author | henryjen |
Tue, 10 Jun 2014 16:18:54 -0700 | |
changeset 24865 | 09b1d992ca72 |
parent 22584 | eed64ee05369 |
permissions | -rw-r--r-- |
2 | 1 |
/* |
22584
eed64ee05369
8032733: Fix cast lint warnings in client libraries
darcy
parents:
21278
diff
changeset
|
2 |
* Copyright (c) 2006, 2014, Oracle and/or its affiliates. All rights reserved. |
2 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
5506 | 7 |
* published by the Free Software Foundation. Oracle designates this |
2 | 8 |
* particular file as subject to the "Classpath" exception as provided |
5506 | 9 |
* by Oracle in the LICENSE file that accompanied this code. |
2 | 10 |
* |
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
15 |
* accompanied this code). |
|
16 |
* |
|
17 |
* You should have received a copy of the GNU General Public License version |
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 |
* |
|
5506 | 21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 |
* or visit www.oracle.com if you need additional information or have any |
|
23 |
* questions. |
|
2 | 24 |
*/ |
25 |
||
26 |
package java.awt; |
|
27 |
||
28 |
import java.awt.MultipleGradientPaint.CycleMethod; |
|
29 |
import java.awt.MultipleGradientPaint.ColorSpaceType; |
|
30 |
import java.awt.color.ColorSpace; |
|
31 |
import java.awt.geom.AffineTransform; |
|
32 |
import java.awt.geom.NoninvertibleTransformException; |
|
33 |
import java.awt.geom.Rectangle2D; |
|
34 |
import java.awt.image.ColorModel; |
|
35 |
import java.awt.image.DataBuffer; |
|
36 |
import java.awt.image.DataBufferInt; |
|
37 |
import java.awt.image.DirectColorModel; |
|
38 |
import java.awt.image.Raster; |
|
39 |
import java.awt.image.SinglePixelPackedSampleModel; |
|
40 |
import java.awt.image.WritableRaster; |
|
41 |
import java.lang.ref.SoftReference; |
|
42 |
import java.lang.ref.WeakReference; |
|
43 |
import java.util.Arrays; |
|
44 |
||
45 |
/** |
|
46 |
* This is the superclass for all PaintContexts which use a multiple color |
|
47 |
* gradient to fill in their raster. It provides the actual color |
|
48 |
* interpolation functionality. Subclasses only have to deal with using |
|
49 |
* the gradient to fill pixels in a raster. |
|
50 |
* |
|
51 |
* @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans |
|
52 |
*/ |
|
53 |
abstract class MultipleGradientPaintContext implements PaintContext { |
|
54 |
||
55 |
/** |
|
56 |
* The PaintContext's ColorModel. This is ARGB if colors are not all |
|
57 |
* opaque, otherwise it is RGB. |
|
58 |
*/ |
|
59 |
protected ColorModel model; |
|
60 |
||
61 |
/** Color model used if gradient colors are all opaque. */ |
|
62 |
private static ColorModel xrgbmodel = |
|
63 |
new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff); |
|
64 |
||
65 |
/** The cached ColorModel. */ |
|
66 |
protected static ColorModel cachedModel; |
|
67 |
||
68 |
/** The cached raster, which is reusable among instances. */ |
|
69 |
protected static WeakReference<Raster> cached; |
|
70 |
||
71 |
/** Raster is reused whenever possible. */ |
|
72 |
protected Raster saved; |
|
73 |
||
74 |
/** The method to use when painting out of the gradient bounds. */ |
|
75 |
protected CycleMethod cycleMethod; |
|
76 |
||
77 |
/** The ColorSpace in which to perform the interpolation */ |
|
78 |
protected ColorSpaceType colorSpace; |
|
79 |
||
80 |
/** Elements of the inverse transform matrix. */ |
|
81 |
protected float a00, a01, a10, a11, a02, a12; |
|
82 |
||
83 |
/** |
|
21278 | 84 |
* This boolean specifies whether we are in simple lookup mode, where an |
2 | 85 |
* input value between 0 and 1 may be used to directly index into a single |
86 |
* array of gradient colors. If this boolean value is false, then we have |
|
87 |
* to use a 2-step process where we have to determine which gradient array |
|
88 |
* we fall into, then determine the index into that array. |
|
89 |
*/ |
|
90 |
protected boolean isSimpleLookup; |
|
91 |
||
92 |
/** |
|
93 |
* Size of gradients array for scaling the 0-1 index when looking up |
|
94 |
* colors the fast way. |
|
95 |
*/ |
|
96 |
protected int fastGradientArraySize; |
|
97 |
||
98 |
/** |
|
99 |
* Array which contains the interpolated color values for each interval, |
|
100 |
* used by calculateSingleArrayGradient(). It is protected for possible |
|
101 |
* direct access by subclasses. |
|
102 |
*/ |
|
103 |
protected int[] gradient; |
|
104 |
||
105 |
/** |
|
106 |
* Array of gradient arrays, one array for each interval. Used by |
|
107 |
* calculateMultipleArrayGradient(). |
|
108 |
*/ |
|
109 |
private int[][] gradients; |
|
110 |
||
111 |
/** Normalized intervals array. */ |
|
112 |
private float[] normalizedIntervals; |
|
113 |
||
114 |
/** Fractions array. */ |
|
115 |
private float[] fractions; |
|
116 |
||
117 |
/** Used to determine if gradient colors are all opaque. */ |
|
118 |
private int transparencyTest; |
|
119 |
||
120 |
/** Color space conversion lookup tables. */ |
|
121 |
private static final int SRGBtoLinearRGB[] = new int[256]; |
|
122 |
private static final int LinearRGBtoSRGB[] = new int[256]; |
|
123 |
||
124 |
static { |
|
125 |
// build the tables |
|
126 |
for (int k = 0; k < 256; k++) { |
|
127 |
SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k); |
|
128 |
LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k); |
|
129 |
} |
|
130 |
} |
|
131 |
||
132 |
/** |
|
133 |
* Constant number of max colors between any 2 arbitrary colors. |
|
134 |
* Used for creating and indexing gradients arrays. |
|
135 |
*/ |
|
136 |
protected static final int GRADIENT_SIZE = 256; |
|
137 |
protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1; |
|
138 |
||
139 |
/** |
|
140 |
* Maximum length of the fast single-array. If the estimated array size |
|
141 |
* is greater than this, switch over to the slow lookup method. |
|
142 |
* No particular reason for choosing this number, but it seems to provide |
|
143 |
* satisfactory performance for the common case (fast lookup). |
|
144 |
*/ |
|
145 |
private static final int MAX_GRADIENT_ARRAY_SIZE = 5000; |
|
146 |
||
147 |
/** |
|
148 |
* Constructor for MultipleGradientPaintContext superclass. |
|
149 |
*/ |
|
150 |
protected MultipleGradientPaintContext(MultipleGradientPaint mgp, |
|
151 |
ColorModel cm, |
|
152 |
Rectangle deviceBounds, |
|
153 |
Rectangle2D userBounds, |
|
154 |
AffineTransform t, |
|
155 |
RenderingHints hints, |
|
156 |
float[] fractions, |
|
157 |
Color[] colors, |
|
158 |
CycleMethod cycleMethod, |
|
159 |
ColorSpaceType colorSpace) |
|
160 |
{ |
|
161 |
if (deviceBounds == null) { |
|
162 |
throw new NullPointerException("Device bounds cannot be null"); |
|
163 |
} |
|
164 |
||
165 |
if (userBounds == null) { |
|
166 |
throw new NullPointerException("User bounds cannot be null"); |
|
167 |
} |
|
168 |
||
169 |
if (t == null) { |
|
170 |
throw new NullPointerException("Transform cannot be null"); |
|
171 |
} |
|
172 |
||
173 |
if (hints == null) { |
|
174 |
throw new NullPointerException("RenderingHints cannot be null"); |
|
175 |
} |
|
176 |
||
177 |
// The inverse transform is needed to go from device to user space. |
|
178 |
// Get all the components of the inverse transform matrix. |
|
179 |
AffineTransform tInv; |
|
180 |
try { |
|
181 |
// the following assumes that the caller has copied the incoming |
|
182 |
// transform and is not concerned about it being modified |
|
183 |
t.invert(); |
|
184 |
tInv = t; |
|
185 |
} catch (NoninvertibleTransformException e) { |
|
186 |
// just use identity transform in this case; better to show |
|
187 |
// (incorrect) results than to throw an exception and/or no-op |
|
188 |
tInv = new AffineTransform(); |
|
189 |
} |
|
190 |
double m[] = new double[6]; |
|
191 |
tInv.getMatrix(m); |
|
192 |
a00 = (float)m[0]; |
|
193 |
a10 = (float)m[1]; |
|
194 |
a01 = (float)m[2]; |
|
195 |
a11 = (float)m[3]; |
|
196 |
a02 = (float)m[4]; |
|
197 |
a12 = (float)m[5]; |
|
198 |
||
199 |
// copy some flags |
|
200 |
this.cycleMethod = cycleMethod; |
|
201 |
this.colorSpace = colorSpace; |
|
202 |
||
203 |
// we can avoid copying this array since we do not modify its values |
|
204 |
this.fractions = fractions; |
|
205 |
||
206 |
// note that only one of these values can ever be non-null (we either |
|
207 |
// store the fast gradient array or the slow one, but never both |
|
208 |
// at the same time) |
|
209 |
int[] gradient = |
|
210 |
(mgp.gradient != null) ? mgp.gradient.get() : null; |
|
211 |
int[][] gradients = |
|
212 |
(mgp.gradients != null) ? mgp.gradients.get() : null; |
|
213 |
||
214 |
if (gradient == null && gradients == null) { |
|
215 |
// we need to (re)create the appropriate values |
|
216 |
calculateLookupData(colors); |
|
217 |
||
218 |
// now cache the calculated values in the |
|
219 |
// MultipleGradientPaint instance for future use |
|
220 |
mgp.model = this.model; |
|
221 |
mgp.normalizedIntervals = this.normalizedIntervals; |
|
222 |
mgp.isSimpleLookup = this.isSimpleLookup; |
|
223 |
if (isSimpleLookup) { |
|
224 |
// only cache the fast array |
|
225 |
mgp.fastGradientArraySize = this.fastGradientArraySize; |
|
226 |
mgp.gradient = new SoftReference<int[]>(this.gradient); |
|
227 |
} else { |
|
228 |
// only cache the slow array |
|
229 |
mgp.gradients = new SoftReference<int[][]>(this.gradients); |
|
230 |
} |
|
231 |
} else { |
|
232 |
// use the values cached in the MultipleGradientPaint instance |
|
233 |
this.model = mgp.model; |
|
234 |
this.normalizedIntervals = mgp.normalizedIntervals; |
|
235 |
this.isSimpleLookup = mgp.isSimpleLookup; |
|
236 |
this.gradient = gradient; |
|
237 |
this.fastGradientArraySize = mgp.fastGradientArraySize; |
|
238 |
this.gradients = gradients; |
|
239 |
} |
|
240 |
} |
|
241 |
||
242 |
/** |
|
243 |
* This function is the meat of this class. It calculates an array of |
|
244 |
* gradient colors based on an array of fractions and color values at |
|
245 |
* those fractions. |
|
246 |
*/ |
|
247 |
private void calculateLookupData(Color[] colors) { |
|
248 |
Color[] normalizedColors; |
|
249 |
if (colorSpace == ColorSpaceType.LINEAR_RGB) { |
|
250 |
// create a new colors array |
|
251 |
normalizedColors = new Color[colors.length]; |
|
252 |
// convert the colors using the lookup table |
|
253 |
for (int i = 0; i < colors.length; i++) { |
|
254 |
int argb = colors[i].getRGB(); |
|
255 |
int a = argb >>> 24; |
|
256 |
int r = SRGBtoLinearRGB[(argb >> 16) & 0xff]; |
|
257 |
int g = SRGBtoLinearRGB[(argb >> 8) & 0xff]; |
|
258 |
int b = SRGBtoLinearRGB[(argb ) & 0xff]; |
|
259 |
normalizedColors[i] = new Color(r, g, b, a); |
|
260 |
} |
|
261 |
} else { |
|
262 |
// we can just use this array by reference since we do not |
|
263 |
// modify its values in the case of SRGB |
|
264 |
normalizedColors = colors; |
|
265 |
} |
|
266 |
||
267 |
// this will store the intervals (distances) between gradient stops |
|
268 |
normalizedIntervals = new float[fractions.length-1]; |
|
269 |
||
270 |
// convert from fractions into intervals |
|
271 |
for (int i = 0; i < normalizedIntervals.length; i++) { |
|
272 |
// interval distance is equal to the difference in positions |
|
273 |
normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i]; |
|
274 |
} |
|
275 |
||
276 |
// initialize to be fully opaque for ANDing with colors |
|
277 |
transparencyTest = 0xff000000; |
|
278 |
||
279 |
// array of interpolation arrays |
|
280 |
gradients = new int[normalizedIntervals.length][]; |
|
281 |
||
282 |
// find smallest interval |
|
283 |
float Imin = 1; |
|
284 |
for (int i = 0; i < normalizedIntervals.length; i++) { |
|
285 |
Imin = (Imin > normalizedIntervals[i]) ? |
|
286 |
normalizedIntervals[i] : Imin; |
|
287 |
} |
|
288 |
||
289 |
// Estimate the size of the entire gradients array. |
|
290 |
// This is to prevent a tiny interval from causing the size of array |
|
291 |
// to explode. If the estimated size is too large, break to using |
|
292 |
// separate arrays for each interval, and using an indexing scheme at |
|
293 |
// look-up time. |
|
294 |
int estimatedSize = 0; |
|
295 |
for (int i = 0; i < normalizedIntervals.length; i++) { |
|
296 |
estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE; |
|
297 |
} |
|
298 |
||
299 |
if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) { |
|
300 |
// slow method |
|
301 |
calculateMultipleArrayGradient(normalizedColors); |
|
302 |
} else { |
|
303 |
// fast method |
|
304 |
calculateSingleArrayGradient(normalizedColors, Imin); |
|
305 |
} |
|
306 |
||
307 |
// use the most "economical" model |
|
308 |
if ((transparencyTest >>> 24) == 0xff) { |
|
309 |
model = xrgbmodel; |
|
310 |
} else { |
|
311 |
model = ColorModel.getRGBdefault(); |
|
312 |
} |
|
313 |
} |
|
314 |
||
315 |
/** |
|
316 |
* FAST LOOKUP METHOD |
|
317 |
* |
|
318 |
* This method calculates the gradient color values and places them in a |
|
319 |
* single int array, gradient[]. It does this by allocating space for |
|
320 |
* each interval based on its size relative to the smallest interval in |
|
321 |
* the array. The smallest interval is allocated 255 interpolated values |
|
322 |
* (the maximum number of unique in-between colors in a 24 bit color |
|
323 |
* system), and all other intervals are allocated |
|
324 |
* size = (255 * the ratio of their size to the smallest interval). |
|
325 |
* |
|
326 |
* This scheme expedites a speedy retrieval because the colors are |
|
327 |
* distributed along the array according to their user-specified |
|
328 |
* distribution. All that is needed is a relative index from 0 to 1. |
|
329 |
* |
|
330 |
* The only problem with this method is that the possibility exists for |
|
331 |
* the array size to balloon in the case where there is a |
|
332 |
* disproportionately small gradient interval. In this case the other |
|
333 |
* intervals will be allocated huge space, but much of that data is |
|
334 |
* redundant. We thus need to use the space conserving scheme below. |
|
335 |
* |
|
336 |
* @param Imin the size of the smallest interval |
|
337 |
*/ |
|
338 |
private void calculateSingleArrayGradient(Color[] colors, float Imin) { |
|
339 |
// set the flag so we know later it is a simple (fast) lookup |
|
340 |
isSimpleLookup = true; |
|
341 |
||
342 |
// 2 colors to interpolate |
|
343 |
int rgb1, rgb2; |
|
344 |
||
345 |
//the eventual size of the single array |
|
346 |
int gradientsTot = 1; |
|
347 |
||
348 |
// for every interval (transition between 2 colors) |
|
349 |
for (int i = 0; i < gradients.length; i++) { |
|
350 |
// create an array whose size is based on the ratio to the |
|
351 |
// smallest interval |
|
352 |
int nGradients = (int)((normalizedIntervals[i]/Imin)*255f); |
|
353 |
gradientsTot += nGradients; |
|
354 |
gradients[i] = new int[nGradients]; |
|
355 |
||
356 |
// the 2 colors (keyframes) to interpolate between |
|
357 |
rgb1 = colors[i].getRGB(); |
|
358 |
rgb2 = colors[i+1].getRGB(); |
|
359 |
||
360 |
// fill this array with the colors in between rgb1 and rgb2 |
|
361 |
interpolate(rgb1, rgb2, gradients[i]); |
|
362 |
||
363 |
// if the colors are opaque, transparency should still |
|
364 |
// be 0xff000000 |
|
365 |
transparencyTest &= rgb1; |
|
366 |
transparencyTest &= rgb2; |
|
367 |
} |
|
368 |
||
369 |
// put all gradients in a single array |
|
370 |
gradient = new int[gradientsTot]; |
|
371 |
int curOffset = 0; |
|
372 |
for (int i = 0; i < gradients.length; i++){ |
|
373 |
System.arraycopy(gradients[i], 0, gradient, |
|
374 |
curOffset, gradients[i].length); |
|
375 |
curOffset += gradients[i].length; |
|
376 |
} |
|
377 |
gradient[gradient.length-1] = colors[colors.length-1].getRGB(); |
|
378 |
||
379 |
// if interpolation occurred in Linear RGB space, convert the |
|
380 |
// gradients back to sRGB using the lookup table |
|
381 |
if (colorSpace == ColorSpaceType.LINEAR_RGB) { |
|
382 |
for (int i = 0; i < gradient.length; i++) { |
|
383 |
gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]); |
|
384 |
} |
|
385 |
} |
|
386 |
||
387 |
fastGradientArraySize = gradient.length - 1; |
|
388 |
} |
|
389 |
||
390 |
/** |
|
391 |
* SLOW LOOKUP METHOD |
|
392 |
* |
|
393 |
* This method calculates the gradient color values for each interval and |
|
394 |
* places each into its own 255 size array. The arrays are stored in |
|
395 |
* gradients[][]. (255 is used because this is the maximum number of |
|
396 |
* unique colors between 2 arbitrary colors in a 24 bit color system.) |
|
397 |
* |
|
398 |
* This method uses the minimum amount of space (only 255 * number of |
|
399 |
* intervals), but it aggravates the lookup procedure, because now we |
|
400 |
* have to find out which interval to select, then calculate the index |
|
401 |
* within that interval. This causes a significant performance hit, |
|
402 |
* because it requires this calculation be done for every point in |
|
403 |
* the rendering loop. |
|
404 |
* |
|
405 |
* For those of you who are interested, this is a classic example of the |
|
406 |
* time-space tradeoff. |
|
407 |
*/ |
|
408 |
private void calculateMultipleArrayGradient(Color[] colors) { |
|
409 |
// set the flag so we know later it is a non-simple lookup |
|
410 |
isSimpleLookup = false; |
|
411 |
||
412 |
// 2 colors to interpolate |
|
413 |
int rgb1, rgb2; |
|
414 |
||
415 |
// for every interval (transition between 2 colors) |
|
416 |
for (int i = 0; i < gradients.length; i++){ |
|
417 |
// create an array of the maximum theoretical size for |
|
418 |
// each interval |
|
419 |
gradients[i] = new int[GRADIENT_SIZE]; |
|
420 |
||
421 |
// get the the 2 colors |
|
422 |
rgb1 = colors[i].getRGB(); |
|
423 |
rgb2 = colors[i+1].getRGB(); |
|
424 |
||
425 |
// fill this array with the colors in between rgb1 and rgb2 |
|
426 |
interpolate(rgb1, rgb2, gradients[i]); |
|
427 |
||
428 |
// if the colors are opaque, transparency should still |
|
429 |
// be 0xff000000 |
|
430 |
transparencyTest &= rgb1; |
|
431 |
transparencyTest &= rgb2; |
|
432 |
} |
|
433 |
||
434 |
// if interpolation occurred in Linear RGB space, convert the |
|
435 |
// gradients back to SRGB using the lookup table |
|
436 |
if (colorSpace == ColorSpaceType.LINEAR_RGB) { |
|
437 |
for (int j = 0; j < gradients.length; j++) { |
|
438 |
for (int i = 0; i < gradients[j].length; i++) { |
|
439 |
gradients[j][i] = |
|
440 |
convertEntireColorLinearRGBtoSRGB(gradients[j][i]); |
|
441 |
} |
|
442 |
} |
|
443 |
} |
|
444 |
} |
|
445 |
||
446 |
/** |
|
447 |
* Yet another helper function. This one linearly interpolates between |
|
448 |
* 2 colors, filling up the output array. |
|
449 |
* |
|
450 |
* @param rgb1 the start color |
|
451 |
* @param rgb2 the end color |
|
452 |
* @param output the output array of colors; must not be null |
|
453 |
*/ |
|
454 |
private void interpolate(int rgb1, int rgb2, int[] output) { |
|
455 |
// color components |
|
456 |
int a1, r1, g1, b1, da, dr, dg, db; |
|
457 |
||
458 |
// step between interpolated values |
|
459 |
float stepSize = 1.0f / output.length; |
|
460 |
||
461 |
// extract color components from packed integer |
|
462 |
a1 = (rgb1 >> 24) & 0xff; |
|
463 |
r1 = (rgb1 >> 16) & 0xff; |
|
464 |
g1 = (rgb1 >> 8) & 0xff; |
|
465 |
b1 = (rgb1 ) & 0xff; |
|
466 |
||
467 |
// calculate the total change in alpha, red, green, blue |
|
468 |
da = ((rgb2 >> 24) & 0xff) - a1; |
|
469 |
dr = ((rgb2 >> 16) & 0xff) - r1; |
|
470 |
dg = ((rgb2 >> 8) & 0xff) - g1; |
|
471 |
db = ((rgb2 ) & 0xff) - b1; |
|
472 |
||
473 |
// for each step in the interval calculate the in-between color by |
|
474 |
// multiplying the normalized current position by the total color |
|
475 |
// change (0.5 is added to prevent truncation round-off error) |
|
476 |
for (int i = 0; i < output.length; i++) { |
|
477 |
output[i] = |
|
478 |
(((int) ((a1 + i * da * stepSize) + 0.5) << 24)) | |
|
479 |
(((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) | |
|
480 |
(((int) ((g1 + i * dg * stepSize) + 0.5) << 8)) | |
|
481 |
(((int) ((b1 + i * db * stepSize) + 0.5) )); |
|
482 |
} |
|
483 |
} |
|
484 |
||
485 |
/** |
|
486 |
* Yet another helper function. This one extracts the color components |
|
487 |
* of an integer RGB triple, converts them from LinearRGB to SRGB, then |
|
488 |
* recompacts them into an int. |
|
489 |
*/ |
|
490 |
private int convertEntireColorLinearRGBtoSRGB(int rgb) { |
|
491 |
// color components |
|
492 |
int a1, r1, g1, b1; |
|
493 |
||
494 |
// extract red, green, blue components |
|
495 |
a1 = (rgb >> 24) & 0xff; |
|
496 |
r1 = (rgb >> 16) & 0xff; |
|
497 |
g1 = (rgb >> 8) & 0xff; |
|
498 |
b1 = (rgb ) & 0xff; |
|
499 |
||
500 |
// use the lookup table |
|
501 |
r1 = LinearRGBtoSRGB[r1]; |
|
502 |
g1 = LinearRGBtoSRGB[g1]; |
|
503 |
b1 = LinearRGBtoSRGB[b1]; |
|
504 |
||
505 |
// re-compact the components |
|
506 |
return ((a1 << 24) | |
|
507 |
(r1 << 16) | |
|
508 |
(g1 << 8) | |
|
509 |
(b1 )); |
|
510 |
} |
|
511 |
||
512 |
/** |
|
513 |
* Helper function to index into the gradients array. This is necessary |
|
514 |
* because each interval has an array of colors with uniform size 255. |
|
515 |
* However, the color intervals are not necessarily of uniform length, so |
|
516 |
* a conversion is required. |
|
517 |
* |
|
518 |
* @param position the unmanipulated position, which will be mapped |
|
519 |
* into the range 0 to 1 |
|
520 |
* @returns integer color to display |
|
521 |
*/ |
|
522 |
protected final int indexIntoGradientsArrays(float position) { |
|
523 |
// first, manipulate position value depending on the cycle method |
|
524 |
if (cycleMethod == CycleMethod.NO_CYCLE) { |
|
525 |
if (position > 1) { |
|
526 |
// upper bound is 1 |
|
527 |
position = 1; |
|
528 |
} else if (position < 0) { |
|
529 |
// lower bound is 0 |
|
530 |
position = 0; |
|
531 |
} |
|
532 |
} else if (cycleMethod == CycleMethod.REPEAT) { |
|
533 |
// get the fractional part |
|
534 |
// (modulo behavior discards integer component) |
|
535 |
position = position - (int)position; |
|
536 |
||
537 |
//position should now be between -1 and 1 |
|
538 |
if (position < 0) { |
|
539 |
// force it to be in the range 0-1 |
|
540 |
position = position + 1; |
|
541 |
} |
|
542 |
} else { // cycleMethod == CycleMethod.REFLECT |
|
543 |
if (position < 0) { |
|
544 |
// take absolute value |
|
545 |
position = -position; |
|
546 |
} |
|
547 |
||
548 |
// get the integer part |
|
549 |
int part = (int)position; |
|
550 |
||
551 |
// get the fractional part |
|
552 |
position = position - part; |
|
553 |
||
554 |
if ((part & 1) == 1) { |
|
555 |
// integer part is odd, get reflected color instead |
|
556 |
position = 1 - position; |
|
557 |
} |
|
558 |
} |
|
559 |
||
560 |
// now, get the color based on this 0-1 position... |
|
561 |
||
562 |
if (isSimpleLookup) { |
|
563 |
// easy to compute: just scale index by array size |
|
564 |
return gradient[(int)(position * fastGradientArraySize)]; |
|
565 |
} else { |
|
566 |
// more complicated computation, to save space |
|
567 |
||
568 |
// for all the gradient interval arrays |
|
569 |
for (int i = 0; i < gradients.length; i++) { |
|
570 |
if (position < fractions[i+1]) { |
|
571 |
// this is the array we want |
|
572 |
float delta = position - fractions[i]; |
|
573 |
||
574 |
// this is the interval we want |
|
575 |
int index = (int)((delta / normalizedIntervals[i]) |
|
576 |
* (GRADIENT_SIZE_INDEX)); |
|
577 |
||
578 |
return gradients[i][index]; |
|
579 |
} |
|
580 |
} |
|
581 |
} |
|
582 |
||
583 |
return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX]; |
|
584 |
} |
|
585 |
||
586 |
/** |
|
587 |
* Helper function to convert a color component in sRGB space to linear |
|
588 |
* RGB space. Used to build a static lookup table. |
|
589 |
*/ |
|
590 |
private static int convertSRGBtoLinearRGB(int color) { |
|
591 |
float input, output; |
|
592 |
||
593 |
input = color / 255.0f; |
|
594 |
if (input <= 0.04045f) { |
|
595 |
output = input / 12.92f; |
|
596 |
} else { |
|
597 |
output = (float)Math.pow((input + 0.055) / 1.055, 2.4); |
|
598 |
} |
|
599 |
||
600 |
return Math.round(output * 255.0f); |
|
601 |
} |
|
602 |
||
603 |
/** |
|
604 |
* Helper function to convert a color component in linear RGB space to |
|
605 |
* SRGB space. Used to build a static lookup table. |
|
606 |
*/ |
|
607 |
private static int convertLinearRGBtoSRGB(int color) { |
|
608 |
float input, output; |
|
609 |
||
610 |
input = color/255.0f; |
|
611 |
if (input <= 0.0031308) { |
|
612 |
output = input * 12.92f; |
|
613 |
} else { |
|
614 |
output = (1.055f * |
|
615 |
((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f; |
|
616 |
} |
|
617 |
||
618 |
return Math.round(output * 255.0f); |
|
619 |
} |
|
620 |
||
621 |
/** |
|
622 |
* {@inheritDoc} |
|
623 |
*/ |
|
624 |
public final Raster getRaster(int x, int y, int w, int h) { |
|
625 |
// If working raster is big enough, reuse it. Otherwise, |
|
626 |
// build a large enough new one. |
|
627 |
Raster raster = saved; |
|
628 |
if (raster == null || |
|
629 |
raster.getWidth() < w || raster.getHeight() < h) |
|
630 |
{ |
|
631 |
raster = getCachedRaster(model, w, h); |
|
632 |
saved = raster; |
|
633 |
} |
|
634 |
||
635 |
// Access raster internal int array. Because we use a DirectColorModel, |
|
636 |
// we know the DataBuffer is of type DataBufferInt and the SampleModel |
|
637 |
// is SinglePixelPackedSampleModel. |
|
638 |
// Adjust for initial offset in DataBuffer and also for the scanline |
|
639 |
// stride. |
|
640 |
// These calls make the DataBuffer non-acceleratable, but the |
|
641 |
// Raster is never Stable long enough to accelerate anyway... |
|
642 |
DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer(); |
|
643 |
int[] pixels = rasterDB.getData(0); |
|
644 |
int off = rasterDB.getOffset(); |
|
645 |
int scanlineStride = ((SinglePixelPackedSampleModel) |
|
646 |
raster.getSampleModel()).getScanlineStride(); |
|
647 |
int adjust = scanlineStride - w; |
|
648 |
||
649 |
fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass |
|
650 |
||
651 |
return raster; |
|
652 |
} |
|
653 |
||
654 |
protected abstract void fillRaster(int pixels[], int off, int adjust, |
|
655 |
int x, int y, int w, int h); |
|
656 |
||
657 |
||
658 |
/** |
|
659 |
* Took this cacheRaster code from GradientPaint. It appears to recycle |
|
660 |
* rasters for use by any other instance, as long as they are sufficiently |
|
661 |
* large. |
|
662 |
*/ |
|
663 |
private static synchronized Raster getCachedRaster(ColorModel cm, |
|
664 |
int w, int h) |
|
665 |
{ |
|
666 |
if (cm == cachedModel) { |
|
667 |
if (cached != null) { |
|
22584
eed64ee05369
8032733: Fix cast lint warnings in client libraries
darcy
parents:
21278
diff
changeset
|
668 |
Raster ras = cached.get(); |
2 | 669 |
if (ras != null && |
670 |
ras.getWidth() >= w && |
|
671 |
ras.getHeight() >= h) |
|
672 |
{ |
|
673 |
cached = null; |
|
674 |
return ras; |
|
675 |
} |
|
676 |
} |
|
677 |
} |
|
678 |
return cm.createCompatibleWritableRaster(w, h); |
|
679 |
} |
|
680 |
||
681 |
/** |
|
682 |
* Took this cacheRaster code from GradientPaint. It appears to recycle |
|
683 |
* rasters for use by any other instance, as long as they are sufficiently |
|
684 |
* large. |
|
685 |
*/ |
|
686 |
private static synchronized void putCachedRaster(ColorModel cm, |
|
687 |
Raster ras) |
|
688 |
{ |
|
689 |
if (cached != null) { |
|
22584
eed64ee05369
8032733: Fix cast lint warnings in client libraries
darcy
parents:
21278
diff
changeset
|
690 |
Raster cras = cached.get(); |
2 | 691 |
if (cras != null) { |
692 |
int cw = cras.getWidth(); |
|
693 |
int ch = cras.getHeight(); |
|
694 |
int iw = ras.getWidth(); |
|
695 |
int ih = ras.getHeight(); |
|
696 |
if (cw >= iw && ch >= ih) { |
|
697 |
return; |
|
698 |
} |
|
699 |
if (cw * ch >= iw * ih) { |
|
700 |
return; |
|
701 |
} |
|
702 |
} |
|
703 |
} |
|
704 |
cachedModel = cm; |
|
705 |
cached = new WeakReference<Raster>(ras); |
|
706 |
} |
|
707 |
||
708 |
/** |
|
709 |
* {@inheritDoc} |
|
710 |
*/ |
|
711 |
public final void dispose() { |
|
712 |
if (saved != null) { |
|
713 |
putCachedRaster(model, saved); |
|
714 |
saved = null; |
|
715 |
} |
|
716 |
} |
|
717 |
||
718 |
/** |
|
719 |
* {@inheritDoc} |
|
720 |
*/ |
|
721 |
public final ColorModel getColorModel() { |
|
722 |
return model; |
|
723 |
} |
|
724 |
} |