2
|
1 |
/*
|
5506
|
2 |
* Copyright (c) 1999, 2003, Oracle and/or its affiliates. All rights reserved.
|
2
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
5506
|
7 |
* published by the Free Software Foundation. Oracle designates this
|
2
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
5506
|
9 |
* by Oracle in the LICENSE file that accompanied this code.
|
2
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
5506
|
21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
22 |
* or visit www.oracle.com if you need additional information or have any
|
|
23 |
* questions.
|
2
|
24 |
*/
|
|
25 |
|
|
26 |
/*
|
|
27 |
*
|
|
28 |
* (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
|
|
29 |
* (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved
|
|
30 |
*
|
|
31 |
* The original version of this source code and documentation
|
|
32 |
* is copyrighted and owned by Taligent, Inc., a wholly-owned
|
|
33 |
* subsidiary of IBM. These materials are provided under terms
|
|
34 |
* of a License Agreement between Taligent and Sun. This technology
|
|
35 |
* is protected by multiple US and International patents.
|
|
36 |
*
|
|
37 |
* This notice and attribution to Taligent may not be removed.
|
|
38 |
* Taligent is a registered trademark of Taligent, Inc.
|
|
39 |
*/
|
|
40 |
package java.text;
|
|
41 |
|
|
42 |
import java.io.*;
|
|
43 |
import java.security.AccessController;
|
|
44 |
import java.security.PrivilegedActionException;
|
|
45 |
import java.security.PrivilegedExceptionAction;
|
|
46 |
import java.util.MissingResourceException;
|
|
47 |
import sun.text.CompactByteArray;
|
|
48 |
import sun.text.SupplementaryCharacterData;
|
|
49 |
|
|
50 |
/**
|
|
51 |
* This is the class that represents the list of known words used by
|
|
52 |
* DictionaryBasedBreakIterator. The conceptual data structure used
|
|
53 |
* here is a trie: there is a node hanging off the root node for every
|
|
54 |
* letter that can start a word. Each of these nodes has a node hanging
|
|
55 |
* off of it for every letter that can be the second letter of a word
|
|
56 |
* if this node is the first letter, and so on. The trie is represented
|
|
57 |
* as a two-dimensional array that can be treated as a table of state
|
|
58 |
* transitions. Indexes are used to compress this array, taking
|
|
59 |
* advantage of the fact that this array will always be very sparse.
|
|
60 |
*/
|
|
61 |
class BreakDictionary {
|
|
62 |
|
|
63 |
//=========================================================================
|
|
64 |
// data members
|
|
65 |
//=========================================================================
|
|
66 |
|
|
67 |
/**
|
|
68 |
* The version of the dictionary that was read in.
|
|
69 |
*/
|
|
70 |
private static int supportedVersion = 1;
|
|
71 |
|
|
72 |
/**
|
|
73 |
* Maps from characters to column numbers. The main use of this is to
|
|
74 |
* avoid making room in the array for empty columns.
|
|
75 |
*/
|
|
76 |
private CompactByteArray columnMap = null;
|
|
77 |
private SupplementaryCharacterData supplementaryCharColumnMap = null;
|
|
78 |
|
|
79 |
/**
|
|
80 |
* The number of actual columns in the table
|
|
81 |
*/
|
|
82 |
private int numCols;
|
|
83 |
|
|
84 |
/**
|
|
85 |
* Columns are organized into groups of 32. This says how many
|
|
86 |
* column groups. (We could calculate this, but we store the
|
|
87 |
* value to avoid having to repeatedly calculate it.)
|
|
88 |
*/
|
|
89 |
private int numColGroups;
|
|
90 |
|
|
91 |
/**
|
|
92 |
* The actual compressed state table. Each conceptual row represents
|
|
93 |
* a state, and the cells in it contain the row numbers of the states
|
|
94 |
* to transition to for each possible letter. 0 is used to indicate
|
|
95 |
* an illegal combination of letters (i.e., the error state). The
|
|
96 |
* table is compressed by eliminating all the unpopulated (i.e., zero)
|
|
97 |
* cells. Multiple conceptual rows can then be doubled up in a single
|
|
98 |
* physical row by sliding them up and possibly shifting them to one
|
|
99 |
* side or the other so the populated cells don't collide. Indexes
|
|
100 |
* are used to identify unpopulated cells and to locate populated cells.
|
|
101 |
*/
|
|
102 |
private short[] table = null;
|
|
103 |
|
|
104 |
/**
|
|
105 |
* This index maps logical row numbers to physical row numbers
|
|
106 |
*/
|
|
107 |
private short[] rowIndex = null;
|
|
108 |
|
|
109 |
/**
|
|
110 |
* A bitmap is used to tell which cells in the comceptual table are
|
|
111 |
* populated. This array contains all the unique bit combinations
|
|
112 |
* in that bitmap. If the table is more than 32 columns wide,
|
|
113 |
* successive entries in this array are used for a single row.
|
|
114 |
*/
|
|
115 |
private int[] rowIndexFlags = null;
|
|
116 |
|
|
117 |
/**
|
|
118 |
* This index maps from a logical row number into the bitmap table above.
|
|
119 |
* (This keeps us from storing duplicate bitmap combinations.) Since there
|
|
120 |
* are a lot of rows with only one populated cell, instead of wasting space
|
|
121 |
* in the bitmap table, we just store a negative number in this index for
|
|
122 |
* rows with one populated cell. The absolute value of that number is
|
|
123 |
* the column number of the populated cell.
|
|
124 |
*/
|
|
125 |
private short[] rowIndexFlagsIndex = null;
|
|
126 |
|
|
127 |
/**
|
|
128 |
* For each logical row, this index contains a constant that is added to
|
|
129 |
* the logical column number to get the physical column number
|
|
130 |
*/
|
|
131 |
private byte[] rowIndexShifts = null;
|
|
132 |
|
|
133 |
//=========================================================================
|
|
134 |
// deserialization
|
|
135 |
//=========================================================================
|
|
136 |
|
|
137 |
public BreakDictionary(String dictionaryName)
|
|
138 |
throws IOException, MissingResourceException {
|
|
139 |
|
|
140 |
readDictionaryFile(dictionaryName);
|
|
141 |
}
|
|
142 |
|
|
143 |
private void readDictionaryFile(final String dictionaryName)
|
|
144 |
throws IOException, MissingResourceException {
|
|
145 |
|
|
146 |
BufferedInputStream in;
|
|
147 |
try {
|
|
148 |
in = (BufferedInputStream)AccessController.doPrivileged(
|
|
149 |
new PrivilegedExceptionAction() {
|
|
150 |
public Object run() throws Exception {
|
|
151 |
return new BufferedInputStream(getClass().getResourceAsStream("/sun/text/resources/" + dictionaryName));
|
|
152 |
}
|
|
153 |
}
|
|
154 |
);
|
|
155 |
}
|
|
156 |
catch (PrivilegedActionException e) {
|
|
157 |
throw new InternalError(e.toString());
|
|
158 |
}
|
|
159 |
|
|
160 |
byte[] buf = new byte[8];
|
|
161 |
if (in.read(buf) != 8) {
|
|
162 |
throw new MissingResourceException("Wrong data length",
|
|
163 |
dictionaryName, "");
|
|
164 |
}
|
|
165 |
|
|
166 |
// check vesion
|
|
167 |
int version = BreakIterator.getInt(buf, 0);
|
|
168 |
if (version != supportedVersion) {
|
|
169 |
throw new MissingResourceException("Dictionary version(" + version + ") is unsupported",
|
|
170 |
dictionaryName, "");
|
|
171 |
}
|
|
172 |
|
|
173 |
// get data size
|
|
174 |
int len = BreakIterator.getInt(buf, 4);
|
|
175 |
buf = new byte[len];
|
|
176 |
if (in.read(buf) != len) {
|
|
177 |
throw new MissingResourceException("Wrong data length",
|
|
178 |
dictionaryName, "");
|
|
179 |
}
|
|
180 |
|
|
181 |
// close the stream
|
|
182 |
in.close();
|
|
183 |
|
|
184 |
int l;
|
|
185 |
int offset = 0;
|
|
186 |
|
|
187 |
// read in the column map for BMP characteres (this is serialized in
|
|
188 |
// its internal form: an index array followed by a data array)
|
|
189 |
l = BreakIterator.getInt(buf, offset);
|
|
190 |
offset += 4;
|
|
191 |
short[] temp = new short[l];
|
|
192 |
for (int i = 0; i < l; i++, offset+=2) {
|
|
193 |
temp[i] = BreakIterator.getShort(buf, offset);
|
|
194 |
}
|
|
195 |
l = BreakIterator.getInt(buf, offset);
|
|
196 |
offset += 4;
|
|
197 |
byte[] temp2 = new byte[l];
|
|
198 |
for (int i = 0; i < l; i++, offset++) {
|
|
199 |
temp2[i] = buf[offset];
|
|
200 |
}
|
|
201 |
columnMap = new CompactByteArray(temp, temp2);
|
|
202 |
|
|
203 |
// read in numCols and numColGroups
|
|
204 |
numCols = BreakIterator.getInt(buf, offset);
|
|
205 |
offset += 4;
|
|
206 |
numColGroups = BreakIterator.getInt(buf, offset);
|
|
207 |
offset += 4;
|
|
208 |
|
|
209 |
// read in the row-number index
|
|
210 |
l = BreakIterator.getInt(buf, offset);
|
|
211 |
offset += 4;
|
|
212 |
rowIndex = new short[l];
|
|
213 |
for (int i = 0; i < l; i++, offset+=2) {
|
|
214 |
rowIndex[i] = BreakIterator.getShort(buf, offset);
|
|
215 |
}
|
|
216 |
|
|
217 |
// load in the populated-cells bitmap: index first, then bitmap list
|
|
218 |
l = BreakIterator.getInt(buf, offset);
|
|
219 |
offset += 4;
|
|
220 |
rowIndexFlagsIndex = new short[l];
|
|
221 |
for (int i = 0; i < l; i++, offset+=2) {
|
|
222 |
rowIndexFlagsIndex[i] = BreakIterator.getShort(buf, offset);
|
|
223 |
}
|
|
224 |
l = BreakIterator.getInt(buf, offset);
|
|
225 |
offset += 4;
|
|
226 |
rowIndexFlags = new int[l];
|
|
227 |
for (int i = 0; i < l; i++, offset+=4) {
|
|
228 |
rowIndexFlags[i] = BreakIterator.getInt(buf, offset);
|
|
229 |
}
|
|
230 |
|
|
231 |
// load in the row-shift index
|
|
232 |
l = BreakIterator.getInt(buf, offset);
|
|
233 |
offset += 4;
|
|
234 |
rowIndexShifts = new byte[l];
|
|
235 |
for (int i = 0; i < l; i++, offset++) {
|
|
236 |
rowIndexShifts[i] = buf[offset];
|
|
237 |
}
|
|
238 |
|
|
239 |
// load in the actual state table
|
|
240 |
l = BreakIterator.getInt(buf, offset);
|
|
241 |
offset += 4;
|
|
242 |
table = new short[l];
|
|
243 |
for (int i = 0; i < l; i++, offset+=2) {
|
|
244 |
table[i] = BreakIterator.getShort(buf, offset);
|
|
245 |
}
|
|
246 |
|
|
247 |
// finally, prepare the column map for supplementary characters
|
|
248 |
l = BreakIterator.getInt(buf, offset);
|
|
249 |
offset += 4;
|
|
250 |
int[] temp3 = new int[l];
|
|
251 |
for (int i = 0; i < l; i++, offset+=4) {
|
|
252 |
temp3[i] = BreakIterator.getInt(buf, offset);
|
|
253 |
}
|
|
254 |
supplementaryCharColumnMap = new SupplementaryCharacterData(temp3);
|
|
255 |
}
|
|
256 |
|
|
257 |
//=========================================================================
|
|
258 |
// access to the words
|
|
259 |
//=========================================================================
|
|
260 |
|
|
261 |
/**
|
|
262 |
* Uses the column map to map the character to a column number, then
|
|
263 |
* passes the row and column number to getNextState()
|
|
264 |
* @param row The current state
|
|
265 |
* @param ch The character whose column we're interested in
|
|
266 |
* @return The new state to transition to
|
|
267 |
*/
|
|
268 |
public final short getNextStateFromCharacter(int row, int ch) {
|
|
269 |
int col;
|
|
270 |
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
|
|
271 |
col = columnMap.elementAt((char)ch);
|
|
272 |
} else {
|
|
273 |
col = supplementaryCharColumnMap.getValue(ch);
|
|
274 |
}
|
|
275 |
return getNextState(row, col);
|
|
276 |
}
|
|
277 |
|
|
278 |
/**
|
|
279 |
* Returns the value in the cell with the specified (logical) row and
|
|
280 |
* column numbers. In DictionaryBasedBreakIterator, the row number is
|
|
281 |
* a state number, the column number is an input, and the return value
|
|
282 |
* is the row number of the new state to transition to. (0 is the
|
|
283 |
* "error" state, and -1 is the "end of word" state in a dictionary)
|
|
284 |
* @param row The row number of the current state
|
|
285 |
* @param col The column number of the input character (0 means "not a
|
|
286 |
* dictionary character")
|
|
287 |
* @return The row number of the new state to transition to
|
|
288 |
*/
|
|
289 |
public final short getNextState(int row, int col) {
|
|
290 |
if (cellIsPopulated(row, col)) {
|
|
291 |
// we map from logical to physical row number by looking up the
|
|
292 |
// mapping in rowIndex; we map from logical column number to
|
|
293 |
// physical column number by looking up a shift value for this
|
|
294 |
// logical row and offsetting the logical column number by
|
|
295 |
// the shift amount. Then we can use internalAt() to actually
|
|
296 |
// get the value out of the table.
|
|
297 |
return internalAt(rowIndex[row], col + rowIndexShifts[row]);
|
|
298 |
}
|
|
299 |
else {
|
|
300 |
return 0;
|
|
301 |
}
|
|
302 |
}
|
|
303 |
|
|
304 |
/**
|
|
305 |
* Given (logical) row and column numbers, returns true if the
|
|
306 |
* cell in that position is populated
|
|
307 |
*/
|
|
308 |
private final boolean cellIsPopulated(int row, int col) {
|
|
309 |
// look up the entry in the bitmap index for the specified row.
|
|
310 |
// If it's a negative number, it's the column number of the only
|
|
311 |
// populated cell in the row
|
|
312 |
if (rowIndexFlagsIndex[row] < 0) {
|
|
313 |
return col == -rowIndexFlagsIndex[row];
|
|
314 |
}
|
|
315 |
|
|
316 |
// if it's a positive number, it's the offset of an entry in the bitmap
|
|
317 |
// list. If the table is more than 32 columns wide, the bitmap is stored
|
|
318 |
// successive entries in the bitmap list, so we have to divide the column
|
|
319 |
// number by 32 and offset the number we got out of the index by the result.
|
|
320 |
// Once we have the appropriate piece of the bitmap, test the appropriate
|
|
321 |
// bit and return the result.
|
|
322 |
else {
|
|
323 |
int flags = rowIndexFlags[rowIndexFlagsIndex[row] + (col >> 5)];
|
|
324 |
return (flags & (1 << (col & 0x1f))) != 0;
|
|
325 |
}
|
|
326 |
}
|
|
327 |
|
|
328 |
/**
|
|
329 |
* Implementation of getNextState() when we know the specified cell is
|
|
330 |
* populated.
|
|
331 |
* @param row The PHYSICAL row number of the cell
|
|
332 |
* @param col The PHYSICAL column number of the cell
|
|
333 |
* @return The value stored in the cell
|
|
334 |
*/
|
|
335 |
private final short internalAt(int row, int col) {
|
|
336 |
// the table is a one-dimensional array, so this just does the math necessary
|
|
337 |
// to treat it as a two-dimensional array (we don't just use a two-dimensional
|
|
338 |
// array because two-dimensional arrays are inefficient in Java)
|
|
339 |
return table[row * numCols + col];
|
|
340 |
}
|
|
341 |
}
|