12005
|
1 |
/*
|
|
2 |
* reserved comment block
|
|
3 |
* DO NOT REMOVE OR ALTER!
|
|
4 |
*/
|
|
5 |
/*
|
|
6 |
* Copyright 1999-2002,2004,2005 The Apache Software Foundation.
|
|
7 |
*
|
|
8 |
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
9 |
* you may not use this file except in compliance with the License.
|
|
10 |
* You may obtain a copy of the License at
|
|
11 |
*
|
|
12 |
* http://www.apache.org/licenses/LICENSE-2.0
|
|
13 |
*
|
|
14 |
* Unless required by applicable law or agreed to in writing, software
|
|
15 |
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
16 |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
17 |
* See the License for the specific language governing permissions and
|
|
18 |
* limitations under the License.
|
|
19 |
*/
|
|
20 |
|
|
21 |
package com.sun.org.apache.xerces.internal.dom;
|
|
22 |
|
|
23 |
import java.io.Serializable;
|
|
24 |
import java.io.IOException;
|
|
25 |
import java.io.ObjectInputStream;
|
|
26 |
import java.io.ObjectOutputStream;
|
|
27 |
|
|
28 |
import org.w3c.dom.DOMException;
|
|
29 |
import org.w3c.dom.Document;
|
|
30 |
import org.w3c.dom.Node;
|
|
31 |
import org.w3c.dom.NodeList;
|
|
32 |
import org.w3c.dom.UserDataHandler;
|
|
33 |
|
|
34 |
/**
|
|
35 |
* ParentNode inherits from ChildNode and adds the capability of having child
|
|
36 |
* nodes. Not every node in the DOM can have children, so only nodes that can
|
|
37 |
* should inherit from this class and pay the price for it.
|
|
38 |
* <P>
|
|
39 |
* ParentNode, just like NodeImpl, also implements NodeList, so it can
|
|
40 |
* return itself in response to the getChildNodes() query. This eliminiates
|
|
41 |
* the need for a separate ChildNodeList object. Note that this is an
|
|
42 |
* IMPLEMENTATION DETAIL; applications should _never_ assume that
|
|
43 |
* this identity exists. On the other hand, subclasses may need to override
|
|
44 |
* this, in case of conflicting names. This is the case for the classes
|
|
45 |
* HTMLSelectElementImpl and HTMLFormElementImpl of the HTML DOM.
|
|
46 |
* <P>
|
|
47 |
* While we have a direct reference to the first child, the last child is
|
|
48 |
* stored as the previous sibling of the first child. First child nodes are
|
|
49 |
* marked as being so, and getNextSibling hides this fact.
|
|
50 |
* <P>Note: Not all parent nodes actually need to also be a child. At some
|
|
51 |
* point we used to have ParentNode inheriting from NodeImpl and another class
|
|
52 |
* called ChildAndParentNode that inherited from ChildNode. But due to the lack
|
|
53 |
* of multiple inheritance a lot of code had to be duplicated which led to a
|
|
54 |
* maintenance nightmare. At the same time only a few nodes (Document,
|
|
55 |
* DocumentFragment, Entity, and Attribute) cannot be a child so the gain in
|
|
56 |
* memory wasn't really worth it. The only type for which this would be the
|
|
57 |
* case is Attribute, but we deal with there in another special way, so this is
|
|
58 |
* not applicable.
|
|
59 |
* <p>
|
|
60 |
* This class doesn't directly support mutation events, however, it notifies
|
|
61 |
* the document when mutations are performed so that the document class do so.
|
|
62 |
*
|
|
63 |
* <p><b>WARNING</b>: Some of the code here is partially duplicated in
|
|
64 |
* AttrImpl, be careful to keep these two classes in sync!
|
|
65 |
*
|
|
66 |
* @xerces.internal
|
|
67 |
*
|
|
68 |
* @author Arnaud Le Hors, IBM
|
|
69 |
* @author Joe Kesselman, IBM
|
|
70 |
* @author Andy Clark, IBM
|
|
71 |
*/
|
|
72 |
public abstract class ParentNode
|
|
73 |
extends ChildNode {
|
|
74 |
|
|
75 |
/** Serialization version. */
|
|
76 |
static final long serialVersionUID = 2815829867152120872L;
|
|
77 |
|
|
78 |
/** Owner document. */
|
|
79 |
protected CoreDocumentImpl ownerDocument;
|
|
80 |
|
|
81 |
/** First child. */
|
|
82 |
protected ChildNode firstChild = null;
|
|
83 |
|
|
84 |
// transients
|
|
85 |
|
|
86 |
/** NodeList cache */
|
|
87 |
protected transient NodeListCache fNodeListCache = null;
|
|
88 |
|
|
89 |
//
|
|
90 |
// Constructors
|
|
91 |
//
|
|
92 |
|
|
93 |
/**
|
|
94 |
* No public constructor; only subclasses of ParentNode should be
|
|
95 |
* instantiated, and those normally via a Document's factory methods
|
|
96 |
*/
|
|
97 |
protected ParentNode(CoreDocumentImpl ownerDocument) {
|
|
98 |
super(ownerDocument);
|
|
99 |
this.ownerDocument = ownerDocument;
|
|
100 |
}
|
|
101 |
|
|
102 |
/** Constructor for serialization. */
|
|
103 |
public ParentNode() {}
|
|
104 |
|
|
105 |
//
|
|
106 |
// NodeList methods
|
|
107 |
//
|
|
108 |
|
|
109 |
/**
|
|
110 |
* Returns a duplicate of a given node. You can consider this a
|
|
111 |
* generic "copy constructor" for nodes. The newly returned object should
|
|
112 |
* be completely independent of the source object's subtree, so changes
|
|
113 |
* in one after the clone has been made will not affect the other.
|
|
114 |
* <p>
|
|
115 |
* Example: Cloning a Text node will copy both the node and the text it
|
|
116 |
* contains.
|
|
117 |
* <p>
|
|
118 |
* Example: Cloning something that has children -- Element or Attr, for
|
|
119 |
* example -- will _not_ clone those children unless a "deep clone"
|
|
120 |
* has been requested. A shallow clone of an Attr node will yield an
|
|
121 |
* empty Attr of the same name.
|
|
122 |
* <p>
|
|
123 |
* NOTE: Clones will always be read/write, even if the node being cloned
|
|
124 |
* is read-only, to permit applications using only the DOM API to obtain
|
|
125 |
* editable copies of locked portions of the tree.
|
|
126 |
*/
|
|
127 |
public Node cloneNode(boolean deep) {
|
|
128 |
|
|
129 |
if (needsSyncChildren()) {
|
|
130 |
synchronizeChildren();
|
|
131 |
}
|
|
132 |
ParentNode newnode = (ParentNode) super.cloneNode(deep);
|
|
133 |
|
|
134 |
// set owner document
|
|
135 |
newnode.ownerDocument = ownerDocument;
|
|
136 |
|
|
137 |
// Need to break the association w/ original kids
|
|
138 |
newnode.firstChild = null;
|
|
139 |
|
|
140 |
// invalidate cache for children NodeList
|
|
141 |
newnode.fNodeListCache = null;
|
|
142 |
|
|
143 |
// Then, if deep, clone the kids too.
|
|
144 |
if (deep) {
|
|
145 |
for (ChildNode child = firstChild;
|
|
146 |
child != null;
|
|
147 |
child = child.nextSibling) {
|
|
148 |
newnode.appendChild(child.cloneNode(true));
|
|
149 |
}
|
|
150 |
}
|
|
151 |
|
|
152 |
return newnode;
|
|
153 |
|
|
154 |
} // cloneNode(boolean):Node
|
|
155 |
|
|
156 |
/**
|
|
157 |
* Find the Document that this Node belongs to (the document in
|
|
158 |
* whose context the Node was created). The Node may or may not
|
|
159 |
* currently be part of that Document's actual contents.
|
|
160 |
*/
|
|
161 |
public Document getOwnerDocument() {
|
|
162 |
return ownerDocument;
|
|
163 |
}
|
|
164 |
|
|
165 |
/**
|
|
166 |
* same as above but returns internal type and this one is not overridden
|
|
167 |
* by CoreDocumentImpl to return null
|
|
168 |
*/
|
|
169 |
CoreDocumentImpl ownerDocument() {
|
|
170 |
return ownerDocument;
|
|
171 |
}
|
|
172 |
|
|
173 |
/**
|
|
174 |
* NON-DOM
|
|
175 |
* set the ownerDocument of this node and its children
|
|
176 |
*/
|
|
177 |
void setOwnerDocument(CoreDocumentImpl doc) {
|
|
178 |
if (needsSyncChildren()) {
|
|
179 |
synchronizeChildren();
|
|
180 |
}
|
|
181 |
for (ChildNode child = firstChild;
|
|
182 |
child != null; child = child.nextSibling) {
|
|
183 |
child.setOwnerDocument(doc);
|
|
184 |
}
|
|
185 |
/* setting the owner document of self, after it's children makes the
|
|
186 |
data of children available to the new document. */
|
|
187 |
super.setOwnerDocument(doc);
|
|
188 |
ownerDocument = doc;
|
|
189 |
}
|
|
190 |
|
|
191 |
/**
|
|
192 |
* Test whether this node has any children. Convenience shorthand
|
|
193 |
* for (Node.getFirstChild()!=null)
|
|
194 |
*/
|
|
195 |
public boolean hasChildNodes() {
|
|
196 |
if (needsSyncChildren()) {
|
|
197 |
synchronizeChildren();
|
|
198 |
}
|
|
199 |
return firstChild != null;
|
|
200 |
}
|
|
201 |
|
|
202 |
/**
|
|
203 |
* Obtain a NodeList enumerating all children of this node. If there
|
|
204 |
* are none, an (initially) empty NodeList is returned.
|
|
205 |
* <p>
|
|
206 |
* NodeLists are "live"; as children are added/removed the NodeList
|
|
207 |
* will immediately reflect those changes. Also, the NodeList refers
|
|
208 |
* to the actual nodes, so changes to those nodes made via the DOM tree
|
|
209 |
* will be reflected in the NodeList and vice versa.
|
|
210 |
* <p>
|
|
211 |
* In this implementation, Nodes implement the NodeList interface and
|
|
212 |
* provide their own getChildNodes() support. Other DOMs may solve this
|
|
213 |
* differently.
|
|
214 |
*/
|
|
215 |
public NodeList getChildNodes() {
|
|
216 |
|
|
217 |
if (needsSyncChildren()) {
|
|
218 |
synchronizeChildren();
|
|
219 |
}
|
|
220 |
return this;
|
|
221 |
|
|
222 |
} // getChildNodes():NodeList
|
|
223 |
|
|
224 |
/** The first child of this Node, or null if none. */
|
|
225 |
public Node getFirstChild() {
|
|
226 |
|
|
227 |
if (needsSyncChildren()) {
|
|
228 |
synchronizeChildren();
|
|
229 |
}
|
|
230 |
return firstChild;
|
|
231 |
|
|
232 |
} // getFirstChild():Node
|
|
233 |
|
|
234 |
/** The last child of this Node, or null if none. */
|
|
235 |
public Node getLastChild() {
|
|
236 |
|
|
237 |
if (needsSyncChildren()) {
|
|
238 |
synchronizeChildren();
|
|
239 |
}
|
|
240 |
return lastChild();
|
|
241 |
|
|
242 |
} // getLastChild():Node
|
|
243 |
|
|
244 |
final ChildNode lastChild() {
|
|
245 |
// last child is stored as the previous sibling of first child
|
|
246 |
return firstChild != null ? firstChild.previousSibling : null;
|
|
247 |
}
|
|
248 |
|
|
249 |
final void lastChild(ChildNode node) {
|
|
250 |
// store lastChild as previous sibling of first child
|
|
251 |
if (firstChild != null) {
|
|
252 |
firstChild.previousSibling = node;
|
|
253 |
}
|
|
254 |
}
|
|
255 |
|
|
256 |
/**
|
|
257 |
* Move one or more node(s) to our list of children. Note that this
|
|
258 |
* implicitly removes them from their previous parent.
|
|
259 |
*
|
|
260 |
* @param newChild The Node to be moved to our subtree. As a
|
|
261 |
* convenience feature, inserting a DocumentNode will instead insert
|
|
262 |
* all its children.
|
|
263 |
*
|
|
264 |
* @param refChild Current child which newChild should be placed
|
|
265 |
* immediately before. If refChild is null, the insertion occurs
|
|
266 |
* after all existing Nodes, like appendChild().
|
|
267 |
*
|
|
268 |
* @return newChild, in its new state (relocated, or emptied in the case of
|
|
269 |
* DocumentNode.)
|
|
270 |
*
|
|
271 |
* @throws DOMException(HIERARCHY_REQUEST_ERR) if newChild is of a
|
|
272 |
* type that shouldn't be a child of this node, or if newChild is an
|
|
273 |
* ancestor of this node.
|
|
274 |
*
|
|
275 |
* @throws DOMException(WRONG_DOCUMENT_ERR) if newChild has a
|
|
276 |
* different owner document than we do.
|
|
277 |
*
|
|
278 |
* @throws DOMException(NOT_FOUND_ERR) if refChild is not a child of
|
|
279 |
* this node.
|
|
280 |
*
|
|
281 |
* @throws DOMException(NO_MODIFICATION_ALLOWED_ERR) if this node is
|
|
282 |
* read-only.
|
|
283 |
*/
|
|
284 |
public Node insertBefore(Node newChild, Node refChild)
|
|
285 |
throws DOMException {
|
|
286 |
// Tail-call; optimizer should be able to do good things with.
|
|
287 |
return internalInsertBefore(newChild, refChild, false);
|
|
288 |
} // insertBefore(Node,Node):Node
|
|
289 |
|
|
290 |
/** NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able
|
|
291 |
* to control which mutation events are spawned. This version of the
|
|
292 |
* insertBefore operation allows us to do so. It is not intended
|
|
293 |
* for use by application programs.
|
|
294 |
*/
|
|
295 |
Node internalInsertBefore(Node newChild, Node refChild, boolean replace)
|
|
296 |
throws DOMException {
|
|
297 |
|
|
298 |
boolean errorChecking = ownerDocument.errorChecking;
|
|
299 |
|
|
300 |
if (newChild.getNodeType() == Node.DOCUMENT_FRAGMENT_NODE) {
|
|
301 |
// SLOW BUT SAFE: We could insert the whole subtree without
|
|
302 |
// juggling so many next/previous pointers. (Wipe out the
|
|
303 |
// parent's child-list, patch the parent pointers, set the
|
|
304 |
// ends of the list.) But we know some subclasses have special-
|
|
305 |
// case behavior they add to insertBefore(), so we don't risk it.
|
|
306 |
// This approch also takes fewer bytecodes.
|
|
307 |
|
|
308 |
// NOTE: If one of the children is not a legal child of this
|
|
309 |
// node, throw HIERARCHY_REQUEST_ERR before _any_ of the children
|
|
310 |
// have been transferred. (Alternative behaviors would be to
|
|
311 |
// reparent up to the first failure point or reparent all those
|
|
312 |
// which are acceptable to the target node, neither of which is
|
|
313 |
// as robust. PR-DOM-0818 isn't entirely clear on which it
|
|
314 |
// recommends?????
|
|
315 |
|
|
316 |
// No need to check kids for right-document; if they weren't,
|
|
317 |
// they wouldn't be kids of that DocFrag.
|
|
318 |
if (errorChecking) {
|
|
319 |
for (Node kid = newChild.getFirstChild(); // Prescan
|
|
320 |
kid != null; kid = kid.getNextSibling()) {
|
|
321 |
|
|
322 |
if (!ownerDocument.isKidOK(this, kid)) {
|
|
323 |
throw new DOMException(
|
|
324 |
DOMException.HIERARCHY_REQUEST_ERR,
|
|
325 |
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
|
|
326 |
}
|
|
327 |
}
|
|
328 |
}
|
|
329 |
|
|
330 |
while (newChild.hasChildNodes()) {
|
|
331 |
insertBefore(newChild.getFirstChild(), refChild);
|
|
332 |
}
|
|
333 |
return newChild;
|
|
334 |
}
|
|
335 |
|
|
336 |
if (newChild == refChild) {
|
|
337 |
// stupid case that must be handled as a no-op triggering events...
|
|
338 |
refChild = refChild.getNextSibling();
|
|
339 |
removeChild(newChild);
|
|
340 |
insertBefore(newChild, refChild);
|
|
341 |
return newChild;
|
|
342 |
}
|
|
343 |
|
|
344 |
if (needsSyncChildren()) {
|
|
345 |
synchronizeChildren();
|
|
346 |
}
|
|
347 |
|
|
348 |
if (errorChecking) {
|
|
349 |
if (isReadOnly()) {
|
|
350 |
throw new DOMException(
|
|
351 |
DOMException.NO_MODIFICATION_ALLOWED_ERR,
|
|
352 |
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NO_MODIFICATION_ALLOWED_ERR", null));
|
|
353 |
}
|
|
354 |
if (newChild.getOwnerDocument() != ownerDocument && newChild != ownerDocument) {
|
|
355 |
throw new DOMException(DOMException.WRONG_DOCUMENT_ERR,
|
|
356 |
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "WRONG_DOCUMENT_ERR", null));
|
|
357 |
}
|
|
358 |
if (!ownerDocument.isKidOK(this, newChild)) {
|
|
359 |
throw new DOMException(DOMException.HIERARCHY_REQUEST_ERR,
|
|
360 |
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
|
|
361 |
}
|
|
362 |
// refChild must be a child of this node (or null)
|
|
363 |
if (refChild != null && refChild.getParentNode() != this) {
|
|
364 |
throw new DOMException(DOMException.NOT_FOUND_ERR,
|
|
365 |
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NOT_FOUND_ERR", null));
|
|
366 |
}
|
|
367 |
|
|
368 |
// Prevent cycles in the tree
|
|
369 |
// newChild cannot be ancestor of this Node,
|
|
370 |
// and actually cannot be this
|
|
371 |
if (ownerDocument.ancestorChecking) {
|
|
372 |
boolean treeSafe = true;
|
|
373 |
for (NodeImpl a = this; treeSafe && a != null; a = a.parentNode())
|
|
374 |
{
|
|
375 |
treeSafe = newChild != a;
|
|
376 |
}
|
|
377 |
if(!treeSafe) {
|
|
378 |
throw new DOMException(DOMException.HIERARCHY_REQUEST_ERR,
|
|
379 |
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
|
|
380 |
}
|
|
381 |
}
|
|
382 |
}
|
|
383 |
|
|
384 |
// notify document
|
|
385 |
ownerDocument.insertingNode(this, replace);
|
|
386 |
|
|
387 |
// Convert to internal type, to avoid repeated casting
|
|
388 |
ChildNode newInternal = (ChildNode)newChild;
|
|
389 |
|
|
390 |
Node oldparent = newInternal.parentNode();
|
|
391 |
if (oldparent != null) {
|
|
392 |
oldparent.removeChild(newInternal);
|
|
393 |
}
|
|
394 |
|
|
395 |
// Convert to internal type, to avoid repeated casting
|
|
396 |
ChildNode refInternal = (ChildNode)refChild;
|
|
397 |
|
|
398 |
// Attach up
|
|
399 |
newInternal.ownerNode = this;
|
|
400 |
newInternal.isOwned(true);
|
|
401 |
|
|
402 |
// Attach before and after
|
|
403 |
// Note: firstChild.previousSibling == lastChild!!
|
|
404 |
if (firstChild == null) {
|
|
405 |
// this our first and only child
|
|
406 |
firstChild = newInternal;
|
|
407 |
newInternal.isFirstChild(true);
|
|
408 |
newInternal.previousSibling = newInternal;
|
|
409 |
}
|
|
410 |
else {
|
|
411 |
if (refInternal == null) {
|
|
412 |
// this is an append
|
|
413 |
ChildNode lastChild = firstChild.previousSibling;
|
|
414 |
lastChild.nextSibling = newInternal;
|
|
415 |
newInternal.previousSibling = lastChild;
|
|
416 |
firstChild.previousSibling = newInternal;
|
|
417 |
}
|
|
418 |
else {
|
|
419 |
// this is an insert
|
|
420 |
if (refChild == firstChild) {
|
|
421 |
// at the head of the list
|
|
422 |
firstChild.isFirstChild(false);
|
|
423 |
newInternal.nextSibling = firstChild;
|
|
424 |
newInternal.previousSibling = firstChild.previousSibling;
|
|
425 |
firstChild.previousSibling = newInternal;
|
|
426 |
firstChild = newInternal;
|
|
427 |
newInternal.isFirstChild(true);
|
|
428 |
}
|
|
429 |
else {
|
|
430 |
// somewhere in the middle
|
|
431 |
ChildNode prev = refInternal.previousSibling;
|
|
432 |
newInternal.nextSibling = refInternal;
|
|
433 |
prev.nextSibling = newInternal;
|
|
434 |
refInternal.previousSibling = newInternal;
|
|
435 |
newInternal.previousSibling = prev;
|
|
436 |
}
|
|
437 |
}
|
|
438 |
}
|
|
439 |
|
|
440 |
changed();
|
|
441 |
|
|
442 |
// update cached length if we have any
|
|
443 |
if (fNodeListCache != null) {
|
|
444 |
if (fNodeListCache.fLength != -1) {
|
|
445 |
fNodeListCache.fLength++;
|
|
446 |
}
|
|
447 |
if (fNodeListCache.fChildIndex != -1) {
|
|
448 |
// if we happen to insert just before the cached node, update
|
|
449 |
// the cache to the new node to match the cached index
|
|
450 |
if (fNodeListCache.fChild == refInternal) {
|
|
451 |
fNodeListCache.fChild = newInternal;
|
|
452 |
} else {
|
|
453 |
// otherwise just invalidate the cache
|
|
454 |
fNodeListCache.fChildIndex = -1;
|
|
455 |
}
|
|
456 |
}
|
|
457 |
}
|
|
458 |
|
|
459 |
// notify document
|
|
460 |
ownerDocument.insertedNode(this, newInternal, replace);
|
|
461 |
|
|
462 |
checkNormalizationAfterInsert(newInternal);
|
|
463 |
|
|
464 |
return newChild;
|
|
465 |
|
|
466 |
} // internalInsertBefore(Node,Node,boolean):Node
|
|
467 |
|
|
468 |
/**
|
|
469 |
* Remove a child from this Node. The removed child's subtree
|
|
470 |
* remains intact so it may be re-inserted elsewhere.
|
|
471 |
*
|
|
472 |
* @return oldChild, in its new state (removed).
|
|
473 |
*
|
|
474 |
* @throws DOMException(NOT_FOUND_ERR) if oldChild is not a child of
|
|
475 |
* this node.
|
|
476 |
*
|
|
477 |
* @throws DOMException(NO_MODIFICATION_ALLOWED_ERR) if this node is
|
|
478 |
* read-only.
|
|
479 |
*/
|
|
480 |
public Node removeChild(Node oldChild)
|
|
481 |
throws DOMException {
|
|
482 |
// Tail-call, should be optimizable
|
|
483 |
return internalRemoveChild(oldChild, false);
|
|
484 |
} // removeChild(Node) :Node
|
|
485 |
|
|
486 |
/** NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able
|
|
487 |
* to control which mutation events are spawned. This version of the
|
|
488 |
* removeChild operation allows us to do so. It is not intended
|
|
489 |
* for use by application programs.
|
|
490 |
*/
|
|
491 |
Node internalRemoveChild(Node oldChild, boolean replace)
|
|
492 |
throws DOMException {
|
|
493 |
|
|
494 |
CoreDocumentImpl ownerDocument = ownerDocument();
|
|
495 |
if (ownerDocument.errorChecking) {
|
|
496 |
if (isReadOnly()) {
|
|
497 |
throw new DOMException(
|
|
498 |
DOMException.NO_MODIFICATION_ALLOWED_ERR,
|
|
499 |
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NO_MODIFICATION_ALLOWED_ERR", null));
|
|
500 |
}
|
|
501 |
if (oldChild != null && oldChild.getParentNode() != this) {
|
|
502 |
throw new DOMException(DOMException.NOT_FOUND_ERR,
|
|
503 |
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NOT_FOUND_ERR", null));
|
|
504 |
}
|
|
505 |
}
|
|
506 |
|
|
507 |
ChildNode oldInternal = (ChildNode) oldChild;
|
|
508 |
|
|
509 |
// notify document
|
|
510 |
ownerDocument.removingNode(this, oldInternal, replace);
|
|
511 |
|
|
512 |
// update cached length if we have any
|
|
513 |
if (fNodeListCache != null) {
|
|
514 |
if (fNodeListCache.fLength != -1) {
|
|
515 |
fNodeListCache.fLength--;
|
|
516 |
}
|
|
517 |
if (fNodeListCache.fChildIndex != -1) {
|
|
518 |
// if the removed node is the cached node
|
|
519 |
// move the cache to its (soon former) previous sibling
|
|
520 |
if (fNodeListCache.fChild == oldInternal) {
|
|
521 |
fNodeListCache.fChildIndex--;
|
|
522 |
fNodeListCache.fChild = oldInternal.previousSibling();
|
|
523 |
} else {
|
|
524 |
// otherwise just invalidate the cache
|
|
525 |
fNodeListCache.fChildIndex = -1;
|
|
526 |
}
|
|
527 |
}
|
|
528 |
}
|
|
529 |
|
|
530 |
// Patch linked list around oldChild
|
|
531 |
// Note: lastChild == firstChild.previousSibling
|
|
532 |
if (oldInternal == firstChild) {
|
|
533 |
// removing first child
|
|
534 |
oldInternal.isFirstChild(false);
|
|
535 |
firstChild = oldInternal.nextSibling;
|
|
536 |
if (firstChild != null) {
|
|
537 |
firstChild.isFirstChild(true);
|
|
538 |
firstChild.previousSibling = oldInternal.previousSibling;
|
|
539 |
}
|
|
540 |
} else {
|
|
541 |
ChildNode prev = oldInternal.previousSibling;
|
|
542 |
ChildNode next = oldInternal.nextSibling;
|
|
543 |
prev.nextSibling = next;
|
|
544 |
if (next == null) {
|
|
545 |
// removing last child
|
|
546 |
firstChild.previousSibling = prev;
|
|
547 |
} else {
|
|
548 |
// removing some other child in the middle
|
|
549 |
next.previousSibling = prev;
|
|
550 |
}
|
|
551 |
}
|
|
552 |
|
|
553 |
// Save previous sibling for normalization checking.
|
|
554 |
ChildNode oldPreviousSibling = oldInternal.previousSibling();
|
|
555 |
|
|
556 |
// Remove oldInternal's references to tree
|
|
557 |
oldInternal.ownerNode = ownerDocument;
|
|
558 |
oldInternal.isOwned(false);
|
|
559 |
oldInternal.nextSibling = null;
|
|
560 |
oldInternal.previousSibling = null;
|
|
561 |
|
|
562 |
changed();
|
|
563 |
|
|
564 |
// notify document
|
|
565 |
ownerDocument.removedNode(this, replace);
|
|
566 |
|
|
567 |
checkNormalizationAfterRemove(oldPreviousSibling);
|
|
568 |
|
|
569 |
return oldInternal;
|
|
570 |
|
|
571 |
} // internalRemoveChild(Node,boolean):Node
|
|
572 |
|
|
573 |
/**
|
|
574 |
* Make newChild occupy the location that oldChild used to
|
|
575 |
* have. Note that newChild will first be removed from its previous
|
|
576 |
* parent, if any. Equivalent to inserting newChild before oldChild,
|
|
577 |
* then removing oldChild.
|
|
578 |
*
|
|
579 |
* @return oldChild, in its new state (removed).
|
|
580 |
*
|
|
581 |
* @throws DOMException(HIERARCHY_REQUEST_ERR) if newChild is of a
|
|
582 |
* type that shouldn't be a child of this node, or if newChild is
|
|
583 |
* one of our ancestors.
|
|
584 |
*
|
|
585 |
* @throws DOMException(WRONG_DOCUMENT_ERR) if newChild has a
|
|
586 |
* different owner document than we do.
|
|
587 |
*
|
|
588 |
* @throws DOMException(NOT_FOUND_ERR) if oldChild is not a child of
|
|
589 |
* this node.
|
|
590 |
*
|
|
591 |
* @throws DOMException(NO_MODIFICATION_ALLOWED_ERR) if this node is
|
|
592 |
* read-only.
|
|
593 |
*/
|
|
594 |
public Node replaceChild(Node newChild, Node oldChild)
|
|
595 |
throws DOMException {
|
|
596 |
// If Mutation Events are being generated, this operation might
|
|
597 |
// throw aggregate events twice when modifying an Attr -- once
|
|
598 |
// on insertion and once on removal. DOM Level 2 does not specify
|
|
599 |
// this as either desirable or undesirable, but hints that
|
|
600 |
// aggregations should be issued only once per user request.
|
|
601 |
|
|
602 |
// notify document
|
|
603 |
ownerDocument.replacingNode(this);
|
|
604 |
|
|
605 |
internalInsertBefore(newChild, oldChild, true);
|
|
606 |
if (newChild != oldChild) {
|
|
607 |
internalRemoveChild(oldChild, true);
|
|
608 |
}
|
|
609 |
|
|
610 |
// notify document
|
|
611 |
ownerDocument.replacedNode(this);
|
|
612 |
|
|
613 |
return oldChild;
|
|
614 |
}
|
|
615 |
|
|
616 |
/*
|
|
617 |
* Get Node text content
|
|
618 |
* @since DOM Level 3
|
|
619 |
*/
|
|
620 |
public String getTextContent() throws DOMException {
|
|
621 |
Node child = getFirstChild();
|
|
622 |
if (child != null) {
|
|
623 |
Node next = child.getNextSibling();
|
|
624 |
if (next == null) {
|
|
625 |
return hasTextContent(child) ? ((NodeImpl) child).getTextContent() : "";
|
|
626 |
}
|
|
627 |
if (fBufferStr == null){
|
|
628 |
fBufferStr = new StringBuffer();
|
|
629 |
}
|
|
630 |
else {
|
|
631 |
fBufferStr.setLength(0);
|
|
632 |
}
|
|
633 |
getTextContent(fBufferStr);
|
|
634 |
return fBufferStr.toString();
|
|
635 |
}
|
|
636 |
return "";
|
|
637 |
}
|
|
638 |
|
|
639 |
// internal method taking a StringBuffer in parameter
|
|
640 |
void getTextContent(StringBuffer buf) throws DOMException {
|
|
641 |
Node child = getFirstChild();
|
|
642 |
while (child != null) {
|
|
643 |
if (hasTextContent(child)) {
|
|
644 |
((NodeImpl) child).getTextContent(buf);
|
|
645 |
}
|
|
646 |
child = child.getNextSibling();
|
|
647 |
}
|
|
648 |
}
|
|
649 |
|
|
650 |
// internal method returning whether to take the given node's text content
|
|
651 |
final boolean hasTextContent(Node child) {
|
|
652 |
return child.getNodeType() != Node.COMMENT_NODE &&
|
|
653 |
child.getNodeType() != Node.PROCESSING_INSTRUCTION_NODE &&
|
|
654 |
(child.getNodeType() != Node.TEXT_NODE ||
|
|
655 |
((TextImpl) child).isIgnorableWhitespace() == false);
|
|
656 |
}
|
|
657 |
|
|
658 |
/*
|
|
659 |
* Set Node text content
|
|
660 |
* @since DOM Level 3
|
|
661 |
*/
|
|
662 |
public void setTextContent(String textContent)
|
|
663 |
throws DOMException {
|
|
664 |
// get rid of any existing children
|
|
665 |
Node child;
|
|
666 |
while ((child = getFirstChild()) != null) {
|
|
667 |
removeChild(child);
|
|
668 |
}
|
|
669 |
// create a Text node to hold the given content
|
|
670 |
if (textContent != null && textContent.length() != 0){
|
|
671 |
appendChild(ownerDocument().createTextNode(textContent));
|
|
672 |
}
|
|
673 |
}
|
|
674 |
|
|
675 |
//
|
|
676 |
// NodeList methods
|
|
677 |
//
|
|
678 |
|
|
679 |
/**
|
|
680 |
* Count the immediate children of this node. Use to implement
|
|
681 |
* NodeList.getLength().
|
|
682 |
* @return int
|
|
683 |
*/
|
|
684 |
private int nodeListGetLength() {
|
|
685 |
|
|
686 |
if (fNodeListCache == null) {
|
|
687 |
// get rid of trivial cases
|
|
688 |
if (firstChild == null) {
|
|
689 |
return 0;
|
|
690 |
}
|
|
691 |
if (firstChild == lastChild()) {
|
|
692 |
return 1;
|
|
693 |
}
|
|
694 |
// otherwise request a cache object
|
|
695 |
fNodeListCache = ownerDocument.getNodeListCache(this);
|
|
696 |
}
|
|
697 |
if (fNodeListCache.fLength == -1) { // is the cached length invalid ?
|
|
698 |
int l;
|
|
699 |
ChildNode n;
|
|
700 |
// start from the cached node if we have one
|
|
701 |
if (fNodeListCache.fChildIndex != -1 &&
|
|
702 |
fNodeListCache.fChild != null) {
|
|
703 |
l = fNodeListCache.fChildIndex;
|
|
704 |
n = fNodeListCache.fChild;
|
|
705 |
} else {
|
|
706 |
n = firstChild;
|
|
707 |
l = 0;
|
|
708 |
}
|
|
709 |
while (n != null) {
|
|
710 |
l++;
|
|
711 |
n = n.nextSibling;
|
|
712 |
}
|
|
713 |
fNodeListCache.fLength = l;
|
|
714 |
}
|
|
715 |
|
|
716 |
return fNodeListCache.fLength;
|
|
717 |
|
|
718 |
} // nodeListGetLength():int
|
|
719 |
|
|
720 |
/**
|
|
721 |
* NodeList method: Count the immediate children of this node
|
|
722 |
* @return int
|
|
723 |
*/
|
|
724 |
public int getLength() {
|
|
725 |
return nodeListGetLength();
|
|
726 |
}
|
|
727 |
|
|
728 |
/**
|
|
729 |
* Return the Nth immediate child of this node, or null if the index is
|
|
730 |
* out of bounds. Use to implement NodeList.item().
|
|
731 |
* @param index int
|
|
732 |
*/
|
|
733 |
private Node nodeListItem(int index) {
|
|
734 |
|
|
735 |
if (fNodeListCache == null) {
|
|
736 |
// get rid of trivial case
|
|
737 |
if (firstChild == lastChild()) {
|
|
738 |
return index == 0 ? firstChild : null;
|
|
739 |
}
|
|
740 |
// otherwise request a cache object
|
|
741 |
fNodeListCache = ownerDocument.getNodeListCache(this);
|
|
742 |
}
|
|
743 |
int i = fNodeListCache.fChildIndex;
|
|
744 |
ChildNode n = fNodeListCache.fChild;
|
|
745 |
boolean firstAccess = true;
|
|
746 |
// short way
|
|
747 |
if (i != -1 && n != null) {
|
|
748 |
firstAccess = false;
|
|
749 |
if (i < index) {
|
|
750 |
while (i < index && n != null) {
|
|
751 |
i++;
|
|
752 |
n = n.nextSibling;
|
|
753 |
}
|
|
754 |
}
|
|
755 |
else if (i > index) {
|
|
756 |
while (i > index && n != null) {
|
|
757 |
i--;
|
|
758 |
n = n.previousSibling();
|
|
759 |
}
|
|
760 |
}
|
|
761 |
}
|
|
762 |
else {
|
|
763 |
// long way
|
|
764 |
if (index < 0) {
|
|
765 |
return null;
|
|
766 |
}
|
|
767 |
n = firstChild;
|
|
768 |
for (i = 0; i < index && n != null; i++) {
|
|
769 |
n = n.nextSibling;
|
|
770 |
}
|
|
771 |
}
|
|
772 |
|
|
773 |
// release cache if reaching last child or first child
|
|
774 |
if (!firstAccess && (n == firstChild || n == lastChild())) {
|
|
775 |
fNodeListCache.fChildIndex = -1;
|
|
776 |
fNodeListCache.fChild = null;
|
|
777 |
ownerDocument.freeNodeListCache(fNodeListCache);
|
|
778 |
// we can keep using the cache until it is actually reused
|
|
779 |
// fNodeListCache will be nulled by the pool (document) if that
|
|
780 |
// happens.
|
|
781 |
// fNodeListCache = null;
|
|
782 |
}
|
|
783 |
else {
|
|
784 |
// otherwise update it
|
|
785 |
fNodeListCache.fChildIndex = i;
|
|
786 |
fNodeListCache.fChild = n;
|
|
787 |
}
|
|
788 |
return n;
|
|
789 |
|
|
790 |
} // nodeListItem(int):Node
|
|
791 |
|
|
792 |
/**
|
|
793 |
* NodeList method: Return the Nth immediate child of this node, or
|
|
794 |
* null if the index is out of bounds.
|
|
795 |
* @return org.w3c.dom.Node
|
|
796 |
* @param index int
|
|
797 |
*/
|
|
798 |
public Node item(int index) {
|
|
799 |
return nodeListItem(index);
|
|
800 |
} // item(int):Node
|
|
801 |
|
|
802 |
/**
|
|
803 |
* Create a NodeList to access children that is use by subclass elements
|
|
804 |
* that have methods named getLength() or item(int). ChildAndParentNode
|
|
805 |
* optimizes getChildNodes() by implementing NodeList itself. However if
|
|
806 |
* a subclass Element implements methods with the same name as the NodeList
|
|
807 |
* methods, they will override the actually methods in this class.
|
|
808 |
* <p>
|
|
809 |
* To use this method, the subclass should implement getChildNodes() and
|
|
810 |
* have it call this method. The resulting NodeList instance maybe
|
|
811 |
* shared and cached in a transient field, but the cached value must be
|
|
812 |
* cleared if the node is cloned.
|
|
813 |
*/
|
|
814 |
protected final NodeList getChildNodesUnoptimized() {
|
|
815 |
if (needsSyncChildren()) {
|
|
816 |
synchronizeChildren();
|
|
817 |
}
|
|
818 |
return new NodeList() {
|
|
819 |
/**
|
|
820 |
* @see NodeList.getLength()
|
|
821 |
*/
|
|
822 |
public int getLength() {
|
|
823 |
return nodeListGetLength();
|
|
824 |
} // getLength():int
|
|
825 |
|
|
826 |
/**
|
|
827 |
* @see NodeList.item(int)
|
|
828 |
*/
|
|
829 |
public Node item(int index) {
|
|
830 |
return nodeListItem(index);
|
|
831 |
} // item(int):Node
|
|
832 |
};
|
|
833 |
} // getChildNodesUnoptimized():NodeList
|
|
834 |
|
|
835 |
//
|
|
836 |
// DOM2: methods, getters, setters
|
|
837 |
//
|
|
838 |
|
|
839 |
/**
|
|
840 |
* Override default behavior to call normalize() on this Node's
|
|
841 |
* children. It is up to implementors or Node to override normalize()
|
|
842 |
* to take action.
|
|
843 |
*/
|
|
844 |
public void normalize() {
|
|
845 |
// No need to normalize if already normalized.
|
|
846 |
if (isNormalized()) {
|
|
847 |
return;
|
|
848 |
}
|
|
849 |
if (needsSyncChildren()) {
|
|
850 |
synchronizeChildren();
|
|
851 |
}
|
|
852 |
ChildNode kid;
|
|
853 |
for (kid = firstChild; kid != null; kid = kid.nextSibling) {
|
|
854 |
kid.normalize();
|
|
855 |
}
|
|
856 |
isNormalized(true);
|
|
857 |
}
|
|
858 |
|
|
859 |
/**
|
|
860 |
* DOM Level 3 WD- Experimental.
|
|
861 |
* Override inherited behavior from NodeImpl to support deep equal.
|
|
862 |
*/
|
|
863 |
public boolean isEqualNode(Node arg) {
|
|
864 |
if (!super.isEqualNode(arg)) {
|
|
865 |
return false;
|
|
866 |
}
|
|
867 |
// there are many ways to do this test, and there isn't any way
|
|
868 |
// better than another. Performance may vary greatly depending on
|
|
869 |
// the implementations involved. This one should work fine for us.
|
|
870 |
Node child1 = getFirstChild();
|
|
871 |
Node child2 = arg.getFirstChild();
|
|
872 |
while (child1 != null && child2 != null) {
|
|
873 |
if (!((NodeImpl) child1).isEqualNode(child2)) {
|
|
874 |
return false;
|
|
875 |
}
|
|
876 |
child1 = child1.getNextSibling();
|
|
877 |
child2 = child2.getNextSibling();
|
|
878 |
}
|
|
879 |
if (child1 != child2) {
|
|
880 |
return false;
|
|
881 |
}
|
|
882 |
return true;
|
|
883 |
}
|
|
884 |
|
|
885 |
//
|
|
886 |
// Public methods
|
|
887 |
//
|
|
888 |
|
|
889 |
/**
|
|
890 |
* Override default behavior so that if deep is true, children are also
|
|
891 |
* toggled.
|
|
892 |
* @see Node
|
|
893 |
* <P>
|
|
894 |
* Note: this will not change the state of an EntityReference or its
|
|
895 |
* children, which are always read-only.
|
|
896 |
*/
|
|
897 |
public void setReadOnly(boolean readOnly, boolean deep) {
|
|
898 |
|
|
899 |
super.setReadOnly(readOnly, deep);
|
|
900 |
|
|
901 |
if (deep) {
|
|
902 |
|
|
903 |
if (needsSyncChildren()) {
|
|
904 |
synchronizeChildren();
|
|
905 |
}
|
|
906 |
|
|
907 |
// Recursively set kids
|
|
908 |
for (ChildNode mykid = firstChild;
|
|
909 |
mykid != null;
|
|
910 |
mykid = mykid.nextSibling) {
|
|
911 |
if (mykid.getNodeType() != Node.ENTITY_REFERENCE_NODE) {
|
|
912 |
mykid.setReadOnly(readOnly,true);
|
|
913 |
}
|
|
914 |
}
|
|
915 |
}
|
|
916 |
} // setReadOnly(boolean,boolean)
|
|
917 |
|
|
918 |
//
|
|
919 |
// Protected methods
|
|
920 |
//
|
|
921 |
|
|
922 |
/**
|
|
923 |
* Override this method in subclass to hook in efficient
|
|
924 |
* internal data structure.
|
|
925 |
*/
|
|
926 |
protected void synchronizeChildren() {
|
|
927 |
// By default just change the flag to avoid calling this method again
|
|
928 |
needsSyncChildren(false);
|
|
929 |
}
|
|
930 |
|
|
931 |
/**
|
|
932 |
* Checks the normalized state of this node after inserting a child.
|
|
933 |
* If the inserted child causes this node to be unnormalized, then this
|
|
934 |
* node is flagged accordingly.
|
|
935 |
* The conditions for changing the normalized state are:
|
|
936 |
* <ul>
|
|
937 |
* <li>The inserted child is a text node and one of its adjacent siblings
|
|
938 |
* is also a text node.
|
|
939 |
* <li>The inserted child is is itself unnormalized.
|
|
940 |
* </ul>
|
|
941 |
*
|
|
942 |
* @param insertedChild the child node that was inserted into this node
|
|
943 |
*
|
|
944 |
* @throws NullPointerException if the inserted child is <code>null</code>
|
|
945 |
*/
|
|
946 |
void checkNormalizationAfterInsert(ChildNode insertedChild) {
|
|
947 |
// See if insertion caused this node to be unnormalized.
|
|
948 |
if (insertedChild.getNodeType() == Node.TEXT_NODE) {
|
|
949 |
ChildNode prev = insertedChild.previousSibling();
|
|
950 |
ChildNode next = insertedChild.nextSibling;
|
|
951 |
// If an adjacent sibling of the new child is a text node,
|
|
952 |
// flag this node as unnormalized.
|
|
953 |
if ((prev != null && prev.getNodeType() == Node.TEXT_NODE) ||
|
|
954 |
(next != null && next.getNodeType() == Node.TEXT_NODE)) {
|
|
955 |
isNormalized(false);
|
|
956 |
}
|
|
957 |
}
|
|
958 |
else {
|
|
959 |
// If the new child is not normalized,
|
|
960 |
// then this node is inherently not normalized.
|
|
961 |
if (!insertedChild.isNormalized()) {
|
|
962 |
isNormalized(false);
|
|
963 |
}
|
|
964 |
}
|
|
965 |
} // checkNormalizationAfterInsert(ChildNode)
|
|
966 |
|
|
967 |
/**
|
|
968 |
* Checks the normalized of this node after removing a child.
|
|
969 |
* If the removed child causes this node to be unnormalized, then this
|
|
970 |
* node is flagged accordingly.
|
|
971 |
* The conditions for changing the normalized state are:
|
|
972 |
* <ul>
|
|
973 |
* <li>The removed child had two adjacent siblings that were text nodes.
|
|
974 |
* </ul>
|
|
975 |
*
|
|
976 |
* @param previousSibling the previous sibling of the removed child, or
|
|
977 |
* <code>null</code>
|
|
978 |
*/
|
|
979 |
void checkNormalizationAfterRemove(ChildNode previousSibling) {
|
|
980 |
// See if removal caused this node to be unnormalized.
|
|
981 |
// If the adjacent siblings of the removed child were both text nodes,
|
|
982 |
// flag this node as unnormalized.
|
|
983 |
if (previousSibling != null &&
|
|
984 |
previousSibling.getNodeType() == Node.TEXT_NODE) {
|
|
985 |
|
|
986 |
ChildNode next = previousSibling.nextSibling;
|
|
987 |
if (next != null && next.getNodeType() == Node.TEXT_NODE) {
|
|
988 |
isNormalized(false);
|
|
989 |
}
|
|
990 |
}
|
|
991 |
} // checkNormalizationAfterRemove(Node)
|
|
992 |
|
|
993 |
//
|
|
994 |
// Serialization methods
|
|
995 |
//
|
|
996 |
|
|
997 |
/** Serialize object. */
|
|
998 |
private void writeObject(ObjectOutputStream out) throws IOException {
|
|
999 |
|
|
1000 |
// synchronize chilren
|
|
1001 |
if (needsSyncChildren()) {
|
|
1002 |
synchronizeChildren();
|
|
1003 |
}
|
|
1004 |
// write object
|
|
1005 |
out.defaultWriteObject();
|
|
1006 |
|
|
1007 |
} // writeObject(ObjectOutputStream)
|
|
1008 |
|
|
1009 |
/** Deserialize object. */
|
|
1010 |
private void readObject(ObjectInputStream ois)
|
|
1011 |
throws ClassNotFoundException, IOException {
|
|
1012 |
|
|
1013 |
// perform default deseralization
|
|
1014 |
ois.defaultReadObject();
|
|
1015 |
|
|
1016 |
// hardset synchildren - so we don't try to sync - it does not make any
|
|
1017 |
// sense to try to synchildren when we just deserialize object.
|
|
1018 |
needsSyncChildren(false);
|
|
1019 |
|
|
1020 |
} // readObject(ObjectInputStream)
|
|
1021 |
|
|
1022 |
/*
|
|
1023 |
* a class to store some user data along with its handler
|
|
1024 |
*/
|
|
1025 |
class UserDataRecord implements Serializable {
|
|
1026 |
/** Serialization version. */
|
|
1027 |
private static final long serialVersionUID = 3258126977134310455L;
|
|
1028 |
|
|
1029 |
Object fData;
|
|
1030 |
UserDataHandler fHandler;
|
|
1031 |
UserDataRecord(Object data, UserDataHandler handler) {
|
|
1032 |
fData = data;
|
|
1033 |
fHandler = handler;
|
|
1034 |
}
|
|
1035 |
}
|
|
1036 |
} // class ParentNode
|