1
|
1 |
/*
|
|
2 |
* Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
//** Dependencies represent assertions (approximate invariants) within
|
|
26 |
// the class hierarchy. An example is an assertion that a given
|
|
27 |
// method is not overridden; another example is that a type has only
|
|
28 |
// one concrete subtype. Compiled code which relies on such
|
|
29 |
// assertions must be discarded if they are overturned by changes in
|
|
30 |
// the class hierarchy. We can think of these assertions as
|
|
31 |
// approximate invariants, because we expect them to be overturned
|
|
32 |
// very infrequently. We are willing to perform expensive recovery
|
|
33 |
// operations when they are overturned. The benefit, of course, is
|
|
34 |
// performing optimistic optimizations (!) on the object code.
|
|
35 |
//
|
|
36 |
// Changes in the class hierarchy due to dynamic linking or
|
|
37 |
// class evolution can violate dependencies. There is enough
|
|
38 |
// indexing between classes and nmethods to make dependency
|
|
39 |
// checking reasonably efficient.
|
|
40 |
|
|
41 |
class ciEnv;
|
|
42 |
class nmethod;
|
|
43 |
class OopRecorder;
|
|
44 |
class xmlStream;
|
|
45 |
class CompileLog;
|
|
46 |
class DepChange;
|
|
47 |
class No_Safepoint_Verifier;
|
|
48 |
|
|
49 |
class Dependencies: public ResourceObj {
|
|
50 |
public:
|
|
51 |
// Note: In the comments on dependency types, most uses of the terms
|
|
52 |
// subtype and supertype are used in a "non-strict" or "inclusive"
|
|
53 |
// sense, and are starred to remind the reader of this fact.
|
|
54 |
// Strict uses of the terms use the word "proper".
|
|
55 |
//
|
|
56 |
// Specifically, every class is its own subtype* and supertype*.
|
|
57 |
// (This trick is easier than continually saying things like "Y is a
|
|
58 |
// subtype of X or X itself".)
|
|
59 |
//
|
|
60 |
// Sometimes we write X > Y to mean X is a proper supertype of Y.
|
|
61 |
// The notation X > {Y, Z} means X has proper subtypes Y, Z.
|
|
62 |
// The notation X.m > Y means that Y inherits m from X, while
|
|
63 |
// X.m > Y.m means Y overrides X.m. A star denotes abstractness,
|
|
64 |
// as *I > A, meaning (abstract) interface I is a super type of A,
|
|
65 |
// or A.*m > B.m, meaning B.m implements abstract method A.m.
|
|
66 |
//
|
|
67 |
// In this module, the terms "subtype" and "supertype" refer to
|
|
68 |
// Java-level reference type conversions, as detected by
|
|
69 |
// "instanceof" and performed by "checkcast" operations. The method
|
|
70 |
// Klass::is_subtype_of tests these relations. Note that "subtype"
|
|
71 |
// is richer than "subclass" (as tested by Klass::is_subclass_of),
|
|
72 |
// since it takes account of relations involving interface and array
|
|
73 |
// types.
|
|
74 |
//
|
|
75 |
// To avoid needless complexity, dependencies involving array types
|
|
76 |
// are not accepted. If you need to make an assertion about an
|
|
77 |
// array type, make the assertion about its corresponding element
|
|
78 |
// types. Any assertion that might change about an array type can
|
|
79 |
// be converted to an assertion about its element type.
|
|
80 |
//
|
|
81 |
// Most dependencies are evaluated over a "context type" CX, which
|
|
82 |
// stands for the set Subtypes(CX) of every Java type that is a subtype*
|
|
83 |
// of CX. When the system loads a new class or interface N, it is
|
|
84 |
// responsible for re-evaluating changed dependencies whose context
|
|
85 |
// type now includes N, that is, all super types of N.
|
|
86 |
//
|
|
87 |
enum DepType {
|
|
88 |
end_marker = 0,
|
|
89 |
|
|
90 |
// An 'evol' dependency simply notes that the contents of the
|
|
91 |
// method were used. If it evolves (is replaced), the nmethod
|
|
92 |
// must be recompiled. No other dependencies are implied.
|
|
93 |
evol_method,
|
|
94 |
FIRST_TYPE = evol_method,
|
|
95 |
|
|
96 |
// A context type CX is a leaf it if has no proper subtype.
|
|
97 |
leaf_type,
|
|
98 |
|
|
99 |
// An abstract class CX has exactly one concrete subtype CC.
|
|
100 |
abstract_with_unique_concrete_subtype,
|
|
101 |
|
|
102 |
// The type CX is purely abstract, with no concrete subtype* at all.
|
|
103 |
abstract_with_no_concrete_subtype,
|
|
104 |
|
|
105 |
// The concrete CX is free of concrete proper subtypes.
|
|
106 |
concrete_with_no_concrete_subtype,
|
|
107 |
|
|
108 |
// Given a method M1 and a context class CX, the set MM(CX, M1) of
|
|
109 |
// "concrete matching methods" in CX of M1 is the set of every
|
|
110 |
// concrete M2 for which it is possible to create an invokevirtual
|
|
111 |
// or invokeinterface call site that can reach either M1 or M2.
|
|
112 |
// That is, M1 and M2 share a name, signature, and vtable index.
|
|
113 |
// We wish to notice when the set MM(CX, M1) is just {M1}, or
|
|
114 |
// perhaps a set of two {M1,M2}, and issue dependencies on this.
|
|
115 |
|
|
116 |
// The set MM(CX, M1) can be computed by starting with any matching
|
|
117 |
// concrete M2 that is inherited into CX, and then walking the
|
|
118 |
// subtypes* of CX looking for concrete definitions.
|
|
119 |
|
|
120 |
// The parameters to this dependency are the method M1 and the
|
|
121 |
// context class CX. M1 must be either inherited in CX or defined
|
|
122 |
// in a subtype* of CX. It asserts that MM(CX, M1) is no greater
|
|
123 |
// than {M1}.
|
|
124 |
unique_concrete_method, // one unique concrete method under CX
|
|
125 |
|
|
126 |
// An "exclusive" assertion concerns two methods or subtypes, and
|
|
127 |
// declares that there are at most two (or perhaps later N>2)
|
|
128 |
// specific items that jointly satisfy the restriction.
|
|
129 |
// We list all items explicitly rather than just giving their
|
|
130 |
// count, for robustness in the face of complex schema changes.
|
|
131 |
|
|
132 |
// A context class CX (which may be either abstract or concrete)
|
|
133 |
// has two exclusive concrete subtypes* C1, C2 if every concrete
|
|
134 |
// subtype* of CX is either C1 or C2. Note that if neither C1 or C2
|
|
135 |
// are equal to CX, then CX itself must be abstract. But it is
|
|
136 |
// also possible (for example) that C1 is CX (a concrete class)
|
|
137 |
// and C2 is a proper subtype of C1.
|
|
138 |
abstract_with_exclusive_concrete_subtypes_2,
|
|
139 |
|
|
140 |
// This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
|
|
141 |
exclusive_concrete_methods_2,
|
|
142 |
|
|
143 |
// This dependency asserts that no instances of class or it's
|
|
144 |
// subclasses require finalization registration.
|
|
145 |
no_finalizable_subclasses,
|
|
146 |
|
|
147 |
TYPE_LIMIT
|
|
148 |
};
|
|
149 |
enum {
|
|
150 |
LG2_TYPE_LIMIT = 4, // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
|
|
151 |
|
|
152 |
// handy categorizations of dependency types:
|
|
153 |
all_types = ((1<<TYPE_LIMIT)-1) & ((-1)<<FIRST_TYPE),
|
|
154 |
non_ctxk_types = (1<<evol_method),
|
|
155 |
ctxk_types = all_types & ~non_ctxk_types,
|
|
156 |
|
|
157 |
max_arg_count = 3, // current maximum number of arguments (incl. ctxk)
|
|
158 |
|
|
159 |
// A "context type" is a class or interface that
|
|
160 |
// provides context for evaluating a dependency.
|
|
161 |
// When present, it is one of the arguments (dep_context_arg).
|
|
162 |
//
|
|
163 |
// If a dependency does not have a context type, there is a
|
|
164 |
// default context, depending on the type of the dependency.
|
|
165 |
// This bit signals that a default context has been compressed away.
|
|
166 |
default_context_type_bit = (1<<LG2_TYPE_LIMIT)
|
|
167 |
};
|
|
168 |
|
|
169 |
static const char* dep_name(DepType dept);
|
|
170 |
static int dep_args(DepType dept);
|
|
171 |
static int dep_context_arg(DepType dept) {
|
|
172 |
return dept_in_mask(dept, ctxk_types)? 0: -1;
|
|
173 |
}
|
|
174 |
|
|
175 |
private:
|
|
176 |
// State for writing a new set of dependencies:
|
|
177 |
GrowableArray<int>* _dep_seen; // (seen[h->ident] & (1<<dept))
|
|
178 |
GrowableArray<ciObject*>* _deps[TYPE_LIMIT];
|
|
179 |
|
|
180 |
static const char* _dep_name[TYPE_LIMIT];
|
|
181 |
static int _dep_args[TYPE_LIMIT];
|
|
182 |
|
|
183 |
static bool dept_in_mask(DepType dept, int mask) {
|
|
184 |
return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
|
|
185 |
}
|
|
186 |
|
|
187 |
bool note_dep_seen(int dept, ciObject* x) {
|
|
188 |
assert(dept < BitsPerInt, "oob");
|
|
189 |
int x_id = x->ident();
|
|
190 |
assert(_dep_seen != NULL, "deps must be writable");
|
|
191 |
int seen = _dep_seen->at_grow(x_id, 0);
|
|
192 |
_dep_seen->at_put(x_id, seen | (1<<dept));
|
|
193 |
// return true if we've already seen dept/x
|
|
194 |
return (seen & (1<<dept)) != 0;
|
|
195 |
}
|
|
196 |
|
|
197 |
bool maybe_merge_ctxk(GrowableArray<ciObject*>* deps,
|
|
198 |
int ctxk_i, ciKlass* ctxk);
|
|
199 |
|
|
200 |
void sort_all_deps();
|
|
201 |
size_t estimate_size_in_bytes();
|
|
202 |
|
|
203 |
// Initialize _deps, etc.
|
|
204 |
void initialize(ciEnv* env);
|
|
205 |
|
|
206 |
// State for making a new set of dependencies:
|
|
207 |
OopRecorder* _oop_recorder;
|
|
208 |
|
|
209 |
// Logging support
|
|
210 |
CompileLog* _log;
|
|
211 |
|
|
212 |
address _content_bytes; // everything but the oop references, encoded
|
|
213 |
size_t _size_in_bytes;
|
|
214 |
|
|
215 |
public:
|
|
216 |
// Make a new empty dependencies set.
|
|
217 |
Dependencies(ciEnv* env) {
|
|
218 |
initialize(env);
|
|
219 |
}
|
|
220 |
|
|
221 |
private:
|
|
222 |
// Check for a valid context type.
|
|
223 |
// Enforce the restriction against array types.
|
|
224 |
static void check_ctxk(ciKlass* ctxk) {
|
|
225 |
assert(ctxk->is_instance_klass(), "java types only");
|
|
226 |
}
|
|
227 |
static void check_ctxk_concrete(ciKlass* ctxk) {
|
|
228 |
assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
|
|
229 |
}
|
|
230 |
static void check_ctxk_abstract(ciKlass* ctxk) {
|
|
231 |
check_ctxk(ctxk);
|
|
232 |
assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
|
|
233 |
}
|
|
234 |
|
|
235 |
void assert_common_1(DepType dept, ciObject* x);
|
|
236 |
void assert_common_2(DepType dept, ciKlass* ctxk, ciObject* x);
|
|
237 |
void assert_common_3(DepType dept, ciKlass* ctxk, ciObject* x, ciObject* x2);
|
|
238 |
|
|
239 |
public:
|
|
240 |
// Adding assertions to a new dependency set at compile time:
|
|
241 |
void assert_evol_method(ciMethod* m);
|
|
242 |
void assert_leaf_type(ciKlass* ctxk);
|
|
243 |
void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
|
|
244 |
void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
|
|
245 |
void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
|
|
246 |
void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
|
|
247 |
void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
|
|
248 |
void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
|
|
249 |
void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
|
|
250 |
|
|
251 |
// Define whether a given method or type is concrete.
|
|
252 |
// These methods define the term "concrete" as used in this module.
|
|
253 |
// For this module, an "abstract" class is one which is non-concrete.
|
|
254 |
//
|
|
255 |
// Future optimizations may allow some classes to remain
|
|
256 |
// non-concrete until their first instantiation, and allow some
|
|
257 |
// methods to remain non-concrete until their first invocation.
|
|
258 |
// In that case, there would be a middle ground between concrete
|
|
259 |
// and abstract (as defined by the Java language and VM).
|
|
260 |
static bool is_concrete_klass(klassOop k); // k is instantiable
|
|
261 |
static bool is_concrete_method(methodOop m); // m is invocable
|
|
262 |
static Klass* find_finalizable_subclass(Klass* k);
|
|
263 |
|
|
264 |
// These versions of the concreteness queries work through the CI.
|
|
265 |
// The CI versions are allowed to skew sometimes from the VM
|
|
266 |
// (oop-based) versions. The cost of such a difference is a
|
|
267 |
// (safely) aborted compilation, or a deoptimization, or a missed
|
|
268 |
// optimization opportunity.
|
|
269 |
//
|
|
270 |
// In order to prevent spurious assertions, query results must
|
|
271 |
// remain stable within any single ciEnv instance. (I.e., they must
|
|
272 |
// not go back into the VM to get their value; they must cache the
|
|
273 |
// bit in the CI, either eagerly or lazily.)
|
|
274 |
static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
|
|
275 |
static bool is_concrete_method(ciMethod* m); // m appears invocable
|
|
276 |
static bool has_finalizable_subclass(ciInstanceKlass* k);
|
|
277 |
|
|
278 |
// As a general rule, it is OK to compile under the assumption that
|
|
279 |
// a given type or method is concrete, even if it at some future
|
|
280 |
// point becomes abstract. So dependency checking is one-sided, in
|
|
281 |
// that it permits supposedly concrete classes or methods to turn up
|
|
282 |
// as really abstract. (This shouldn't happen, except during class
|
|
283 |
// evolution, but that's the logic of the checking.) However, if a
|
|
284 |
// supposedly abstract class or method suddenly becomes concrete, a
|
|
285 |
// dependency on it must fail.
|
|
286 |
|
|
287 |
// Checking old assertions at run-time (in the VM only):
|
|
288 |
static klassOop check_evol_method(methodOop m);
|
|
289 |
static klassOop check_leaf_type(klassOop ctxk);
|
|
290 |
static klassOop check_abstract_with_unique_concrete_subtype(klassOop ctxk, klassOop conck,
|
|
291 |
DepChange* changes = NULL);
|
|
292 |
static klassOop check_abstract_with_no_concrete_subtype(klassOop ctxk,
|
|
293 |
DepChange* changes = NULL);
|
|
294 |
static klassOop check_concrete_with_no_concrete_subtype(klassOop ctxk,
|
|
295 |
DepChange* changes = NULL);
|
|
296 |
static klassOop check_unique_concrete_method(klassOop ctxk, methodOop uniqm,
|
|
297 |
DepChange* changes = NULL);
|
|
298 |
static klassOop check_abstract_with_exclusive_concrete_subtypes(klassOop ctxk, klassOop k1, klassOop k2,
|
|
299 |
DepChange* changes = NULL);
|
|
300 |
static klassOop check_exclusive_concrete_methods(klassOop ctxk, methodOop m1, methodOop m2,
|
|
301 |
DepChange* changes = NULL);
|
|
302 |
static klassOop check_has_no_finalizable_subclasses(klassOop ctxk,
|
|
303 |
DepChange* changes = NULL);
|
|
304 |
// A returned klassOop is NULL if the dependency assertion is still
|
|
305 |
// valid. A non-NULL klassOop is a 'witness' to the assertion
|
|
306 |
// failure, a point in the class hierarchy where the assertion has
|
|
307 |
// been proven false. For example, if check_leaf_type returns
|
|
308 |
// non-NULL, the value is a subtype of the supposed leaf type. This
|
|
309 |
// witness value may be useful for logging the dependency failure.
|
|
310 |
// Note that, when a dependency fails, there may be several possible
|
|
311 |
// witnesses to the failure. The value returned from the check_foo
|
|
312 |
// method is chosen arbitrarily.
|
|
313 |
|
|
314 |
// The 'changes' value, if non-null, requests a limited spot-check
|
|
315 |
// near the indicated recent changes in the class hierarchy.
|
|
316 |
// It is used by DepStream::spot_check_dependency_at.
|
|
317 |
|
|
318 |
// Detecting possible new assertions:
|
|
319 |
static klassOop find_unique_concrete_subtype(klassOop ctxk);
|
|
320 |
static methodOop find_unique_concrete_method(klassOop ctxk, methodOop m);
|
|
321 |
static int find_exclusive_concrete_subtypes(klassOop ctxk, int klen, klassOop k[]);
|
|
322 |
static int find_exclusive_concrete_methods(klassOop ctxk, int mlen, methodOop m[]);
|
|
323 |
|
|
324 |
// Create the encoding which will be stored in an nmethod.
|
|
325 |
void encode_content_bytes();
|
|
326 |
|
|
327 |
address content_bytes() {
|
|
328 |
assert(_content_bytes != NULL, "encode it first");
|
|
329 |
return _content_bytes;
|
|
330 |
}
|
|
331 |
size_t size_in_bytes() {
|
|
332 |
assert(_content_bytes != NULL, "encode it first");
|
|
333 |
return _size_in_bytes;
|
|
334 |
}
|
|
335 |
|
|
336 |
OopRecorder* oop_recorder() { return _oop_recorder; }
|
|
337 |
CompileLog* log() { return _log; }
|
|
338 |
|
|
339 |
void copy_to(nmethod* nm);
|
|
340 |
|
|
341 |
void log_all_dependencies();
|
|
342 |
void log_dependency(DepType dept, int nargs, ciObject* args[]) {
|
|
343 |
write_dependency_to(log(), dept, nargs, args);
|
|
344 |
}
|
|
345 |
void log_dependency(DepType dept,
|
|
346 |
ciObject* x0,
|
|
347 |
ciObject* x1 = NULL,
|
|
348 |
ciObject* x2 = NULL) {
|
|
349 |
if (log() == NULL) return;
|
|
350 |
ciObject* args[max_arg_count];
|
|
351 |
args[0] = x0;
|
|
352 |
args[1] = x1;
|
|
353 |
args[2] = x2;
|
|
354 |
assert(2 < max_arg_count, "");
|
|
355 |
log_dependency(dept, dep_args(dept), args);
|
|
356 |
}
|
|
357 |
|
|
358 |
static void write_dependency_to(CompileLog* log,
|
|
359 |
DepType dept,
|
|
360 |
int nargs, ciObject* args[],
|
|
361 |
klassOop witness = NULL);
|
|
362 |
static void write_dependency_to(CompileLog* log,
|
|
363 |
DepType dept,
|
|
364 |
int nargs, oop args[],
|
|
365 |
klassOop witness = NULL);
|
|
366 |
static void write_dependency_to(xmlStream* xtty,
|
|
367 |
DepType dept,
|
|
368 |
int nargs, oop args[],
|
|
369 |
klassOop witness = NULL);
|
|
370 |
static void print_dependency(DepType dept,
|
|
371 |
int nargs, oop args[],
|
|
372 |
klassOop witness = NULL);
|
|
373 |
|
|
374 |
private:
|
|
375 |
// helper for encoding common context types as zero:
|
|
376 |
static ciKlass* ctxk_encoded_as_null(DepType dept, ciObject* x);
|
|
377 |
|
|
378 |
static klassOop ctxk_encoded_as_null(DepType dept, oop x);
|
|
379 |
|
|
380 |
public:
|
|
381 |
// Use this to iterate over an nmethod's dependency set.
|
|
382 |
// Works on new and old dependency sets.
|
|
383 |
// Usage:
|
|
384 |
//
|
|
385 |
// ;
|
|
386 |
// Dependencies::DepType dept;
|
|
387 |
// for (Dependencies::DepStream deps(nm); deps.next(); ) {
|
|
388 |
// ...
|
|
389 |
// }
|
|
390 |
//
|
|
391 |
// The caller must be in the VM, since oops are not wrapped in handles.
|
|
392 |
class DepStream {
|
|
393 |
private:
|
|
394 |
nmethod* _code; // null if in a compiler thread
|
|
395 |
Dependencies* _deps; // null if not in a compiler thread
|
|
396 |
CompressedReadStream _bytes;
|
|
397 |
#ifdef ASSERT
|
|
398 |
size_t _byte_limit;
|
|
399 |
#endif
|
|
400 |
|
|
401 |
// iteration variables:
|
|
402 |
DepType _type;
|
|
403 |
int _xi[max_arg_count+1];
|
|
404 |
|
|
405 |
void initial_asserts(size_t byte_limit) NOT_DEBUG({});
|
|
406 |
|
|
407 |
inline oop recorded_oop_at(int i);
|
|
408 |
// => _code? _code->oop_at(i): *_deps->_oop_recorder->handle_at(i)
|
|
409 |
|
|
410 |
klassOop check_dependency_impl(DepChange* changes);
|
|
411 |
|
|
412 |
public:
|
|
413 |
DepStream(Dependencies* deps)
|
|
414 |
: _deps(deps),
|
|
415 |
_code(NULL),
|
|
416 |
_bytes(deps->content_bytes())
|
|
417 |
{
|
|
418 |
initial_asserts(deps->size_in_bytes());
|
|
419 |
}
|
|
420 |
DepStream(nmethod* code)
|
|
421 |
: _deps(NULL),
|
|
422 |
_code(code),
|
|
423 |
_bytes(code->dependencies_begin())
|
|
424 |
{
|
|
425 |
initial_asserts(code->dependencies_size());
|
|
426 |
}
|
|
427 |
|
|
428 |
bool next();
|
|
429 |
|
|
430 |
DepType type() { return _type; }
|
|
431 |
int argument_count() { return dep_args(type()); }
|
|
432 |
int argument_index(int i) { assert(0 <= i && i < argument_count(), "oob");
|
|
433 |
return _xi[i]; }
|
|
434 |
oop argument(int i); // => recorded_oop_at(argument_index(i))
|
|
435 |
klassOop context_type();
|
|
436 |
|
|
437 |
methodOop method_argument(int i) {
|
|
438 |
oop x = argument(i);
|
|
439 |
assert(x->is_method(), "type");
|
|
440 |
return (methodOop) x;
|
|
441 |
}
|
|
442 |
klassOop type_argument(int i) {
|
|
443 |
oop x = argument(i);
|
|
444 |
assert(x->is_klass(), "type");
|
|
445 |
return (klassOop) x;
|
|
446 |
}
|
|
447 |
|
|
448 |
// The point of the whole exercise: Is this dep is still OK?
|
|
449 |
klassOop check_dependency() {
|
|
450 |
return check_dependency_impl(NULL);
|
|
451 |
}
|
|
452 |
// A lighter version: Checks only around recent changes in a class
|
|
453 |
// hierarchy. (See Universe::flush_dependents_on.)
|
|
454 |
klassOop spot_check_dependency_at(DepChange& changes);
|
|
455 |
|
|
456 |
// Log the current dependency to xtty or compilation log.
|
|
457 |
void log_dependency(klassOop witness = NULL);
|
|
458 |
|
|
459 |
// Print the current dependency to tty.
|
|
460 |
void print_dependency(klassOop witness = NULL, bool verbose = false);
|
|
461 |
};
|
|
462 |
friend class Dependencies::DepStream;
|
|
463 |
|
|
464 |
static void print_statistics() PRODUCT_RETURN;
|
|
465 |
};
|
|
466 |
|
|
467 |
// A class hierarchy change coming through the VM (under the Compile_lock).
|
|
468 |
// The change is structured as a single new type with any number of supers
|
|
469 |
// and implemented interface types. Other than the new type, any of the
|
|
470 |
// super types can be context types for a relevant dependency, which the
|
|
471 |
// new type could invalidate.
|
|
472 |
class DepChange : public StackObj {
|
|
473 |
private:
|
|
474 |
enum ChangeType {
|
|
475 |
NO_CHANGE = 0, // an uninvolved klass
|
|
476 |
Change_new_type, // a newly loaded type
|
|
477 |
Change_new_sub, // a super with a new subtype
|
|
478 |
Change_new_impl, // an interface with a new implementation
|
|
479 |
CHANGE_LIMIT,
|
|
480 |
Start_Klass = CHANGE_LIMIT // internal indicator for ContextStream
|
|
481 |
};
|
|
482 |
|
|
483 |
// each change set is rooted in exactly one new type (at present):
|
|
484 |
KlassHandle _new_type;
|
|
485 |
|
|
486 |
void initialize();
|
|
487 |
|
|
488 |
public:
|
|
489 |
// notes the new type, marks it and all its super-types
|
|
490 |
DepChange(KlassHandle new_type)
|
|
491 |
: _new_type(new_type)
|
|
492 |
{
|
|
493 |
initialize();
|
|
494 |
}
|
|
495 |
|
|
496 |
// cleans up the marks
|
|
497 |
~DepChange();
|
|
498 |
|
|
499 |
klassOop new_type() { return _new_type(); }
|
|
500 |
|
|
501 |
// involves_context(k) is true if k is new_type or any of the super types
|
|
502 |
bool involves_context(klassOop k);
|
|
503 |
|
|
504 |
// Usage:
|
|
505 |
// for (DepChange::ContextStream str(changes); str.next(); ) {
|
|
506 |
// klassOop k = str.klass();
|
|
507 |
// switch (str.change_type()) {
|
|
508 |
// ...
|
|
509 |
// }
|
|
510 |
// }
|
|
511 |
class ContextStream : public StackObj {
|
|
512 |
private:
|
|
513 |
DepChange& _changes;
|
|
514 |
friend class DepChange;
|
|
515 |
|
|
516 |
// iteration variables:
|
|
517 |
ChangeType _change_type;
|
|
518 |
klassOop _klass;
|
|
519 |
objArrayOop _ti_base; // i.e., transitive_interfaces
|
|
520 |
int _ti_index;
|
|
521 |
int _ti_limit;
|
|
522 |
|
|
523 |
// start at the beginning:
|
|
524 |
void start() {
|
|
525 |
klassOop new_type = _changes.new_type();
|
|
526 |
_change_type = (new_type == NULL ? NO_CHANGE: Start_Klass);
|
|
527 |
_klass = new_type;
|
|
528 |
_ti_base = NULL;
|
|
529 |
_ti_index = 0;
|
|
530 |
_ti_limit = 0;
|
|
531 |
}
|
|
532 |
|
|
533 |
ContextStream(DepChange& changes)
|
|
534 |
: _changes(changes)
|
|
535 |
{ start(); }
|
|
536 |
|
|
537 |
public:
|
|
538 |
ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
|
|
539 |
: _changes(changes)
|
|
540 |
// the nsv argument makes it safe to hold oops like _klass
|
|
541 |
{ start(); }
|
|
542 |
|
|
543 |
bool next();
|
|
544 |
|
|
545 |
klassOop klass() { return _klass; }
|
|
546 |
};
|
|
547 |
friend class DepChange::ContextStream;
|
|
548 |
|
|
549 |
void print();
|
|
550 |
};
|