author | duke |
Wed, 05 Jul 2017 23:10:03 +0200 | |
changeset 44509 | 02253db2ace1 |
parent 39219 | 1b33aa56ed18 |
child 46630 | 75aa3e39d02c |
permissions | -rw-r--r-- |
1 | 1 |
/* |
24424
2658d7834c6e
8037816: Fix for 8036122 breaks build with Xcode5/clang
drchase
parents:
22234
diff
changeset
|
2 |
* Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3800
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3800
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3800
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
7397 | 25 |
#include "precompiled.hpp" |
26 |
#include "c1/c1_Instruction.hpp" |
|
27 |
#include "c1/c1_LinearScan.hpp" |
|
28 |
#include "utilities/bitMap.inline.hpp" |
|
1 | 29 |
|
30 |
||
31 |
//---------------------------------------------------------------------- |
|
32 |
// Allocation of FPU stack slots (Intel x86 only) |
|
33 |
//---------------------------------------------------------------------- |
|
34 |
||
35 |
void LinearScan::allocate_fpu_stack() { |
|
36 |
// First compute which FPU registers are live at the start of each basic block |
|
37 |
// (To minimize the amount of work we have to do if we have to merge FPU stacks) |
|
38 |
if (ComputeExactFPURegisterUsage) { |
|
39 |
Interval* intervals_in_register, *intervals_in_memory; |
|
40 |
create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL); |
|
41 |
||
42 |
// ignore memory intervals by overwriting intervals_in_memory |
|
43 |
// the dummy interval is needed to enforce the walker to walk until the given id: |
|
44 |
// without it, the walker stops when the unhandled-list is empty -> live information |
|
45 |
// beyond this point would be incorrect. |
|
46 |
Interval* dummy_interval = new Interval(any_reg); |
|
47 |
dummy_interval->add_range(max_jint - 2, max_jint - 1); |
|
48 |
dummy_interval->set_next(Interval::end()); |
|
49 |
intervals_in_memory = dummy_interval; |
|
50 |
||
51 |
IntervalWalker iw(this, intervals_in_register, intervals_in_memory); |
|
52 |
||
53 |
const int num_blocks = block_count(); |
|
54 |
for (int i = 0; i < num_blocks; i++) { |
|
55 |
BlockBegin* b = block_at(i); |
|
56 |
||
57 |
// register usage is only needed for merging stacks -> compute only |
|
58 |
// when more than one predecessor. |
|
59 |
// the block must not have any spill moves at the beginning (checked by assertions) |
|
60 |
// spill moves would use intervals that are marked as handled and so the usage bit |
|
61 |
// would been set incorrectly |
|
62 |
||
63 |
// NOTE: the check for number_of_preds > 1 is necessary. A block with only one |
|
64 |
// predecessor may have spill moves at the begin of the block. |
|
65 |
// If an interval ends at the current instruction id, it is not possible |
|
66 |
// to decide if the register is live or not at the block begin -> the |
|
67 |
// register information would be incorrect. |
|
68 |
if (b->number_of_preds() > 1) { |
|
69 |
int id = b->first_lir_instruction_id(); |
|
38177 | 70 |
ResourceBitMap regs(FrameMap::nof_fpu_regs); |
1 | 71 |
|
72 |
iw.walk_to(id); // walk after the first instruction (always a label) of the block |
|
73 |
assert(iw.current_position() == id, "did not walk completely to id"); |
|
74 |
||
75 |
// Only consider FPU values in registers |
|
76 |
Interval* interval = iw.active_first(fixedKind); |
|
77 |
while (interval != Interval::end()) { |
|
78 |
int reg = interval->assigned_reg(); |
|
79 |
assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register"); |
|
80 |
assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)"); |
|
81 |
assert(interval->from() <= id && id < interval->to(), "interval out of range"); |
|
82 |
||
83 |
#ifndef PRODUCT |
|
84 |
if (TraceFPURegisterUsage) { |
|
85 |
tty->print("fpu reg %d is live because of ", reg - pd_first_fpu_reg); interval->print(); |
|
86 |
} |
|
87 |
#endif |
|
88 |
||
89 |
regs.set_bit(reg - pd_first_fpu_reg); |
|
90 |
interval = interval->next(); |
|
91 |
} |
|
92 |
||
93 |
b->set_fpu_register_usage(regs); |
|
94 |
||
95 |
#ifndef PRODUCT |
|
96 |
if (TraceFPURegisterUsage) { |
|
24424
2658d7834c6e
8037816: Fix for 8036122 breaks build with Xcode5/clang
drchase
parents:
22234
diff
changeset
|
97 |
tty->print("FPU regs for block %d, LIR instr %d): ", b->block_id(), id); regs.print_on(tty); tty->cr(); |
1 | 98 |
} |
99 |
#endif |
|
100 |
} |
|
101 |
} |
|
102 |
} |
|
103 |
||
104 |
FpuStackAllocator alloc(ir()->compilation(), this); |
|
105 |
_fpu_stack_allocator = &alloc; |
|
106 |
alloc.allocate(); |
|
107 |
_fpu_stack_allocator = NULL; |
|
108 |
} |
|
109 |
||
110 |
||
111 |
FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator) |
|
112 |
: _compilation(compilation) |
|
113 |
, _lir(NULL) |
|
114 |
, _pos(-1) |
|
115 |
, _allocator(allocator) |
|
116 |
, _sim(compilation) |
|
117 |
, _temp_sim(compilation) |
|
118 |
{} |
|
119 |
||
120 |
void FpuStackAllocator::allocate() { |
|
121 |
int num_blocks = allocator()->block_count(); |
|
122 |
for (int i = 0; i < num_blocks; i++) { |
|
123 |
// Set up to process block |
|
124 |
BlockBegin* block = allocator()->block_at(i); |
|
125 |
intArray* fpu_stack_state = block->fpu_stack_state(); |
|
126 |
||
127 |
#ifndef PRODUCT |
|
128 |
if (TraceFPUStack) { |
|
129 |
tty->cr(); |
|
130 |
tty->print_cr("------- Begin of new Block %d -------", block->block_id()); |
|
131 |
} |
|
132 |
#endif |
|
133 |
||
134 |
assert(fpu_stack_state != NULL || |
|
135 |
block->end()->as_Base() != NULL || |
|
136 |
block->is_set(BlockBegin::exception_entry_flag), |
|
137 |
"FPU stack state must be present due to linear-scan order for FPU stack allocation"); |
|
138 |
// note: exception handler entries always start with an empty fpu stack |
|
139 |
// because stack merging would be too complicated |
|
140 |
||
141 |
if (fpu_stack_state != NULL) { |
|
142 |
sim()->read_state(fpu_stack_state); |
|
143 |
} else { |
|
144 |
sim()->clear(); |
|
145 |
} |
|
146 |
||
147 |
#ifndef PRODUCT |
|
148 |
if (TraceFPUStack) { |
|
149 |
tty->print("Reading FPU state for block %d:", block->block_id()); |
|
150 |
sim()->print(); |
|
151 |
tty->cr(); |
|
152 |
} |
|
153 |
#endif |
|
154 |
||
155 |
allocate_block(block); |
|
156 |
CHECK_BAILOUT(); |
|
157 |
} |
|
158 |
} |
|
159 |
||
160 |
void FpuStackAllocator::allocate_block(BlockBegin* block) { |
|
161 |
bool processed_merge = false; |
|
162 |
LIR_OpList* insts = block->lir()->instructions_list(); |
|
163 |
set_lir(block->lir()); |
|
164 |
set_pos(0); |
|
165 |
||
166 |
||
167 |
// Note: insts->length() may change during loop |
|
168 |
while (pos() < insts->length()) { |
|
169 |
LIR_Op* op = insts->at(pos()); |
|
170 |
_debug_information_computed = false; |
|
171 |
||
172 |
#ifndef PRODUCT |
|
173 |
if (TraceFPUStack) { |
|
174 |
op->print(); |
|
175 |
} |
|
176 |
check_invalid_lir_op(op); |
|
177 |
#endif |
|
178 |
||
179 |
LIR_OpBranch* branch = op->as_OpBranch(); |
|
180 |
LIR_Op1* op1 = op->as_Op1(); |
|
181 |
LIR_Op2* op2 = op->as_Op2(); |
|
182 |
LIR_OpCall* opCall = op->as_OpCall(); |
|
183 |
||
184 |
if (branch != NULL && branch->block() != NULL) { |
|
185 |
if (!processed_merge) { |
|
186 |
// propagate stack at first branch to a successor |
|
187 |
processed_merge = true; |
|
188 |
bool required_merge = merge_fpu_stack_with_successors(block); |
|
189 |
||
190 |
assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches"); |
|
191 |
} |
|
192 |
||
193 |
} else if (op1 != NULL) { |
|
194 |
handle_op1(op1); |
|
195 |
} else if (op2 != NULL) { |
|
196 |
handle_op2(op2); |
|
197 |
} else if (opCall != NULL) { |
|
198 |
handle_opCall(opCall); |
|
199 |
} |
|
200 |
||
201 |
compute_debug_information(op); |
|
202 |
||
203 |
set_pos(1 + pos()); |
|
204 |
} |
|
205 |
||
206 |
// Propagate stack when block does not end with branch |
|
207 |
if (!processed_merge) { |
|
208 |
merge_fpu_stack_with_successors(block); |
|
209 |
} |
|
210 |
} |
|
211 |
||
212 |
||
213 |
void FpuStackAllocator::compute_debug_information(LIR_Op* op) { |
|
214 |
if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) { |
|
215 |
visitor.visit(op); |
|
216 |
||
217 |
// exception handling |
|
218 |
if (allocator()->compilation()->has_exception_handlers()) { |
|
219 |
XHandlers* xhandlers = visitor.all_xhandler(); |
|
220 |
int n = xhandlers->length(); |
|
221 |
for (int k = 0; k < n; k++) { |
|
222 |
allocate_exception_handler(xhandlers->handler_at(k)); |
|
223 |
} |
|
224 |
} else { |
|
225 |
assert(visitor.all_xhandler()->length() == 0, "missed exception handler"); |
|
226 |
} |
|
227 |
||
228 |
// compute debug information |
|
229 |
int n = visitor.info_count(); |
|
230 |
assert(n > 0, "should not visit operation otherwise"); |
|
231 |
||
232 |
for (int j = 0; j < n; j++) { |
|
233 |
CodeEmitInfo* info = visitor.info_at(j); |
|
234 |
// Compute debug information |
|
235 |
allocator()->compute_debug_info(info, op->id()); |
|
236 |
} |
|
237 |
} |
|
238 |
_debug_information_computed = true; |
|
239 |
} |
|
240 |
||
241 |
void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) { |
|
242 |
if (!sim()->is_empty()) { |
|
243 |
LIR_List* old_lir = lir(); |
|
244 |
int old_pos = pos(); |
|
245 |
intArray* old_state = sim()->write_state(); |
|
246 |
||
247 |
#ifndef PRODUCT |
|
248 |
if (TraceFPUStack) { |
|
249 |
tty->cr(); |
|
250 |
tty->print_cr("------- begin of exception handler -------"); |
|
251 |
} |
|
252 |
#endif |
|
253 |
||
254 |
if (xhandler->entry_code() == NULL) { |
|
255 |
// need entry code to clear FPU stack |
|
256 |
LIR_List* entry_code = new LIR_List(_compilation); |
|
257 |
entry_code->jump(xhandler->entry_block()); |
|
258 |
xhandler->set_entry_code(entry_code); |
|
259 |
} |
|
260 |
||
261 |
LIR_OpList* insts = xhandler->entry_code()->instructions_list(); |
|
262 |
set_lir(xhandler->entry_code()); |
|
263 |
set_pos(0); |
|
264 |
||
265 |
// Note: insts->length() may change during loop |
|
266 |
while (pos() < insts->length()) { |
|
267 |
LIR_Op* op = insts->at(pos()); |
|
268 |
||
269 |
#ifndef PRODUCT |
|
270 |
if (TraceFPUStack) { |
|
271 |
op->print(); |
|
272 |
} |
|
273 |
check_invalid_lir_op(op); |
|
274 |
#endif |
|
275 |
||
276 |
switch (op->code()) { |
|
277 |
case lir_move: |
|
278 |
assert(op->as_Op1() != NULL, "must be LIR_Op1"); |
|
279 |
assert(pos() != insts->length() - 1, "must not be last operation"); |
|
280 |
||
281 |
handle_op1((LIR_Op1*)op); |
|
282 |
break; |
|
283 |
||
284 |
case lir_branch: |
|
285 |
assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch"); |
|
286 |
assert(pos() == insts->length() - 1, "must be last operation"); |
|
287 |
||
288 |
// remove all remaining dead registers from FPU stack |
|
289 |
clear_fpu_stack(LIR_OprFact::illegalOpr); |
|
290 |
break; |
|
291 |
||
292 |
default: |
|
293 |
// other operations not allowed in exception entry code |
|
294 |
ShouldNotReachHere(); |
|
295 |
} |
|
296 |
||
297 |
set_pos(pos() + 1); |
|
298 |
} |
|
299 |
||
300 |
#ifndef PRODUCT |
|
301 |
if (TraceFPUStack) { |
|
302 |
tty->cr(); |
|
303 |
tty->print_cr("------- end of exception handler -------"); |
|
304 |
} |
|
305 |
#endif |
|
306 |
||
307 |
set_lir(old_lir); |
|
308 |
set_pos(old_pos); |
|
309 |
sim()->read_state(old_state); |
|
310 |
} |
|
311 |
} |
|
312 |
||
313 |
||
314 |
int FpuStackAllocator::fpu_num(LIR_Opr opr) { |
|
315 |
assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise"); |
|
316 |
return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo(); |
|
317 |
} |
|
318 |
||
319 |
int FpuStackAllocator::tos_offset(LIR_Opr opr) { |
|
320 |
return sim()->offset_from_tos(fpu_num(opr)); |
|
321 |
} |
|
322 |
||
323 |
||
324 |
LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) { |
|
325 |
assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise"); |
|
326 |
||
327 |
int stack_offset = tos_offset(opr); |
|
328 |
if (opr->is_single_fpu()) { |
|
329 |
return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset(); |
|
330 |
} else { |
|
331 |
assert(opr->is_double_fpu(), "shouldn't call this otherwise"); |
|
332 |
return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset(); |
|
333 |
} |
|
334 |
} |
|
335 |
||
336 |
LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) { |
|
337 |
assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise"); |
|
338 |
assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top"); |
|
339 |
||
340 |
int stack_offset = 0; |
|
341 |
if (opr->is_single_fpu()) { |
|
342 |
return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset(); |
|
343 |
} else { |
|
344 |
assert(opr->is_double_fpu(), "shouldn't call this otherwise"); |
|
345 |
return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset(); |
|
346 |
} |
|
347 |
} |
|
348 |
||
349 |
||
350 |
||
351 |
void FpuStackAllocator::insert_op(LIR_Op* op) { |
|
352 |
lir()->insert_before(pos(), op); |
|
353 |
set_pos(1 + pos()); |
|
354 |
} |
|
355 |
||
356 |
||
357 |
void FpuStackAllocator::insert_exchange(int offset) { |
|
358 |
if (offset > 0) { |
|
359 |
LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr); |
|
360 |
insert_op(fxch_op); |
|
361 |
sim()->swap(offset); |
|
362 |
||
363 |
#ifndef PRODUCT |
|
364 |
if (TraceFPUStack) { |
|
365 |
tty->print("Exchanged register: %d New state: ", sim()->get_slot(0)); sim()->print(); tty->cr(); |
|
366 |
} |
|
367 |
#endif |
|
368 |
||
369 |
} |
|
370 |
} |
|
371 |
||
372 |
void FpuStackAllocator::insert_exchange(LIR_Opr opr) { |
|
373 |
insert_exchange(tos_offset(opr)); |
|
374 |
} |
|
375 |
||
376 |
||
377 |
void FpuStackAllocator::insert_free(int offset) { |
|
378 |
// move stack slot to the top of stack and then pop it |
|
379 |
insert_exchange(offset); |
|
380 |
||
381 |
LIR_Op* fpop = new LIR_Op0(lir_fpop_raw); |
|
382 |
insert_op(fpop); |
|
383 |
sim()->pop(); |
|
384 |
||
385 |
#ifndef PRODUCT |
|
386 |
if (TraceFPUStack) { |
|
387 |
tty->print("Inserted pop New state: "); sim()->print(); tty->cr(); |
|
388 |
} |
|
389 |
#endif |
|
390 |
} |
|
391 |
||
392 |
||
393 |
void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) { |
|
394 |
if (sim()->contains(fpu_num(opr))) { |
|
395 |
int res_slot = tos_offset(opr); |
|
396 |
insert_free(res_slot); |
|
397 |
} |
|
398 |
} |
|
399 |
||
400 |
void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) { |
|
401 |
if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) { |
|
402 |
int res_slot = tos_offset(opr); |
|
403 |
insert_free(res_slot); |
|
404 |
} |
|
405 |
} |
|
406 |
||
407 |
void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) { |
|
408 |
int offset = tos_offset(from); |
|
409 |
LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr); |
|
410 |
insert_op(fld); |
|
411 |
||
412 |
sim()->push(fpu_num(to)); |
|
413 |
||
414 |
#ifndef PRODUCT |
|
415 |
if (TraceFPUStack) { |
|
416 |
tty->print("Inserted copy (%d -> %d) New state: ", fpu_num(from), fpu_num(to)); sim()->print(); tty->cr(); |
|
417 |
} |
|
418 |
#endif |
|
419 |
} |
|
420 |
||
421 |
void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) { |
|
422 |
sim()->rename(fpu_num(from), fpu_num(to)); |
|
423 |
} |
|
424 |
||
425 |
void FpuStackAllocator::do_push(LIR_Opr opr) { |
|
426 |
sim()->push(fpu_num(opr)); |
|
427 |
} |
|
428 |
||
429 |
void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) { |
|
430 |
assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set"); |
|
431 |
assert(tos_offset(opr) == 0, "can only pop stack top"); |
|
432 |
||
433 |
if (opr->is_last_use()) { |
|
434 |
op->set_fpu_pop_count(1); |
|
435 |
sim()->pop(); |
|
436 |
} |
|
437 |
} |
|
438 |
||
439 |
void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) { |
|
440 |
assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set"); |
|
441 |
assert(tos_offset(opr) == 0, "can only pop stack top"); |
|
442 |
||
443 |
op->set_fpu_pop_count(1); |
|
444 |
sim()->pop(); |
|
445 |
} |
|
446 |
||
447 |
void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) { |
|
448 |
int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0); |
|
449 |
while (sim()->stack_size() > result_stack_size) { |
|
450 |
assert(!sim()->slot_is_empty(0), "not allowed"); |
|
451 |
||
452 |
if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) { |
|
453 |
insert_free(0); |
|
454 |
} else { |
|
455 |
// move "preserve" to bottom of stack so that all other stack slots can be popped |
|
456 |
insert_exchange(sim()->stack_size() - 1); |
|
457 |
} |
|
458 |
} |
|
459 |
} |
|
460 |
||
461 |
||
462 |
void FpuStackAllocator::handle_op1(LIR_Op1* op1) { |
|
463 |
LIR_Opr in = op1->in_opr(); |
|
464 |
LIR_Opr res = op1->result_opr(); |
|
465 |
||
466 |
LIR_Opr new_in = in; // new operands relative to the actual fpu stack top |
|
467 |
LIR_Opr new_res = res; |
|
468 |
||
469 |
// Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments, |
|
470 |
// so checks for is_float_kind() are necessary inside the cases |
|
471 |
switch (op1->code()) { |
|
472 |
||
473 |
case lir_return: { |
|
474 |
// FPU-Stack must only contain the (optional) fpu return value. |
|
475 |
// All remaining dead values are popped from the stack |
|
476 |
// If the input operand is a fpu-register, it is exchanged to the bottom of the stack |
|
477 |
||
478 |
clear_fpu_stack(in); |
|
479 |
if (in->is_fpu_register() && !in->is_xmm_register()) { |
|
480 |
new_in = to_fpu_stack_top(in); |
|
481 |
} |
|
482 |
||
483 |
break; |
|
484 |
} |
|
485 |
||
486 |
case lir_move: { |
|
487 |
if (in->is_fpu_register() && !in->is_xmm_register()) { |
|
488 |
if (res->is_xmm_register()) { |
|
489 |
// move from fpu register to xmm register (necessary for operations that |
|
490 |
// are not available in the SSE instruction set) |
|
491 |
insert_exchange(in); |
|
492 |
new_in = to_fpu_stack_top(in); |
|
493 |
pop_always(op1, in); |
|
494 |
||
495 |
} else if (res->is_fpu_register() && !res->is_xmm_register()) { |
|
496 |
// move from fpu-register to fpu-register: |
|
497 |
// * input and result register equal: |
|
498 |
// nothing to do |
|
499 |
// * input register is last use: |
|
500 |
// rename the input register to result register -> input register |
|
501 |
// not present on fpu-stack afterwards |
|
502 |
// * input register not last use: |
|
503 |
// duplicate input register to result register to preserve input |
|
504 |
// |
|
505 |
// Note: The LIR-Assembler does not produce any code for fpu register moves, |
|
506 |
// so input and result stack index must be equal |
|
507 |
||
508 |
if (fpu_num(in) == fpu_num(res)) { |
|
509 |
// nothing to do |
|
510 |
} else if (in->is_last_use()) { |
|
511 |
insert_free_if_dead(res);//, in); |
|
512 |
do_rename(in, res); |
|
513 |
} else { |
|
514 |
insert_free_if_dead(res); |
|
515 |
insert_copy(in, res); |
|
516 |
} |
|
517 |
new_in = to_fpu_stack(res); |
|
518 |
new_res = new_in; |
|
519 |
||
520 |
} else { |
|
521 |
// move from fpu-register to memory |
|
522 |
// input operand must be on top of stack |
|
523 |
||
524 |
insert_exchange(in); |
|
525 |
||
526 |
// create debug information here because afterwards the register may have been popped |
|
527 |
compute_debug_information(op1); |
|
528 |
||
529 |
new_in = to_fpu_stack_top(in); |
|
530 |
pop_if_last_use(op1, in); |
|
531 |
} |
|
532 |
||
533 |
} else if (res->is_fpu_register() && !res->is_xmm_register()) { |
|
534 |
// move from memory/constant to fpu register |
|
535 |
// result is pushed on the stack |
|
536 |
||
537 |
insert_free_if_dead(res); |
|
538 |
||
539 |
// create debug information before register is pushed |
|
540 |
compute_debug_information(op1); |
|
541 |
||
542 |
do_push(res); |
|
543 |
new_res = to_fpu_stack_top(res); |
|
544 |
} |
|
545 |
break; |
|
546 |
} |
|
547 |
||
548 |
case lir_neg: { |
|
549 |
if (in->is_fpu_register() && !in->is_xmm_register()) { |
|
550 |
assert(res->is_fpu_register() && !res->is_xmm_register(), "must be"); |
|
551 |
assert(in->is_last_use(), "old value gets destroyed"); |
|
552 |
||
553 |
insert_free_if_dead(res, in); |
|
554 |
insert_exchange(in); |
|
555 |
new_in = to_fpu_stack_top(in); |
|
556 |
||
557 |
do_rename(in, res); |
|
558 |
new_res = to_fpu_stack_top(res); |
|
559 |
} |
|
560 |
break; |
|
561 |
} |
|
562 |
||
563 |
case lir_convert: { |
|
564 |
Bytecodes::Code bc = op1->as_OpConvert()->bytecode(); |
|
565 |
switch (bc) { |
|
566 |
case Bytecodes::_d2f: |
|
567 |
case Bytecodes::_f2d: |
|
568 |
assert(res->is_fpu_register(), "must be"); |
|
569 |
assert(in->is_fpu_register(), "must be"); |
|
570 |
||
571 |
if (!in->is_xmm_register() && !res->is_xmm_register()) { |
|
572 |
// this is quite the same as a move from fpu-register to fpu-register |
|
573 |
// Note: input and result operands must have different types |
|
574 |
if (fpu_num(in) == fpu_num(res)) { |
|
575 |
// nothing to do |
|
576 |
new_in = to_fpu_stack(in); |
|
577 |
} else if (in->is_last_use()) { |
|
578 |
insert_free_if_dead(res);//, in); |
|
579 |
new_in = to_fpu_stack(in); |
|
580 |
do_rename(in, res); |
|
581 |
} else { |
|
582 |
insert_free_if_dead(res); |
|
583 |
insert_copy(in, res); |
|
584 |
new_in = to_fpu_stack_top(in, true); |
|
585 |
} |
|
586 |
new_res = to_fpu_stack(res); |
|
587 |
} |
|
588 |
||
589 |
break; |
|
590 |
||
591 |
case Bytecodes::_i2f: |
|
592 |
case Bytecodes::_l2f: |
|
593 |
case Bytecodes::_i2d: |
|
594 |
case Bytecodes::_l2d: |
|
595 |
assert(res->is_fpu_register(), "must be"); |
|
596 |
if (!res->is_xmm_register()) { |
|
597 |
insert_free_if_dead(res); |
|
598 |
do_push(res); |
|
599 |
new_res = to_fpu_stack_top(res); |
|
600 |
} |
|
601 |
break; |
|
602 |
||
603 |
case Bytecodes::_f2i: |
|
604 |
case Bytecodes::_d2i: |
|
605 |
assert(in->is_fpu_register(), "must be"); |
|
606 |
if (!in->is_xmm_register()) { |
|
607 |
insert_exchange(in); |
|
608 |
new_in = to_fpu_stack_top(in); |
|
609 |
||
610 |
// TODO: update registes of stub |
|
611 |
} |
|
612 |
break; |
|
613 |
||
614 |
case Bytecodes::_f2l: |
|
615 |
case Bytecodes::_d2l: |
|
616 |
assert(in->is_fpu_register(), "must be"); |
|
617 |
if (!in->is_xmm_register()) { |
|
618 |
insert_exchange(in); |
|
619 |
new_in = to_fpu_stack_top(in); |
|
620 |
pop_always(op1, in); |
|
621 |
} |
|
622 |
break; |
|
623 |
||
624 |
case Bytecodes::_i2l: |
|
625 |
case Bytecodes::_l2i: |
|
626 |
case Bytecodes::_i2b: |
|
627 |
case Bytecodes::_i2c: |
|
628 |
case Bytecodes::_i2s: |
|
629 |
// no fpu operands |
|
630 |
break; |
|
631 |
||
632 |
default: |
|
633 |
ShouldNotReachHere(); |
|
634 |
} |
|
635 |
break; |
|
636 |
} |
|
637 |
||
638 |
case lir_roundfp: { |
|
639 |
assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register"); |
|
640 |
assert(res->is_stack(), "result must be on stack"); |
|
641 |
||
642 |
insert_exchange(in); |
|
643 |
new_in = to_fpu_stack_top(in); |
|
644 |
pop_if_last_use(op1, in); |
|
645 |
break; |
|
646 |
} |
|
647 |
||
648 |
default: { |
|
649 |
assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation"); |
|
650 |
} |
|
651 |
} |
|
652 |
||
653 |
op1->set_in_opr(new_in); |
|
654 |
op1->set_result_opr(new_res); |
|
655 |
} |
|
656 |
||
657 |
void FpuStackAllocator::handle_op2(LIR_Op2* op2) { |
|
658 |
LIR_Opr left = op2->in_opr1(); |
|
659 |
if (!left->is_float_kind()) { |
|
660 |
return; |
|
661 |
} |
|
662 |
if (left->is_xmm_register()) { |
|
663 |
return; |
|
664 |
} |
|
665 |
||
666 |
LIR_Opr right = op2->in_opr2(); |
|
667 |
LIR_Opr res = op2->result_opr(); |
|
668 |
LIR_Opr new_left = left; // new operands relative to the actual fpu stack top |
|
669 |
LIR_Opr new_right = right; |
|
670 |
LIR_Opr new_res = res; |
|
671 |
||
672 |
assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers"); |
|
673 |
||
674 |
switch (op2->code()) { |
|
675 |
case lir_cmp: |
|
676 |
case lir_cmp_fd2i: |
|
16611 | 677 |
case lir_ucmp_fd2i: |
678 |
case lir_assert: { |
|
1 | 679 |
assert(left->is_fpu_register(), "invalid LIR"); |
680 |
assert(right->is_fpu_register(), "invalid LIR"); |
|
681 |
||
682 |
// the left-hand side must be on top of stack. |
|
683 |
// the right-hand side is never popped, even if is_last_use is set |
|
684 |
insert_exchange(left); |
|
685 |
new_left = to_fpu_stack_top(left); |
|
686 |
new_right = to_fpu_stack(right); |
|
687 |
pop_if_last_use(op2, left); |
|
688 |
break; |
|
689 |
} |
|
690 |
||
691 |
case lir_mul_strictfp: |
|
692 |
case lir_div_strictfp: { |
|
12739
09f26b73ae66
7133857: exp() and pow() should use the x87 ISA on x86
roland
parents:
7397
diff
changeset
|
693 |
assert(op2->tmp1_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot"); |
09f26b73ae66
7133857: exp() and pow() should use the x87 ISA on x86
roland
parents:
7397
diff
changeset
|
694 |
insert_free_if_dead(op2->tmp1_opr()); |
1 | 695 |
assert(sim()->stack_size() <= 7, "at least one stack slot must be free"); |
696 |
// fall-through: continue with the normal handling of lir_mul and lir_div |
|
697 |
} |
|
698 |
case lir_add: |
|
699 |
case lir_sub: |
|
700 |
case lir_mul: |
|
701 |
case lir_div: { |
|
702 |
assert(left->is_fpu_register(), "must be"); |
|
703 |
assert(res->is_fpu_register(), "must be"); |
|
704 |
assert(left->is_equal(res), "must be"); |
|
705 |
||
706 |
// either the left-hand or the right-hand side must be on top of stack |
|
707 |
// (if right is not a register, left must be on top) |
|
708 |
if (!right->is_fpu_register()) { |
|
709 |
insert_exchange(left); |
|
710 |
new_left = to_fpu_stack_top(left); |
|
711 |
} else { |
|
712 |
// no exchange necessary if right is alredy on top of stack |
|
713 |
if (tos_offset(right) == 0) { |
|
714 |
new_left = to_fpu_stack(left); |
|
715 |
new_right = to_fpu_stack_top(right); |
|
716 |
} else { |
|
717 |
insert_exchange(left); |
|
718 |
new_left = to_fpu_stack_top(left); |
|
719 |
new_right = to_fpu_stack(right); |
|
720 |
} |
|
721 |
||
722 |
if (right->is_last_use()) { |
|
723 |
op2->set_fpu_pop_count(1); |
|
724 |
||
725 |
if (tos_offset(right) == 0) { |
|
726 |
sim()->pop(); |
|
727 |
} else { |
|
728 |
// if left is on top of stack, the result is placed in the stack |
|
729 |
// slot of right, so a renaming from right to res is necessary |
|
730 |
assert(tos_offset(left) == 0, "must be"); |
|
731 |
sim()->pop(); |
|
732 |
do_rename(right, res); |
|
733 |
} |
|
734 |
} |
|
735 |
} |
|
736 |
new_res = to_fpu_stack(res); |
|
737 |
||
738 |
break; |
|
739 |
} |
|
740 |
||
741 |
case lir_rem: { |
|
742 |
assert(left->is_fpu_register(), "must be"); |
|
743 |
assert(right->is_fpu_register(), "must be"); |
|
744 |
assert(res->is_fpu_register(), "must be"); |
|
745 |
assert(left->is_equal(res), "must be"); |
|
746 |
||
747 |
// Must bring both operands to top of stack with following operand ordering: |
|
748 |
// * fpu stack before rem: ... right left |
|
749 |
// * fpu stack after rem: ... left |
|
750 |
if (tos_offset(right) != 1) { |
|
751 |
insert_exchange(right); |
|
752 |
insert_exchange(1); |
|
753 |
} |
|
754 |
insert_exchange(left); |
|
755 |
assert(tos_offset(right) == 1, "check"); |
|
756 |
assert(tos_offset(left) == 0, "check"); |
|
757 |
||
758 |
new_left = to_fpu_stack_top(left); |
|
759 |
new_right = to_fpu_stack(right); |
|
760 |
||
761 |
op2->set_fpu_pop_count(1); |
|
762 |
sim()->pop(); |
|
763 |
do_rename(right, res); |
|
764 |
||
765 |
new_res = to_fpu_stack_top(res); |
|
766 |
break; |
|
767 |
} |
|
768 |
||
769 |
case lir_abs: |
|
770 |
case lir_sqrt: { |
|
771 |
// Right argument appears to be unused |
|
772 |
assert(right->is_illegal(), "must be"); |
|
773 |
assert(left->is_fpu_register(), "must be"); |
|
774 |
assert(res->is_fpu_register(), "must be"); |
|
775 |
assert(left->is_last_use(), "old value gets destroyed"); |
|
776 |
||
777 |
insert_free_if_dead(res, left); |
|
778 |
insert_exchange(left); |
|
779 |
do_rename(left, res); |
|
780 |
||
781 |
new_left = to_fpu_stack_top(res); |
|
782 |
new_res = new_left; |
|
783 |
||
784 |
op2->set_fpu_stack_size(sim()->stack_size()); |
|
785 |
break; |
|
786 |
} |
|
787 |
||
788 |
default: { |
|
789 |
assert(false, "missed a fpu-operation"); |
|
790 |
} |
|
791 |
} |
|
792 |
||
793 |
op2->set_in_opr1(new_left); |
|
794 |
op2->set_in_opr2(new_right); |
|
795 |
op2->set_result_opr(new_res); |
|
796 |
} |
|
797 |
||
798 |
void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) { |
|
799 |
LIR_Opr res = opCall->result_opr(); |
|
800 |
||
801 |
// clear fpu-stack before call |
|
802 |
// it may contain dead values that could not have been remved by previous operations |
|
803 |
clear_fpu_stack(LIR_OprFact::illegalOpr); |
|
804 |
assert(sim()->is_empty(), "fpu stack must be empty now"); |
|
805 |
||
806 |
// compute debug information before (possible) fpu result is pushed |
|
807 |
compute_debug_information(opCall); |
|
808 |
||
809 |
if (res->is_fpu_register() && !res->is_xmm_register()) { |
|
810 |
do_push(res); |
|
811 |
opCall->set_result_opr(to_fpu_stack_top(res)); |
|
812 |
} |
|
813 |
} |
|
814 |
||
815 |
#ifndef PRODUCT |
|
816 |
void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) { |
|
817 |
switch (op->code()) { |
|
818 |
case lir_24bit_FPU: |
|
819 |
case lir_reset_FPU: |
|
820 |
case lir_ffree: |
|
821 |
assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands"); |
|
822 |
break; |
|
823 |
||
824 |
case lir_fpop_raw: |
|
825 |
case lir_fxch: |
|
826 |
case lir_fld: |
|
827 |
assert(false, "operations only inserted by FpuStackAllocator"); |
|
828 |
break; |
|
829 |
} |
|
830 |
} |
|
831 |
#endif |
|
832 |
||
833 |
||
834 |
void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) { |
|
835 |
LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset()); |
|
836 |
||
837 |
instrs->instructions_list()->push(move); |
|
838 |
||
839 |
cur_sim->push(reg); |
|
840 |
move->set_result_opr(to_fpu_stack(move->result_opr())); |
|
841 |
||
842 |
#ifndef PRODUCT |
|
843 |
if (TraceFPUStack) { |
|
844 |
tty->print("Added new register: %d New state: ", reg); cur_sim->print(); tty->cr(); |
|
845 |
} |
|
846 |
#endif |
|
847 |
} |
|
848 |
||
849 |
void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) { |
|
850 |
assert(slot > 0, "no exchange necessary"); |
|
851 |
||
852 |
LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot)); |
|
853 |
instrs->instructions_list()->push(fxch); |
|
854 |
cur_sim->swap(slot); |
|
855 |
||
856 |
#ifndef PRODUCT |
|
857 |
if (TraceFPUStack) { |
|
858 |
tty->print("Exchanged register: %d New state: ", cur_sim->get_slot(slot)); cur_sim->print(); tty->cr(); |
|
859 |
} |
|
860 |
#endif |
|
861 |
} |
|
862 |
||
863 |
void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) { |
|
864 |
int reg = cur_sim->get_slot(0); |
|
865 |
||
866 |
LIR_Op* fpop = new LIR_Op0(lir_fpop_raw); |
|
867 |
instrs->instructions_list()->push(fpop); |
|
868 |
cur_sim->pop(reg); |
|
869 |
||
870 |
#ifndef PRODUCT |
|
871 |
if (TraceFPUStack) { |
|
872 |
tty->print("Removed register: %d New state: ", reg); cur_sim->print(); tty->cr(); |
|
873 |
} |
|
874 |
#endif |
|
875 |
} |
|
876 |
||
877 |
bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) { |
|
878 |
int reg = cur_sim->get_slot(change_slot); |
|
879 |
||
880 |
for (int slot = start_slot; slot >= 0; slot--) { |
|
881 |
int new_reg = sux_sim->get_slot(slot); |
|
882 |
||
883 |
if (!cur_sim->contains(new_reg)) { |
|
884 |
cur_sim->set_slot(change_slot, new_reg); |
|
885 |
||
886 |
#ifndef PRODUCT |
|
887 |
if (TraceFPUStack) { |
|
888 |
tty->print("Renamed register %d to %d New state: ", reg, new_reg); cur_sim->print(); tty->cr(); |
|
889 |
} |
|
890 |
#endif |
|
891 |
||
892 |
return true; |
|
893 |
} |
|
894 |
} |
|
895 |
return false; |
|
896 |
} |
|
897 |
||
898 |
||
899 |
void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) { |
|
900 |
#ifndef PRODUCT |
|
901 |
if (TraceFPUStack) { |
|
902 |
tty->cr(); |
|
903 |
tty->print("before merging: pred: "); cur_sim->print(); tty->cr(); |
|
904 |
tty->print(" sux: "); sux_sim->print(); tty->cr(); |
|
905 |
} |
|
906 |
||
907 |
int slot; |
|
908 |
for (slot = 0; slot < cur_sim->stack_size(); slot++) { |
|
909 |
assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm"); |
|
910 |
} |
|
911 |
for (slot = 0; slot < sux_sim->stack_size(); slot++) { |
|
912 |
assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm"); |
|
913 |
} |
|
914 |
#endif |
|
915 |
||
916 |
// size difference between cur and sux that must be resolved by adding or removing values form the stack |
|
917 |
int size_diff = cur_sim->stack_size() - sux_sim->stack_size(); |
|
918 |
||
919 |
if (!ComputeExactFPURegisterUsage) { |
|
920 |
// add slots that are currently free, but used in successor |
|
921 |
// When the exact FPU register usage is computed, the stack does |
|
922 |
// not contain dead values at merging -> no values must be added |
|
923 |
||
924 |
int sux_slot = sux_sim->stack_size() - 1; |
|
925 |
while (size_diff < 0) { |
|
926 |
assert(sux_slot >= 0, "slot out of bounds -> error in algorithm"); |
|
927 |
||
928 |
int reg = sux_sim->get_slot(sux_slot); |
|
929 |
if (!cur_sim->contains(reg)) { |
|
930 |
merge_insert_add(instrs, cur_sim, reg); |
|
931 |
size_diff++; |
|
932 |
||
933 |
if (sux_slot + size_diff != 0) { |
|
934 |
merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff); |
|
935 |
} |
|
936 |
} |
|
937 |
sux_slot--; |
|
938 |
} |
|
939 |
} |
|
940 |
||
941 |
assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now"); |
|
942 |
assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be"); |
|
943 |
||
944 |
// stack merge algorithm: |
|
945 |
// 1) as long as the current stack top is not in the right location (that meens |
|
946 |
// it should not be on the stack top), exchange it into the right location |
|
947 |
// 2) if the stack top is right, but the remaining stack is not ordered correctly, |
|
948 |
// the stack top is exchanged away to get another value on top -> |
|
949 |
// now step 1) can be continued |
|
950 |
// the stack can also contain unused items -> these items are removed from stack |
|
951 |
||
952 |
int finished_slot = sux_sim->stack_size() - 1; |
|
953 |
while (finished_slot >= 0 || size_diff > 0) { |
|
954 |
while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) { |
|
955 |
int reg = cur_sim->get_slot(0); |
|
956 |
if (sux_sim->contains(reg)) { |
|
957 |
int sux_slot = sux_sim->offset_from_tos(reg); |
|
958 |
merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff); |
|
959 |
||
960 |
} else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) { |
|
961 |
assert(size_diff > 0, "must be"); |
|
962 |
||
963 |
merge_insert_pop(instrs, cur_sim); |
|
964 |
size_diff--; |
|
965 |
} |
|
966 |
assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed"); |
|
967 |
} |
|
968 |
||
969 |
while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) { |
|
970 |
finished_slot--; |
|
971 |
} |
|
972 |
||
973 |
if (finished_slot >= 0) { |
|
974 |
int reg = cur_sim->get_slot(finished_slot); |
|
975 |
||
976 |
if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) { |
|
977 |
assert(sux_sim->contains(reg) || size_diff > 0, "must be"); |
|
978 |
merge_insert_xchg(instrs, cur_sim, finished_slot); |
|
979 |
} |
|
980 |
assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed"); |
|
981 |
} |
|
982 |
} |
|
983 |
||
984 |
#ifndef PRODUCT |
|
985 |
if (TraceFPUStack) { |
|
986 |
tty->print("after merging: pred: "); cur_sim->print(); tty->cr(); |
|
987 |
tty->print(" sux: "); sux_sim->print(); tty->cr(); |
|
988 |
tty->cr(); |
|
989 |
} |
|
990 |
#endif |
|
991 |
assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now"); |
|
992 |
} |
|
993 |
||
994 |
||
995 |
void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) { |
|
996 |
#ifndef PRODUCT |
|
997 |
if (TraceFPUStack) { |
|
998 |
tty->cr(); |
|
999 |
tty->print("before cleanup: state: "); cur_sim->print(); tty->cr(); |
|
1000 |
tty->print(" live: "); live_fpu_regs.print_on(tty); tty->cr(); |
|
1001 |
} |
|
1002 |
#endif |
|
1003 |
||
1004 |
int slot = 0; |
|
1005 |
while (slot < cur_sim->stack_size()) { |
|
1006 |
int reg = cur_sim->get_slot(slot); |
|
1007 |
if (!live_fpu_regs.at(reg)) { |
|
1008 |
if (slot != 0) { |
|
1009 |
merge_insert_xchg(instrs, cur_sim, slot); |
|
1010 |
} |
|
1011 |
merge_insert_pop(instrs, cur_sim); |
|
1012 |
} else { |
|
1013 |
slot++; |
|
1014 |
} |
|
1015 |
} |
|
1016 |
||
1017 |
#ifndef PRODUCT |
|
1018 |
if (TraceFPUStack) { |
|
1019 |
tty->print("after cleanup: state: "); cur_sim->print(); tty->cr(); |
|
1020 |
tty->print(" live: "); live_fpu_regs.print_on(tty); tty->cr(); |
|
1021 |
tty->cr(); |
|
1022 |
} |
|
1023 |
||
1024 |
// check if fpu stack only contains live registers |
|
1025 |
for (unsigned int i = 0; i < live_fpu_regs.size(); i++) { |
|
1026 |
if (live_fpu_regs.at(i) != cur_sim->contains(i)) { |
|
1027 |
tty->print_cr("mismatch between required and actual stack content"); |
|
1028 |
break; |
|
1029 |
} |
|
1030 |
} |
|
1031 |
#endif |
|
1032 |
} |
|
1033 |
||
1034 |
||
1035 |
bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) { |
|
1036 |
#ifndef PRODUCT |
|
1037 |
if (TraceFPUStack) { |
|
1038 |
tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:", |
|
1039 |
block->block_id(), pos()); |
|
1040 |
sim()->print(); |
|
1041 |
tty->cr(); |
|
1042 |
} |
|
1043 |
#endif |
|
1044 |
||
1045 |
bool changed = false; |
|
1046 |
int number_of_sux = block->number_of_sux(); |
|
1047 |
||
1048 |
if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) { |
|
1049 |
// The successor has at least two incoming edges, so a stack merge will be necessary |
|
1050 |
// If this block is the first predecessor, cleanup the current stack and propagate it |
|
1051 |
// If this block is not the first predecessor, a stack merge will be necessary |
|
1052 |
||
1053 |
BlockBegin* sux = block->sux_at(0); |
|
1054 |
intArray* state = sux->fpu_stack_state(); |
|
1055 |
LIR_List* instrs = new LIR_List(_compilation); |
|
1056 |
||
1057 |
if (state != NULL) { |
|
1058 |
// Merge with a successors that already has a FPU stack state |
|
1059 |
// the block must only have one successor because critical edges must been split |
|
1060 |
FpuStackSim* cur_sim = sim(); |
|
1061 |
FpuStackSim* sux_sim = temp_sim(); |
|
1062 |
sux_sim->read_state(state); |
|
1063 |
||
1064 |
merge_fpu_stack(instrs, cur_sim, sux_sim); |
|
1065 |
||
1066 |
} else { |
|
1067 |
// propagate current FPU stack state to successor without state |
|
1068 |
// clean up stack first so that there are no dead values on the stack |
|
1069 |
if (ComputeExactFPURegisterUsage) { |
|
1070 |
FpuStackSim* cur_sim = sim(); |
|
38177 | 1071 |
ResourceBitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage(); |
1 | 1072 |
assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage"); |
1073 |
||
1074 |
merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs); |
|
1075 |
} |
|
1076 |
||
1077 |
intArray* state = sim()->write_state(); |
|
1078 |
if (TraceFPUStack) { |
|
1079 |
tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id()); |
|
1080 |
sim()->print(); tty->cr(); |
|
1081 |
} |
|
1082 |
sux->set_fpu_stack_state(state); |
|
1083 |
} |
|
1084 |
||
1085 |
if (instrs->instructions_list()->length() > 0) { |
|
1086 |
lir()->insert_before(pos(), instrs); |
|
1087 |
set_pos(instrs->instructions_list()->length() + pos()); |
|
1088 |
changed = true; |
|
1089 |
} |
|
1090 |
||
1091 |
} else { |
|
1092 |
// Propagate unmodified Stack to successors where a stack merge is not necessary |
|
1093 |
intArray* state = sim()->write_state(); |
|
1094 |
for (int i = 0; i < number_of_sux; i++) { |
|
1095 |
BlockBegin* sux = block->sux_at(i); |
|
1096 |
||
1097 |
#ifdef ASSERT |
|
1098 |
for (int j = 0; j < sux->number_of_preds(); j++) { |
|
1099 |
assert(block == sux->pred_at(j), "all critical edges must be broken"); |
|
1100 |
} |
|
1101 |
||
1102 |
// check if new state is same |
|
1103 |
if (sux->fpu_stack_state() != NULL) { |
|
1104 |
intArray* sux_state = sux->fpu_stack_state(); |
|
1105 |
assert(state->length() == sux_state->length(), "overwriting existing stack state"); |
|
1106 |
for (int j = 0; j < state->length(); j++) { |
|
1107 |
assert(state->at(j) == sux_state->at(j), "overwriting existing stack state"); |
|
1108 |
} |
|
1109 |
} |
|
1110 |
#endif |
|
1111 |
#ifndef PRODUCT |
|
1112 |
if (TraceFPUStack) { |
|
1113 |
tty->print_cr("Setting FPU stack state of B%d", sux->block_id()); |
|
1114 |
sim()->print(); tty->cr(); |
|
1115 |
} |
|
1116 |
#endif |
|
1117 |
||
1118 |
sux->set_fpu_stack_state(state); |
|
1119 |
} |
|
1120 |
} |
|
1121 |
||
1122 |
#ifndef PRODUCT |
|
1123 |
// assertions that FPU stack state conforms to all successors' states |
|
1124 |
intArray* cur_state = sim()->write_state(); |
|
1125 |
for (int i = 0; i < number_of_sux; i++) { |
|
1126 |
BlockBegin* sux = block->sux_at(i); |
|
1127 |
intArray* sux_state = sux->fpu_stack_state(); |
|
1128 |
||
1129 |
assert(sux_state != NULL, "no fpu state"); |
|
1130 |
assert(cur_state->length() == sux_state->length(), "incorrect length"); |
|
1131 |
for (int i = 0; i < cur_state->length(); i++) { |
|
1132 |
assert(cur_state->at(i) == sux_state->at(i), "element not equal"); |
|
1133 |
} |
|
1134 |
} |
|
1135 |
#endif |
|
1136 |
||
1137 |
return changed; |
|
1138 |
} |