2
|
1 |
/*
|
5506
|
2 |
* Copyright (c) 1996, 2006, Oracle and/or its affiliates. All rights reserved.
|
2
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
5506
|
7 |
* published by the Free Software Foundation. Oracle designates this
|
2
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
5506
|
9 |
* by Oracle in the LICENSE file that accompanied this code.
|
2
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
5506
|
21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
22 |
* or visit www.oracle.com if you need additional information or have any
|
|
23 |
* questions.
|
2
|
24 |
*/
|
|
25 |
|
|
26 |
/*
|
|
27 |
* (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
|
|
28 |
* (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
|
|
29 |
*
|
|
30 |
* The original version of this source code and documentation is copyrighted
|
|
31 |
* and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
|
|
32 |
* materials are provided under terms of a License Agreement between Taligent
|
|
33 |
* and Sun. This technology is protected by multiple US and International
|
|
34 |
* patents. This notice and attribution to Taligent may not be removed.
|
|
35 |
* Taligent is a registered trademark of Taligent, Inc.
|
|
36 |
*
|
|
37 |
*/
|
|
38 |
|
|
39 |
package java.text;
|
|
40 |
|
|
41 |
import java.math.BigDecimal;
|
|
42 |
import java.math.BigInteger;
|
|
43 |
import java.math.RoundingMode;
|
|
44 |
|
|
45 |
/**
|
|
46 |
* Digit List. Private to DecimalFormat.
|
|
47 |
* Handles the transcoding
|
|
48 |
* between numeric values and strings of characters. Only handles
|
|
49 |
* non-negative numbers. The division of labor between DigitList and
|
|
50 |
* DecimalFormat is that DigitList handles the radix 10 representation
|
|
51 |
* issues; DecimalFormat handles the locale-specific issues such as
|
|
52 |
* positive/negative, grouping, decimal point, currency, and so on.
|
|
53 |
*
|
|
54 |
* A DigitList is really a representation of a floating point value.
|
|
55 |
* It may be an integer value; we assume that a double has sufficient
|
|
56 |
* precision to represent all digits of a long.
|
|
57 |
*
|
|
58 |
* The DigitList representation consists of a string of characters,
|
|
59 |
* which are the digits radix 10, from '0' to '9'. It also has a radix
|
|
60 |
* 10 exponent associated with it. The value represented by a DigitList
|
|
61 |
* object can be computed by mulitplying the fraction f, where 0 <= f < 1,
|
|
62 |
* derived by placing all the digits of the list to the right of the
|
|
63 |
* decimal point, by 10^exponent.
|
|
64 |
*
|
|
65 |
* @see Locale
|
|
66 |
* @see Format
|
|
67 |
* @see NumberFormat
|
|
68 |
* @see DecimalFormat
|
|
69 |
* @see ChoiceFormat
|
|
70 |
* @see MessageFormat
|
|
71 |
* @author Mark Davis, Alan Liu
|
|
72 |
*/
|
|
73 |
final class DigitList implements Cloneable {
|
|
74 |
/**
|
|
75 |
* The maximum number of significant digits in an IEEE 754 double, that
|
|
76 |
* is, in a Java double. This must not be increased, or garbage digits
|
|
77 |
* will be generated, and should not be decreased, or accuracy will be lost.
|
|
78 |
*/
|
|
79 |
public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
|
|
80 |
|
|
81 |
/**
|
|
82 |
* These data members are intentionally public and can be set directly.
|
|
83 |
*
|
|
84 |
* The value represented is given by placing the decimal point before
|
|
85 |
* digits[decimalAt]. If decimalAt is < 0, then leading zeros between
|
|
86 |
* the decimal point and the first nonzero digit are implied. If decimalAt
|
|
87 |
* is > count, then trailing zeros between the digits[count-1] and the
|
|
88 |
* decimal point are implied.
|
|
89 |
*
|
|
90 |
* Equivalently, the represented value is given by f * 10^decimalAt. Here
|
|
91 |
* f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
|
|
92 |
* the right of the decimal.
|
|
93 |
*
|
|
94 |
* DigitList is normalized, so if it is non-zero, figits[0] is non-zero. We
|
|
95 |
* don't allow denormalized numbers because our exponent is effectively of
|
|
96 |
* unlimited magnitude. The count value contains the number of significant
|
|
97 |
* digits present in digits[].
|
|
98 |
*
|
|
99 |
* Zero is represented by any DigitList with count == 0 or with each digits[i]
|
|
100 |
* for all i <= count == '0'.
|
|
101 |
*/
|
|
102 |
public int decimalAt = 0;
|
|
103 |
public int count = 0;
|
|
104 |
public char[] digits = new char[MAX_COUNT];
|
|
105 |
|
|
106 |
private char[] data;
|
|
107 |
private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
|
|
108 |
private boolean isNegative = false;
|
|
109 |
|
|
110 |
/**
|
|
111 |
* Return true if the represented number is zero.
|
|
112 |
*/
|
|
113 |
boolean isZero() {
|
|
114 |
for (int i=0; i < count; ++i) {
|
|
115 |
if (digits[i] != '0') {
|
|
116 |
return false;
|
|
117 |
}
|
|
118 |
}
|
|
119 |
return true;
|
|
120 |
}
|
|
121 |
|
|
122 |
/**
|
|
123 |
* Set the rounding mode
|
|
124 |
*/
|
|
125 |
void setRoundingMode(RoundingMode r) {
|
|
126 |
roundingMode = r;
|
|
127 |
}
|
|
128 |
|
|
129 |
/**
|
|
130 |
* Clears out the digits.
|
|
131 |
* Use before appending them.
|
|
132 |
* Typically, you set a series of digits with append, then at the point
|
|
133 |
* you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
|
|
134 |
* then go on appending digits.
|
|
135 |
*/
|
|
136 |
public void clear () {
|
|
137 |
decimalAt = 0;
|
|
138 |
count = 0;
|
|
139 |
}
|
|
140 |
|
|
141 |
/**
|
|
142 |
* Appends a digit to the list, extending the list when necessary.
|
|
143 |
*/
|
|
144 |
public void append(char digit) {
|
|
145 |
if (count == digits.length) {
|
|
146 |
char[] data = new char[count + 100];
|
|
147 |
System.arraycopy(digits, 0, data, 0, count);
|
|
148 |
digits = data;
|
|
149 |
}
|
|
150 |
digits[count++] = digit;
|
|
151 |
}
|
|
152 |
|
|
153 |
/**
|
|
154 |
* Utility routine to get the value of the digit list
|
|
155 |
* If (count == 0) this throws a NumberFormatException, which
|
|
156 |
* mimics Long.parseLong().
|
|
157 |
*/
|
|
158 |
public final double getDouble() {
|
|
159 |
if (count == 0) {
|
|
160 |
return 0.0;
|
|
161 |
}
|
|
162 |
|
|
163 |
StringBuffer temp = getStringBuffer();
|
|
164 |
temp.append('.');
|
|
165 |
temp.append(digits, 0, count);
|
|
166 |
temp.append('E');
|
|
167 |
temp.append(decimalAt);
|
|
168 |
return Double.parseDouble(temp.toString());
|
|
169 |
}
|
|
170 |
|
|
171 |
/**
|
|
172 |
* Utility routine to get the value of the digit list.
|
|
173 |
* If (count == 0) this returns 0, unlike Long.parseLong().
|
|
174 |
*/
|
|
175 |
public final long getLong() {
|
|
176 |
// for now, simple implementation; later, do proper IEEE native stuff
|
|
177 |
|
|
178 |
if (count == 0) {
|
|
179 |
return 0;
|
|
180 |
}
|
|
181 |
|
|
182 |
// We have to check for this, because this is the one NEGATIVE value
|
|
183 |
// we represent. If we tried to just pass the digits off to parseLong,
|
|
184 |
// we'd get a parse failure.
|
|
185 |
if (isLongMIN_VALUE()) {
|
|
186 |
return Long.MIN_VALUE;
|
|
187 |
}
|
|
188 |
|
|
189 |
StringBuffer temp = getStringBuffer();
|
|
190 |
temp.append(digits, 0, count);
|
|
191 |
for (int i = count; i < decimalAt; ++i) {
|
|
192 |
temp.append('0');
|
|
193 |
}
|
|
194 |
return Long.parseLong(temp.toString());
|
|
195 |
}
|
|
196 |
|
|
197 |
public final BigDecimal getBigDecimal() {
|
|
198 |
if (count == 0) {
|
|
199 |
if (decimalAt == 0) {
|
|
200 |
return BigDecimal.ZERO;
|
|
201 |
} else {
|
|
202 |
return new BigDecimal("0E" + decimalAt);
|
|
203 |
}
|
|
204 |
}
|
|
205 |
|
|
206 |
if (decimalAt == count) {
|
|
207 |
return new BigDecimal(digits, 0, count);
|
|
208 |
} else {
|
|
209 |
return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
|
|
210 |
}
|
|
211 |
}
|
|
212 |
|
|
213 |
/**
|
|
214 |
* Return true if the number represented by this object can fit into
|
|
215 |
* a long.
|
|
216 |
* @param isPositive true if this number should be regarded as positive
|
|
217 |
* @param ignoreNegativeZero true if -0 should be regarded as identical to
|
|
218 |
* +0; otherwise they are considered distinct
|
|
219 |
* @return true if this number fits into a Java long
|
|
220 |
*/
|
|
221 |
boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
|
|
222 |
// Figure out if the result will fit in a long. We have to
|
|
223 |
// first look for nonzero digits after the decimal point;
|
|
224 |
// then check the size. If the digit count is 18 or less, then
|
|
225 |
// the value can definitely be represented as a long. If it is 19
|
|
226 |
// then it may be too large.
|
|
227 |
|
|
228 |
// Trim trailing zeros. This does not change the represented value.
|
|
229 |
while (count > 0 && digits[count - 1] == '0') {
|
|
230 |
--count;
|
|
231 |
}
|
|
232 |
|
|
233 |
if (count == 0) {
|
|
234 |
// Positive zero fits into a long, but negative zero can only
|
|
235 |
// be represented as a double. - bug 4162852
|
|
236 |
return isPositive || ignoreNegativeZero;
|
|
237 |
}
|
|
238 |
|
|
239 |
if (decimalAt < count || decimalAt > MAX_COUNT) {
|
|
240 |
return false;
|
|
241 |
}
|
|
242 |
|
|
243 |
if (decimalAt < MAX_COUNT) return true;
|
|
244 |
|
|
245 |
// At this point we have decimalAt == count, and count == MAX_COUNT.
|
|
246 |
// The number will overflow if it is larger than 9223372036854775807
|
|
247 |
// or smaller than -9223372036854775808.
|
|
248 |
for (int i=0; i<count; ++i) {
|
|
249 |
char dig = digits[i], max = LONG_MIN_REP[i];
|
|
250 |
if (dig > max) return false;
|
|
251 |
if (dig < max) return true;
|
|
252 |
}
|
|
253 |
|
|
254 |
// At this point the first count digits match. If decimalAt is less
|
|
255 |
// than count, then the remaining digits are zero, and we return true.
|
|
256 |
if (count < decimalAt) return true;
|
|
257 |
|
|
258 |
// Now we have a representation of Long.MIN_VALUE, without the leading
|
|
259 |
// negative sign. If this represents a positive value, then it does
|
|
260 |
// not fit; otherwise it fits.
|
|
261 |
return !isPositive;
|
|
262 |
}
|
|
263 |
|
|
264 |
/**
|
|
265 |
* Set the digit list to a representation of the given double value.
|
|
266 |
* This method supports fixed-point notation.
|
|
267 |
* @param isNegative Boolean value indicating whether the number is negative.
|
|
268 |
* @param source Value to be converted; must not be Inf, -Inf, Nan,
|
|
269 |
* or a value <= 0.
|
|
270 |
* @param maximumFractionDigits The most fractional digits which should
|
|
271 |
* be converted.
|
|
272 |
*/
|
|
273 |
public final void set(boolean isNegative, double source, int maximumFractionDigits) {
|
|
274 |
set(isNegative, source, maximumFractionDigits, true);
|
|
275 |
}
|
|
276 |
|
|
277 |
/**
|
|
278 |
* Set the digit list to a representation of the given double value.
|
|
279 |
* This method supports both fixed-point and exponential notation.
|
|
280 |
* @param isNegative Boolean value indicating whether the number is negative.
|
|
281 |
* @param source Value to be converted; must not be Inf, -Inf, Nan,
|
|
282 |
* or a value <= 0.
|
|
283 |
* @param maximumDigits The most fractional or total digits which should
|
|
284 |
* be converted.
|
|
285 |
* @param fixedPoint If true, then maximumDigits is the maximum
|
|
286 |
* fractional digits to be converted. If false, total digits.
|
|
287 |
*/
|
|
288 |
final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {
|
|
289 |
set(isNegative, Double.toString(source), maximumDigits, fixedPoint);
|
|
290 |
}
|
|
291 |
|
|
292 |
/**
|
|
293 |
* Generate a representation of the form DDDDD, DDDDD.DDDDD, or
|
|
294 |
* DDDDDE+/-DDDDD.
|
|
295 |
*/
|
|
296 |
final void set(boolean isNegative, String s, int maximumDigits, boolean fixedPoint) {
|
|
297 |
this.isNegative = isNegative;
|
|
298 |
int len = s.length();
|
|
299 |
char[] source = getDataChars(len);
|
|
300 |
s.getChars(0, len, source, 0);
|
|
301 |
|
|
302 |
decimalAt = -1;
|
|
303 |
count = 0;
|
|
304 |
int exponent = 0;
|
|
305 |
// Number of zeros between decimal point and first non-zero digit after
|
|
306 |
// decimal point, for numbers < 1.
|
|
307 |
int leadingZerosAfterDecimal = 0;
|
|
308 |
boolean nonZeroDigitSeen = false;
|
|
309 |
|
|
310 |
for (int i = 0; i < len; ) {
|
|
311 |
char c = source[i++];
|
|
312 |
if (c == '.') {
|
|
313 |
decimalAt = count;
|
|
314 |
} else if (c == 'e' || c == 'E') {
|
|
315 |
exponent = parseInt(source, i, len);
|
|
316 |
break;
|
|
317 |
} else {
|
|
318 |
if (!nonZeroDigitSeen) {
|
|
319 |
nonZeroDigitSeen = (c != '0');
|
|
320 |
if (!nonZeroDigitSeen && decimalAt != -1)
|
|
321 |
++leadingZerosAfterDecimal;
|
|
322 |
}
|
|
323 |
if (nonZeroDigitSeen) {
|
|
324 |
digits[count++] = c;
|
|
325 |
}
|
|
326 |
}
|
|
327 |
}
|
|
328 |
if (decimalAt == -1) {
|
|
329 |
decimalAt = count;
|
|
330 |
}
|
|
331 |
if (nonZeroDigitSeen) {
|
|
332 |
decimalAt += exponent - leadingZerosAfterDecimal;
|
|
333 |
}
|
|
334 |
|
|
335 |
if (fixedPoint) {
|
|
336 |
// The negative of the exponent represents the number of leading
|
|
337 |
// zeros between the decimal and the first non-zero digit, for
|
|
338 |
// a value < 0.1 (e.g., for 0.00123, -decimalAt == 2). If this
|
|
339 |
// is more than the maximum fraction digits, then we have an underflow
|
|
340 |
// for the printed representation.
|
|
341 |
if (-decimalAt > maximumDigits) {
|
|
342 |
// Handle an underflow to zero when we round something like
|
|
343 |
// 0.0009 to 2 fractional digits.
|
|
344 |
count = 0;
|
|
345 |
return;
|
|
346 |
} else if (-decimalAt == maximumDigits) {
|
|
347 |
// If we round 0.0009 to 3 fractional digits, then we have to
|
|
348 |
// create a new one digit in the least significant location.
|
|
349 |
if (shouldRoundUp(0)) {
|
|
350 |
count = 1;
|
|
351 |
++decimalAt;
|
|
352 |
digits[0] = '1';
|
|
353 |
} else {
|
|
354 |
count = 0;
|
|
355 |
}
|
|
356 |
return;
|
|
357 |
}
|
|
358 |
// else fall through
|
|
359 |
}
|
|
360 |
|
|
361 |
// Eliminate trailing zeros.
|
|
362 |
while (count > 1 && digits[count - 1] == '0') {
|
|
363 |
--count;
|
|
364 |
}
|
|
365 |
|
|
366 |
// Eliminate digits beyond maximum digits to be displayed.
|
|
367 |
// Round up if appropriate.
|
|
368 |
round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits);
|
|
369 |
}
|
|
370 |
|
|
371 |
/**
|
|
372 |
* Round the representation to the given number of digits.
|
|
373 |
* @param maximumDigits The maximum number of digits to be shown.
|
|
374 |
* Upon return, count will be less than or equal to maximumDigits.
|
|
375 |
*/
|
|
376 |
private final void round(int maximumDigits) {
|
|
377 |
// Eliminate digits beyond maximum digits to be displayed.
|
|
378 |
// Round up if appropriate.
|
|
379 |
if (maximumDigits >= 0 && maximumDigits < count) {
|
|
380 |
if (shouldRoundUp(maximumDigits)) {
|
|
381 |
// Rounding up involved incrementing digits from LSD to MSD.
|
|
382 |
// In most cases this is simple, but in a worst case situation
|
|
383 |
// (9999..99) we have to adjust the decimalAt value.
|
|
384 |
for (;;) {
|
|
385 |
--maximumDigits;
|
|
386 |
if (maximumDigits < 0) {
|
|
387 |
// We have all 9's, so we increment to a single digit
|
|
388 |
// of one and adjust the exponent.
|
|
389 |
digits[0] = '1';
|
|
390 |
++decimalAt;
|
|
391 |
maximumDigits = 0; // Adjust the count
|
|
392 |
break;
|
|
393 |
}
|
|
394 |
|
|
395 |
++digits[maximumDigits];
|
|
396 |
if (digits[maximumDigits] <= '9') break;
|
|
397 |
// digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
|
|
398 |
}
|
|
399 |
++maximumDigits; // Increment for use as count
|
|
400 |
}
|
|
401 |
count = maximumDigits;
|
|
402 |
|
|
403 |
// Eliminate trailing zeros.
|
|
404 |
while (count > 1 && digits[count-1] == '0') {
|
|
405 |
--count;
|
|
406 |
}
|
|
407 |
}
|
|
408 |
}
|
|
409 |
|
|
410 |
|
|
411 |
/**
|
|
412 |
* Return true if truncating the representation to the given number
|
|
413 |
* of digits will result in an increment to the last digit. This
|
|
414 |
* method implements the rounding modes defined in the
|
|
415 |
* java.math.RoundingMode class.
|
|
416 |
* [bnf]
|
|
417 |
* @param maximumDigits the number of digits to keep, from 0 to
|
|
418 |
* <code>count-1</code>. If 0, then all digits are rounded away, and
|
|
419 |
* this method returns true if a one should be generated (e.g., formatting
|
|
420 |
* 0.09 with "#.#").
|
|
421 |
* @exception ArithmeticException if rounding is needed with rounding
|
|
422 |
* mode being set to RoundingMode.UNNECESSARY
|
|
423 |
* @return true if digit <code>maximumDigits-1</code> should be
|
|
424 |
* incremented
|
|
425 |
*/
|
|
426 |
private boolean shouldRoundUp(int maximumDigits) {
|
|
427 |
if (maximumDigits < count) {
|
|
428 |
switch(roundingMode) {
|
|
429 |
case UP:
|
|
430 |
for (int i=maximumDigits; i<count; ++i) {
|
|
431 |
if (digits[i] != '0') {
|
|
432 |
return true;
|
|
433 |
}
|
|
434 |
}
|
|
435 |
break;
|
|
436 |
case DOWN:
|
|
437 |
break;
|
|
438 |
case CEILING:
|
|
439 |
for (int i=maximumDigits; i<count; ++i) {
|
|
440 |
if (digits[i] != '0') {
|
|
441 |
return !isNegative;
|
|
442 |
}
|
|
443 |
}
|
|
444 |
break;
|
|
445 |
case FLOOR:
|
|
446 |
for (int i=maximumDigits; i<count; ++i) {
|
|
447 |
if (digits[i] != '0') {
|
|
448 |
return isNegative;
|
|
449 |
}
|
|
450 |
}
|
|
451 |
break;
|
|
452 |
case HALF_UP:
|
|
453 |
if (digits[maximumDigits] >= '5') {
|
|
454 |
return true;
|
|
455 |
}
|
|
456 |
break;
|
|
457 |
case HALF_DOWN:
|
|
458 |
if (digits[maximumDigits] > '5') {
|
|
459 |
return true;
|
|
460 |
} else if (digits[maximumDigits] == '5' ) {
|
|
461 |
for (int i=maximumDigits+1; i<count; ++i) {
|
|
462 |
if (digits[i] != '0') {
|
|
463 |
return true;
|
|
464 |
}
|
|
465 |
}
|
|
466 |
}
|
|
467 |
break;
|
|
468 |
case HALF_EVEN:
|
|
469 |
// Implement IEEE half-even rounding
|
|
470 |
if (digits[maximumDigits] > '5') {
|
|
471 |
return true;
|
|
472 |
} else if (digits[maximumDigits] == '5' ) {
|
|
473 |
for (int i=maximumDigits+1; i<count; ++i) {
|
|
474 |
if (digits[i] != '0') {
|
|
475 |
return true;
|
|
476 |
}
|
|
477 |
}
|
|
478 |
return maximumDigits > 0 && (digits[maximumDigits-1] % 2 != 0);
|
|
479 |
}
|
|
480 |
break;
|
|
481 |
case UNNECESSARY:
|
|
482 |
for (int i=maximumDigits; i<count; ++i) {
|
|
483 |
if (digits[i] != '0') {
|
|
484 |
throw new ArithmeticException(
|
|
485 |
"Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
|
|
486 |
}
|
|
487 |
}
|
|
488 |
break;
|
|
489 |
default:
|
|
490 |
assert false;
|
|
491 |
}
|
|
492 |
}
|
|
493 |
return false;
|
|
494 |
}
|
|
495 |
|
|
496 |
/**
|
|
497 |
* Utility routine to set the value of the digit list from a long
|
|
498 |
*/
|
|
499 |
public final void set(boolean isNegative, long source) {
|
|
500 |
set(isNegative, source, 0);
|
|
501 |
}
|
|
502 |
|
|
503 |
/**
|
|
504 |
* Set the digit list to a representation of the given long value.
|
|
505 |
* @param isNegative Boolean value indicating whether the number is negative.
|
|
506 |
* @param source Value to be converted; must be >= 0 or ==
|
|
507 |
* Long.MIN_VALUE.
|
|
508 |
* @param maximumDigits The most digits which should be converted.
|
|
509 |
* If maximumDigits is lower than the number of significant digits
|
|
510 |
* in source, the representation will be rounded. Ignored if <= 0.
|
|
511 |
*/
|
|
512 |
public final void set(boolean isNegative, long source, int maximumDigits) {
|
|
513 |
this.isNegative = isNegative;
|
|
514 |
|
|
515 |
// This method does not expect a negative number. However,
|
|
516 |
// "source" can be a Long.MIN_VALUE (-9223372036854775808),
|
|
517 |
// if the number being formatted is a Long.MIN_VALUE. In that
|
|
518 |
// case, it will be formatted as -Long.MIN_VALUE, a number
|
|
519 |
// which is outside the legal range of a long, but which can
|
|
520 |
// be represented by DigitList.
|
|
521 |
if (source <= 0) {
|
|
522 |
if (source == Long.MIN_VALUE) {
|
|
523 |
decimalAt = count = MAX_COUNT;
|
|
524 |
System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
|
|
525 |
} else {
|
|
526 |
decimalAt = count = 0; // Values <= 0 format as zero
|
|
527 |
}
|
|
528 |
} else {
|
|
529 |
// Rewritten to improve performance. I used to call
|
|
530 |
// Long.toString(), which was about 4x slower than this code.
|
|
531 |
int left = MAX_COUNT;
|
|
532 |
int right;
|
|
533 |
while (source > 0) {
|
|
534 |
digits[--left] = (char)('0' + (source % 10));
|
|
535 |
source /= 10;
|
|
536 |
}
|
|
537 |
decimalAt = MAX_COUNT - left;
|
|
538 |
// Don't copy trailing zeros. We are guaranteed that there is at
|
|
539 |
// least one non-zero digit, so we don't have to check lower bounds.
|
|
540 |
for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
|
|
541 |
;
|
|
542 |
count = right - left + 1;
|
|
543 |
System.arraycopy(digits, left, digits, 0, count);
|
|
544 |
}
|
|
545 |
if (maximumDigits > 0) round(maximumDigits);
|
|
546 |
}
|
|
547 |
|
|
548 |
/**
|
|
549 |
* Set the digit list to a representation of the given BigDecimal value.
|
|
550 |
* This method supports both fixed-point and exponential notation.
|
|
551 |
* @param isNegative Boolean value indicating whether the number is negative.
|
|
552 |
* @param source Value to be converted; must not be a value <= 0.
|
|
553 |
* @param maximumDigits The most fractional or total digits which should
|
|
554 |
* be converted.
|
|
555 |
* @param fixedPoint If true, then maximumDigits is the maximum
|
|
556 |
* fractional digits to be converted. If false, total digits.
|
|
557 |
*/
|
|
558 |
final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
|
|
559 |
String s = source.toString();
|
|
560 |
extendDigits(s.length());
|
|
561 |
|
|
562 |
set(isNegative, s, maximumDigits, fixedPoint);
|
|
563 |
}
|
|
564 |
|
|
565 |
/**
|
|
566 |
* Set the digit list to a representation of the given BigInteger value.
|
|
567 |
* @param isNegative Boolean value indicating whether the number is negative.
|
|
568 |
* @param source Value to be converted; must be >= 0.
|
|
569 |
* @param maximumDigits The most digits which should be converted.
|
|
570 |
* If maximumDigits is lower than the number of significant digits
|
|
571 |
* in source, the representation will be rounded. Ignored if <= 0.
|
|
572 |
*/
|
|
573 |
final void set(boolean isNegative, BigInteger source, int maximumDigits) {
|
|
574 |
this.isNegative = isNegative;
|
|
575 |
String s = source.toString();
|
|
576 |
int len = s.length();
|
|
577 |
extendDigits(len);
|
|
578 |
s.getChars(0, len, digits, 0);
|
|
579 |
|
|
580 |
decimalAt = len;
|
|
581 |
int right;
|
|
582 |
for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
|
|
583 |
;
|
|
584 |
count = right + 1;
|
|
585 |
|
|
586 |
if (maximumDigits > 0) {
|
|
587 |
round(maximumDigits);
|
|
588 |
}
|
|
589 |
}
|
|
590 |
|
|
591 |
/**
|
|
592 |
* equality test between two digit lists.
|
|
593 |
*/
|
|
594 |
public boolean equals(Object obj) {
|
|
595 |
if (this == obj) // quick check
|
|
596 |
return true;
|
|
597 |
if (!(obj instanceof DigitList)) // (1) same object?
|
|
598 |
return false;
|
|
599 |
DigitList other = (DigitList) obj;
|
|
600 |
if (count != other.count ||
|
|
601 |
decimalAt != other.decimalAt)
|
|
602 |
return false;
|
|
603 |
for (int i = 0; i < count; i++)
|
|
604 |
if (digits[i] != other.digits[i])
|
|
605 |
return false;
|
|
606 |
return true;
|
|
607 |
}
|
|
608 |
|
|
609 |
/**
|
|
610 |
* Generates the hash code for the digit list.
|
|
611 |
*/
|
|
612 |
public int hashCode() {
|
|
613 |
int hashcode = decimalAt;
|
|
614 |
|
|
615 |
for (int i = 0; i < count; i++) {
|
|
616 |
hashcode = hashcode * 37 + digits[i];
|
|
617 |
}
|
|
618 |
|
|
619 |
return hashcode;
|
|
620 |
}
|
|
621 |
|
|
622 |
/**
|
|
623 |
* Creates a copy of this object.
|
|
624 |
* @return a clone of this instance.
|
|
625 |
*/
|
|
626 |
public Object clone() {
|
|
627 |
try {
|
|
628 |
DigitList other = (DigitList) super.clone();
|
|
629 |
char[] newDigits = new char[digits.length];
|
|
630 |
System.arraycopy(digits, 0, newDigits, 0, digits.length);
|
|
631 |
other.digits = newDigits;
|
|
632 |
other.tempBuffer = null;
|
|
633 |
return other;
|
|
634 |
} catch (CloneNotSupportedException e) {
|
|
635 |
throw new InternalError();
|
|
636 |
}
|
|
637 |
}
|
|
638 |
|
|
639 |
/**
|
|
640 |
* Returns true if this DigitList represents Long.MIN_VALUE;
|
|
641 |
* false, otherwise. This is required so that getLong() works.
|
|
642 |
*/
|
|
643 |
private boolean isLongMIN_VALUE() {
|
|
644 |
if (decimalAt != count || count != MAX_COUNT) {
|
|
645 |
return false;
|
|
646 |
}
|
|
647 |
|
|
648 |
for (int i = 0; i < count; ++i) {
|
|
649 |
if (digits[i] != LONG_MIN_REP[i]) return false;
|
|
650 |
}
|
|
651 |
|
|
652 |
return true;
|
|
653 |
}
|
|
654 |
|
|
655 |
private static final int parseInt(char[] str, int offset, int strLen) {
|
|
656 |
char c;
|
|
657 |
boolean positive = true;
|
|
658 |
if ((c = str[offset]) == '-') {
|
|
659 |
positive = false;
|
|
660 |
offset++;
|
|
661 |
} else if (c == '+') {
|
|
662 |
offset++;
|
|
663 |
}
|
|
664 |
|
|
665 |
int value = 0;
|
|
666 |
while (offset < strLen) {
|
|
667 |
c = str[offset++];
|
|
668 |
if (c >= '0' && c <= '9') {
|
|
669 |
value = value * 10 + (c - '0');
|
|
670 |
} else {
|
|
671 |
break;
|
|
672 |
}
|
|
673 |
}
|
|
674 |
return positive ? value : -value;
|
|
675 |
}
|
|
676 |
|
|
677 |
// The digit part of -9223372036854775808L
|
|
678 |
private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();
|
|
679 |
|
|
680 |
public String toString() {
|
|
681 |
if (isZero()) {
|
|
682 |
return "0";
|
|
683 |
}
|
|
684 |
StringBuffer buf = getStringBuffer();
|
|
685 |
buf.append("0.");
|
|
686 |
buf.append(digits, 0, count);
|
|
687 |
buf.append("x10^");
|
|
688 |
buf.append(decimalAt);
|
|
689 |
return buf.toString();
|
|
690 |
}
|
|
691 |
|
|
692 |
private StringBuffer tempBuffer;
|
|
693 |
|
|
694 |
private StringBuffer getStringBuffer() {
|
|
695 |
if (tempBuffer == null) {
|
|
696 |
tempBuffer = new StringBuffer(MAX_COUNT);
|
|
697 |
} else {
|
|
698 |
tempBuffer.setLength(0);
|
|
699 |
}
|
|
700 |
return tempBuffer;
|
|
701 |
}
|
|
702 |
|
|
703 |
private void extendDigits(int len) {
|
|
704 |
if (len > digits.length) {
|
|
705 |
digits = new char[len];
|
|
706 |
}
|
|
707 |
}
|
|
708 |
|
|
709 |
private final char[] getDataChars(int length) {
|
|
710 |
if (data == null || data.length < length) {
|
|
711 |
data = new char[length];
|
|
712 |
}
|
|
713 |
return data;
|
|
714 |
}
|
|
715 |
}
|