), NULL); |
|
1420 |
memset(_nodes.adr(), 0, wordSize * C->unique()); |
|
1421 |
||
1422 |
// Pre-build the top-level outermost loop tree entry |
|
1423 |
_ltree_root = new IdealLoopTree( this, C->root(), C->root() ); |
|
1424 |
// Do not need a safepoint at the top level |
|
1425 |
_ltree_root->_has_sfpt = 1; |
|
1426 |
||
1427 |
// Empty pre-order array |
|
1428 |
allocate_preorders(); |
|
1429 |
||
1430 |
// Build a loop tree on the fly. Build a mapping from CFG nodes to |
|
1431 |
// IdealLoopTree entries. Data nodes are NOT walked. |
|
1432 |
build_loop_tree(); |
|
1433 |
// Check for bailout, and return |
|
1434 |
if (C->failing()) { |
|
1435 |
return; |
|
1436 |
} |
|
1437 |
||
1438 |
// No loops after all |
|
1439 |
if( !_ltree_root->_child ) C->set_has_loops(false); |
|
1440 |
||
1441 |
// There should always be an outer loop containing the Root and Return nodes. |
|
1442 |
// If not, we have a degenerate empty program. Bail out in this case. |
|
1443 |
if (!has_node(C->root())) { |
|
1444 |
C->clear_major_progress(); |
|
1445 |
C->record_method_not_compilable("empty program detected during loop optimization"); |
|
1446 |
return; |
|
1447 |
} |
|
1448 |
||
1449 |
// Nothing to do, so get out |
|
1450 |
if( !C->has_loops() && !do_split_ifs && !verify_me) { |
|
1451 |
_igvn.optimize(); // Cleanup NeverBranches |
|
1452 |
return; |
|
1453 |
} |
|
1454 |
||
1455 |
// Set loop nesting depth |
|
1456 |
_ltree_root->set_nest( 0 ); |
|
1457 |
||
1458 |
// Split shared headers and insert loop landing pads. |
|
1459 |
// Do not bother doing this on the Root loop of course. |
|
1460 |
if( !verify_me && _ltree_root->_child ) { |
|
1461 |
if( _ltree_root->_child->beautify_loops( this ) ) { |
|
1462 |
// Re-build loop tree! |
|
1463 |
_ltree_root->_child = NULL; |
|
1464 |
_nodes.clear(); |
|
1465 |
reallocate_preorders(); |
|
1466 |
build_loop_tree(); |
|
1467 |
// Check for bailout, and return |
|
1468 |
if (C->failing()) { |
|
1469 |
return; |
|
1470 |
} |
|
1471 |
// Reset loop nesting depth |
|
1472 |
_ltree_root->set_nest( 0 ); |
|
1473 |
} |
|
1474 |
} |
|
1475 |
||
1476 |
// Build Dominators for elision of NULL checks & loop finding. |
|
1477 |
// Since nodes do not have a slot for immediate dominator, make |
|
1478 |
// a persistant side array for that info indexed on node->_idx. |
|
1479 |
_idom_size = C->unique(); |
|
1480 |
_idom = NEW_RESOURCE_ARRAY( Node*, _idom_size ); |
|
1481 |
_dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size ); |
|
1482 |
_dom_stk = NULL; // Allocated on demand in recompute_dom_depth |
|
1483 |
memset( _dom_depth, 0, _idom_size * sizeof(uint) ); |
|
1484 |
||
1485 |
Dominators(); |
|
1486 |
||
1487 |
// As a side effect, Dominators removed any unreachable CFG paths |
|
1488 |
// into RegionNodes. It doesn't do this test against Root, so |
|
1489 |
// we do it here. |
|
1490 |
for( uint i = 1; i < C->root()->req(); i++ ) { |
|
1491 |
if( !_nodes[C->root()->in(i)->_idx] ) { // Dead path into Root? |
|
1492 |
_igvn.hash_delete(C->root()); |
|
1493 |
C->root()->del_req(i); |
|
1494 |
_igvn._worklist.push(C->root()); |
|
1495 |
i--; // Rerun same iteration on compressed edges |
|
1496 |
} |
|
1497 |
} |
|
1498 |
||
1499 |
// Given dominators, try to find inner loops with calls that must |
|
1500 |
// always be executed (call dominates loop tail). These loops do |
|
1501 |
// not need a seperate safepoint. |
|
1502 |
Node_List cisstack(a); |
|
1503 |
_ltree_root->check_safepts(visited, cisstack); |
|
1504 |
||
1505 |
// Walk the DATA nodes and place into loops. Find earliest control |
|
1506 |
// node. For CFG nodes, the _nodes array starts out and remains |
|
1507 |
// holding the associated IdealLoopTree pointer. For DATA nodes, the |
|
1508 |
// _nodes array holds the earliest legal controlling CFG node. |
|
1509 |
||
1510 |
// Allocate stack with enough space to avoid frequent realloc |
|
1511 |
int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats |
|
1512 |
Node_Stack nstack( a, stack_size ); |
|
1513 |
||
1514 |
visited.Clear(); |
|
1515 |
Node_List worklist(a); |
|
1516 |
// Don't need C->root() on worklist since |
|
1517 |
// it will be processed among C->top() inputs |
|
1518 |
worklist.push( C->top() ); |
|
1519 |
visited.set( C->top()->_idx ); // Set C->top() as visited now |
|
1520 |
build_loop_early( visited, worklist, nstack, verify_me ); |
|
1521 |
||
1522 |
// Given early legal placement, try finding counted loops. This placement |
|
1523 |
// is good enough to discover most loop invariants. |
|
1524 |
if( !verify_me ) |
|
1525 |
_ltree_root->counted_loop( this ); |
|
1526 |
||
1527 |
// Find latest loop placement. Find ideal loop placement. |
|
1528 |
visited.Clear(); |
|
1529 |
init_dom_lca_tags(); |
|
1530 |
// Need C->root() on worklist when processing outs |
|
1531 |
worklist.push( C->root() ); |
|
1532 |
NOT_PRODUCT( C->verify_graph_edges(); ) |
|
1533 |
worklist.push( C->top() ); |
|
1534 |
build_loop_late( visited, worklist, nstack, verify_me ); |
|
1535 |
||
1536 |
// clear out the dead code |
|
1537 |
while(_deadlist.size()) { |
|
1538 |
igvn.remove_globally_dead_node(_deadlist.pop()); |
|
1539 |
} |
|
1540 |
||
1541 |
#ifndef PRODUCT |
|
1542 |
C->verify_graph_edges(); |
|
1543 |
if( verify_me ) { // Nested verify pass? |
|
1544 |
// Check to see if the verify mode is broken |
|
1545 |
assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?"); |
|
1546 |
return; |
|
1547 |
} |
|
1548 |
if( VerifyLoopOptimizations ) verify(); |
|
1549 |
#endif |
|
1550 |
||
1551 |
if (ReassociateInvariants) { |
|
1552 |
// Reassociate invariants and prep for split_thru_phi |
|
1553 |
for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { |
|
1554 |
IdealLoopTree* lpt = iter.current(); |
|
1555 |
if (!lpt->is_counted() || !lpt->is_inner()) continue; |
|
1556 |
||
1557 |
lpt->reassociate_invariants(this); |
|
1558 |
||
1559 |
// Because RCE opportunities can be masked by split_thru_phi, |
|
1560 |
// look for RCE candidates and inhibit split_thru_phi |
|
1561 |
// on just their loop-phi's for this pass of loop opts |
|
1562 |
if( SplitIfBlocks && do_split_ifs ) { |
|
1563 |
if (lpt->policy_range_check(this)) { |
|
212
cd4963e67949
6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents:
190
diff
changeset
|
1564 |
lpt->_rce_candidate = 1; // = true |
1 | 1565 |
} |
1566 |
} |
|
1567 |
} |
|
1568 |
} |
|
1569 |
||
1570 |
// Check for aggressive application of split-if and other transforms |
|
1571 |
// that require basic-block info (like cloning through Phi's) |
|
1572 |
if( SplitIfBlocks && do_split_ifs ) { |
|
1573 |
visited.Clear(); |
|
1574 |
split_if_with_blocks( visited, nstack ); |
|
1575 |
NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); ); |
|
1576 |
} |
|
1577 |
||
1578 |
// Perform iteration-splitting on inner loops. Split iterations to avoid |
|
1579 |
// range checks or one-shot null checks. |
|
1580 |
||
1581 |
// If split-if's didn't hack the graph too bad (no CFG changes) |
|
1582 |
// then do loop opts. |
|
1583 |
if( C->has_loops() && !C->major_progress() ) { |
|
1584 |
memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) ); |
|
1585 |
_ltree_root->_child->iteration_split( this, worklist ); |
|
1586 |
// No verify after peeling! GCM has hoisted code out of the loop. |
|
1587 |
// After peeling, the hoisted code could sink inside the peeled area. |
|
1588 |
// The peeling code does not try to recompute the best location for |
|
1589 |
// all the code before the peeled area, so the verify pass will always |
|
1590 |
// complain about it. |
|
1591 |
} |
|
1592 |
// Do verify graph edges in any case |
|
1593 |
NOT_PRODUCT( C->verify_graph_edges(); ); |
|
1594 |
||
1595 |
if( !do_split_ifs ) { |
|
1596 |
// We saw major progress in Split-If to get here. We forced a |
|
1597 |
// pass with unrolling and not split-if, however more split-if's |
|
1598 |
// might make progress. If the unrolling didn't make progress |
|
1599 |
// then the major-progress flag got cleared and we won't try |
|
1600 |
// another round of Split-If. In particular the ever-common |
|
1601 |
// instance-of/check-cast pattern requires at least 2 rounds of |
|
1602 |
// Split-If to clear out. |
|
1603 |
C->set_major_progress(); |
|
1604 |
} |
|
1605 |
||
1606 |
// Repeat loop optimizations if new loops were seen |
|
1607 |
if (created_loop_node()) { |
|
1608 |
C->set_major_progress(); |
|
1609 |
} |
|
1610 |
||
1611 |
// Convert scalar to superword operations |
|
1612 |
||
1613 |
if (UseSuperWord && C->has_loops() && !C->major_progress()) { |
|
1614 |
// SuperWord transform |
|
1615 |
SuperWord sw(this); |
|
1616 |
for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { |
|
1617 |
IdealLoopTree* lpt = iter.current(); |
|
1618 |
if (lpt->is_counted()) { |
|
1619 |
sw.transform_loop(lpt); |
|
1620 |
} |
|
1621 |
} |
|
1622 |
} |
|
1623 |
||
1624 |
// Cleanup any modified bits |
|
1625 |
_igvn.optimize(); |
|
1626 |
||
1627 |
// Do not repeat loop optimizations if irreducible loops are present |
|
1628 |
// by claiming no-progress. |
|
1629 |
if( _has_irreducible_loops ) |
|
1630 |
C->clear_major_progress(); |
|
1631 |
} |
|
1632 |
||
1633 |
#ifndef PRODUCT |
|
1634 |
//------------------------------print_statistics------------------------------- |
|
1635 |
int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes |
|
1636 |
int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique |
|
1637 |
void PhaseIdealLoop::print_statistics() { |
|
1638 |
tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work); |
|
1639 |
} |
|
1640 |
||
1641 |
//------------------------------verify----------------------------------------- |
|
1642 |
// Build a verify-only PhaseIdealLoop, and see that it agrees with me. |
|
1643 |
static int fail; // debug only, so its multi-thread dont care |
|
1644 |
void PhaseIdealLoop::verify() const { |
|
1645 |
int old_progress = C->major_progress(); |
|
1646 |
ResourceMark rm; |
|
1647 |
PhaseIdealLoop loop_verify( _igvn, this, false ); |
|
1648 |
VectorSet visited(Thread::current()->resource_area()); |
|
1649 |
||
1650 |
fail = 0; |
|
1651 |
verify_compare( C->root(), &loop_verify, visited ); |
|
1652 |
assert( fail == 0, "verify loops failed" ); |
|
1653 |
// Verify loop structure is the same |
|
1654 |
_ltree_root->verify_tree(loop_verify._ltree_root, NULL); |
|
1655 |
// Reset major-progress. It was cleared by creating a verify version of |
|
1656 |
// PhaseIdealLoop. |
|
1657 |
for( int i=0; i<old_progress; i++ ) |
|
1658 |
C->set_major_progress(); |
|
1659 |
} |
|
1660 |
||
1661 |
//------------------------------verify_compare--------------------------------- |
|
1662 |
// Make sure me and the given PhaseIdealLoop agree on key data structures |
|
1663 |
void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const { |
|
1664 |
if( !n ) return; |
|
1665 |
if( visited.test_set( n->_idx ) ) return; |
|
1666 |
if( !_nodes[n->_idx] ) { // Unreachable |
|
1667 |
assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" ); |
|
1668 |
return; |
|
1669 |
} |
|
1670 |
||
1671 |
uint i; |
|
1672 |
for( i = 0; i < n->req(); i++ ) |
|
1673 |
verify_compare( n->in(i), loop_verify, visited ); |
|
1674 |
||
1675 |
// Check the '_nodes' block/loop structure |
|
1676 |
i = n->_idx; |
|
1677 |
if( has_ctrl(n) ) { // We have control; verify has loop or ctrl |
|
1678 |
if( _nodes[i] != loop_verify->_nodes[i] && |
|
1679 |
get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) { |
|
1680 |
tty->print("Mismatched control setting for: "); |
|
1681 |
n->dump(); |
|
1682 |
if( fail++ > 10 ) return; |
|
1683 |
Node *c = get_ctrl_no_update(n); |
|
1684 |
tty->print("We have it as: "); |
|
1685 |
if( c->in(0) ) c->dump(); |
|
1686 |
else tty->print_cr("N%d",c->_idx); |
|
1687 |
tty->print("Verify thinks: "); |
|
1688 |
if( loop_verify->has_ctrl(n) ) |
|
1689 |
loop_verify->get_ctrl_no_update(n)->dump(); |
|
1690 |
else |
|
1691 |
loop_verify->get_loop_idx(n)->dump(); |
|
1692 |
tty->cr(); |
|
1693 |
} |
|
1694 |
} else { // We have a loop |
|
1695 |
IdealLoopTree *us = get_loop_idx(n); |
|
1696 |
if( loop_verify->has_ctrl(n) ) { |
|
1697 |
tty->print("Mismatched loop setting for: "); |
|
1698 |
n->dump(); |
|
1699 |
if( fail++ > 10 ) return; |
|
1700 |
tty->print("We have it as: "); |
|
1701 |
us->dump(); |
|
1702 |
tty->print("Verify thinks: "); |
|
1703 |
loop_verify->get_ctrl_no_update(n)->dump(); |
|
1704 |
tty->cr(); |
|
1705 |
} else if (!C->major_progress()) { |
|
1706 |
// Loop selection can be messed up if we did a major progress |
|
1707 |
// operation, like split-if. Do not verify in that case. |
|
1708 |
IdealLoopTree *them = loop_verify->get_loop_idx(n); |
|
1709 |
if( us->_head != them->_head || us->_tail != them->_tail ) { |
|
1710 |
tty->print("Unequals loops for: "); |
|
1711 |
n->dump(); |
|
1712 |
if( fail++ > 10 ) return; |
|
1713 |
tty->print("We have it as: "); |
|
1714 |
us->dump(); |
|
1715 |
tty->print("Verify thinks: "); |
|
1716 |
them->dump(); |
|
1717 |
tty->cr(); |
|
1718 |
} |
|
1719 |
} |
|
1720 |
} |
|
1721 |
||
1722 |
// Check for immediate dominators being equal |
|
1723 |
if( i >= _idom_size ) { |
|
1724 |
if( !n->is_CFG() ) return; |
|
1725 |
tty->print("CFG Node with no idom: "); |
|
1726 |
n->dump(); |
|
1727 |
return; |
|
1728 |
} |
|
1729 |
if( !n->is_CFG() ) return; |
|
1730 |
if( n == C->root() ) return; // No IDOM here |
|
1731 |
||
1732 |
assert(n->_idx == i, "sanity"); |
|
1733 |
Node *id = idom_no_update(n); |
|
1734 |
if( id != loop_verify->idom_no_update(n) ) { |
|
1735 |
tty->print("Unequals idoms for: "); |
|
1736 |
n->dump(); |
|
1737 |
if( fail++ > 10 ) return; |
|
1738 |
tty->print("We have it as: "); |
|
1739 |
id->dump(); |
|
1740 |
tty->print("Verify thinks: "); |
|
1741 |
loop_verify->idom_no_update(n)->dump(); |
|
1742 |
tty->cr(); |
|
1743 |
} |
|
1744 |
||
1745 |
} |
|
1746 |
||
1747 |
//------------------------------verify_tree------------------------------------ |
|
1748 |
// Verify that tree structures match. Because the CFG can change, siblings |
|
1749 |
// within the loop tree can be reordered. We attempt to deal with that by |
|
1750 |
// reordering the verify's loop tree if possible. |
|
1751 |
void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const { |
|
1752 |
assert( _parent == parent, "Badly formed loop tree" ); |
|
1753 |
||
1754 |
// Siblings not in same order? Attempt to re-order. |
|
1755 |
if( _head != loop->_head ) { |
|
1756 |
// Find _next pointer to update |
|
1757 |
IdealLoopTree **pp = &loop->_parent->_child; |
|
1758 |
while( *pp != loop ) |
|
1759 |
pp = &((*pp)->_next); |
|
1760 |
// Find proper sibling to be next |
|
1761 |
IdealLoopTree **nn = &loop->_next; |
|
1762 |
while( (*nn) && (*nn)->_head != _head ) |
|
1763 |
nn = &((*nn)->_next); |
|
1764 |
||
1765 |
// Check for no match. |
|
1766 |
if( !(*nn) ) { |
|
1767 |
// Annoyingly, irreducible loops can pick different headers |
|
1768 |
// after a major_progress operation, so the rest of the loop |
|
1769 |
// tree cannot be matched. |
|
1770 |
if (_irreducible && Compile::current()->major_progress()) return; |
|
1771 |
assert( 0, "failed to match loop tree" ); |
|
1772 |
} |
|
1773 |
||
1774 |
// Move (*nn) to (*pp) |
|
1775 |
IdealLoopTree *hit = *nn; |
|
1776 |
*nn = hit->_next; |
|
1777 |
hit->_next = loop; |
|
1778 |
*pp = loop; |
|
1779 |
loop = hit; |
|
1780 |
// Now try again to verify |
|
1781 |
} |
|
1782 |
||
1783 |
assert( _head == loop->_head , "mismatched loop head" ); |
|
1784 |
Node *tail = _tail; // Inline a non-updating version of |
|
1785 |
while( !tail->in(0) ) // the 'tail()' call. |
|
1786 |
tail = tail->in(1); |
|
1787 |
assert( tail == loop->_tail, "mismatched loop tail" ); |
|
1788 |
||
1789 |
// Counted loops that are guarded should be able to find their guards |
|
1790 |
if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) { |
|
1791 |
CountedLoopNode *cl = _head->as_CountedLoop(); |
|
1792 |
Node *init = cl->init_trip(); |
|
1793 |
Node *ctrl = cl->in(LoopNode::EntryControl); |
|
1794 |
assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" ); |
|
1795 |
Node *iff = ctrl->in(0); |
|
1796 |
assert( iff->Opcode() == Op_If, "" ); |
|
1797 |
Node *bol = iff->in(1); |
|
1798 |
assert( bol->Opcode() == Op_Bool, "" ); |
|
1799 |
Node *cmp = bol->in(1); |
|
1800 |
assert( cmp->Opcode() == Op_CmpI, "" ); |
|
1801 |
Node *add = cmp->in(1); |
|
1802 |
Node *opaq; |
|
1803 |
if( add->Opcode() == Op_Opaque1 ) { |
|
1804 |
opaq = add; |
|
1805 |
} else { |
|
1806 |
assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" ); |
|
1807 |
assert( add == init, "" ); |
|
1808 |
opaq = cmp->in(2); |
|
1809 |
} |
|
1810 |
assert( opaq->Opcode() == Op_Opaque1, "" ); |
|
1811 |
||
1812 |
} |
|
1813 |
||
1814 |
if (_child != NULL) _child->verify_tree(loop->_child, this); |
|
1815 |
if (_next != NULL) _next ->verify_tree(loop->_next, parent); |
|
1816 |
// Innermost loops need to verify loop bodies, |
|
1817 |
// but only if no 'major_progress' |
|
1818 |
int fail = 0; |
|
1819 |
if (!Compile::current()->major_progress() && _child == NULL) { |
|
1820 |
for( uint i = 0; i < _body.size(); i++ ) { |
|
1821 |
Node *n = _body.at(i); |
|
1822 |
if (n->outcnt() == 0) continue; // Ignore dead |
|
1823 |
uint j; |
|
1824 |
for( j = 0; j < loop->_body.size(); j++ ) |
|
1825 |
if( loop->_body.at(j) == n ) |
|
1826 |
break; |
|
1827 |
if( j == loop->_body.size() ) { // Not found in loop body |
|
1828 |
// Last ditch effort to avoid assertion: Its possible that we |
|
1829 |
// have some users (so outcnt not zero) but are still dead. |
|
1830 |
// Try to find from root. |
|
1831 |
if (Compile::current()->root()->find(n->_idx)) { |
|
1832 |
fail++; |
|
1833 |
tty->print("We have that verify does not: "); |
|
1834 |
n->dump(); |
|
1835 |
} |
|
1836 |
} |
|
1837 |
} |
|
1838 |
for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) { |
|
1839 |
Node *n = loop->_body.at(i2); |
|
1840 |
if (n->outcnt() == 0) continue; // Ignore dead |
|
1841 |
uint j; |
|
1842 |
for( j = 0; j < _body.size(); j++ ) |
|
1843 |
if( _body.at(j) == n ) |
|
1844 |
break; |
|
1845 |
if( j == _body.size() ) { // Not found in loop body |
|
1846 |
// Last ditch effort to avoid assertion: Its possible that we |
|
1847 |
// have some users (so outcnt not zero) but are still dead. |
|
1848 |
// Try to find from root. |
|
1849 |
if (Compile::current()->root()->find(n->_idx)) { |
|
1850 |
fail++; |
|
1851 |
tty->print("Verify has that we do not: "); |
|
1852 |
n->dump(); |
|
1853 |
} |
|
1854 |
} |
|
1855 |
} |
|
1856 |
assert( !fail, "loop body mismatch" ); |
|
1857 |
} |
|
1858 |
} |
|
1859 |
||
1860 |
#endif |
|
1861 |
||
1862 |
//------------------------------set_idom--------------------------------------- |
|
1863 |
void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) { |
|
1864 |
uint idx = d->_idx; |
|
1865 |
if (idx >= _idom_size) { |
|
1866 |
uint newsize = _idom_size<<1; |
|
1867 |
while( idx >= newsize ) { |
|
1868 |
newsize <<= 1; |
|
1869 |
} |
|
1870 |
_idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize); |
|
1871 |
_dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize); |
|
1872 |
memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) ); |
|
1873 |
_idom_size = newsize; |
|
1874 |
} |
|
1875 |
_idom[idx] = n; |
|
1876 |
_dom_depth[idx] = dom_depth; |
|
1877 |
} |
|
1878 |
||
1879 |
//------------------------------recompute_dom_depth--------------------------------------- |
|
1880 |
// The dominator tree is constructed with only parent pointers. |
|
1881 |
// This recomputes the depth in the tree by first tagging all |
|
1882 |
// nodes as "no depth yet" marker. The next pass then runs up |
|
1883 |
// the dom tree from each node marked "no depth yet", and computes |
|
1884 |
// the depth on the way back down. |
|
1885 |
void PhaseIdealLoop::recompute_dom_depth() { |
|
1886 |
uint no_depth_marker = C->unique(); |
|
1887 |
uint i; |
|
1888 |
// Initialize depth to "no depth yet" |
|
1889 |
for (i = 0; i < _idom_size; i++) { |
|
1890 |
if (_dom_depth[i] > 0 && _idom[i] != NULL) { |
|
1891 |
_dom_depth[i] = no_depth_marker; |
|
1892 |
} |
|
1893 |
} |
|
1894 |
if (_dom_stk == NULL) { |
|
1895 |
uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size. |
|
1896 |
if (init_size < 10) init_size = 10; |
|
1897 |
_dom_stk = new (C->node_arena()) GrowableArray<uint>(C->node_arena(), init_size, 0, 0); |
|
1898 |
} |
|
1899 |
// Compute new depth for each node. |
|
1900 |
for (i = 0; i < _idom_size; i++) { |
|
1901 |
uint j = i; |
|
1902 |
// Run up the dom tree to find a node with a depth |
|
1903 |
while (_dom_depth[j] == no_depth_marker) { |
|
1904 |
_dom_stk->push(j); |
|
1905 |
j = _idom[j]->_idx; |
|
1906 |
} |
|
1907 |
// Compute the depth on the way back down this tree branch |
|
1908 |
uint dd = _dom_depth[j] + 1; |
|
1909 |
while (_dom_stk->length() > 0) { |
|
1910 |
uint j = _dom_stk->pop(); |
|
1911 |
_dom_depth[j] = dd; |
|
1912 |
dd++; |
|
1913 |
} |
|
1914 |
} |
|
1915 |
} |
|
1916 |
||
1917 |
//------------------------------sort------------------------------------------- |
|
1918 |
// Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the |
|
1919 |
// loop tree, not the root. |
|
1920 |
IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) { |
|
1921 |
if( !innermost ) return loop; // New innermost loop |
|
1922 |
||
1923 |
int loop_preorder = get_preorder(loop->_head); // Cache pre-order number |
|
1924 |
assert( loop_preorder, "not yet post-walked loop" ); |
|
1925 |
IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer |
|
1926 |
IdealLoopTree *l = *pp; // Do I go before or after 'l'? |
|
1927 |
||
1928 |
// Insert at start of list |
|
1929 |
while( l ) { // Insertion sort based on pre-order |
|
1930 |
if( l == loop ) return innermost; // Already on list! |
|
1931 |
int l_preorder = get_preorder(l->_head); // Cache pre-order number |
|
1932 |
assert( l_preorder, "not yet post-walked l" ); |
|
1933 |
// Check header pre-order number to figure proper nesting |
|
1934 |
if( loop_preorder > l_preorder ) |
|
1935 |
break; // End of insertion |
|
1936 |
// If headers tie (e.g., shared headers) check tail pre-order numbers. |
|
1937 |
// Since I split shared headers, you'd think this could not happen. |
|
1938 |
// BUT: I must first do the preorder numbering before I can discover I |
|
1939 |
// have shared headers, so the split headers all get the same preorder |
|
1940 |
// number as the RegionNode they split from. |
|
1941 |
if( loop_preorder == l_preorder && |
|
1942 |
get_preorder(loop->_tail) < get_preorder(l->_tail) ) |
|
1943 |
break; // Also check for shared headers (same pre#) |
|
1944 |
pp = &l->_parent; // Chain up list |
|
1945 |
l = *pp; |
|
1946 |
} |
|
1947 |
// Link into list |
|
1948 |
// Point predecessor to me |
|
1949 |
*pp = loop; |
|
1950 |
// Point me to successor |
|
1951 |
IdealLoopTree *p = loop->_parent; |
|
1952 |
loop->_parent = l; // Point me to successor |
|
1953 |
if( p ) sort( p, innermost ); // Insert my parents into list as well |
|
1954 |
return innermost; |
|
1955 |
} |
|
1956 |
||
1957 |
//------------------------------build_loop_tree-------------------------------- |
|
1958 |
// I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit |
|
1959 |
// bits. The _nodes[] array is mapped by Node index and holds a NULL for |
|
1960 |
// not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the |
|
1961 |
// tightest enclosing IdealLoopTree for post-walked. |
|
1962 |
// |
|
1963 |
// During my forward walk I do a short 1-layer lookahead to see if I can find |
|
1964 |
// a loop backedge with that doesn't have any work on the backedge. This |
|
1965 |
// helps me construct nested loops with shared headers better. |
|
1966 |
// |
|
1967 |
// Once I've done the forward recursion, I do the post-work. For each child |
|
1968 |
// I check to see if there is a backedge. Backedges define a loop! I |
|
1969 |
// insert an IdealLoopTree at the target of the backedge. |
|
1970 |
// |
|
1971 |
// During the post-work I also check to see if I have several children |
|
1972 |
// belonging to different loops. If so, then this Node is a decision point |
|
1973 |
// where control flow can choose to change loop nests. It is at this |
|
1974 |
// decision point where I can figure out how loops are nested. At this |
|
1975 |
// time I can properly order the different loop nests from my children. |
|
1976 |
// Note that there may not be any backedges at the decision point! |
|
1977 |
// |
|
1978 |
// Since the decision point can be far removed from the backedges, I can't |
|
1979 |
// order my loops at the time I discover them. Thus at the decision point |
|
1980 |
// I need to inspect loop header pre-order numbers to properly nest my |
|
1981 |
// loops. This means I need to sort my childrens' loops by pre-order. |
|
1982 |
// The sort is of size number-of-control-children, which generally limits |
|
1983 |
// it to size 2 (i.e., I just choose between my 2 target loops). |
|
1984 |
void PhaseIdealLoop::build_loop_tree() { |
|
1985 |
// Allocate stack of size C->unique()/2 to avoid frequent realloc |
|
1986 |
GrowableArray <Node *> bltstack(C->unique() >> 1); |
|
1987 |
Node *n = C->root(); |
|
1988 |
bltstack.push(n); |
|
1989 |
int pre_order = 1; |
|
1990 |
int stack_size; |
|
1991 |
||
1992 |
while ( ( stack_size = bltstack.length() ) != 0 ) { |
|
1993 |
n = bltstack.top(); // Leave node on stack |
|
1994 |
if ( !is_visited(n) ) { |
|
1995 |
// ---- Pre-pass Work ---- |
|
1996 |
// Pre-walked but not post-walked nodes need a pre_order number. |
|
1997 |
||
1998 |
set_preorder_visited( n, pre_order ); // set as visited |
|
1999 |
||
2000 |
// ---- Scan over children ---- |
|
2001 |
// Scan first over control projections that lead to loop headers. |
|
2002 |
// This helps us find inner-to-outer loops with shared headers better. |
|
2003 |
||
2004 |
// Scan children's children for loop headers. |
|
2005 |
for ( int i = n->outcnt() - 1; i >= 0; --i ) { |
|
2006 |
Node* m = n->raw_out(i); // Child |
|
2007 |
if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children |
|
2008 |
// Scan over children's children to find loop |
|
2009 |
for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { |
|
2010 |
Node* l = m->fast_out(j); |
|
2011 |
if( is_visited(l) && // Been visited? |
|
2012 |
!is_postvisited(l) && // But not post-visited |
|
2013 |
get_preorder(l) < pre_order ) { // And smaller pre-order |
|
2014 |
// Found! Scan the DFS down this path before doing other paths |
|
2015 |
bltstack.push(m); |
|
2016 |
break; |
|
2017 |
} |
|
2018 |
} |
|
2019 |
} |
|
2020 |
} |
|
2021 |
pre_order++; |
|
2022 |
} |
|
2023 |
else if ( !is_postvisited(n) ) { |
|
2024 |
// Note: build_loop_tree_impl() adds out edges on rare occasions, |
|
2025 |
// such as com.sun.rsasign.am::a. |
|
2026 |
// For non-recursive version, first, process current children. |
|
2027 |
// On next iteration, check if additional children were added. |
|
2028 |
for ( int k = n->outcnt() - 1; k >= 0; --k ) { |
|
2029 |
Node* u = n->raw_out(k); |
|
2030 |
if ( u->is_CFG() && !is_visited(u) ) { |
|
2031 |
bltstack.push(u); |
|
2032 |
} |
|
2033 |
} |
|
2034 |
if ( bltstack.length() == stack_size ) { |
|
2035 |
// There were no additional children, post visit node now |
|
2036 |
(void)bltstack.pop(); // Remove node from stack |
|
2037 |
pre_order = build_loop_tree_impl( n, pre_order ); |
|
2038 |
// Check for bailout |
|
2039 |
if (C->failing()) { |
|
2040 |
return; |
|
2041 |
} |
|
2042 |
// Check to grow _preorders[] array for the case when |
|
2043 |
// build_loop_tree_impl() adds new nodes. |
|
2044 |
check_grow_preorders(); |
|
2045 |
} |
|
2046 |
} |
|
2047 |
else { |
|
2048 |
(void)bltstack.pop(); // Remove post-visited node from stack |
|
2049 |
} |
|
2050 |
} |
|
2051 |
} |
|
2052 |
||
2053 |
//------------------------------build_loop_tree_impl--------------------------- |
|
2054 |
int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) { |
|
2055 |
// ---- Post-pass Work ---- |
|
2056 |
// Pre-walked but not post-walked nodes need a pre_order number. |
|
2057 |
||
2058 |
// Tightest enclosing loop for this Node |
|
2059 |
IdealLoopTree *innermost = NULL; |
|
2060 |
||
2061 |
// For all children, see if any edge is a backedge. If so, make a loop |
|
2062 |
// for it. Then find the tightest enclosing loop for the self Node. |
|
2063 |
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { |
|
2064 |
Node* m = n->fast_out(i); // Child |
|
2065 |
if( n == m ) continue; // Ignore control self-cycles |
|
2066 |
if( !m->is_CFG() ) continue;// Ignore non-CFG edges |
|
2067 |
||
2068 |
IdealLoopTree *l; // Child's loop |
|
2069 |
if( !is_postvisited(m) ) { // Child visited but not post-visited? |
|
2070 |
// Found a backedge |
|
2071 |
assert( get_preorder(m) < pre_order, "should be backedge" ); |
|
2072 |
// Check for the RootNode, which is already a LoopNode and is allowed |
|
2073 |
// to have multiple "backedges". |
|
2074 |
if( m == C->root()) { // Found the root? |
|
2075 |
l = _ltree_root; // Root is the outermost LoopNode |
|
2076 |
} else { // Else found a nested loop |
|
2077 |
// Insert a LoopNode to mark this loop. |
|
2078 |
l = new IdealLoopTree(this, m, n); |
|
2079 |
} // End of Else found a nested loop |
|
2080 |
if( !has_loop(m) ) // If 'm' does not already have a loop set |
|
2081 |
set_loop(m, l); // Set loop header to loop now |
|
2082 |
||
2083 |
} else { // Else not a nested loop |
|
2084 |
if( !_nodes[m->_idx] ) continue; // Dead code has no loop |
|
2085 |
l = get_loop(m); // Get previously determined loop |
|
2086 |
// If successor is header of a loop (nest), move up-loop till it |
|
2087 |
// is a member of some outer enclosing loop. Since there are no |
|
2088 |
// shared headers (I've split them already) I only need to go up |
|
2089 |
// at most 1 level. |
|
2090 |
while( l && l->_head == m ) // Successor heads loop? |
|
2091 |
l = l->_parent; // Move up 1 for me |
|
2092 |
// If this loop is not properly parented, then this loop |
|
2093 |
// has no exit path out, i.e. its an infinite loop. |
|
2094 |
if( !l ) { |
|
2095 |
// Make loop "reachable" from root so the CFG is reachable. Basically |
|
2096 |
// insert a bogus loop exit that is never taken. 'm', the loop head, |
|
2097 |
// points to 'n', one (of possibly many) fall-in paths. There may be |
|
2098 |
// many backedges as well. |
|
2099 |
||
2100 |
// Here I set the loop to be the root loop. I could have, after |
|
2101 |
// inserting a bogus loop exit, restarted the recursion and found my |
|
2102 |
// new loop exit. This would make the infinite loop a first-class |
|
2103 |
// loop and it would then get properly optimized. What's the use of |
|
2104 |
// optimizing an infinite loop? |
|
2105 |
l = _ltree_root; // Oops, found infinite loop |
|
2106 |
||
2107 |
// Insert the NeverBranch between 'm' and it's control user. |
|
2108 |
NeverBranchNode *iff = new (C, 1) NeverBranchNode( m ); |
|
2109 |
_igvn.register_new_node_with_optimizer(iff); |
|
2110 |
set_loop(iff, l); |
|
2111 |
Node *if_t = new (C, 1) CProjNode( iff, 0 ); |
|
2112 |
_igvn.register_new_node_with_optimizer(if_t); |
|
2113 |
set_loop(if_t, l); |
|
2114 |
||
2115 |
Node* cfg = NULL; // Find the One True Control User of m |
|
2116 |
for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { |
|
2117 |
Node* x = m->fast_out(j); |
|
2118 |
if (x->is_CFG() && x != m && x != iff) |
|
2119 |
{ cfg = x; break; } |
|
2120 |
} |
|
2121 |
assert(cfg != NULL, "must find the control user of m"); |
|
2122 |
uint k = 0; // Probably cfg->in(0) |
|
2123 |
while( cfg->in(k) != m ) k++; // But check incase cfg is a Region |
|
2124 |
cfg->set_req( k, if_t ); // Now point to NeverBranch |
|
2125 |
||
2126 |
// Now create the never-taken loop exit |
|
2127 |
Node *if_f = new (C, 1) CProjNode( iff, 1 ); |
|
2128 |
_igvn.register_new_node_with_optimizer(if_f); |
|
2129 |
set_loop(if_f, l); |
|
2130 |
// Find frame ptr for Halt. Relies on the optimizer |
|
2131 |
// V-N'ing. Easier and quicker than searching through |
|
2132 |
// the program structure. |
|
2133 |
Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr ); |
|
2134 |
_igvn.register_new_node_with_optimizer(frame); |
|
2135 |
// Halt & Catch Fire |
|
2136 |
Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame ); |
|
2137 |
_igvn.register_new_node_with_optimizer(halt); |
|
2138 |
set_loop(halt, l); |
|
2139 |
C->root()->add_req(halt); |
|
2140 |
set_loop(C->root(), _ltree_root); |
|
2141 |
} |
|
2142 |
} |
|
2143 |
// Weeny check for irreducible. This child was already visited (this |
|
2144 |
// IS the post-work phase). Is this child's loop header post-visited |
|
2145 |
// as well? If so, then I found another entry into the loop. |
|
2146 |
while( is_postvisited(l->_head) ) { |
|
2147 |
// found irreducible |
|
212
cd4963e67949
6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents:
190
diff
changeset
|
2148 |
l->_irreducible = 1; // = true |
1 | 2149 |
l = l->_parent; |
2150 |
_has_irreducible_loops = true; |
|
2151 |
// Check for bad CFG here to prevent crash, and bailout of compile |
|
2152 |
if (l == NULL) { |
|
2153 |
C->record_method_not_compilable("unhandled CFG detected during loop optimization"); |
|
2154 |
return pre_order; |
|
2155 |
} |
|
2156 |
} |
|
2157 |
||
2158 |
// This Node might be a decision point for loops. It is only if |
|
2159 |
// it's children belong to several different loops. The sort call |
|
2160 |
// does a trivial amount of work if there is only 1 child or all |
|
2161 |
// children belong to the same loop. If however, the children |
|
2162 |
// belong to different loops, the sort call will properly set the |
|
2163 |
// _parent pointers to show how the loops nest. |
|
2164 |
// |
|
2165 |
// In any case, it returns the tightest enclosing loop. |
|
2166 |
innermost = sort( l, innermost ); |
|
2167 |
} |
|
2168 |
||
2169 |
// Def-use info will have some dead stuff; dead stuff will have no |
|
2170 |
// loop decided on. |
|
2171 |
||
2172 |
// Am I a loop header? If so fix up my parent's child and next ptrs. |
|
2173 |
if( innermost && innermost->_head == n ) { |
|
2174 |
assert( get_loop(n) == innermost, "" ); |
|
2175 |
IdealLoopTree *p = innermost->_parent; |
|
2176 |
IdealLoopTree *l = innermost; |
|
2177 |
while( p && l->_head == n ) { |
|
2178 |
l->_next = p->_child; // Put self on parents 'next child' |
|
2179 |
p->_child = l; // Make self as first child of parent |
|
2180 |
l = p; // Now walk up the parent chain |
|
2181 |
p = l->_parent; |
|
2182 |
} |
|
2183 |
} else { |
|
2184 |
// Note that it is possible for a LoopNode to reach here, if the |
|
2185 |
// backedge has been made unreachable (hence the LoopNode no longer |
|
2186 |
// denotes a Loop, and will eventually be removed). |
|
2187 |
||
2188 |
// Record tightest enclosing loop for self. Mark as post-visited. |
|
2189 |
set_loop(n, innermost); |
|
2190 |
// Also record has_call flag early on |
|
2191 |
if( innermost ) { |
|
2192 |
if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) { |
|
2193 |
// Do not count uncommon calls |
|
2194 |
if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) { |
|
2195 |
Node *iff = n->in(0)->in(0); |
|
2196 |
if( !iff->is_If() || |
|
2197 |
(n->in(0)->Opcode() == Op_IfFalse && |
|
2198 |
(1.0 - iff->as_If()->_prob) >= 0.01) || |
|
2199 |
(iff->as_If()->_prob >= 0.01) ) |
|
2200 |
innermost->_has_call = 1; |
|
2201 |
} |
|
212
cd4963e67949
6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents:
190
diff
changeset
|
2202 |
} else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) { |
cd4963e67949
6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents:
190
diff
changeset
|
2203 |
// Disable loop optimizations if the loop has a scalar replaceable |
cd4963e67949
6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents:
190
diff
changeset
|
2204 |
// allocation. This disabling may cause a potential performance lost |
cd4963e67949
6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents:
190
diff
changeset
|
2205 |
// if the allocation is not eliminated for some reason. |
cd4963e67949
6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents:
190
diff
changeset
|
2206 |
innermost->_allow_optimizations = false; |
cd4963e67949
6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
kvn
parents:
190
diff
changeset
|
2207 |
innermost->_has_call = 1; // = true |
1 | 2208 |
} |
2209 |
} |
|
2210 |
} |
|
2211 |
||
2212 |
// Flag as post-visited now |
|
2213 |
set_postvisited(n); |
|
2214 |
return pre_order; |
|
2215 |
} |
|
2216 |
||
2217 |
||
2218 |
//------------------------------build_loop_early------------------------------- |
|
2219 |
// Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping. |
|
2220 |
// First pass computes the earliest controlling node possible. This is the |
|
2221 |
// controlling input with the deepest dominating depth. |
|
2222 |
void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) { |
|
2223 |
while (worklist.size() != 0) { |
|
2224 |
// Use local variables nstack_top_n & nstack_top_i to cache values |
|
2225 |
// on nstack's top. |
|
2226 |
Node *nstack_top_n = worklist.pop(); |
|
2227 |
uint nstack_top_i = 0; |
|
2228 |
//while_nstack_nonempty: |
|
2229 |
while (true) { |
|
2230 |
// Get parent node and next input's index from stack's top. |
|
2231 |
Node *n = nstack_top_n; |
|
2232 |
uint i = nstack_top_i; |
|
2233 |
uint cnt = n->req(); // Count of inputs |
|
2234 |
if (i == 0) { // Pre-process the node. |
|
2235 |
if( has_node(n) && // Have either loop or control already? |
|
2236 |
!has_ctrl(n) ) { // Have loop picked out already? |
|
2237 |
// During "merge_many_backedges" we fold up several nested loops |
|
2238 |
// into a single loop. This makes the members of the original |
|
2239 |
// loop bodies pointing to dead loops; they need to move up |
|
2240 |
// to the new UNION'd larger loop. I set the _head field of these |
|
2241 |
// dead loops to NULL and the _parent field points to the owning |
|
2242 |
// loop. Shades of UNION-FIND algorithm. |
|
2243 |
IdealLoopTree *ilt; |
|
2244 |
while( !(ilt = get_loop(n))->_head ) { |
|
2245 |
// Normally I would use a set_loop here. But in this one special |
|
2246 |
// case, it is legal (and expected) to change what loop a Node |
|
2247 |
// belongs to. |
|
2248 |
_nodes.map(n->_idx, (Node*)(ilt->_parent) ); |
|
2249 |
} |
|
2250 |
// Remove safepoints ONLY if I've already seen I don't need one. |
|
2251 |
// (the old code here would yank a 2nd safepoint after seeing a |
|
2252 |
// first one, even though the 1st did not dominate in the loop body |
|
2253 |
// and thus could be avoided indefinitely) |
|
2254 |
if( !verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint && |
|
2255 |
is_deleteable_safept(n)) { |
|
2256 |
Node *in = n->in(TypeFunc::Control); |
|
2257 |
lazy_replace(n,in); // Pull safepoint now |
|
2258 |
// Carry on with the recursion "as if" we are walking |
|
2259 |
// only the control input |
|
2260 |
if( !visited.test_set( in->_idx ) ) { |
|
2261 |
worklist.push(in); // Visit this guy later, using worklist |
|
2262 |
} |
|
2263 |
// Get next node from nstack: |
|
2264 |
// - skip n's inputs processing by setting i > cnt; |
|
2265 |
// - we also will not call set_early_ctrl(n) since |
|
2266 |
// has_node(n) == true (see the condition above). |
|
2267 |
i = cnt + 1; |
|
2268 |
} |
|
2269 |
} |
|
2270 |
} // if (i == 0) |
|
2271 |
||
2272 |
// Visit all inputs |
|
2273 |
bool done = true; // Assume all n's inputs will be processed |
|
2274 |
while (i < cnt) { |
|
2275 |
Node *in = n->in(i); |
|
2276 |
++i; |
|
2277 |
if (in == NULL) continue; |
|
2278 |
if (in->pinned() && !in->is_CFG()) |
|
2279 |
set_ctrl(in, in->in(0)); |
|
2280 |
int is_visited = visited.test_set( in->_idx ); |
|
2281 |
if (!has_node(in)) { // No controlling input yet? |
|
2282 |
assert( !in->is_CFG(), "CFG Node with no controlling input?" ); |
|
2283 |
assert( !is_visited, "visit only once" ); |
|
2284 |
nstack.push(n, i); // Save parent node and next input's index. |
|
2285 |
nstack_top_n = in; // Process current input now. |
|
2286 |
nstack_top_i = 0; |
|
2287 |
done = false; // Not all n's inputs processed. |
|
2288 |
break; // continue while_nstack_nonempty; |
|
2289 |
} else if (!is_visited) { |
|
2290 |
// This guy has a location picked out for him, but has not yet |
|
2291 |
// been visited. Happens to all CFG nodes, for instance. |
|
2292 |
// Visit him using the worklist instead of recursion, to break |
|
2293 |
// cycles. Since he has a location already we do not need to |
|
2294 |
// find his location before proceeding with the current Node. |
|
2295 |
worklist.push(in); // Visit this guy later, using worklist |
|
2296 |
} |
|
2297 |
} |
|
2298 |
if (done) { |
|
2299 |
// All of n's inputs have been processed, complete post-processing. |
|
2300 |
||
2301 |
// Compute earilest point this Node can go. |
|
2302 |
// CFG, Phi, pinned nodes already know their controlling input. |
|
2303 |
if (!has_node(n)) { |
|
2304 |
// Record earliest legal location |
|
2305 |
set_early_ctrl( n ); |
|
2306 |
} |
|
2307 |
if (nstack.is_empty()) { |
|
2308 |
// Finished all nodes on stack. |
|
2309 |
// Process next node on the worklist. |
|
2310 |
break; |
|
2311 |
} |
|
2312 |
// Get saved parent node and next input's index. |
|
2313 |
nstack_top_n = nstack.node(); |
|
2314 |
nstack_top_i = nstack.index(); |
|
2315 |
nstack.pop(); |
|
2316 |
} |
|
2317 |
} // while (true) |
|
2318 |
} |
|
2319 |
} |
|
2320 |
||
2321 |
//------------------------------dom_lca_internal-------------------------------- |
|
2322 |
// Pair-wise LCA |
|
2323 |
Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const { |
|
2324 |
if( !n1 ) return n2; // Handle NULL original LCA |
|
2325 |
assert( n1->is_CFG(), "" ); |
|
2326 |
assert( n2->is_CFG(), "" ); |
|
2327 |
// find LCA of all uses |
|
2328 |
uint d1 = dom_depth(n1); |
|
2329 |
uint d2 = dom_depth(n2); |
|
2330 |
while (n1 != n2) { |
|
2331 |
if (d1 > d2) { |
|
2332 |
n1 = idom(n1); |
|
2333 |
d1 = dom_depth(n1); |
|
2334 |
} else if (d1 < d2) { |
|
2335 |
n2 = idom(n2); |
|
2336 |
d2 = dom_depth(n2); |
|
2337 |
} else { |
|
2338 |
// Here d1 == d2. Due to edits of the dominator-tree, sections |
|
2339 |
// of the tree might have the same depth. These sections have |
|
2340 |
// to be searched more carefully. |
|
2341 |
||
2342 |
// Scan up all the n1's with equal depth, looking for n2. |
|
2343 |
Node *t1 = idom(n1); |
|
2344 |
while (dom_depth(t1) == d1) { |
|
2345 |
if (t1 == n2) return n2; |
|
2346 |
t1 = idom(t1); |
|
2347 |
} |
|
2348 |
// Scan up all the n2's with equal depth, looking for n1. |
|
2349 |
Node *t2 = idom(n2); |
|
2350 |
while (dom_depth(t2) == d2) { |
|
2351 |
if (t2 == n1) return n1; |
|
2352 |
t2 = idom(t2); |
|
2353 |
} |
|
2354 |
// Move up to a new dominator-depth value as well as up the dom-tree. |
|
2355 |
n1 = t1; |
|
2356 |
n2 = t2; |
|
2357 |
d1 = dom_depth(n1); |
|
2358 |
d2 = dom_depth(n2); |
|
2359 |
} |
|
2360 |
} |
|
2361 |
return n1; |
|
2362 |
} |
|
2363 |
||
2364 |
//------------------------------compute_idom----------------------------------- |
|
2365 |
// Locally compute IDOM using dom_lca call. Correct only if the incoming |
|
2366 |
// IDOMs are correct. |
|
2367 |
Node *PhaseIdealLoop::compute_idom( Node *region ) const { |
|
2368 |
assert( region->is_Region(), "" ); |
|
2369 |
Node *LCA = NULL; |
|
2370 |
for( uint i = 1; i < region->req(); i++ ) { |
|
2371 |
if( region->in(i) != C->top() ) |
|
2372 |
LCA = dom_lca( LCA, region->in(i) ); |
|
2373 |
} |
|
2374 |
return LCA; |
|
2375 |
} |
|
2376 |
||
2377 |
//------------------------------get_late_ctrl---------------------------------- |
|
2378 |
// Compute latest legal control. |
|
2379 |
Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) { |
|
2380 |
assert(early != NULL, "early control should not be NULL"); |
|
2381 |
||
2382 |
// Compute LCA over list of uses |
|
2383 |
Node *LCA = NULL; |
|
2384 |
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) { |
|
2385 |
Node* c = n->fast_out(i); |
|
2386 |
if (_nodes[c->_idx] == NULL) |
|
2387 |
continue; // Skip the occasional dead node |
|
2388 |
if( c->is_Phi() ) { // For Phis, we must land above on the path |
|
2389 |
for( uint j=1; j<c->req(); j++ ) {// For all inputs |
|
2390 |
if( c->in(j) == n ) { // Found matching input? |
|
2391 |
Node *use = c->in(0)->in(j); |
|
2392 |
LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); |
|
2393 |
} |
|
2394 |
} |
|
2395 |
} else { |
|
2396 |
// For CFG data-users, use is in the block just prior |
|
2397 |
Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0); |
|
2398 |
LCA = dom_lca_for_get_late_ctrl( LCA, use, n ); |
|
2399 |
} |
|
2400 |
} |
|
2401 |
||
2402 |
// if this is a load, check for anti-dependent stores |
|
2403 |
// We use a conservative algorithm to identify potential interfering |
|
2404 |
// instructions and for rescheduling the load. The users of the memory |
|
2405 |
// input of this load are examined. Any use which is not a load and is |
|
2406 |
// dominated by early is considered a potentially interfering store. |
|
2407 |
// This can produce false positives. |
|
2408 |
if (n->is_Load() && LCA != early) { |
|
2409 |
Node_List worklist; |
|
2410 |
||
2411 |
Node *mem = n->in(MemNode::Memory); |
|
2412 |
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { |
|
2413 |
Node* s = mem->fast_out(i); |
|
2414 |
worklist.push(s); |
|
2415 |
} |
|
2416 |
while(worklist.size() != 0 && LCA != early) { |
|
2417 |
Node* s = worklist.pop(); |
|
2418 |
if (s->is_Load()) { |
|
2419 |
continue; |
|
2420 |
} else if (s->is_MergeMem()) { |
|
2421 |
for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) { |
|
2422 |
Node* s1 = s->fast_out(i); |
|
2423 |
worklist.push(s1); |
|
2424 |
} |
|
2425 |
} else { |
|
2426 |
Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0); |
|
2427 |
assert(sctrl != NULL || s->outcnt() == 0, "must have control"); |
|
2428 |
if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) { |
|
2429 |
LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n); |
|
2430 |
} |
|
2431 |
} |
|
2432 |
} |
|
2433 |
} |
|
2434 |
||
2435 |
assert(LCA == find_non_split_ctrl(LCA), "unexpected late control"); |
|
2436 |
return LCA; |
|
2437 |
} |
|
2438 |
||
2439 |
// true if CFG node d dominates CFG node n |
|
2440 |
bool PhaseIdealLoop::is_dominator(Node *d, Node *n) { |
|
2441 |
if (d == n) |
|
2442 |
return true; |
|
2443 |
assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes"); |
|
2444 |
uint dd = dom_depth(d); |
|
2445 |
while (dom_depth(n) >= dd) { |
|
2446 |
if (n == d) |
|
2447 |
return true; |
|
2448 |
n = idom(n); |
|
2449 |
} |
|
2450 |
return false; |
|
2451 |
} |
|
2452 |
||
2453 |
//------------------------------dom_lca_for_get_late_ctrl_internal------------- |
|
2454 |
// Pair-wise LCA with tags. |
|
2455 |
// Tag each index with the node 'tag' currently being processed |
|
2456 |
// before advancing up the dominator chain using idom(). |
|
2457 |
// Later calls that find a match to 'tag' know that this path has already |
|
2458 |
// been considered in the current LCA (which is input 'n1' by convention). |
|
2459 |
// Since get_late_ctrl() is only called once for each node, the tag array |
|
2460 |
// does not need to be cleared between calls to get_late_ctrl(). |
|
2461 |
// Algorithm trades a larger constant factor for better asymptotic behavior |
|
2462 |
// |
|
2463 |
Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) { |
|
2464 |
uint d1 = dom_depth(n1); |
|
2465 |
uint d2 = dom_depth(n2); |
|
2466 |
||
2467 |
do { |
|
2468 |
if (d1 > d2) { |
|
2469 |
// current lca is deeper than n2 |
|
2470 |
_dom_lca_tags.map(n1->_idx, tag); |
|
2471 |
n1 = idom(n1); |
|
2472 |
d1 = dom_depth(n1); |
|
2473 |
} else if (d1 < d2) { |
|
2474 |
// n2 is deeper than current lca |
|
2475 |
Node *memo = _dom_lca_tags[n2->_idx]; |
|
2476 |
if( memo == tag ) { |
|
2477 |
return n1; // Return the current LCA |
|
2478 |
} |
|
2479 |
_dom_lca_tags.map(n2->_idx, tag); |
|
2480 |
n2 = idom(n2); |
|
2481 |
d2 = dom_depth(n2); |
|
2482 |
} else { |
|
2483 |
// Here d1 == d2. Due to edits of the dominator-tree, sections |
|
2484 |
// of the tree might have the same depth. These sections have |
|
2485 |
// to be searched more carefully. |
|
2486 |
||
2487 |
// Scan up all the n1's with equal depth, looking for n2. |
|
2488 |
_dom_lca_tags.map(n1->_idx, tag); |
|
2489 |
Node *t1 = idom(n1); |
|
2490 |
while (dom_depth(t1) == d1) { |
|
2491 |
if (t1 == n2) return n2; |
|
2492 |
_dom_lca_tags.map(t1->_idx, tag); |
|
2493 |
t1 = idom(t1); |
|
2494 |
} |
|
2495 |
// Scan up all the n2's with equal depth, looking for n1. |
|
2496 |
_dom_lca_tags.map(n2->_idx, tag); |
|
2497 |
Node *t2 = idom(n2); |
|
2498 |
while (dom_depth(t2) == d2) { |
|
2499 |
if (t2 == n1) return n1; |
|
2500 |
_dom_lca_tags.map(t2->_idx, tag); |
|
2501 |
t2 = idom(t2); |
|
2502 |
} |
|
2503 |
// Move up to a new dominator-depth value as well as up the dom-tree. |
|
2504 |
n1 = t1; |
|
2505 |
n2 = t2; |
|
2506 |
d1 = dom_depth(n1); |
|
2507 |
d2 = dom_depth(n2); |
|
2508 |
} |
|
2509 |
} while (n1 != n2); |
|
2510 |
return n1; |
|
2511 |
} |
|
2512 |
||
2513 |
//------------------------------init_dom_lca_tags------------------------------ |
|
2514 |
// Tag could be a node's integer index, 32bits instead of 64bits in some cases |
|
2515 |
// Intended use does not involve any growth for the array, so it could |
|
2516 |
// be of fixed size. |
|
2517 |
void PhaseIdealLoop::init_dom_lca_tags() { |
|
2518 |
uint limit = C->unique() + 1; |
|
2519 |
_dom_lca_tags.map( limit, NULL ); |
|
2520 |
#ifdef ASSERT |
|
2521 |
for( uint i = 0; i < limit; ++i ) { |
|
2522 |
assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer"); |
|
2523 |
} |
|
2524 |
#endif // ASSERT |
|
2525 |
} |
|
2526 |
||
2527 |
//------------------------------clear_dom_lca_tags------------------------------ |
|
2528 |
// Tag could be a node's integer index, 32bits instead of 64bits in some cases |
|
2529 |
// Intended use does not involve any growth for the array, so it could |
|
2530 |
// be of fixed size. |
|
2531 |
void PhaseIdealLoop::clear_dom_lca_tags() { |
|
2532 |
uint limit = C->unique() + 1; |
|
2533 |
_dom_lca_tags.map( limit, NULL ); |
|
2534 |
_dom_lca_tags.clear(); |
|
2535 |
#ifdef ASSERT |
|
2536 |
for( uint i = 0; i < limit; ++i ) { |
|
2537 |
assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer"); |
|
2538 |
} |
|
2539 |
#endif // ASSERT |
|
2540 |
} |
|
2541 |
||
2542 |
//------------------------------build_loop_late-------------------------------- |
|
2543 |
// Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping. |
|
2544 |
// Second pass finds latest legal placement, and ideal loop placement. |
|
2545 |
void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) { |
|
2546 |
while (worklist.size() != 0) { |
|
2547 |
Node *n = worklist.pop(); |
|
2548 |
// Only visit once |
|
2549 |
if (visited.test_set(n->_idx)) continue; |
|
2550 |
uint cnt = n->outcnt(); |
|
2551 |
uint i = 0; |
|
2552 |
while (true) { |
|
2553 |
assert( _nodes[n->_idx], "no dead nodes" ); |
|
2554 |
// Visit all children |
|
2555 |
if (i < cnt) { |
|
2556 |
Node* use = n->raw_out(i); |
|
2557 |
++i; |
|
2558 |
// Check for dead uses. Aggressively prune such junk. It might be |
|
2559 |
// dead in the global sense, but still have local uses so I cannot |
|
2560 |
// easily call 'remove_dead_node'. |
|
2561 |
if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead? |
|
2562 |
// Due to cycles, we might not hit the same fixed point in the verify |
|
2563 |
// pass as we do in the regular pass. Instead, visit such phis as |
|
2564 |
// simple uses of the loop head. |
|
2565 |
if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) { |
|
2566 |
if( !visited.test(use->_idx) ) |
|
2567 |
worklist.push(use); |
|
2568 |
} else if( !visited.test_set(use->_idx) ) { |
|
2569 |
nstack.push(n, i); // Save parent and next use's index. |
|
2570 |
n = use; // Process all children of current use. |
|
2571 |
cnt = use->outcnt(); |
|
2572 |
i = 0; |
|
2573 |
} |
|
2574 |
} else { |
|
2575 |
// Do not visit around the backedge of loops via data edges. |
|
2576 |
// push dead code onto a worklist |
|
2577 |
_deadlist.push(use); |
|
2578 |
} |
|
2579 |
} else { |
|
2580 |
// All of n's children have been processed, complete post-processing. |
|
2581 |
build_loop_late_post(n, verify_me); |
|
2582 |
if (nstack.is_empty()) { |
|
2583 |
// Finished all nodes on stack. |
|
2584 |
// Process next node on the worklist. |
|
2585 |
break; |
|
2586 |
} |
|
2587 |
// Get saved parent node and next use's index. Visit the rest of uses. |
|
2588 |
n = nstack.node(); |
|
2589 |
cnt = n->outcnt(); |
|
2590 |
i = nstack.index(); |
|
2591 |
nstack.pop(); |
|
2592 |
} |
|
2593 |
} |
|
2594 |
} |
|
2595 |
} |
|
2596 |
||
2597 |
//------------------------------build_loop_late_post--------------------------- |
|
2598 |
// Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping. |
|
2599 |
// Second pass finds latest legal placement, and ideal loop placement. |
|
2600 |
void PhaseIdealLoop::build_loop_late_post( Node *n, const PhaseIdealLoop *verify_me ) { |
|
2601 |
||
2602 |
if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress()) { |
|
2603 |
_igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops. |
|
2604 |
} |
|
2605 |
||
2606 |
// CFG and pinned nodes already handled |
|
2607 |
if( n->in(0) ) { |
|
2608 |
if( n->in(0)->is_top() ) return; // Dead? |
|
2609 |
||
2610 |
// We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads |
|
2611 |
// _must_ be pinned (they have to observe their control edge of course). |
|
2612 |
// Unlike Stores (which modify an unallocable resource, the memory |
|
2613 |
// state), Mods/Loads can float around. So free them up. |
|
2614 |
bool pinned = true; |
|
2615 |
switch( n->Opcode() ) { |
|
2616 |
case Op_DivI: |
|
2617 |
case Op_DivF: |
|
2618 |
case Op_DivD: |
|
2619 |
case Op_ModI: |
|
2620 |
case Op_ModF: |
|
2621 |
case Op_ModD: |
|
2622 |
case Op_LoadB: // Same with Loads; they can sink |
|
2623 |
case Op_LoadC: // during loop optimizations. |
|
2624 |
case Op_LoadD: |
|
2625 |
case Op_LoadF: |
|
2626 |
case Op_LoadI: |
|
2627 |
case Op_LoadKlass: |
|
2628 |
case Op_LoadL: |
|
2629 |
case Op_LoadS: |
|
2630 |
case Op_LoadP: |
|
2631 |
case Op_LoadRange: |
|
2632 |
case Op_LoadD_unaligned: |
|
2633 |
case Op_LoadL_unaligned: |
|
2634 |
case Op_StrComp: // Does a bunch of load-like effects |
|
2635 |
pinned = false; |
|
2636 |
} |
|
2637 |
if( pinned ) { |
|
2638 |
IdealLoopTree *choosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n)); |
|
2639 |
if( !choosen_loop->_child ) // Inner loop? |
|
2640 |
choosen_loop->_body.push(n); // Collect inner loops |
|
2641 |
return; |
|
2642 |
} |
|
2643 |
} else { // No slot zero |
|
2644 |
if( n->is_CFG() ) { // CFG with no slot 0 is dead |
|
2645 |
_nodes.map(n->_idx,0); // No block setting, it's globally dead |
|
2646 |
return; |
|
2647 |
} |
|
2648 |
assert(!n->is_CFG() || n->outcnt() == 0, ""); |
|
2649 |
} |
|
2650 |
||
2651 |
// Do I have a "safe range" I can select over? |
|
2652 |
Node *early = get_ctrl(n);// Early location already computed |
|
2653 |
||
2654 |
// Compute latest point this Node can go |
|
2655 |
Node *LCA = get_late_ctrl( n, early ); |
|
2656 |
// LCA is NULL due to uses being dead |
|
2657 |
if( LCA == NULL ) { |
|
2658 |
#ifdef ASSERT |
|
2659 |
for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) { |
|
2660 |
assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead"); |
|
2661 |
} |
|
2662 |
#endif |
|
2663 |
_nodes.map(n->_idx, 0); // This node is useless |
|
2664 |
_deadlist.push(n); |
|
2665 |
return; |
|
2666 |
} |
|
2667 |
assert(LCA != NULL && !LCA->is_top(), "no dead nodes"); |
|
2668 |
||
2669 |
Node *legal = LCA; // Walk 'legal' up the IDOM chain |
|
2670 |
Node *least = legal; // Best legal position so far |
|
2671 |
while( early != legal ) { // While not at earliest legal |
|
2672 |
// Find least loop nesting depth |
|
2673 |
legal = idom(legal); // Bump up the IDOM tree |
|
2674 |
// Check for lower nesting depth |
|
2675 |
if( get_loop(legal)->_nest < get_loop(least)->_nest ) |
|
2676 |
least = legal; |
|
2677 |
} |
|
2678 |
||
2679 |
// Try not to place code on a loop entry projection |
|
2680 |
// which can inhibit range check elimination. |
|
2681 |
if (least != early) { |
|
2682 |
Node* ctrl_out = least->unique_ctrl_out(); |
|
2683 |
if (ctrl_out && ctrl_out->is_CountedLoop() && |
|
2684 |
least == ctrl_out->in(LoopNode::EntryControl)) { |
|
2685 |
Node* least_dom = idom(least); |
|
2686 |
if (get_loop(least_dom)->is_member(get_loop(least))) { |
|
2687 |
least = least_dom; |
|
2688 |
} |
|
2689 |
} |
|
2690 |
} |
|
2691 |
||
2692 |
#ifdef ASSERT |
|
2693 |
// If verifying, verify that 'verify_me' has a legal location |
|
2694 |
// and choose it as our location. |
|
2695 |
if( verify_me ) { |
|
2696 |
Node *v_ctrl = verify_me->get_ctrl_no_update(n); |
|
2697 |
Node *legal = LCA; |
|
2698 |
while( early != legal ) { // While not at earliest legal |
|
2699 |
if( legal == v_ctrl ) break; // Check for prior good location |
|
2700 |
legal = idom(legal) ;// Bump up the IDOM tree |
|
2701 |
} |
|
2702 |
// Check for prior good location |
|
2703 |
if( legal == v_ctrl ) least = legal; // Keep prior if found |
|
2704 |
} |
|
2705 |
#endif |
|
2706 |
||
2707 |
// Assign discovered "here or above" point |
|
2708 |
least = find_non_split_ctrl(least); |
|
2709 |
set_ctrl(n, least); |
|
2710 |
||
2711 |
// Collect inner loop bodies |
|
2712 |
IdealLoopTree *choosen_loop = get_loop(least); |
|
2713 |
if( !choosen_loop->_child ) // Inner loop? |
|
2714 |
choosen_loop->_body.push(n);// Collect inner loops |
|
2715 |
} |
|
2716 |
||
2717 |
#ifndef PRODUCT |
|
2718 |
//------------------------------dump------------------------------------------- |
|
2719 |
void PhaseIdealLoop::dump( ) const { |
|
2720 |
ResourceMark rm; |
|
2721 |
Arena* arena = Thread::current()->resource_area(); |
|
2722 |
Node_Stack stack(arena, C->unique() >> 2); |
|
2723 |
Node_List rpo_list; |
|
2724 |
VectorSet visited(arena); |
|
2725 |
visited.set(C->top()->_idx); |
|
2726 |
rpo( C->root(), stack, visited, rpo_list ); |
|
2727 |
// Dump root loop indexed by last element in PO order |
|
2728 |
dump( _ltree_root, rpo_list.size(), rpo_list ); |
|
2729 |
} |
|
2730 |
||
2731 |
void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const { |
|
2732 |
||
2733 |
// Indent by loop nesting depth |
|
2734 |
for( uint x = 0; x < loop->_nest; x++ ) |
|
2735 |
tty->print(" "); |
|
2736 |
tty->print_cr("---- Loop N%d-N%d ----", loop->_head->_idx,loop->_tail->_idx); |
|
2737 |
||
2738 |
// Now scan for CFG nodes in the same loop |
|
2739 |
for( uint j=idx; j > 0; j-- ) { |
|
2740 |
Node *n = rpo_list[j-1]; |
|
2741 |
if( !_nodes[n->_idx] ) // Skip dead nodes |
|
2742 |
continue; |
|
2743 |
if( get_loop(n) != loop ) { // Wrong loop nest |
|
2744 |
if( get_loop(n)->_head == n && // Found nested loop? |
|
2745 |
get_loop(n)->_parent == loop ) |
|
2746 |
dump(get_loop(n),rpo_list.size(),rpo_list); // Print it nested-ly |
|
2747 |
continue; |
|
2748 |
} |
|
2749 |
||
2750 |
// Dump controlling node |
|
2751 |
for( uint x = 0; x < loop->_nest; x++ ) |
|
2752 |
tty->print(" "); |
|
2753 |
tty->print("C"); |
|
2754 |
if( n == C->root() ) { |
|
2755 |
n->dump(); |
|
2756 |
} else { |
|
2757 |
Node* cached_idom = idom_no_update(n); |
|
2758 |
Node *computed_idom = n->in(0); |
|
2759 |
if( n->is_Region() ) { |
|
2760 |
computed_idom = compute_idom(n); |
|
2761 |
// computed_idom() will return n->in(0) when idom(n) is an IfNode (or |
|
2762 |
// any MultiBranch ctrl node), so apply a similar transform to |
|
2763 |
// the cached idom returned from idom_no_update. |
|
2764 |
cached_idom = find_non_split_ctrl(cached_idom); |
|
2765 |
} |
|
2766 |
tty->print(" ID:%d",computed_idom->_idx); |
|
2767 |
n->dump(); |
|
2768 |
if( cached_idom != computed_idom ) { |
|
2769 |
tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d", |
|
2770 |
computed_idom->_idx, cached_idom->_idx); |
|
2771 |
} |
|
2772 |
} |
|
2773 |
// Dump nodes it controls |
|
2774 |
for( uint k = 0; k < _nodes.Size(); k++ ) { |
|
2775 |
// (k < C->unique() && get_ctrl(find(k)) == n) |
|
2776 |
if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) { |
|
2777 |
Node *m = C->root()->find(k); |
|
2778 |
if( m && m->outcnt() > 0 ) { |
|
2779 |
if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) { |
|
2780 |
tty->print_cr("*** BROKEN CTRL ACCESSOR! _nodes[k] is %p, ctrl is %p", |
|
2781 |
_nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL); |
|
2782 |
} |
|
2783 |
for( uint j = 0; j < loop->_nest; j++ ) |
|
2784 |
tty->print(" "); |
|
2785 |
tty->print(" "); |
|
2786 |
m->dump(); |
|
2787 |
} |
|
2788 |
} |
|
2789 |
} |
|
2790 |
} |
|
2791 |
} |
|
2792 |
||
2793 |
// Collect a R-P-O for the whole CFG. |
|
2794 |
// Result list is in post-order (scan backwards for RPO) |
|
2795 |
void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const { |
|
2796 |
stk.push(start, 0); |
|
2797 |
visited.set(start->_idx); |
|
2798 |
||
2799 |
while (stk.is_nonempty()) { |
|
2800 |
Node* m = stk.node(); |
|
2801 |
uint idx = stk.index(); |
|
2802 |
if (idx < m->outcnt()) { |
|
2803 |
stk.set_index(idx + 1); |
|
2804 |
Node* n = m->raw_out(idx); |
|
2805 |
if (n->is_CFG() && !visited.test_set(n->_idx)) { |
|
2806 |
stk.push(n, 0); |
|
2807 |
} |
|
2808 |
} else { |
|
2809 |
rpo_list.push(m); |
|
2810 |
stk.pop(); |
|
2811 |
} |
|
2812 |
} |
|
2813 |
} |
|
2814 |
#endif |
|
2815 |
||
2816 |
||
2817 |
//============================================================================= |
|
2818 |
//------------------------------LoopTreeIterator----------------------------------- |
|
2819 |
||
2820 |
// Advance to next loop tree using a preorder, left-to-right traversal. |
|
2821 |
void LoopTreeIterator::next() { |
|
2822 |
assert(!done(), "must not be done."); |
|
2823 |
if (_curnt->_child != NULL) { |
|
2824 |
_curnt = _curnt->_child; |
|
2825 |
} else if (_curnt->_next != NULL) { |
|
2826 |
_curnt = _curnt->_next; |
|
2827 |
} else { |
|
2828 |
while (_curnt != _root && _curnt->_next == NULL) { |
|
2829 |
_curnt = _curnt->_parent; |
|
2830 |
} |
|
2831 |
if (_curnt == _root) { |
|
2832 |
_curnt = NULL; |
|
2833 |
assert(done(), "must be done."); |
|
2834 |
} else { |
|
2835 |
assert(_curnt->_next != NULL, "must be more to do"); |
|
2836 |
_curnt = _curnt->_next; |
|
2837 |
} |
|
2838 |
} |
|
2839 |
} |