29183
|
1 |
/*
|
|
2 |
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#ifndef _DECODE_H
|
|
26 |
#define _DECODE_H
|
|
27 |
|
|
28 |
#include <sys/types.h>
|
|
29 |
#include "cpustate_aarch64.hpp"
|
|
30 |
|
|
31 |
// bitfield immediate expansion helper
|
|
32 |
|
|
33 |
extern int expandLogicalImmediate(u_int32_t immN, u_int32_t immr,
|
|
34 |
u_int32_t imms, u_int64_t &bimm);
|
|
35 |
|
|
36 |
|
|
37 |
/*
|
|
38 |
* codes used in conditional instructions
|
|
39 |
*
|
|
40 |
* these are passed to conditional operations to identify which
|
|
41 |
* condition to test for
|
|
42 |
*/
|
|
43 |
enum CondCode {
|
|
44 |
EQ = 0b0000, // meaning Z == 1
|
|
45 |
NE = 0b0001, // meaning Z == 0
|
|
46 |
HS = 0b0010, // meaning C == 1
|
|
47 |
CS = HS,
|
|
48 |
LO = 0b0011, // meaning C == 0
|
|
49 |
CC = LO,
|
|
50 |
MI = 0b0100, // meaning N == 1
|
|
51 |
PL = 0b0101, // meaning N == 0
|
|
52 |
VS = 0b0110, // meaning V == 1
|
|
53 |
VC = 0b0111, // meaning V == 0
|
|
54 |
HI = 0b1000, // meaning C == 1 && Z == 0
|
|
55 |
LS = 0b1001, // meaning !(C == 1 && Z == 0)
|
|
56 |
GE = 0b1010, // meaning N == V
|
|
57 |
LT = 0b1011, // meaning N != V
|
|
58 |
GT = 0b1100, // meaning Z == 0 && N == V
|
|
59 |
LE = 0b1101, // meaning !(Z == 0 && N == V)
|
|
60 |
AL = 0b1110, // meaning ANY
|
|
61 |
NV = 0b1111 // ditto
|
|
62 |
};
|
|
63 |
|
|
64 |
/*
|
|
65 |
* certain addressing modes for load require pre or post writeback of
|
|
66 |
* the computed address to a base register
|
|
67 |
*/
|
|
68 |
enum WriteBack {
|
|
69 |
Post = 0,
|
|
70 |
Pre = 1
|
|
71 |
};
|
|
72 |
|
|
73 |
/*
|
|
74 |
* certain addressing modes for load require an offset to
|
|
75 |
* be optionally scaled so the decode needs to pass that
|
|
76 |
* through to the execute routine
|
|
77 |
*/
|
|
78 |
enum Scaling {
|
|
79 |
Unscaled = 0,
|
|
80 |
Scaled = 1
|
|
81 |
};
|
|
82 |
|
|
83 |
/*
|
|
84 |
* when we do have to scale we do so by shifting using
|
|
85 |
* log(bytes in data element - 1) as the shift count.
|
|
86 |
* so we don't have to scale offsets when loading
|
|
87 |
* bytes.
|
|
88 |
*/
|
|
89 |
enum ScaleShift {
|
|
90 |
ScaleShift16 = 1,
|
|
91 |
ScaleShift32 = 2,
|
|
92 |
ScaleShift64 = 3,
|
|
93 |
ScaleShift128 = 4
|
|
94 |
};
|
|
95 |
|
|
96 |
/*
|
|
97 |
* one of the addressing modes for load requires a 32-bit register
|
|
98 |
* value to be either zero- or sign-extended for these instructions
|
|
99 |
* UXTW or SXTW should be passed
|
|
100 |
*
|
|
101 |
* arithmetic register data processing operations can optionally
|
|
102 |
* extend a portion of the second register value for these
|
|
103 |
* instructions the value supplied must identify the portion of the
|
|
104 |
* register which is to be zero- or sign-exended
|
|
105 |
*/
|
|
106 |
enum Extension {
|
|
107 |
UXTB = 0,
|
|
108 |
UXTH = 1,
|
|
109 |
UXTW = 2,
|
|
110 |
UXTX = 3,
|
|
111 |
SXTB = 4,
|
|
112 |
SXTH = 5,
|
|
113 |
SXTW = 6,
|
|
114 |
SXTX = 7
|
|
115 |
};
|
|
116 |
|
|
117 |
/*
|
|
118 |
* arithmetic and logical register data processing operations
|
|
119 |
* optionally perform a shift on the second register value
|
|
120 |
*/
|
|
121 |
enum Shift {
|
|
122 |
LSL = 0,
|
|
123 |
LSR = 1,
|
|
124 |
ASR = 2,
|
|
125 |
ROR = 3
|
|
126 |
};
|
|
127 |
|
|
128 |
/*
|
|
129 |
* bit twiddling helpers for instruction decode
|
|
130 |
*/
|
|
131 |
|
|
132 |
// 32 bit mask with bits [hi,...,lo] set
|
|
133 |
|
|
134 |
static inline u_int32_t mask32(int hi = 31, int lo = 0)
|
|
135 |
{
|
|
136 |
int nbits = (hi + 1) - lo;
|
|
137 |
return ((1 << nbits) - 1) << lo;
|
|
138 |
}
|
|
139 |
|
|
140 |
static inline u_int64_t mask64(int hi = 63, int lo = 0)
|
|
141 |
{
|
|
142 |
int nbits = (hi + 1) - lo;
|
|
143 |
return ((1L << nbits) - 1) << lo;
|
|
144 |
}
|
|
145 |
|
|
146 |
// pick bits [hi,...,lo] from val
|
|
147 |
static inline u_int32_t pick32(u_int32_t val, int hi = 31, int lo = 0)
|
|
148 |
{
|
|
149 |
return (val & mask32(hi, lo));
|
|
150 |
}
|
|
151 |
|
|
152 |
// pick bits [hi,...,lo] from val
|
|
153 |
static inline u_int64_t pick64(u_int64_t val, int hi = 31, int lo = 0)
|
|
154 |
{
|
|
155 |
return (val & mask64(hi, lo));
|
|
156 |
}
|
|
157 |
|
|
158 |
// pick bits [hi,...,lo] from val and shift to [(hi-(newlo - lo)),newlo]
|
|
159 |
static inline u_int32_t pickshift32(u_int32_t val, int hi = 31,
|
|
160 |
int lo = 0, int newlo = 0)
|
|
161 |
{
|
|
162 |
u_int32_t bits = pick32(val, hi, lo);
|
|
163 |
if (lo < newlo) {
|
|
164 |
return (bits << (newlo - lo));
|
|
165 |
} else {
|
|
166 |
return (bits >> (lo - newlo));
|
|
167 |
}
|
|
168 |
}
|
|
169 |
// mask [hi,lo] and shift down to start at bit 0
|
|
170 |
static inline u_int32_t pickbits32(u_int32_t val, int hi = 31, int lo = 0)
|
|
171 |
{
|
|
172 |
return (pick32(val, hi, lo) >> lo);
|
|
173 |
}
|
|
174 |
|
|
175 |
// mask [hi,lo] and shift down to start at bit 0
|
|
176 |
static inline u_int64_t pickbits64(u_int64_t val, int hi = 63, int lo = 0)
|
|
177 |
{
|
|
178 |
return (pick64(val, hi, lo) >> lo);
|
|
179 |
}
|
|
180 |
|
|
181 |
/*
|
|
182 |
* decode registers, immediates and constants of various types
|
|
183 |
*/
|
|
184 |
|
|
185 |
static inline GReg greg(u_int32_t val, int lo)
|
|
186 |
{
|
|
187 |
return (GReg)pickbits32(val, lo + 4, lo);
|
|
188 |
}
|
|
189 |
|
|
190 |
static inline VReg vreg(u_int32_t val, int lo)
|
|
191 |
{
|
|
192 |
return (VReg)pickbits32(val, lo + 4, lo);
|
|
193 |
}
|
|
194 |
|
|
195 |
static inline u_int32_t uimm(u_int32_t val, int hi, int lo)
|
|
196 |
{
|
|
197 |
return pickbits32(val, hi, lo);
|
|
198 |
}
|
|
199 |
|
|
200 |
static inline int32_t simm(u_int32_t val, int hi = 31, int lo = 0) {
|
|
201 |
union {
|
|
202 |
u_int32_t u;
|
|
203 |
int32_t n;
|
|
204 |
};
|
|
205 |
|
|
206 |
u = val << (31 - hi);
|
|
207 |
n = n >> (31 - hi + lo);
|
|
208 |
return n;
|
|
209 |
}
|
|
210 |
|
|
211 |
static inline int64_t simm(u_int64_t val, int hi = 63, int lo = 0) {
|
|
212 |
union {
|
|
213 |
u_int64_t u;
|
|
214 |
int64_t n;
|
|
215 |
};
|
|
216 |
|
|
217 |
u = val << (63 - hi);
|
|
218 |
n = n >> (63 - hi + lo);
|
|
219 |
return n;
|
|
220 |
}
|
|
221 |
|
|
222 |
static inline Shift shift(u_int32_t val, int lo)
|
|
223 |
{
|
|
224 |
return (Shift)pickbits32(val, lo+1, lo);
|
|
225 |
}
|
|
226 |
|
|
227 |
static inline Extension extension(u_int32_t val, int lo)
|
|
228 |
{
|
|
229 |
return (Extension)pickbits32(val, lo+2, lo);
|
|
230 |
}
|
|
231 |
|
|
232 |
static inline Scaling scaling(u_int32_t val, int lo)
|
|
233 |
{
|
|
234 |
return (Scaling)pickbits32(val, lo, lo);
|
|
235 |
}
|
|
236 |
|
|
237 |
static inline WriteBack writeback(u_int32_t val, int lo)
|
|
238 |
{
|
|
239 |
return (WriteBack)pickbits32(val, lo, lo);
|
|
240 |
}
|
|
241 |
|
|
242 |
static inline CondCode condcode(u_int32_t val, int lo)
|
|
243 |
{
|
|
244 |
return (CondCode)pickbits32(val, lo+3, lo);
|
|
245 |
}
|
|
246 |
|
|
247 |
/*
|
|
248 |
* operation decode
|
|
249 |
*/
|
|
250 |
// bits [28,25] are the primary dispatch vector
|
|
251 |
|
|
252 |
static inline u_int32_t dispatchGroup(u_int32_t val)
|
|
253 |
{
|
|
254 |
return pickshift32(val, 28, 25, 0);
|
|
255 |
}
|
|
256 |
|
|
257 |
/*
|
|
258 |
* the 16 possible values for bits [28,25] identified by tags which
|
|
259 |
* map them to the 5 main instruction groups LDST, DPREG, ADVSIMD,
|
|
260 |
* BREXSYS and DPIMM.
|
|
261 |
*
|
|
262 |
* An extra group PSEUDO is included in one of the unallocated ranges
|
|
263 |
* for simulator-specific pseudo-instructions.
|
|
264 |
*/
|
|
265 |
enum DispatchGroup {
|
|
266 |
GROUP_PSEUDO_0000,
|
|
267 |
GROUP_UNALLOC_0001,
|
|
268 |
GROUP_UNALLOC_0010,
|
|
269 |
GROUP_UNALLOC_0011,
|
|
270 |
GROUP_LDST_0100,
|
|
271 |
GROUP_DPREG_0101,
|
|
272 |
GROUP_LDST_0110,
|
|
273 |
GROUP_ADVSIMD_0111,
|
|
274 |
GROUP_DPIMM_1000,
|
|
275 |
GROUP_DPIMM_1001,
|
|
276 |
GROUP_BREXSYS_1010,
|
|
277 |
GROUP_BREXSYS_1011,
|
|
278 |
GROUP_LDST_1100,
|
|
279 |
GROUP_DPREG_1101,
|
|
280 |
GROUP_LDST_1110,
|
|
281 |
GROUP_ADVSIMD_1111
|
|
282 |
};
|
|
283 |
|
|
284 |
// bits [31, 29] of a Pseudo are the secondary dispatch vector
|
|
285 |
|
|
286 |
static inline u_int32_t dispatchPseudo(u_int32_t val)
|
|
287 |
{
|
|
288 |
return pickshift32(val, 31, 29, 0);
|
|
289 |
}
|
|
290 |
|
|
291 |
/*
|
|
292 |
* the 8 possible values for bits [31,29] in a Pseudo Instruction.
|
|
293 |
* Bits [28,25] are always 0000.
|
|
294 |
*/
|
|
295 |
|
|
296 |
enum DispatchPseudo {
|
|
297 |
PSEUDO_UNALLOC_000, // unallocated
|
|
298 |
PSEUDO_UNALLOC_001, // ditto
|
|
299 |
PSEUDO_UNALLOC_010, // ditto
|
|
300 |
PSEUDO_UNALLOC_011, // ditto
|
|
301 |
PSEUDO_UNALLOC_100, // ditto
|
|
302 |
PSEUDO_UNALLOC_101, // ditto
|
|
303 |
PSEUDO_CALLOUT_110, // CALLOUT -- bits [24,0] identify call/ret sig
|
|
304 |
PSEUDO_HALT_111 // HALT -- bits [24, 0] identify halt code
|
|
305 |
};
|
|
306 |
|
|
307 |
// bits [25, 23] of a DPImm are the secondary dispatch vector
|
|
308 |
|
|
309 |
static inline u_int32_t dispatchDPImm(u_int32_t instr)
|
|
310 |
{
|
|
311 |
return pickshift32(instr, 25, 23, 0);
|
|
312 |
}
|
|
313 |
|
|
314 |
/*
|
|
315 |
* the 8 possible values for bits [25,23] in a Data Processing Immediate
|
|
316 |
* Instruction. Bits [28,25] are always 100_.
|
|
317 |
*/
|
|
318 |
|
|
319 |
enum DispatchDPImm {
|
|
320 |
DPIMM_PCADR_000, // PC-rel-addressing
|
|
321 |
DPIMM_PCADR_001, // ditto
|
|
322 |
DPIMM_ADDSUB_010, // Add/Subtract (immediate)
|
|
323 |
DPIMM_ADDSUB_011, // ditto
|
|
324 |
DPIMM_LOG_100, // Logical (immediate)
|
|
325 |
DPIMM_MOV_101, // Move Wide (immediate)
|
|
326 |
DPIMM_BITF_110, // Bitfield
|
|
327 |
DPIMM_EXTR_111 // Extract
|
|
328 |
};
|
|
329 |
|
|
330 |
// bits [29,28:26] of a LS are the secondary dispatch vector
|
|
331 |
|
|
332 |
static inline u_int32_t dispatchLS(u_int32_t instr)
|
|
333 |
{
|
|
334 |
return (pickshift32(instr, 29, 28, 1) |
|
|
335 |
pickshift32(instr, 26, 26, 0));
|
|
336 |
}
|
|
337 |
|
|
338 |
/*
|
|
339 |
* the 8 possible values for bits [29,28:26] in a Load/Store
|
|
340 |
* Instruction. Bits [28,25] are always _1_0
|
|
341 |
*/
|
|
342 |
|
|
343 |
enum DispatchLS {
|
|
344 |
LS_EXCL_000, // Load/store exclusive (includes some unallocated)
|
|
345 |
LS_ADVSIMD_001, // AdvSIMD load/store (various -- includes some unallocated)
|
|
346 |
LS_LIT_010, // Load register literal (includes some unallocated)
|
|
347 |
LS_LIT_011, // ditto
|
|
348 |
LS_PAIR_100, // Load/store register pair (various)
|
|
349 |
LS_PAIR_101, // ditto
|
|
350 |
LS_OTHER_110, // other load/store formats
|
|
351 |
LS_OTHER_111 // ditto
|
|
352 |
};
|
|
353 |
|
|
354 |
// bits [28:24:21] of a DPReg are the secondary dispatch vector
|
|
355 |
|
|
356 |
static inline u_int32_t dispatchDPReg(u_int32_t instr)
|
|
357 |
{
|
|
358 |
return (pickshift32(instr, 28, 28, 2) |
|
|
359 |
pickshift32(instr, 24, 24, 1) |
|
|
360 |
pickshift32(instr, 21, 21, 0));
|
|
361 |
}
|
|
362 |
|
|
363 |
/*
|
|
364 |
* the 8 possible values for bits [28:24:21] in a Data Processing
|
|
365 |
* Register Instruction. Bits [28,25] are always _101
|
|
366 |
*/
|
|
367 |
|
|
368 |
enum DispatchDPReg {
|
|
369 |
DPREG_LOG_000, // Logical (shifted register)
|
|
370 |
DPREG_LOG_001, // ditto
|
|
371 |
DPREG_ADDSHF_010, // Add/subtract (shifted register)
|
|
372 |
DPREG_ADDEXT_011, // Add/subtract (extended register)
|
|
373 |
DPREG_ADDCOND_100, // Add/subtract (with carry) AND
|
|
374 |
// Cond compare/select AND
|
|
375 |
// Data Processing (1/2 source)
|
|
376 |
DPREG_UNALLOC_101, // Unallocated
|
|
377 |
DPREG_3SRC_110, // Data Processing (3 source)
|
|
378 |
DPREG_3SRC_111 // Data Processing (3 source)
|
|
379 |
};
|
|
380 |
|
|
381 |
// bits [31,29] of a BrExSys are the secondary dispatch vector
|
|
382 |
|
|
383 |
static inline u_int32_t dispatchBrExSys(u_int32_t instr)
|
|
384 |
{
|
|
385 |
return pickbits32(instr, 31, 29);
|
|
386 |
}
|
|
387 |
|
|
388 |
/*
|
|
389 |
* the 8 possible values for bits [31,29] in a Branch/Exception/System
|
|
390 |
* Instruction. Bits [28,25] are always 101_
|
|
391 |
*/
|
|
392 |
|
|
393 |
enum DispatchBr {
|
|
394 |
BR_IMM_000, // Unconditional branch (immediate)
|
|
395 |
BR_IMMCMP_001, // Compare & branch (immediate) AND
|
|
396 |
// Test & branch (immediate)
|
|
397 |
BR_IMMCOND_010, // Conditional branch (immediate) AND Unallocated
|
|
398 |
BR_UNALLOC_011, // Unallocated
|
|
399 |
BR_IMM_100, // Unconditional branch (immediate)
|
|
400 |
BR_IMMCMP_101, // Compare & branch (immediate) AND
|
|
401 |
// Test & branch (immediate)
|
|
402 |
BR_REG_110, // Unconditional branch (register) AND System AND
|
|
403 |
// Excn gen AND Unallocated
|
|
404 |
BR_UNALLOC_111 // Unallocated
|
|
405 |
};
|
|
406 |
|
|
407 |
/*
|
|
408 |
* TODO still need to provide secondary decode and dispatch for
|
|
409 |
* AdvSIMD Insructions with instr[28,25] = 0111 or 1111
|
|
410 |
*/
|
|
411 |
|
|
412 |
#endif // ifndef DECODE_H
|