8003250: SPARC: move MacroAssembler into separate file
authortwisti
Thu, 06 Dec 2012 09:57:41 -0800
changeset 14631 526804361522
parent 14628 74164bb6ec39
child 14632 52a4bc51fce5
8003250: SPARC: move MacroAssembler into separate file Reviewed-by: jrose, kvn
hotspot/src/cpu/sparc/vm/assembler_sparc.cpp
hotspot/src/cpu/sparc/vm/assembler_sparc.hpp
hotspot/src/cpu/sparc/vm/assembler_sparc.inline.hpp
hotspot/src/cpu/sparc/vm/frame_sparc.inline.hpp
hotspot/src/cpu/sparc/vm/icBuffer_sparc.cpp
hotspot/src/cpu/sparc/vm/icache_sparc.cpp
hotspot/src/cpu/sparc/vm/interp_masm_sparc.hpp
hotspot/src/cpu/sparc/vm/interpreter_sparc.cpp
hotspot/src/cpu/sparc/vm/jniFastGetField_sparc.cpp
hotspot/src/cpu/sparc/vm/macroAssembler_sparc.cpp
hotspot/src/cpu/sparc/vm/macroAssembler_sparc.hpp
hotspot/src/cpu/sparc/vm/macroAssembler_sparc.inline.hpp
hotspot/src/cpu/sparc/vm/metaspaceShared_sparc.cpp
hotspot/src/cpu/sparc/vm/methodHandles_sparc.cpp
hotspot/src/cpu/sparc/vm/nativeInst_sparc.cpp
hotspot/src/cpu/sparc/vm/nativeInst_sparc.hpp
hotspot/src/cpu/sparc/vm/relocInfo_sparc.cpp
hotspot/src/cpu/sparc/vm/runtime_sparc.cpp
hotspot/src/cpu/sparc/vm/sharedRuntime_sparc.cpp
hotspot/src/cpu/sparc/vm/stubGenerator_sparc.cpp
hotspot/src/cpu/sparc/vm/templateInterpreter_sparc.cpp
hotspot/src/cpu/sparc/vm/vm_version_sparc.cpp
hotspot/src/cpu/sparc/vm/vmreg_sparc.cpp
hotspot/src/cpu/sparc/vm/vtableStubs_sparc.cpp
hotspot/src/cpu/x86/vm/assembler_x86.hpp
hotspot/src/cpu/x86/vm/macroAssembler_x86.cpp
hotspot/src/cpu/zero/vm/assembler_zero.cpp
hotspot/src/cpu/zero/vm/assembler_zero.hpp
hotspot/src/os_cpu/linux_sparc/vm/assembler_linux_sparc.cpp
hotspot/src/os_cpu/linux_sparc/vm/os_linux_sparc.cpp
hotspot/src/os_cpu/solaris_sparc/vm/assembler_solaris_sparc.cpp
hotspot/src/os_cpu/solaris_sparc/vm/os_solaris_sparc.cpp
hotspot/src/share/vm/adlc/main.cpp
hotspot/src/share/vm/asm/assembler.hpp
hotspot/src/share/vm/asm/macroAssembler.hpp
hotspot/src/share/vm/asm/macroAssembler.inline.hpp
hotspot/src/share/vm/asm/register.hpp
hotspot/src/share/vm/code/vmreg.hpp
--- a/hotspot/src/cpu/sparc/vm/assembler_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/assembler_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -24,4986 +24,8 @@
 
 #include "precompiled.hpp"
 #include "asm/assembler.hpp"
-#include "assembler_sparc.inline.hpp"
-#include "compiler/disassembler.hpp"
-#include "gc_interface/collectedHeap.inline.hpp"
-#include "interpreter/interpreter.hpp"
-#include "memory/cardTableModRefBS.hpp"
-#include "memory/resourceArea.hpp"
-#include "prims/methodHandles.hpp"
-#include "runtime/biasedLocking.hpp"
-#include "runtime/interfaceSupport.hpp"
-#include "runtime/objectMonitor.hpp"
-#include "runtime/os.hpp"
-#include "runtime/sharedRuntime.hpp"
-#include "runtime/stubRoutines.hpp"
-#ifndef SERIALGC
-#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
-#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
-#include "gc_implementation/g1/heapRegion.hpp"
-#endif
-
-#ifdef PRODUCT
-#define BLOCK_COMMENT(str) /* nothing */
-#define STOP(error) stop(error)
-#else
-#define BLOCK_COMMENT(str) block_comment(str)
-#define STOP(error) block_comment(error); stop(error)
-#endif
-
-// Convert the raw encoding form into the form expected by the
-// constructor for Address.
-Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
-  assert(scale == 0, "not supported");
-  RelocationHolder rspec;
-  if (disp_reloc != relocInfo::none) {
-    rspec = Relocation::spec_simple(disp_reloc);
-  }
-
-  Register rindex = as_Register(index);
-  if (rindex != G0) {
-    Address madr(as_Register(base), rindex);
-    madr._rspec = rspec;
-    return madr;
-  } else {
-    Address madr(as_Register(base), disp);
-    madr._rspec = rspec;
-    return madr;
-  }
-}
-
-Address Argument::address_in_frame() const {
-  // Warning: In LP64 mode disp will occupy more than 10 bits, but
-  //          op codes such as ld or ldx, only access disp() to get
-  //          their simm13 argument.
-  int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
-  if (is_in())
-    return Address(FP, disp); // In argument.
-  else
-    return Address(SP, disp); // Out argument.
-}
-
-static const char* argumentNames[][2] = {
-  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
-  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
-  {"A(n>9)","P(n>9)"}
-};
-
-const char* Argument::name() const {
-  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
-  int num = number();
-  if (num >= nofArgs)  num = nofArgs - 1;
-  return argumentNames[num][is_in() ? 1 : 0];
-}
-
-void Assembler::print_instruction(int inst) {
-  const char* s;
-  switch (inv_op(inst)) {
-  default:         s = "????"; break;
-  case call_op:    s = "call"; break;
-  case branch_op:
-    switch (inv_op2(inst)) {
-      case fb_op2:     s = "fb";   break;
-      case fbp_op2:    s = "fbp";  break;
-      case br_op2:     s = "br";   break;
-      case bp_op2:     s = "bp";   break;
-      case cb_op2:     s = "cb";   break;
-      case bpr_op2: {
-        if (is_cbcond(inst)) {
-          s = is_cxb(inst) ? "cxb" : "cwb";
-        } else {
-          s = "bpr";
-        }
-        break;
-      }
-      default:         s = "????"; break;
-    }
-  }
-  ::tty->print("%s", s);
-}
-
-
-// Patch instruction inst at offset inst_pos to refer to dest_pos
-// and return the resulting instruction.
-// We should have pcs, not offsets, but since all is relative, it will work out
-// OK.
-int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
-
-  int m; // mask for displacement field
-  int v; // new value for displacement field
-  const int word_aligned_ones = -4;
-  switch (inv_op(inst)) {
-  default: ShouldNotReachHere();
-  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
-  case branch_op:
-    switch (inv_op2(inst)) {
-      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
-      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
-      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
-      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
-      case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
-      case bpr_op2: {
-        if (is_cbcond(inst)) {
-          m = wdisp10(word_aligned_ones, 0);
-          v = wdisp10(dest_pos, inst_pos);
-        } else {
-          m = wdisp16(word_aligned_ones, 0);
-          v = wdisp16(dest_pos, inst_pos);
-        }
-        break;
-      }
-      default: ShouldNotReachHere();
-    }
-  }
-  return  inst & ~m  |  v;
-}
-
-// Return the offset of the branch destionation of instruction inst
-// at offset pos.
-// Should have pcs, but since all is relative, it works out.
-int Assembler::branch_destination(int inst, int pos) {
-  int r;
-  switch (inv_op(inst)) {
-  default: ShouldNotReachHere();
-  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
-  case branch_op:
-    switch (inv_op2(inst)) {
-      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
-      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
-      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
-      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
-      case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
-      case bpr_op2: {
-        if (is_cbcond(inst)) {
-          r = inv_wdisp10(inst, pos);
-        } else {
-          r = inv_wdisp16(inst, pos);
-        }
-        break;
-      }
-      default: ShouldNotReachHere();
-    }
-  }
-  return r;
-}
+#include "asm/assembler.inline.hpp"
 
 int AbstractAssembler::code_fill_byte() {
   return 0x00;                  // illegal instruction 0x00000000
 }
-
-Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
-  switch (in) {
-  case rc_z:   return equal;
-  case rc_lez: return lessEqual;
-  case rc_lz:  return less;
-  case rc_nz:  return notEqual;
-  case rc_gz:  return greater;
-  case rc_gez: return greaterEqual;
-  default:
-    ShouldNotReachHere();
-  }
-  return equal;
-}
-
-// Generate a bunch 'o stuff (including v9's
-#ifndef PRODUCT
-void Assembler::test_v9() {
-  add(    G0, G1, G2 );
-  add(    G3,  0, G4 );
-
-  addcc(  G5, G6, G7 );
-  addcc(  I0,  1, I1 );
-  addc(   I2, I3, I4 );
-  addc(   I5, -1, I6 );
-  addccc( I7, L0, L1 );
-  addccc( L2, (1 << 12) - 2, L3 );
-
-  Label lbl1, lbl2, lbl3;
-
-  bind(lbl1);
-
-  bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
-  delayed()->nop();
-  bpr( rc_lez, false, pt, L5, lbl1);
-  delayed()->nop();
-
-  fb( f_never,     true, pc() + 4,  relocInfo::none);
-  delayed()->nop();
-  fb( f_notEqual, false, lbl2 );
-  delayed()->nop();
-
-  fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
-  delayed()->nop();
-  fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
-  delayed()->nop();
-
-  br( equal,  true, pc() + 1024, relocInfo::none);
-  delayed()->nop();
-  br( lessEqual, false, lbl1 );
-  delayed()->nop();
-  br( never, false, lbl1 );
-  delayed()->nop();
-
-  bp( less,               true, icc, pn, pc(), relocInfo::none);
-  delayed()->nop();
-  bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
-  delayed()->nop();
-
-  call( pc(), relocInfo::none);
-  delayed()->nop();
-  call( lbl3 );
-  delayed()->nop();
-
-
-  casa(  L6, L7, O0 );
-  casxa( O1, O2, O3, 0 );
-
-  udiv(   O4, O5, O7 );
-  udiv(   G0, (1 << 12) - 1, G1 );
-  sdiv(   G1, G2, G3 );
-  sdiv(   G4, -((1 << 12) - 1), G5 );
-  udivcc( G6, G7, I0 );
-  udivcc( I1, -((1 << 12) - 2), I2 );
-  sdivcc( I3, I4, I5 );
-  sdivcc( I6, -((1 << 12) - 0), I7 );
-
-  done();
-  retry();
-
-  fadd( FloatRegisterImpl::S, F0,  F1, F2 );
-  fsub( FloatRegisterImpl::D, F34, F0, F62 );
-
-  fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
-  fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
-
-  ftox( FloatRegisterImpl::D, F2, F4 );
-  ftoi( FloatRegisterImpl::Q, F4, F8 );
-
-  ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
-
-  fxtof( FloatRegisterImpl::S, F4, F5 );
-  fitof( FloatRegisterImpl::D, F6, F8 );
-
-  fmov( FloatRegisterImpl::Q, F16, F20 );
-  fneg( FloatRegisterImpl::S, F6, F7 );
-  fabs( FloatRegisterImpl::D, F10, F12 );
-
-  fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
-  fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
-  fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
-
-  fsqrt( FloatRegisterImpl::S, F13, F14 );
-
-  flush( L0, L1 );
-  flush( L2, -1 );
-
-  flushw();
-
-  illtrap( (1 << 22) - 2);
-
-  impdep1( 17, (1 << 19) - 1 );
-  impdep2( 3,  0 );
-
-  jmpl( L3, L4, L5 );
-  delayed()->nop();
-  jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
-  delayed()->nop();
-
-
-  ldf(    FloatRegisterImpl::S, O0, O1, F15 );
-  ldf(    FloatRegisterImpl::D, O2, -1, F14 );
-
-
-  ldfsr(  O3, O4 );
-  ldfsr(  O5, -1 );
-  ldxfsr( O6, O7 );
-  ldxfsr( I0, -1 );
-
-  ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
-  ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
-
-  ldsb(  I4, I5, I6 );
-  ldsb(  I7, -1, G0 );
-  ldsh(  G1, G3, G4 );
-  ldsh(  G5, -1, G6 );
-  ldsw(  G7, L0, L1 );
-  ldsw(  L2, -1, L3 );
-  ldub(  L4, L5, L6 );
-  ldub(  L7, -1, O0 );
-  lduh(  O1, O2, O3 );
-  lduh(  O4, -1, O5 );
-  lduw(  O6, O7, G0 );
-  lduw(  G1, -1, G2 );
-  ldx(   G3, G4, G5 );
-  ldx(   G6, -1, G7 );
-  ldd(   I0, I1, I2 );
-  ldd(   I3, -1, I4 );
-
-  ldsba(  I5, I6, 2, I7 );
-  ldsba(  L0, -1, L1 );
-  ldsha(  L2, L3, 3, L4 );
-  ldsha(  L5, -1, L6 );
-  ldswa(  L7, O0, (1 << 8) - 1, O1 );
-  ldswa(  O2, -1, O3 );
-  lduba(  O4, O5, 0, O6 );
-  lduba(  O7, -1, I0 );
-  lduha(  I1, I2, 1, I3 );
-  lduha(  I4, -1, I5 );
-  lduwa(  I6, I7, 2, L0 );
-  lduwa(  L1, -1, L2 );
-  ldxa(   L3, L4, 3, L5 );
-  ldxa(   L6, -1, L7 );
-  ldda(   G0, G1, 4, G2 );
-  ldda(   G3, -1, G4 );
-
-  ldstub(  G5, G6, G7 );
-  ldstub(  O0, -1, O1 );
-
-  ldstuba( O2, O3, 5, O4 );
-  ldstuba( O5, -1, O6 );
-
-  and3(    I0, L0, O0 );
-  and3(    G7, -1, O7 );
-  andcc(   L2, I2, G2 );
-  andcc(   L4, -1, G4 );
-  andn(    I5, I6, I7 );
-  andn(    I6, -1, I7 );
-  andncc(  I5, I6, I7 );
-  andncc(  I7, -1, I6 );
-  or3(     I5, I6, I7 );
-  or3(     I7, -1, I6 );
-  orcc(    I5, I6, I7 );
-  orcc(    I7, -1, I6 );
-  orn(     I5, I6, I7 );
-  orn(     I7, -1, I6 );
-  orncc(   I5, I6, I7 );
-  orncc(   I7, -1, I6 );
-  xor3(    I5, I6, I7 );
-  xor3(    I7, -1, I6 );
-  xorcc(   I5, I6, I7 );
-  xorcc(   I7, -1, I6 );
-  xnor(    I5, I6, I7 );
-  xnor(    I7, -1, I6 );
-  xnorcc(  I5, I6, I7 );
-  xnorcc(  I7, -1, I6 );
-
-  membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
-  membar( StoreStore );
-  membar( LoadStore );
-  membar( StoreLoad );
-  membar( LoadLoad );
-  membar( Sync );
-  membar( MemIssue );
-  membar( Lookaside );
-
-  fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
-  fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
-
-  movcc( overflowClear,  false, icc, I6, L4 );
-  movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
-
-  movr( rc_nz, I5, I6, I7 );
-  movr( rc_gz, L1, -1,  L2 );
-
-  mulx(  I5, I6, I7 );
-  mulx(  I7, -1, I6 );
-  sdivx( I5, I6, I7 );
-  sdivx( I7, -1, I6 );
-  udivx( I5, I6, I7 );
-  udivx( I7, -1, I6 );
-
-  umul(   I5, I6, I7 );
-  umul(   I7, -1, I6 );
-  smul(   I5, I6, I7 );
-  smul(   I7, -1, I6 );
-  umulcc( I5, I6, I7 );
-  umulcc( I7, -1, I6 );
-  smulcc( I5, I6, I7 );
-  smulcc( I7, -1, I6 );
-
-  mulscc(   I5, I6, I7 );
-  mulscc(   I7, -1, I6 );
-
-  nop();
-
-
-  popc( G0,  G1);
-  popc( -1, G2);
-
-  prefetch(   L1, L2,    severalReads );
-  prefetch(   L3, -1,    oneRead );
-  prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
-  prefetcha(  G2, -1,    oneWrite );
-
-  rett( I7, I7);
-  delayed()->nop();
-  rett( G0, -1, relocInfo::none);
-  delayed()->nop();
-
-  save(    I5, I6, I7 );
-  save(    I7, -1, I6 );
-  restore( I5, I6, I7 );
-  restore( I7, -1, I6 );
-
-  saved();
-  restored();
-
-  sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
-
-  sll(  I5, I6, I7 );
-  sll(  I7, 31, I6 );
-  srl(  I5, I6, I7 );
-  srl(  I7,  0, I6 );
-  sra(  I5, I6, I7 );
-  sra(  I7, 30, I6 );
-  sllx( I5, I6, I7 );
-  sllx( I7, 63, I6 );
-  srlx( I5, I6, I7 );
-  srlx( I7,  0, I6 );
-  srax( I5, I6, I7 );
-  srax( I7, 62, I6 );
-
-  sir( -1 );
-
-  stbar();
-
-  stf(    FloatRegisterImpl::Q, F40, G0, I7 );
-  stf(    FloatRegisterImpl::S, F18, I3, -1 );
-
-  stfsr(  L1, L2 );
-  stfsr(  I7, -1 );
-  stxfsr( I6, I5 );
-  stxfsr( L4, -1 );
-
-  stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
-  stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
-
-  stb(  L5, O2, I7 );
-  stb(  I7, I6, -1 );
-  sth(  L5, O2, I7 );
-  sth(  I7, I6, -1 );
-  stw(  L5, O2, I7 );
-  stw(  I7, I6, -1 );
-  stx(  L5, O2, I7 );
-  stx(  I7, I6, -1 );
-  std(  L5, O2, I7 );
-  std(  I7, I6, -1 );
-
-  stba(  L5, O2, I7, 8 );
-  stba(  I7, I6, -1    );
-  stha(  L5, O2, I7, 9 );
-  stha(  I7, I6, -1    );
-  stwa(  L5, O2, I7, 0 );
-  stwa(  I7, I6, -1    );
-  stxa(  L5, O2, I7, 11 );
-  stxa(  I7, I6, -1     );
-  stda(  L5, O2, I7, 12 );
-  stda(  I7, I6, -1     );
-
-  sub(    I5, I6, I7 );
-  sub(    I7, -1, I6 );
-  subcc(  I5, I6, I7 );
-  subcc(  I7, -1, I6 );
-  subc(   I5, I6, I7 );
-  subc(   I7, -1, I6 );
-  subccc( I5, I6, I7 );
-  subccc( I7, -1, I6 );
-
-  swap( I5, I6, I7 );
-  swap( I7, -1, I6 );
-
-  swapa(   G0, G1, 13, G2 );
-  swapa(   I7, -1,     I6 );
-
-  taddcc(    I5, I6, I7 );
-  taddcc(    I7, -1, I6 );
-  taddcctv(  I5, I6, I7 );
-  taddcctv(  I7, -1, I6 );
-
-  tsubcc(    I5, I6, I7 );
-  tsubcc(    I7, -1, I6 );
-  tsubcctv(  I5, I6, I7 );
-  tsubcctv(  I7, -1, I6 );
-
-  trap( overflowClear, xcc, G0, G1 );
-  trap( lessEqual,     icc, I7, 17 );
-
-  bind(lbl2);
-  bind(lbl3);
-
-  code()->decode();
-}
-
-// Generate a bunch 'o stuff unique to V8
-void Assembler::test_v8_onlys() {
-  Label lbl1;
-
-  cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
-  delayed()->nop();
-  cb( cp_never,    true, lbl1);
-  delayed()->nop();
-
-  cpop1(1, 2, 3, 4);
-  cpop2(5, 6, 7, 8);
-
-  ldc( I0, I1, 31);
-  ldc( I2, -1,  0);
-
-  lddc( I4, I4, 30);
-  lddc( I6,  0, 1 );
-
-  ldcsr( L0, L1, 0);
-  ldcsr( L1, (1 << 12) - 1, 17 );
-
-  stc( 31, L4, L5);
-  stc( 30, L6, -(1 << 12) );
-
-  stdc( 0, L7, G0);
-  stdc( 1, G1, 0 );
-
-  stcsr( 16, G2, G3);
-  stcsr( 17, G4, 1 );
-
-  stdcq( 4, G5, G6);
-  stdcq( 5, G7, -1 );
-
-  bind(lbl1);
-
-  code()->decode();
-}
-#endif
-
-// Implementation of MacroAssembler
-
-void MacroAssembler::null_check(Register reg, int offset) {
-  if (needs_explicit_null_check((intptr_t)offset)) {
-    // provoke OS NULL exception if reg = NULL by
-    // accessing M[reg] w/o changing any registers
-    ld_ptr(reg, 0, G0);
-  }
-  else {
-    // nothing to do, (later) access of M[reg + offset]
-    // will provoke OS NULL exception if reg = NULL
-  }
-}
-
-// Ring buffer jumps
-
-#ifndef PRODUCT
-void MacroAssembler::ret(  bool trace )   { if (trace) {
-                                                    mov(I7, O7); // traceable register
-                                                    JMP(O7, 2 * BytesPerInstWord);
-                                                  } else {
-                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
-                                                  }
-                                                }
-
-void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
-                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
-#endif /* PRODUCT */
-
-
-void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
-  assert_not_delayed();
-  // This can only be traceable if r1 & r2 are visible after a window save
-  if (TraceJumps) {
-#ifndef PRODUCT
-    save_frame(0);
-    verify_thread();
-    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
-    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
-    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
-    add(O2, O1, O1);
-
-    add(r1->after_save(), r2->after_save(), O2);
-    set((intptr_t)file, O3);
-    set(line, O4);
-    Label L;
-    // get nearby pc, store jmp target
-    call(L, relocInfo::none);  // No relocation for call to pc+0x8
-    delayed()->st(O2, O1, 0);
-    bind(L);
-
-    // store nearby pc
-    st(O7, O1, sizeof(intptr_t));
-    // store file
-    st(O3, O1, 2*sizeof(intptr_t));
-    // store line
-    st(O4, O1, 3*sizeof(intptr_t));
-    add(O0, 1, O0);
-    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
-    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
-    restore();
-#endif /* PRODUCT */
-  }
-  jmpl(r1, r2, G0);
-}
-void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
-  assert_not_delayed();
-  // This can only be traceable if r1 is visible after a window save
-  if (TraceJumps) {
-#ifndef PRODUCT
-    save_frame(0);
-    verify_thread();
-    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
-    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
-    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
-    add(O2, O1, O1);
-
-    add(r1->after_save(), offset, O2);
-    set((intptr_t)file, O3);
-    set(line, O4);
-    Label L;
-    // get nearby pc, store jmp target
-    call(L, relocInfo::none);  // No relocation for call to pc+0x8
-    delayed()->st(O2, O1, 0);
-    bind(L);
-
-    // store nearby pc
-    st(O7, O1, sizeof(intptr_t));
-    // store file
-    st(O3, O1, 2*sizeof(intptr_t));
-    // store line
-    st(O4, O1, 3*sizeof(intptr_t));
-    add(O0, 1, O0);
-    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
-    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
-    restore();
-#endif /* PRODUCT */
-  }
-  jmp(r1, offset);
-}
-
-// This code sequence is relocatable to any address, even on LP64.
-void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
-  assert_not_delayed();
-  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
-  // variable length instruction streams.
-  patchable_sethi(addrlit, temp);
-  Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
-  if (TraceJumps) {
-#ifndef PRODUCT
-    // Must do the add here so relocation can find the remainder of the
-    // value to be relocated.
-    add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
-    save_frame(0);
-    verify_thread();
-    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
-    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
-    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
-    add(O2, O1, O1);
-
-    set((intptr_t)file, O3);
-    set(line, O4);
-    Label L;
-
-    // get nearby pc, store jmp target
-    call(L, relocInfo::none);  // No relocation for call to pc+0x8
-    delayed()->st(a.base()->after_save(), O1, 0);
-    bind(L);
-
-    // store nearby pc
-    st(O7, O1, sizeof(intptr_t));
-    // store file
-    st(O3, O1, 2*sizeof(intptr_t));
-    // store line
-    st(O4, O1, 3*sizeof(intptr_t));
-    add(O0, 1, O0);
-    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
-    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
-    restore();
-    jmpl(a.base(), G0, d);
-#else
-    jmpl(a.base(), a.disp(), d);
-#endif /* PRODUCT */
-  } else {
-    jmpl(a.base(), a.disp(), d);
-  }
-}
-
-void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
-  jumpl(addrlit, temp, G0, offset, file, line);
-}
-
-
-// Conditional breakpoint (for assertion checks in assembly code)
-void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
-  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
-}
-
-// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
-void MacroAssembler::breakpoint_trap() {
-  trap(ST_RESERVED_FOR_USER_0);
-}
-
-// flush windows (except current) using flushw instruction if avail.
-void MacroAssembler::flush_windows() {
-  if (VM_Version::v9_instructions_work())  flushw();
-  else                                     flush_windows_trap();
-}
-
-// Write serialization page so VM thread can do a pseudo remote membar
-// We use the current thread pointer to calculate a thread specific
-// offset to write to within the page. This minimizes bus traffic
-// due to cache line collision.
-void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
-  srl(thread, os::get_serialize_page_shift_count(), tmp2);
-  if (Assembler::is_simm13(os::vm_page_size())) {
-    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
-  }
-  else {
-    set((os::vm_page_size() - sizeof(int)), tmp1);
-    and3(tmp2, tmp1, tmp2);
-  }
-  set(os::get_memory_serialize_page(), tmp1);
-  st(G0, tmp1, tmp2);
-}
-
-
-
-void MacroAssembler::enter() {
-  Unimplemented();
-}
-
-void MacroAssembler::leave() {
-  Unimplemented();
-}
-
-void MacroAssembler::mult(Register s1, Register s2, Register d) {
-  if(VM_Version::v9_instructions_work()) {
-    mulx (s1, s2, d);
-  } else {
-    smul (s1, s2, d);
-  }
-}
-
-void MacroAssembler::mult(Register s1, int simm13a, Register d) {
-  if(VM_Version::v9_instructions_work()) {
-    mulx (s1, simm13a, d);
-  } else {
-    smul (s1, simm13a, d);
-  }
-}
-
-
-#ifdef ASSERT
-void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
-  const Register s1 = G3_scratch;
-  const Register s2 = G4_scratch;
-  Label get_psr_test;
-  // Get the condition codes the V8 way.
-  read_ccr_trap(s1);
-  mov(ccr_save, s2);
-  // This is a test of V8 which has icc but not xcc
-  // so mask off the xcc bits
-  and3(s2, 0xf, s2);
-  // Compare condition codes from the V8 and V9 ways.
-  subcc(s2, s1, G0);
-  br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
-  delayed()->breakpoint_trap();
-  bind(get_psr_test);
-}
-
-void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
-  const Register s1 = G3_scratch;
-  const Register s2 = G4_scratch;
-  Label set_psr_test;
-  // Write out the saved condition codes the V8 way
-  write_ccr_trap(ccr_save, s1, s2);
-  // Read back the condition codes using the V9 instruction
-  rdccr(s1);
-  mov(ccr_save, s2);
-  // This is a test of V8 which has icc but not xcc
-  // so mask off the xcc bits
-  and3(s2, 0xf, s2);
-  and3(s1, 0xf, s1);
-  // Compare the V8 way with the V9 way.
-  subcc(s2, s1, G0);
-  br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
-  delayed()->breakpoint_trap();
-  bind(set_psr_test);
-}
-#else
-#define read_ccr_v8_assert(x)
-#define write_ccr_v8_assert(x)
-#endif // ASSERT
-
-void MacroAssembler::read_ccr(Register ccr_save) {
-  if (VM_Version::v9_instructions_work()) {
-    rdccr(ccr_save);
-    // Test code sequence used on V8.  Do not move above rdccr.
-    read_ccr_v8_assert(ccr_save);
-  } else {
-    read_ccr_trap(ccr_save);
-  }
-}
-
-void MacroAssembler::write_ccr(Register ccr_save) {
-  if (VM_Version::v9_instructions_work()) {
-    // Test code sequence used on V8.  Do not move below wrccr.
-    write_ccr_v8_assert(ccr_save);
-    wrccr(ccr_save);
-  } else {
-    const Register temp_reg1 = G3_scratch;
-    const Register temp_reg2 = G4_scratch;
-    write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
-  }
-}
-
-
-// Calls to C land
-
-#ifdef ASSERT
-// a hook for debugging
-static Thread* reinitialize_thread() {
-  return ThreadLocalStorage::thread();
-}
-#else
-#define reinitialize_thread ThreadLocalStorage::thread
-#endif
-
-#ifdef ASSERT
-address last_get_thread = NULL;
-#endif
-
-// call this when G2_thread is not known to be valid
-void MacroAssembler::get_thread() {
-  save_frame(0);                // to avoid clobbering O0
-  mov(G1, L0);                  // avoid clobbering G1
-  mov(G5_method, L1);           // avoid clobbering G5
-  mov(G3, L2);                  // avoid clobbering G3 also
-  mov(G4, L5);                  // avoid clobbering G4
-#ifdef ASSERT
-  AddressLiteral last_get_thread_addrlit(&last_get_thread);
-  set(last_get_thread_addrlit, L3);
-  inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
-  st_ptr(L4, L3, 0);
-#endif
-  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
-  delayed()->nop();
-  mov(L0, G1);
-  mov(L1, G5_method);
-  mov(L2, G3);
-  mov(L5, G4);
-  restore(O0, 0, G2_thread);
-}
-
-static Thread* verify_thread_subroutine(Thread* gthread_value) {
-  Thread* correct_value = ThreadLocalStorage::thread();
-  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
-  return correct_value;
-}
-
-void MacroAssembler::verify_thread() {
-  if (VerifyThread) {
-    // NOTE: this chops off the heads of the 64-bit O registers.
-#ifdef CC_INTERP
-    save_frame(0);
-#else
-    // make sure G2_thread contains the right value
-    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
-    mov(G1, L1);                // avoid clobbering G1
-    // G2 saved below
-    mov(G3, L3);                // avoid clobbering G3
-    mov(G4, L4);                // avoid clobbering G4
-    mov(G5_method, L5);         // avoid clobbering G5_method
-#endif /* CC_INTERP */
-#if defined(COMPILER2) && !defined(_LP64)
-    // Save & restore possible 64-bit Long arguments in G-regs
-    srlx(G1,32,L0);
-    srlx(G4,32,L6);
-#endif
-    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
-    delayed()->mov(G2_thread, O0);
-
-    mov(L1, G1);                // Restore G1
-    // G2 restored below
-    mov(L3, G3);                // restore G3
-    mov(L4, G4);                // restore G4
-    mov(L5, G5_method);         // restore G5_method
-#if defined(COMPILER2) && !defined(_LP64)
-    // Save & restore possible 64-bit Long arguments in G-regs
-    sllx(L0,32,G2);             // Move old high G1 bits high in G2
-    srl(G1, 0,G1);              // Clear current high G1 bits
-    or3 (G1,G2,G1);             // Recover 64-bit G1
-    sllx(L6,32,G2);             // Move old high G4 bits high in G2
-    srl(G4, 0,G4);              // Clear current high G4 bits
-    or3 (G4,G2,G4);             // Recover 64-bit G4
-#endif
-    restore(O0, 0, G2_thread);
-  }
-}
-
-
-void MacroAssembler::save_thread(const Register thread_cache) {
-  verify_thread();
-  if (thread_cache->is_valid()) {
-    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
-    mov(G2_thread, thread_cache);
-  }
-  if (VerifyThread) {
-    // smash G2_thread, as if the VM were about to anyway
-    set(0x67676767, G2_thread);
-  }
-}
-
-
-void MacroAssembler::restore_thread(const Register thread_cache) {
-  if (thread_cache->is_valid()) {
-    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
-    mov(thread_cache, G2_thread);
-    verify_thread();
-  } else {
-    // do it the slow way
-    get_thread();
-  }
-}
-
-
-// %%% maybe get rid of [re]set_last_Java_frame
-void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
-  assert_not_delayed();
-  Address flags(G2_thread, JavaThread::frame_anchor_offset() +
-                           JavaFrameAnchor::flags_offset());
-  Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
-
-  // Always set last_Java_pc and flags first because once last_Java_sp is visible
-  // has_last_Java_frame is true and users will look at the rest of the fields.
-  // (Note: flags should always be zero before we get here so doesn't need to be set.)
-
-#ifdef ASSERT
-  // Verify that flags was zeroed on return to Java
-  Label PcOk;
-  save_frame(0);                // to avoid clobbering O0
-  ld_ptr(pc_addr, L0);
-  br_null_short(L0, Assembler::pt, PcOk);
-  STOP("last_Java_pc not zeroed before leaving Java");
-  bind(PcOk);
-
-  // Verify that flags was zeroed on return to Java
-  Label FlagsOk;
-  ld(flags, L0);
-  tst(L0);
-  br(Assembler::zero, false, Assembler::pt, FlagsOk);
-  delayed() -> restore();
-  STOP("flags not zeroed before leaving Java");
-  bind(FlagsOk);
-#endif /* ASSERT */
-  //
-  // When returning from calling out from Java mode the frame anchor's last_Java_pc
-  // will always be set to NULL. It is set here so that if we are doing a call to
-  // native (not VM) that we capture the known pc and don't have to rely on the
-  // native call having a standard frame linkage where we can find the pc.
-
-  if (last_Java_pc->is_valid()) {
-    st_ptr(last_Java_pc, pc_addr);
-  }
-
-#ifdef _LP64
-#ifdef ASSERT
-  // Make sure that we have an odd stack
-  Label StackOk;
-  andcc(last_java_sp, 0x01, G0);
-  br(Assembler::notZero, false, Assembler::pt, StackOk);
-  delayed()->nop();
-  STOP("Stack Not Biased in set_last_Java_frame");
-  bind(StackOk);
-#endif // ASSERT
-  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
-  add( last_java_sp, STACK_BIAS, G4_scratch );
-  st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
-#else
-  st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
-#endif // _LP64
-}
-
-void MacroAssembler::reset_last_Java_frame(void) {
-  assert_not_delayed();
-
-  Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
-  Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
-  Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
-
-#ifdef ASSERT
-  // check that it WAS previously set
-#ifdef CC_INTERP
-    save_frame(0);
-#else
-    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
-#endif /* CC_INTERP */
-    ld_ptr(sp_addr, L0);
-    tst(L0);
-    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
-    restore();
-#endif // ASSERT
-
-  st_ptr(G0, sp_addr);
-  // Always return last_Java_pc to zero
-  st_ptr(G0, pc_addr);
-  // Always null flags after return to Java
-  st(G0, flags);
-}
-
-
-void MacroAssembler::call_VM_base(
-  Register        oop_result,
-  Register        thread_cache,
-  Register        last_java_sp,
-  address         entry_point,
-  int             number_of_arguments,
-  bool            check_exceptions)
-{
-  assert_not_delayed();
-
-  // determine last_java_sp register
-  if (!last_java_sp->is_valid()) {
-    last_java_sp = SP;
-  }
-  // debugging support
-  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
-
-  // 64-bit last_java_sp is biased!
-  set_last_Java_frame(last_java_sp, noreg);
-  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
-  save_thread(thread_cache);
-  // do the call
-  call(entry_point, relocInfo::runtime_call_type);
-  if (!VerifyThread)
-    delayed()->mov(G2_thread, O0);  // pass thread as first argument
-  else
-    delayed()->nop();             // (thread already passed)
-  restore_thread(thread_cache);
-  reset_last_Java_frame();
-
-  // check for pending exceptions. use Gtemp as scratch register.
-  if (check_exceptions) {
-    check_and_forward_exception(Gtemp);
-  }
-
-#ifdef ASSERT
-  set(badHeapWordVal, G3);
-  set(badHeapWordVal, G4);
-  set(badHeapWordVal, G5);
-#endif
-
-  // get oop result if there is one and reset the value in the thread
-  if (oop_result->is_valid()) {
-    get_vm_result(oop_result);
-  }
-}
-
-void MacroAssembler::check_and_forward_exception(Register scratch_reg)
-{
-  Label L;
-
-  check_and_handle_popframe(scratch_reg);
-  check_and_handle_earlyret(scratch_reg);
-
-  Address exception_addr(G2_thread, Thread::pending_exception_offset());
-  ld_ptr(exception_addr, scratch_reg);
-  br_null_short(scratch_reg, pt, L);
-  // we use O7 linkage so that forward_exception_entry has the issuing PC
-  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
-  delayed()->nop();
-  bind(L);
-}
-
-
-void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
-}
-
-
-void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
-  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
-  // O0 is reserved for the thread
-  mov(arg_1, O1);
-  call_VM(oop_result, entry_point, 1, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
-  // O0 is reserved for the thread
-  mov(arg_1, O1);
-  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
-  call_VM(oop_result, entry_point, 2, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
-  // O0 is reserved for the thread
-  mov(arg_1, O1);
-  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
-  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
-  call_VM(oop_result, entry_point, 3, check_exceptions);
-}
-
-
-
-// Note: The following call_VM overloadings are useful when a "save"
-// has already been performed by a stub, and the last Java frame is
-// the previous one.  In that case, last_java_sp must be passed as FP
-// instead of SP.
-
-
-void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
-  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
-  // O0 is reserved for the thread
-  mov(arg_1, O1);
-  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
-  // O0 is reserved for the thread
-  mov(arg_1, O1);
-  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
-  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
-}
-
-
-void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
-  // O0 is reserved for the thread
-  mov(arg_1, O1);
-  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
-  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
-  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
-}
-
-
-
-void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
-  assert_not_delayed();
-  save_thread(thread_cache);
-  // do the call
-  call(entry_point, relocInfo::runtime_call_type);
-  delayed()->nop();
-  restore_thread(thread_cache);
-#ifdef ASSERT
-  set(badHeapWordVal, G3);
-  set(badHeapWordVal, G4);
-  set(badHeapWordVal, G5);
-#endif
-}
-
-
-void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
-  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
-}
-
-
-void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
-  mov(arg_1, O0);
-  call_VM_leaf(thread_cache, entry_point, 1);
-}
-
-
-void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
-  mov(arg_1, O0);
-  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
-  call_VM_leaf(thread_cache, entry_point, 2);
-}
-
-
-void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
-  mov(arg_1, O0);
-  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
-  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
-  call_VM_leaf(thread_cache, entry_point, 3);
-}
-
-
-void MacroAssembler::get_vm_result(Register oop_result) {
-  verify_thread();
-  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
-  ld_ptr(    vm_result_addr, oop_result);
-  st_ptr(G0, vm_result_addr);
-  verify_oop(oop_result);
-}
-
-
-void MacroAssembler::get_vm_result_2(Register metadata_result) {
-  verify_thread();
-  Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
-  ld_ptr(vm_result_addr_2, metadata_result);
-  st_ptr(G0, vm_result_addr_2);
-}
-
-
-// We require that C code which does not return a value in vm_result will
-// leave it undisturbed.
-void MacroAssembler::set_vm_result(Register oop_result) {
-  verify_thread();
-  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
-  verify_oop(oop_result);
-
-# ifdef ASSERT
-    // Check that we are not overwriting any other oop.
-#ifdef CC_INTERP
-    save_frame(0);
-#else
-    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
-#endif /* CC_INTERP */
-    ld_ptr(vm_result_addr, L0);
-    tst(L0);
-    restore();
-    breakpoint_trap(notZero, Assembler::ptr_cc);
-    // }
-# endif
-
-  st_ptr(oop_result, vm_result_addr);
-}
-
-
-void MacroAssembler::ic_call(address entry, bool emit_delay) {
-  RelocationHolder rspec = virtual_call_Relocation::spec(pc());
-  patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
-  relocate(rspec);
-  call(entry, relocInfo::none);
-  if (emit_delay) {
-    delayed()->nop();
-  }
-}
-
-
-void MacroAssembler::card_table_write(jbyte* byte_map_base,
-                                      Register tmp, Register obj) {
-#ifdef _LP64
-  srlx(obj, CardTableModRefBS::card_shift, obj);
-#else
-  srl(obj, CardTableModRefBS::card_shift, obj);
-#endif
-  assert(tmp != obj, "need separate temp reg");
-  set((address) byte_map_base, tmp);
-  stb(G0, tmp, obj);
-}
-
-
-void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
-  address save_pc;
-  int shiftcnt;
-#ifdef _LP64
-# ifdef CHECK_DELAY
-  assert_not_delayed((char*) "cannot put two instructions in delay slot");
-# endif
-  v9_dep();
-  save_pc = pc();
-
-  int msb32 = (int) (addrlit.value() >> 32);
-  int lsb32 = (int) (addrlit.value());
-
-  if (msb32 == 0 && lsb32 >= 0) {
-    Assembler::sethi(lsb32, d, addrlit.rspec());
-  }
-  else if (msb32 == -1) {
-    Assembler::sethi(~lsb32, d, addrlit.rspec());
-    xor3(d, ~low10(~0), d);
-  }
-  else {
-    Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
-    if (msb32 & 0x3ff)                            // Any bits?
-      or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
-    if (lsb32 & 0xFFFFFC00) {                     // done?
-      if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
-        sllx(d, 12, d);                           // Make room for next 12 bits
-        or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
-        shiftcnt = 0;                             // We already shifted
-      }
-      else
-        shiftcnt = 12;
-      if ((lsb32 >> 10) & 0x3ff) {
-        sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
-        or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
-        shiftcnt = 0;
-      }
-      else
-        shiftcnt = 10;
-      sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
-    }
-    else
-      sllx(d, 32, d);
-  }
-  // Pad out the instruction sequence so it can be patched later.
-  if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
-                           addrlit.rtype() != relocInfo::runtime_call_type)) {
-    while (pc() < (save_pc + (7 * BytesPerInstWord)))
-      nop();
-  }
-#else
-  Assembler::sethi(addrlit.value(), d, addrlit.rspec());
-#endif
-}
-
-
-void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
-  internal_sethi(addrlit, d, false);
-}
-
-
-void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
-  internal_sethi(addrlit, d, true);
-}
-
-
-int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
-#ifdef _LP64
-  if (worst_case)  return 7;
-  intptr_t iaddr = (intptr_t) a;
-  int msb32 = (int) (iaddr >> 32);
-  int lsb32 = (int) (iaddr);
-  int count;
-  if (msb32 == 0 && lsb32 >= 0)
-    count = 1;
-  else if (msb32 == -1)
-    count = 2;
-  else {
-    count = 2;
-    if (msb32 & 0x3ff)
-      count++;
-    if (lsb32 & 0xFFFFFC00 ) {
-      if ((lsb32 >> 20) & 0xfff)  count += 2;
-      if ((lsb32 >> 10) & 0x3ff)  count += 2;
-    }
-  }
-  return count;
-#else
-  return 1;
-#endif
-}
-
-int MacroAssembler::worst_case_insts_for_set() {
-  return insts_for_sethi(NULL, true) + 1;
-}
-
-
-// Keep in sync with MacroAssembler::insts_for_internal_set
-void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
-  intptr_t value = addrlit.value();
-
-  if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
-    // can optimize
-    if (-4096 <= value && value <= 4095) {
-      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
-      return;
-    }
-    if (inv_hi22(hi22(value)) == value) {
-      sethi(addrlit, d);
-      return;
-    }
-  }
-  assert_not_delayed((char*) "cannot put two instructions in delay slot");
-  internal_sethi(addrlit, d, ForceRelocatable);
-  if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
-    add(d, addrlit.low10(), d, addrlit.rspec());
-  }
-}
-
-// Keep in sync with MacroAssembler::internal_set
-int MacroAssembler::insts_for_internal_set(intptr_t value) {
-  // can optimize
-  if (-4096 <= value && value <= 4095) {
-    return 1;
-  }
-  if (inv_hi22(hi22(value)) == value) {
-    return insts_for_sethi((address) value);
-  }
-  int count = insts_for_sethi((address) value);
-  AddressLiteral al(value);
-  if (al.low10() != 0) {
-    count++;
-  }
-  return count;
-}
-
-void MacroAssembler::set(const AddressLiteral& al, Register d) {
-  internal_set(al, d, false);
-}
-
-void MacroAssembler::set(intptr_t value, Register d) {
-  AddressLiteral al(value);
-  internal_set(al, d, false);
-}
-
-void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
-  AddressLiteral al(addr, rspec);
-  internal_set(al, d, false);
-}
-
-void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
-  internal_set(al, d, true);
-}
-
-void MacroAssembler::patchable_set(intptr_t value, Register d) {
-  AddressLiteral al(value);
-  internal_set(al, d, true);
-}
-
-
-void MacroAssembler::set64(jlong value, Register d, Register tmp) {
-  assert_not_delayed();
-  v9_dep();
-
-  int hi = (int)(value >> 32);
-  int lo = (int)(value & ~0);
-  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
-  if (Assembler::is_simm13(lo) && value == lo) {
-    or3(G0, lo, d);
-  } else if (hi == 0) {
-    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
-    if (low10(lo) != 0)
-      or3(d, low10(lo), d);
-  }
-  else if (hi == -1) {
-    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
-    xor3(d, low10(lo) ^ ~low10(~0), d);
-  }
-  else if (lo == 0) {
-    if (Assembler::is_simm13(hi)) {
-      or3(G0, hi, d);
-    } else {
-      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
-      if (low10(hi) != 0)
-        or3(d, low10(hi), d);
-    }
-    sllx(d, 32, d);
-  }
-  else {
-    Assembler::sethi(hi, tmp);
-    Assembler::sethi(lo,   d); // macro assembler version sign-extends
-    if (low10(hi) != 0)
-      or3 (tmp, low10(hi), tmp);
-    if (low10(lo) != 0)
-      or3 (  d, low10(lo),   d);
-    sllx(tmp, 32, tmp);
-    or3 (d, tmp, d);
-  }
-}
-
-int MacroAssembler::insts_for_set64(jlong value) {
-  v9_dep();
-
-  int hi = (int) (value >> 32);
-  int lo = (int) (value & ~0);
-  int count = 0;
-
-  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
-  if (Assembler::is_simm13(lo) && value == lo) {
-    count++;
-  } else if (hi == 0) {
-    count++;
-    if (low10(lo) != 0)
-      count++;
-  }
-  else if (hi == -1) {
-    count += 2;
-  }
-  else if (lo == 0) {
-    if (Assembler::is_simm13(hi)) {
-      count++;
-    } else {
-      count++;
-      if (low10(hi) != 0)
-        count++;
-    }
-    count++;
-  }
-  else {
-    count += 2;
-    if (low10(hi) != 0)
-      count++;
-    if (low10(lo) != 0)
-      count++;
-    count += 2;
-  }
-  return count;
-}
-
-// compute size in bytes of sparc frame, given
-// number of extraWords
-int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
-
-  int nWords = frame::memory_parameter_word_sp_offset;
-
-  nWords += extraWords;
-
-  if (nWords & 1) ++nWords; // round up to double-word
-
-  return nWords * BytesPerWord;
-}
-
-
-// save_frame: given number of "extra" words in frame,
-// issue approp. save instruction (p 200, v8 manual)
-
-void MacroAssembler::save_frame(int extraWords) {
-  int delta = -total_frame_size_in_bytes(extraWords);
-  if (is_simm13(delta)) {
-    save(SP, delta, SP);
-  } else {
-    set(delta, G3_scratch);
-    save(SP, G3_scratch, SP);
-  }
-}
-
-
-void MacroAssembler::save_frame_c1(int size_in_bytes) {
-  if (is_simm13(-size_in_bytes)) {
-    save(SP, -size_in_bytes, SP);
-  } else {
-    set(-size_in_bytes, G3_scratch);
-    save(SP, G3_scratch, SP);
-  }
-}
-
-
-void MacroAssembler::save_frame_and_mov(int extraWords,
-                                        Register s1, Register d1,
-                                        Register s2, Register d2) {
-  assert_not_delayed();
-
-  // The trick here is to use precisely the same memory word
-  // that trap handlers also use to save the register.
-  // This word cannot be used for any other purpose, but
-  // it works fine to save the register's value, whether or not
-  // an interrupt flushes register windows at any given moment!
-  Address s1_addr;
-  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
-    s1_addr = s1->address_in_saved_window();
-    st_ptr(s1, s1_addr);
-  }
-
-  Address s2_addr;
-  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
-    s2_addr = s2->address_in_saved_window();
-    st_ptr(s2, s2_addr);
-  }
-
-  save_frame(extraWords);
-
-  if (s1_addr.base() == SP) {
-    ld_ptr(s1_addr.after_save(), d1);
-  } else if (s1->is_valid()) {
-    mov(s1->after_save(), d1);
-  }
-
-  if (s2_addr.base() == SP) {
-    ld_ptr(s2_addr.after_save(), d2);
-  } else if (s2->is_valid()) {
-    mov(s2->after_save(), d2);
-  }
-}
-
-
-AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
-  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
-  int index = oop_recorder()->allocate_metadata_index(obj);
-  RelocationHolder rspec = metadata_Relocation::spec(index);
-  return AddressLiteral((address)obj, rspec);
-}
-
-AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
-  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
-  int index = oop_recorder()->find_index(obj);
-  RelocationHolder rspec = metadata_Relocation::spec(index);
-  return AddressLiteral((address)obj, rspec);
-}
-
-
-AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
-  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
-  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
-  int oop_index = oop_recorder()->find_index(obj);
-  return AddressLiteral(obj, oop_Relocation::spec(oop_index));
-}
-
-void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
-  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
-  int oop_index = oop_recorder()->find_index(obj);
-  RelocationHolder rspec = oop_Relocation::spec(oop_index);
-
-  assert_not_delayed();
-  // Relocation with special format (see relocInfo_sparc.hpp).
-  relocate(rspec, 1);
-  // Assembler::sethi(0x3fffff, d);
-  emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
-  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
-  add(d, 0x3ff, d);
-
-}
-
-void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
-  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
-  int klass_index = oop_recorder()->find_index(k);
-  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
-  narrowOop encoded_k = oopDesc::encode_klass(k);
-
-  assert_not_delayed();
-  // Relocation with special format (see relocInfo_sparc.hpp).
-  relocate(rspec, 1);
-  // Assembler::sethi(encoded_k, d);
-  emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
-  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
-  add(d, low10(encoded_k), d);
-
-}
-
-void MacroAssembler::align(int modulus) {
-  while (offset() % modulus != 0) nop();
-}
-
-
-void MacroAssembler::safepoint() {
-  relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
-}
-
-
-void RegistersForDebugging::print(outputStream* s) {
-  FlagSetting fs(Debugging, true);
-  int j;
-  for (j = 0; j < 8; ++j) {
-    if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
-    else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
-  }
-  s->cr();
-
-  for (j = 0;  j < 8;  ++j) {
-    s->print("l%d = ", j); os::print_location(s, l[j]);
-  }
-  s->cr();
-
-  for (j = 0; j < 8; ++j) {
-    if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
-    else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
-  }
-  s->cr();
-
-  for (j = 0; j < 8; ++j) {
-    s->print("g%d = ", j); os::print_location(s, g[j]);
-  }
-  s->cr();
-
-  // print out floats with compression
-  for (j = 0; j < 32; ) {
-    jfloat val = f[j];
-    int last = j;
-    for ( ;  last+1 < 32;  ++last ) {
-      char b1[1024], b2[1024];
-      sprintf(b1, "%f", val);
-      sprintf(b2, "%f", f[last+1]);
-      if (strcmp(b1, b2))
-        break;
-    }
-    s->print("f%d", j);
-    if ( j != last )  s->print(" - f%d", last);
-    s->print(" = %f", val);
-    s->fill_to(25);
-    s->print_cr(" (0x%x)", val);
-    j = last + 1;
-  }
-  s->cr();
-
-  // and doubles (evens only)
-  for (j = 0; j < 32; ) {
-    jdouble val = d[j];
-    int last = j;
-    for ( ;  last+1 < 32;  ++last ) {
-      char b1[1024], b2[1024];
-      sprintf(b1, "%f", val);
-      sprintf(b2, "%f", d[last+1]);
-      if (strcmp(b1, b2))
-        break;
-    }
-    s->print("d%d", 2 * j);
-    if ( j != last )  s->print(" - d%d", last);
-    s->print(" = %f", val);
-    s->fill_to(30);
-    s->print("(0x%x)", *(int*)&val);
-    s->fill_to(42);
-    s->print_cr("(0x%x)", *(1 + (int*)&val));
-    j = last + 1;
-  }
-  s->cr();
-}
-
-void RegistersForDebugging::save_registers(MacroAssembler* a) {
-  a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
-  a->flush_windows();
-  int i;
-  for (i = 0; i < 8; ++i) {
-    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
-    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
-    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
-    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
-  }
-  for (i = 0;  i < 32; ++i) {
-    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
-  }
-  for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
-    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
-  }
-}
-
-void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
-  for (int i = 1; i < 8;  ++i) {
-    a->ld_ptr(r, g_offset(i), as_gRegister(i));
-  }
-  for (int j = 0; j < 32; ++j) {
-    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
-  }
-  for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
-    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
-  }
-}
-
-
-// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
-void MacroAssembler::push_fTOS() {
-  // %%%%%% need to implement this
-}
-
-// pops double TOS element from CPU stack and pushes on FPU stack
-void MacroAssembler::pop_fTOS() {
-  // %%%%%% need to implement this
-}
-
-void MacroAssembler::empty_FPU_stack() {
-  // %%%%%% need to implement this
-}
-
-void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
-  // plausibility check for oops
-  if (!VerifyOops) return;
-
-  if (reg == G0)  return;       // always NULL, which is always an oop
-
-  BLOCK_COMMENT("verify_oop {");
-  char buffer[64];
-#ifdef COMPILER1
-  if (CommentedAssembly) {
-    snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
-    block_comment(buffer);
-  }
-#endif
-
-  int len = strlen(file) + strlen(msg) + 1 + 4;
-  sprintf(buffer, "%d", line);
-  len += strlen(buffer);
-  sprintf(buffer, " at offset %d ", offset());
-  len += strlen(buffer);
-  char * real_msg = new char[len];
-  sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
-
-  // Call indirectly to solve generation ordering problem
-  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
-
-  // Make some space on stack above the current register window.
-  // Enough to hold 8 64-bit registers.
-  add(SP,-8*8,SP);
-
-  // Save some 64-bit registers; a normal 'save' chops the heads off
-  // of 64-bit longs in the 32-bit build.
-  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
-  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
-  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
-  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
-
-  // Size of set() should stay the same
-  patchable_set((intptr_t)real_msg, O1);
-  // Load address to call to into O7
-  load_ptr_contents(a, O7);
-  // Register call to verify_oop_subroutine
-  callr(O7, G0);
-  delayed()->nop();
-  // recover frame size
-  add(SP, 8*8,SP);
-  BLOCK_COMMENT("} verify_oop");
-}
-
-void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
-  // plausibility check for oops
-  if (!VerifyOops) return;
-
-  char buffer[64];
-  sprintf(buffer, "%d", line);
-  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
-  sprintf(buffer, " at SP+%d ", addr.disp());
-  len += strlen(buffer);
-  char * real_msg = new char[len];
-  sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
-
-  // Call indirectly to solve generation ordering problem
-  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
-
-  // Make some space on stack above the current register window.
-  // Enough to hold 8 64-bit registers.
-  add(SP,-8*8,SP);
-
-  // Save some 64-bit registers; a normal 'save' chops the heads off
-  // of 64-bit longs in the 32-bit build.
-  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
-  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
-  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
-  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
-
-  // Size of set() should stay the same
-  patchable_set((intptr_t)real_msg, O1);
-  // Load address to call to into O7
-  load_ptr_contents(a, O7);
-  // Register call to verify_oop_subroutine
-  callr(O7, G0);
-  delayed()->nop();
-  // recover frame size
-  add(SP, 8*8,SP);
-}
-
-// side-door communication with signalHandler in os_solaris.cpp
-address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
-
-// This macro is expanded just once; it creates shared code.  Contract:
-// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
-// registers, including flags.  May not use a register 'save', as this blows
-// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
-// call.
-void MacroAssembler::verify_oop_subroutine() {
-  assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
-
-  // Leaf call; no frame.
-  Label succeed, fail, null_or_fail;
-
-  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
-  // O0 is now the oop to be checked.  O7 is the return address.
-  Register O0_obj = O0;
-
-  // Save some more registers for temps.
-  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
-  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
-  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
-  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
-
-  // Save flags
-  Register O5_save_flags = O5;
-  rdccr( O5_save_flags );
-
-  { // count number of verifies
-    Register O2_adr   = O2;
-    Register O3_accum = O3;
-    inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
-  }
-
-  Register O2_mask = O2;
-  Register O3_bits = O3;
-  Register O4_temp = O4;
-
-  // mark lower end of faulting range
-  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
-  _verify_oop_implicit_branch[0] = pc();
-
-  // We can't check the mark oop because it could be in the process of
-  // locking or unlocking while this is running.
-  set(Universe::verify_oop_mask (), O2_mask);
-  set(Universe::verify_oop_bits (), O3_bits);
-
-  // assert((obj & oop_mask) == oop_bits);
-  and3(O0_obj, O2_mask, O4_temp);
-  cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
-
-  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
-    // the null_or_fail case is useless; must test for null separately
-    br_null_short(O0_obj, pn, succeed);
-  }
-
-  // Check the Klass* of this object for being in the right area of memory.
-  // Cannot do the load in the delay above slot in case O0 is null
-  load_klass(O0_obj, O0_obj);
-  // assert((klass != NULL)
-  br_null_short(O0_obj, pn, fail);
-  // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
-
-  wrccr( O5_save_flags ); // Restore CCR's
-
-  // mark upper end of faulting range
-  _verify_oop_implicit_branch[1] = pc();
-
-  //-----------------------
-  // all tests pass
-  bind(succeed);
-
-  // Restore prior 64-bit registers
-  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
-  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
-  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
-  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
-  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
-  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
-
-  retl();                       // Leaf return; restore prior O7 in delay slot
-  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
-
-  //-----------------------
-  bind(null_or_fail);           // nulls are less common but OK
-  br_null(O0_obj, false, pt, succeed);
-  delayed()->wrccr( O5_save_flags ); // Restore CCR's
-
-  //-----------------------
-  // report failure:
-  bind(fail);
-  _verify_oop_implicit_branch[2] = pc();
-
-  wrccr( O5_save_flags ); // Restore CCR's
-
-  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
-
-  // stop_subroutine expects message pointer in I1.
-  mov(I1, O1);
-
-  // Restore prior 64-bit registers
-  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
-  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
-  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
-  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
-  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
-  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
-
-  // factor long stop-sequence into subroutine to save space
-  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
-
-  // call indirectly to solve generation ordering problem
-  AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
-  load_ptr_contents(al, O5);
-  jmpl(O5, 0, O7);
-  delayed()->nop();
-}
-
-
-void MacroAssembler::stop(const char* msg) {
-  // save frame first to get O7 for return address
-  // add one word to size in case struct is odd number of words long
-  // It must be doubleword-aligned for storing doubles into it.
-
-    save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
-
-    // stop_subroutine expects message pointer in I1.
-    // Size of set() should stay the same
-    patchable_set((intptr_t)msg, O1);
-
-    // factor long stop-sequence into subroutine to save space
-    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
-
-    // call indirectly to solve generation ordering problem
-    AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
-    load_ptr_contents(a, O5);
-    jmpl(O5, 0, O7);
-    delayed()->nop();
-
-    breakpoint_trap();   // make stop actually stop rather than writing
-                         // unnoticeable results in the output files.
-
-    // restore(); done in callee to save space!
-}
-
-
-void MacroAssembler::warn(const char* msg) {
-  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
-  RegistersForDebugging::save_registers(this);
-  mov(O0, L0);
-  // Size of set() should stay the same
-  patchable_set((intptr_t)msg, O0);
-  call( CAST_FROM_FN_PTR(address, warning) );
-  delayed()->nop();
-//  ret();
-//  delayed()->restore();
-  RegistersForDebugging::restore_registers(this, L0);
-  restore();
-}
-
-
-void MacroAssembler::untested(const char* what) {
-  // We must be able to turn interactive prompting off
-  // in order to run automated test scripts on the VM
-  // Use the flag ShowMessageBoxOnError
-
-  char* b = new char[1024];
-  sprintf(b, "untested: %s", what);
-
-  if (ShowMessageBoxOnError) { STOP(b); }
-  else                       { warn(b); }
-}
-
-
-void MacroAssembler::stop_subroutine() {
-  RegistersForDebugging::save_registers(this);
-
-  // for the sake of the debugger, stick a PC on the current frame
-  // (this assumes that the caller has performed an extra "save")
-  mov(I7, L7);
-  add(O7, -7 * BytesPerInt, I7);
-
-  save_frame(); // one more save to free up another O7 register
-  mov(I0, O1); // addr of reg save area
-
-  // We expect pointer to message in I1. Caller must set it up in O1
-  mov(I1, O0); // get msg
-  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
-  delayed()->nop();
-
-  restore();
-
-  RegistersForDebugging::restore_registers(this, O0);
-
-  save_frame(0);
-  call(CAST_FROM_FN_PTR(address,breakpoint));
-  delayed()->nop();
-  restore();
-
-  mov(L7, I7);
-  retl();
-  delayed()->restore(); // see stop above
-}
-
-
-void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
-  if ( ShowMessageBoxOnError ) {
-    JavaThread* thread = JavaThread::current();
-    JavaThreadState saved_state = thread->thread_state();
-    thread->set_thread_state(_thread_in_vm);
-      {
-        // In order to get locks work, we need to fake a in_VM state
-        ttyLocker ttyl;
-        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
-        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
-        BytecodeCounter::print();
-        }
-        if (os::message_box(msg, "Execution stopped, print registers?"))
-          regs->print(::tty);
-      }
-    BREAKPOINT;
-      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
-  }
-  else {
-     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
-  }
-  assert(false, err_msg("DEBUG MESSAGE: %s", msg));
-}
-
-#ifndef PRODUCT
-void MacroAssembler::test() {
-  ResourceMark rm;
-
-  CodeBuffer cb("test", 10000, 10000);
-  MacroAssembler* a = new MacroAssembler(&cb);
-  VM_Version::allow_all();
-  a->test_v9();
-  a->test_v8_onlys();
-  VM_Version::revert();
-
-  StubRoutines::Sparc::test_stop_entry()();
-}
-#endif
-
-
-void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
-  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
-  Label no_extras;
-  br( negative, true, pt, no_extras ); // if neg, clear reg
-  delayed()->set(0, Rresult);          // annuled, so only if taken
-  bind( no_extras );
-}
-
-
-void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
-#ifdef _LP64
-  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
-#else
-  add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
-#endif
-  bclr(1, Rresult);
-  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
-}
-
-
-void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
-  calc_frame_size(Rextra_words, Rresult);
-  neg(Rresult);
-  save(SP, Rresult, SP);
-}
-
-
-// ---------------------------------------------------------
-Assembler::RCondition cond2rcond(Assembler::Condition c) {
-  switch (c) {
-    /*case zero: */
-    case Assembler::equal:        return Assembler::rc_z;
-    case Assembler::lessEqual:    return Assembler::rc_lez;
-    case Assembler::less:         return Assembler::rc_lz;
-    /*case notZero:*/
-    case Assembler::notEqual:     return Assembler::rc_nz;
-    case Assembler::greater:      return Assembler::rc_gz;
-    case Assembler::greaterEqual: return Assembler::rc_gez;
-  }
-  ShouldNotReachHere();
-  return Assembler::rc_z;
-}
-
-// compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
-void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
-  tst(s1);
-  br (c, a, p, L);
-}
-
-// Compares a pointer register with zero and branches on null.
-// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
-void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
-  assert_not_delayed();
-#ifdef _LP64
-  bpr( rc_z, a, p, s1, L );
-#else
-  tst(s1);
-  br ( zero, a, p, L );
-#endif
-}
-
-void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
-  assert_not_delayed();
-#ifdef _LP64
-  bpr( rc_nz, a, p, s1, L );
-#else
-  tst(s1);
-  br ( notZero, a, p, L );
-#endif
-}
-
-// Compare registers and branch with nop in delay slot or cbcond without delay slot.
-
-// Compare integer (32 bit) values (icc only).
-void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
-                                      Predict p, Label& L) {
-  assert_not_delayed();
-  if (use_cbcond(L)) {
-    Assembler::cbcond(c, icc, s1, s2, L);
-  } else {
-    cmp(s1, s2);
-    br(c, false, p, L);
-    delayed()->nop();
-  }
-}
-
-// Compare integer (32 bit) values (icc only).
-void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
-                                      Predict p, Label& L) {
-  assert_not_delayed();
-  if (is_simm(simm13a,5) && use_cbcond(L)) {
-    Assembler::cbcond(c, icc, s1, simm13a, L);
-  } else {
-    cmp(s1, simm13a);
-    br(c, false, p, L);
-    delayed()->nop();
-  }
-}
-
-// Branch that tests xcc in LP64 and icc in !LP64
-void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
-                                       Predict p, Label& L) {
-  assert_not_delayed();
-  if (use_cbcond(L)) {
-    Assembler::cbcond(c, ptr_cc, s1, s2, L);
-  } else {
-    cmp(s1, s2);
-    brx(c, false, p, L);
-    delayed()->nop();
-  }
-}
-
-// Branch that tests xcc in LP64 and icc in !LP64
-void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
-                                       Predict p, Label& L) {
-  assert_not_delayed();
-  if (is_simm(simm13a,5) && use_cbcond(L)) {
-    Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
-  } else {
-    cmp(s1, simm13a);
-    brx(c, false, p, L);
-    delayed()->nop();
-  }
-}
-
-// Short branch version for compares a pointer with zero.
-
-void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
-  assert_not_delayed();
-  if (use_cbcond(L)) {
-    Assembler::cbcond(zero, ptr_cc, s1, 0, L);
-    return;
-  }
-  br_null(s1, false, p, L);
-  delayed()->nop();
-}
-
-void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
-  assert_not_delayed();
-  if (use_cbcond(L)) {
-    Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
-    return;
-  }
-  br_notnull(s1, false, p, L);
-  delayed()->nop();
-}
-
-// Unconditional short branch
-void MacroAssembler::ba_short(Label& L) {
-  if (use_cbcond(L)) {
-    Assembler::cbcond(equal, icc, G0, G0, L);
-    return;
-  }
-  br(always, false, pt, L);
-  delayed()->nop();
-}
-
-// instruction sequences factored across compiler & interpreter
-
-
-void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
-                           Register Rb_hi, Register Rb_low,
-                           Register Rresult) {
-
-  Label check_low_parts, done;
-
-  cmp(Ra_hi, Rb_hi );  // compare hi parts
-  br(equal, true, pt, check_low_parts);
-  delayed()->cmp(Ra_low, Rb_low); // test low parts
-
-  // And, with an unsigned comparison, it does not matter if the numbers
-  // are negative or not.
-  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
-  // The second one is bigger (unsignedly).
-
-  // Other notes:  The first move in each triplet can be unconditional
-  // (and therefore probably prefetchable).
-  // And the equals case for the high part does not need testing,
-  // since that triplet is reached only after finding the high halves differ.
-
-  if (VM_Version::v9_instructions_work()) {
-    mov(-1, Rresult);
-    ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
-  } else {
-    br(less,    true, pt, done); delayed()-> set(-1, Rresult);
-    br(greater, true, pt, done); delayed()-> set( 1, Rresult);
-  }
-
-  bind( check_low_parts );
-
-  if (VM_Version::v9_instructions_work()) {
-    mov(                               -1, Rresult);
-    movcc(equal,           false, icc,  0, Rresult);
-    movcc(greaterUnsigned, false, icc,  1, Rresult);
-  } else {
-    set(-1, Rresult);
-    br(equal,           true, pt, done); delayed()->set( 0, Rresult);
-    br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
-  }
-  bind( done );
-}
-
-void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
-  subcc(  G0, Rlow, Rlow );
-  subc(   G0, Rhi,  Rhi  );
-}
-
-void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
-                           Register Rcount,
-                           Register Rout_high, Register Rout_low,
-                           Register Rtemp ) {
-
-
-  Register Ralt_count = Rtemp;
-  Register Rxfer_bits = Rtemp;
-
-  assert( Ralt_count != Rin_high
-      &&  Ralt_count != Rin_low
-      &&  Ralt_count != Rcount
-      &&  Rxfer_bits != Rin_low
-      &&  Rxfer_bits != Rin_high
-      &&  Rxfer_bits != Rcount
-      &&  Rxfer_bits != Rout_low
-      &&  Rout_low   != Rin_high,
-        "register alias checks");
-
-  Label big_shift, done;
-
-  // This code can be optimized to use the 64 bit shifts in V9.
-  // Here we use the 32 bit shifts.
-
-  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
-  subcc(Rcount,   31, Ralt_count);
-  br(greater, true, pn, big_shift);
-  delayed()->dec(Ralt_count);
-
-  // shift < 32 bits, Ralt_count = Rcount-31
-
-  // We get the transfer bits by shifting right by 32-count the low
-  // register. This is done by shifting right by 31-count and then by one
-  // more to take care of the special (rare) case where count is zero
-  // (shifting by 32 would not work).
-
-  neg(Ralt_count);
-
-  // The order of the next two instructions is critical in the case where
-  // Rin and Rout are the same and should not be reversed.
-
-  srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
-  if (Rcount != Rout_low) {
-    sll(Rin_low, Rcount, Rout_low); // low half
-  }
-  sll(Rin_high, Rcount, Rout_high);
-  if (Rcount == Rout_low) {
-    sll(Rin_low, Rcount, Rout_low); // low half
-  }
-  srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
-  ba(done);
-  delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
-
-  // shift >= 32 bits, Ralt_count = Rcount-32
-  bind(big_shift);
-  sll(Rin_low, Ralt_count, Rout_high  );
-  clr(Rout_low);
-
-  bind(done);
-}
-
-
-void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
-                           Register Rcount,
-                           Register Rout_high, Register Rout_low,
-                           Register Rtemp ) {
-
-  Register Ralt_count = Rtemp;
-  Register Rxfer_bits = Rtemp;
-
-  assert( Ralt_count != Rin_high
-      &&  Ralt_count != Rin_low
-      &&  Ralt_count != Rcount
-      &&  Rxfer_bits != Rin_low
-      &&  Rxfer_bits != Rin_high
-      &&  Rxfer_bits != Rcount
-      &&  Rxfer_bits != Rout_high
-      &&  Rout_high  != Rin_low,
-        "register alias checks");
-
-  Label big_shift, done;
-
-  // This code can be optimized to use the 64 bit shifts in V9.
-  // Here we use the 32 bit shifts.
-
-  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
-  subcc(Rcount,   31, Ralt_count);
-  br(greater, true, pn, big_shift);
-  delayed()->dec(Ralt_count);
-
-  // shift < 32 bits, Ralt_count = Rcount-31
-
-  // We get the transfer bits by shifting left by 32-count the high
-  // register. This is done by shifting left by 31-count and then by one
-  // more to take care of the special (rare) case where count is zero
-  // (shifting by 32 would not work).
-
-  neg(Ralt_count);
-  if (Rcount != Rout_low) {
-    srl(Rin_low, Rcount, Rout_low);
-  }
-
-  // The order of the next two instructions is critical in the case where
-  // Rin and Rout are the same and should not be reversed.
-
-  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
-  sra(Rin_high,     Rcount, Rout_high ); // high half
-  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
-  if (Rcount == Rout_low) {
-    srl(Rin_low, Rcount, Rout_low);
-  }
-  ba(done);
-  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
-
-  // shift >= 32 bits, Ralt_count = Rcount-32
-  bind(big_shift);
-
-  sra(Rin_high, Ralt_count, Rout_low);
-  sra(Rin_high,         31, Rout_high); // sign into hi
-
-  bind( done );
-}
-
-
-
-void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
-                            Register Rcount,
-                            Register Rout_high, Register Rout_low,
-                            Register Rtemp ) {
-
-  Register Ralt_count = Rtemp;
-  Register Rxfer_bits = Rtemp;
-
-  assert( Ralt_count != Rin_high
-      &&  Ralt_count != Rin_low
-      &&  Ralt_count != Rcount
-      &&  Rxfer_bits != Rin_low
-      &&  Rxfer_bits != Rin_high
-      &&  Rxfer_bits != Rcount
-      &&  Rxfer_bits != Rout_high
-      &&  Rout_high  != Rin_low,
-        "register alias checks");
-
-  Label big_shift, done;
-
-  // This code can be optimized to use the 64 bit shifts in V9.
-  // Here we use the 32 bit shifts.
-
-  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
-  subcc(Rcount,   31, Ralt_count);
-  br(greater, true, pn, big_shift);
-  delayed()->dec(Ralt_count);
-
-  // shift < 32 bits, Ralt_count = Rcount-31
-
-  // We get the transfer bits by shifting left by 32-count the high
-  // register. This is done by shifting left by 31-count and then by one
-  // more to take care of the special (rare) case where count is zero
-  // (shifting by 32 would not work).
-
-  neg(Ralt_count);
-  if (Rcount != Rout_low) {
-    srl(Rin_low, Rcount, Rout_low);
-  }
-
-  // The order of the next two instructions is critical in the case where
-  // Rin and Rout are the same and should not be reversed.
-
-  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
-  srl(Rin_high,     Rcount, Rout_high ); // high half
-  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
-  if (Rcount == Rout_low) {
-    srl(Rin_low, Rcount, Rout_low);
-  }
-  ba(done);
-  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
-
-  // shift >= 32 bits, Ralt_count = Rcount-32
-  bind(big_shift);
-
-  srl(Rin_high, Ralt_count, Rout_low);
-  clr(Rout_high);
-
-  bind( done );
-}
-
-#ifdef _LP64
-void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
-  cmp(Ra, Rb);
-  mov(-1, Rresult);
-  movcc(equal,   false, xcc,  0, Rresult);
-  movcc(greater, false, xcc,  1, Rresult);
-}
-#endif
-
-
-void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
-  switch (size_in_bytes) {
-  case  8:  ld_long(src, dst); break;
-  case  4:  ld(     src, dst); break;
-  case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
-  case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
-  default:  ShouldNotReachHere();
-  }
-}
-
-void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
-  switch (size_in_bytes) {
-  case  8:  st_long(src, dst); break;
-  case  4:  st(     src, dst); break;
-  case  2:  sth(    src, dst); break;
-  case  1:  stb(    src, dst); break;
-  default:  ShouldNotReachHere();
-  }
-}
-
-
-void MacroAssembler::float_cmp( bool is_float, int unordered_result,
-                                FloatRegister Fa, FloatRegister Fb,
-                                Register Rresult) {
-
-  fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
-
-  Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
-  Condition eq =                          f_equal;
-  Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
-
-  if (VM_Version::v9_instructions_work()) {
-
-    mov(-1, Rresult);
-    movcc(eq, true, fcc0, 0, Rresult);
-    movcc(gt, true, fcc0, 1, Rresult);
-
-  } else {
-    Label done;
-
-    set( -1, Rresult );
-    //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
-    fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
-    fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
-
-    bind (done);
-  }
-}
-
-
-void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
-{
-  if (VM_Version::v9_instructions_work()) {
-    Assembler::fneg(w, s, d);
-  } else {
-    if (w == FloatRegisterImpl::S) {
-      Assembler::fneg(w, s, d);
-    } else if (w == FloatRegisterImpl::D) {
-      // number() does a sanity check on the alignment.
-      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
-        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
-
-      Assembler::fneg(FloatRegisterImpl::S, s, d);
-      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
-    } else {
-      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
-
-      // number() does a sanity check on the alignment.
-      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
-        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
-
-      Assembler::fneg(FloatRegisterImpl::S, s, d);
-      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
-      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
-      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
-    }
-  }
-}
-
-void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
-{
-  if (VM_Version::v9_instructions_work()) {
-    Assembler::fmov(w, s, d);
-  } else {
-    if (w == FloatRegisterImpl::S) {
-      Assembler::fmov(w, s, d);
-    } else if (w == FloatRegisterImpl::D) {
-      // number() does a sanity check on the alignment.
-      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
-        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
-
-      Assembler::fmov(FloatRegisterImpl::S, s, d);
-      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
-    } else {
-      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
-
-      // number() does a sanity check on the alignment.
-      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
-        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
-
-      Assembler::fmov(FloatRegisterImpl::S, s, d);
-      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
-      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
-      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
-    }
-  }
-}
-
-void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
-{
-  if (VM_Version::v9_instructions_work()) {
-    Assembler::fabs(w, s, d);
-  } else {
-    if (w == FloatRegisterImpl::S) {
-      Assembler::fabs(w, s, d);
-    } else if (w == FloatRegisterImpl::D) {
-      // number() does a sanity check on the alignment.
-      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
-        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
-
-      Assembler::fabs(FloatRegisterImpl::S, s, d);
-      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
-    } else {
-      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
-
-      // number() does a sanity check on the alignment.
-      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
-       ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
-
-      Assembler::fabs(FloatRegisterImpl::S, s, d);
-      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
-      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
-      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
-    }
-  }
-}
-
-void MacroAssembler::save_all_globals_into_locals() {
-  mov(G1,L1);
-  mov(G2,L2);
-  mov(G3,L3);
-  mov(G4,L4);
-  mov(G5,L5);
-  mov(G6,L6);
-  mov(G7,L7);
-}
-
-void MacroAssembler::restore_globals_from_locals() {
-  mov(L1,G1);
-  mov(L2,G2);
-  mov(L3,G3);
-  mov(L4,G4);
-  mov(L5,G5);
-  mov(L6,G6);
-  mov(L7,G7);
-}
-
-// Use for 64 bit operation.
-void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
-{
-  // store ptr_reg as the new top value
-#ifdef _LP64
-  casx(top_ptr_reg, top_reg, ptr_reg);
-#else
-  cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
-#endif // _LP64
-}
-
-// [RGV] This routine does not handle 64 bit operations.
-//       use casx_under_lock() or casx directly!!!
-void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
-{
-  // store ptr_reg as the new top value
-  if (VM_Version::v9_instructions_work()) {
-    cas(top_ptr_reg, top_reg, ptr_reg);
-  } else {
-
-    // If the register is not an out nor global, it is not visible
-    // after the save.  Allocate a register for it, save its
-    // value in the register save area (the save may not flush
-    // registers to the save area).
-
-    Register top_ptr_reg_after_save;
-    Register top_reg_after_save;
-    Register ptr_reg_after_save;
-
-    if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
-      top_ptr_reg_after_save = top_ptr_reg->after_save();
-    } else {
-      Address reg_save_addr = top_ptr_reg->address_in_saved_window();
-      top_ptr_reg_after_save = L0;
-      st(top_ptr_reg, reg_save_addr);
-    }
-
-    if (top_reg->is_out() || top_reg->is_global()) {
-      top_reg_after_save = top_reg->after_save();
-    } else {
-      Address reg_save_addr = top_reg->address_in_saved_window();
-      top_reg_after_save = L1;
-      st(top_reg, reg_save_addr);
-    }
-
-    if (ptr_reg->is_out() || ptr_reg->is_global()) {
-      ptr_reg_after_save = ptr_reg->after_save();
-    } else {
-      Address reg_save_addr = ptr_reg->address_in_saved_window();
-      ptr_reg_after_save = L2;
-      st(ptr_reg, reg_save_addr);
-    }
-
-    const Register& lock_reg = L3;
-    const Register& lock_ptr_reg = L4;
-    const Register& value_reg = L5;
-    const Register& yield_reg = L6;
-    const Register& yieldall_reg = L7;
-
-    save_frame();
-
-    if (top_ptr_reg_after_save == L0) {
-      ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
-    }
-
-    if (top_reg_after_save == L1) {
-      ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
-    }
-
-    if (ptr_reg_after_save == L2) {
-      ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
-    }
-
-    Label(retry_get_lock);
-    Label(not_same);
-    Label(dont_yield);
-
-    assert(lock_addr, "lock_address should be non null for v8");
-    set((intptr_t)lock_addr, lock_ptr_reg);
-    // Initialize yield counter
-    mov(G0,yield_reg);
-    mov(G0, yieldall_reg);
-    set(StubRoutines::Sparc::locked, lock_reg);
-
-    bind(retry_get_lock);
-    cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
-
-    if(use_call_vm) {
-      Untested("Need to verify global reg consistancy");
-      call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
-    } else {
-      // Save the regs and make space for a C call
-      save(SP, -96, SP);
-      save_all_globals_into_locals();
-      call(CAST_FROM_FN_PTR(address,os::yield_all));
-      delayed()->mov(yieldall_reg, O0);
-      restore_globals_from_locals();
-      restore();
-    }
-
-    // reset the counter
-    mov(G0,yield_reg);
-    add(yieldall_reg, 1, yieldall_reg);
-
-    bind(dont_yield);
-    // try to get lock
-    swap(lock_ptr_reg, 0, lock_reg);
-
-    // did we get the lock?
-    cmp(lock_reg, StubRoutines::Sparc::unlocked);
-    br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
-    delayed()->add(yield_reg,1,yield_reg);
-
-    // yes, got lock.  do we have the same top?
-    ld(top_ptr_reg_after_save, 0, value_reg);
-    cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
-
-    // yes, same top.
-    st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
-    membar(Assembler::StoreStore);
-
-    bind(not_same);
-    mov(value_reg, ptr_reg_after_save);
-    st(lock_reg, lock_ptr_reg, 0); // unlock
-
-    restore();
-  }
-}
-
-RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
-                                                      Register tmp,
-                                                      int offset) {
-  intptr_t value = *delayed_value_addr;
-  if (value != 0)
-    return RegisterOrConstant(value + offset);
-
-  // load indirectly to solve generation ordering problem
-  AddressLiteral a(delayed_value_addr);
-  load_ptr_contents(a, tmp);
-
-#ifdef ASSERT
-  tst(tmp);
-  breakpoint_trap(zero, xcc);
-#endif
-
-  if (offset != 0)
-    add(tmp, offset, tmp);
-
-  return RegisterOrConstant(tmp);
-}
-
-
-RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
-  assert(d.register_or_noreg() != G0, "lost side effect");
-  if ((s2.is_constant() && s2.as_constant() == 0) ||
-      (s2.is_register() && s2.as_register() == G0)) {
-    // Do nothing, just move value.
-    if (s1.is_register()) {
-      if (d.is_constant())  d = temp;
-      mov(s1.as_register(), d.as_register());
-      return d;
-    } else {
-      return s1;
-    }
-  }
-
-  if (s1.is_register()) {
-    assert_different_registers(s1.as_register(), temp);
-    if (d.is_constant())  d = temp;
-    andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
-    return d;
-  } else {
-    if (s2.is_register()) {
-      assert_different_registers(s2.as_register(), temp);
-      if (d.is_constant())  d = temp;
-      set(s1.as_constant(), temp);
-      andn(temp, s2.as_register(), d.as_register());
-      return d;
-    } else {
-      intptr_t res = s1.as_constant() & ~s2.as_constant();
-      return res;
-    }
-  }
-}
-
-RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
-  assert(d.register_or_noreg() != G0, "lost side effect");
-  if ((s2.is_constant() && s2.as_constant() == 0) ||
-      (s2.is_register() && s2.as_register() == G0)) {
-    // Do nothing, just move value.
-    if (s1.is_register()) {
-      if (d.is_constant())  d = temp;
-      mov(s1.as_register(), d.as_register());
-      return d;
-    } else {
-      return s1;
-    }
-  }
-
-  if (s1.is_register()) {
-    assert_different_registers(s1.as_register(), temp);
-    if (d.is_constant())  d = temp;
-    add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
-    return d;
-  } else {
-    if (s2.is_register()) {
-      assert_different_registers(s2.as_register(), temp);
-      if (d.is_constant())  d = temp;
-      add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
-      return d;
-    } else {
-      intptr_t res = s1.as_constant() + s2.as_constant();
-      return res;
-    }
-  }
-}
-
-RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
-  assert(d.register_or_noreg() != G0, "lost side effect");
-  if (!is_simm13(s2.constant_or_zero()))
-    s2 = (s2.as_constant() & 0xFF);
-  if ((s2.is_constant() && s2.as_constant() == 0) ||
-      (s2.is_register() && s2.as_register() == G0)) {
-    // Do nothing, just move value.
-    if (s1.is_register()) {
-      if (d.is_constant())  d = temp;
-      mov(s1.as_register(), d.as_register());
-      return d;
-    } else {
-      return s1;
-    }
-  }
-
-  if (s1.is_register()) {
-    assert_different_registers(s1.as_register(), temp);
-    if (d.is_constant())  d = temp;
-    sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
-    return d;
-  } else {
-    if (s2.is_register()) {
-      assert_different_registers(s2.as_register(), temp);
-      if (d.is_constant())  d = temp;
-      set(s1.as_constant(), temp);
-      sll_ptr(temp, s2.as_register(), d.as_register());
-      return d;
-    } else {
-      intptr_t res = s1.as_constant() << s2.as_constant();
-      return res;
-    }
-  }
-}
-
-
-// Look up the method for a megamorphic invokeinterface call.
-// The target method is determined by <intf_klass, itable_index>.
-// The receiver klass is in recv_klass.
-// On success, the result will be in method_result, and execution falls through.
-// On failure, execution transfers to the given label.
-void MacroAssembler::lookup_interface_method(Register recv_klass,
-                                             Register intf_klass,
-                                             RegisterOrConstant itable_index,
-                                             Register method_result,
-                                             Register scan_temp,
-                                             Register sethi_temp,
-                                             Label& L_no_such_interface) {
-  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
-  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
-         "caller must use same register for non-constant itable index as for method");
-
-  Label L_no_such_interface_restore;
-  bool did_save = false;
-  if (scan_temp == noreg || sethi_temp == noreg) {
-    Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
-    Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
-    assert(method_result->is_global(), "must be able to return value");
-    scan_temp  = L2;
-    sethi_temp = L3;
-    save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
-    recv_klass = recv_2;
-    intf_klass = intf_2;
-    did_save = true;
-  }
-
-  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
-  int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
-  int scan_step   = itableOffsetEntry::size() * wordSize;
-  int vte_size    = vtableEntry::size() * wordSize;
-
-  lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
-  // %%% We should store the aligned, prescaled offset in the klassoop.
-  // Then the next several instructions would fold away.
-
-  int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
-  int itb_offset = vtable_base;
-  if (round_to_unit != 0) {
-    // hoist first instruction of round_to(scan_temp, BytesPerLong):
-    itb_offset += round_to_unit - wordSize;
-  }
-  int itb_scale = exact_log2(vtableEntry::size() * wordSize);
-  sll(scan_temp, itb_scale,  scan_temp);
-  add(scan_temp, itb_offset, scan_temp);
-  if (round_to_unit != 0) {
-    // Round up to align_object_offset boundary
-    // see code for InstanceKlass::start_of_itable!
-    // Was: round_to(scan_temp, BytesPerLong);
-    // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
-    and3(scan_temp, -round_to_unit, scan_temp);
-  }
-  add(recv_klass, scan_temp, scan_temp);
-
-  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
-  RegisterOrConstant itable_offset = itable_index;
-  itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
-  itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
-  add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
-
-  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
-  //   if (scan->interface() == intf) {
-  //     result = (klass + scan->offset() + itable_index);
-  //   }
-  // }
-  Label L_search, L_found_method;
-
-  for (int peel = 1; peel >= 0; peel--) {
-    // %%%% Could load both offset and interface in one ldx, if they were
-    // in the opposite order.  This would save a load.
-    ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
-
-    // Check that this entry is non-null.  A null entry means that
-    // the receiver class doesn't implement the interface, and wasn't the
-    // same as when the caller was compiled.
-    bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
-    delayed()->cmp(method_result, intf_klass);
-
-    if (peel) {
-      brx(Assembler::equal,    false, Assembler::pt, L_found_method);
-    } else {
-      brx(Assembler::notEqual, false, Assembler::pn, L_search);
-      // (invert the test to fall through to found_method...)
-    }
-    delayed()->add(scan_temp, scan_step, scan_temp);
-
-    if (!peel)  break;
-
-    bind(L_search);
-  }
-
-  bind(L_found_method);
-
-  // Got a hit.
-  int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
-  // scan_temp[-scan_step] points to the vtable offset we need
-  ito_offset -= scan_step;
-  lduw(scan_temp, ito_offset, scan_temp);
-  ld_ptr(recv_klass, scan_temp, method_result);
-
-  if (did_save) {
-    Label L_done;
-    ba(L_done);
-    delayed()->restore();
-
-    bind(L_no_such_interface_restore);
-    ba(L_no_such_interface);
-    delayed()->restore();
-
-    bind(L_done);
-  }
-}
-
-
-// virtual method calling
-void MacroAssembler::lookup_virtual_method(Register recv_klass,
-                                           RegisterOrConstant vtable_index,
-                                           Register method_result) {
-  assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
-  Register sethi_temp = method_result;
-  const int base = (InstanceKlass::vtable_start_offset() * wordSize +
-                    // method pointer offset within the vtable entry:
-                    vtableEntry::method_offset_in_bytes());
-  RegisterOrConstant vtable_offset = vtable_index;
-  // Each of the following three lines potentially generates an instruction.
-  // But the total number of address formation instructions will always be
-  // at most two, and will often be zero.  In any case, it will be optimal.
-  // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
-  // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
-  vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
-  vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
-  Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
-  ld_ptr(vtable_entry_addr, method_result);
-}
-
-
-void MacroAssembler::check_klass_subtype(Register sub_klass,
-                                         Register super_klass,
-                                         Register temp_reg,
-                                         Register temp2_reg,
-                                         Label& L_success) {
-  Register sub_2 = sub_klass;
-  Register sup_2 = super_klass;
-  if (!sub_2->is_global())  sub_2 = L0;
-  if (!sup_2->is_global())  sup_2 = L1;
-  bool did_save = false;
-  if (temp_reg == noreg || temp2_reg == noreg) {
-    temp_reg = L2;
-    temp2_reg = L3;
-    save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
-    sub_klass = sub_2;
-    super_klass = sup_2;
-    did_save = true;
-  }
-  Label L_failure, L_pop_to_failure, L_pop_to_success;
-  check_klass_subtype_fast_path(sub_klass, super_klass,
-                                temp_reg, temp2_reg,
-                                (did_save ? &L_pop_to_success : &L_success),
-                                (did_save ? &L_pop_to_failure : &L_failure), NULL);
-
-  if (!did_save)
-    save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
-  check_klass_subtype_slow_path(sub_2, sup_2,
-                                L2, L3, L4, L5,
-                                NULL, &L_pop_to_failure);
-
-  // on success:
-  bind(L_pop_to_success);
-  restore();
-  ba_short(L_success);
-
-  // on failure:
-  bind(L_pop_to_failure);
-  restore();
-  bind(L_failure);
-}
-
-
-void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
-                                                   Register super_klass,
-                                                   Register temp_reg,
-                                                   Register temp2_reg,
-                                                   Label* L_success,
-                                                   Label* L_failure,
-                                                   Label* L_slow_path,
-                                        RegisterOrConstant super_check_offset) {
-  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
-  int sco_offset = in_bytes(Klass::super_check_offset_offset());
-
-  bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
-  bool need_slow_path = (must_load_sco ||
-                         super_check_offset.constant_or_zero() == sco_offset);
-
-  assert_different_registers(sub_klass, super_klass, temp_reg);
-  if (super_check_offset.is_register()) {
-    assert_different_registers(sub_klass, super_klass, temp_reg,
-                               super_check_offset.as_register());
-  } else if (must_load_sco) {
-    assert(temp2_reg != noreg, "supply either a temp or a register offset");
-  }
-
-  Label L_fallthrough;
-  int label_nulls = 0;
-  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
-  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
-  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
-  assert(label_nulls <= 1 ||
-         (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
-         "at most one NULL in the batch, usually");
-
-  // If the pointers are equal, we are done (e.g., String[] elements).
-  // This self-check enables sharing of secondary supertype arrays among
-  // non-primary types such as array-of-interface.  Otherwise, each such
-  // type would need its own customized SSA.
-  // We move this check to the front of the fast path because many
-  // type checks are in fact trivially successful in this manner,
-  // so we get a nicely predicted branch right at the start of the check.
-  cmp(super_klass, sub_klass);
-  brx(Assembler::equal, false, Assembler::pn, *L_success);
-  delayed()->nop();
-
-  // Check the supertype display:
-  if (must_load_sco) {
-    // The super check offset is always positive...
-    lduw(super_klass, sco_offset, temp2_reg);
-    super_check_offset = RegisterOrConstant(temp2_reg);
-    // super_check_offset is register.
-    assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
-  }
-  ld_ptr(sub_klass, super_check_offset, temp_reg);
-  cmp(super_klass, temp_reg);
-
-  // This check has worked decisively for primary supers.
-  // Secondary supers are sought in the super_cache ('super_cache_addr').
-  // (Secondary supers are interfaces and very deeply nested subtypes.)
-  // This works in the same check above because of a tricky aliasing
-  // between the super_cache and the primary super display elements.
-  // (The 'super_check_addr' can address either, as the case requires.)
-  // Note that the cache is updated below if it does not help us find
-  // what we need immediately.
-  // So if it was a primary super, we can just fail immediately.
-  // Otherwise, it's the slow path for us (no success at this point).
-
-  // Hacked ba(), which may only be used just before L_fallthrough.
-#define FINAL_JUMP(label)            \
-  if (&(label) != &L_fallthrough) {  \
-    ba(label);  delayed()->nop();    \
-  }
-
-  if (super_check_offset.is_register()) {
-    brx(Assembler::equal, false, Assembler::pn, *L_success);
-    delayed()->cmp(super_check_offset.as_register(), sc_offset);
-
-    if (L_failure == &L_fallthrough) {
-      brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
-      delayed()->nop();
-    } else {
-      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
-      delayed()->nop();
-      FINAL_JUMP(*L_slow_path);
-    }
-  } else if (super_check_offset.as_constant() == sc_offset) {
-    // Need a slow path; fast failure is impossible.
-    if (L_slow_path == &L_fallthrough) {
-      brx(Assembler::equal, false, Assembler::pt, *L_success);
-      delayed()->nop();
-    } else {
-      brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
-      delayed()->nop();
-      FINAL_JUMP(*L_success);
-    }
-  } else {
-    // No slow path; it's a fast decision.
-    if (L_failure == &L_fallthrough) {
-      brx(Assembler::equal, false, Assembler::pt, *L_success);
-      delayed()->nop();
-    } else {
-      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
-      delayed()->nop();
-      FINAL_JUMP(*L_success);
-    }
-  }
-
-  bind(L_fallthrough);
-
-#undef FINAL_JUMP
-}
-
-
-void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
-                                                   Register super_klass,
-                                                   Register count_temp,
-                                                   Register scan_temp,
-                                                   Register scratch_reg,
-                                                   Register coop_reg,
-                                                   Label* L_success,
-                                                   Label* L_failure) {
-  assert_different_registers(sub_klass, super_klass,
-                             count_temp, scan_temp, scratch_reg, coop_reg);
-
-  Label L_fallthrough, L_loop;
-  int label_nulls = 0;
-  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
-  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
-  assert(label_nulls <= 1, "at most one NULL in the batch");
-
-  // a couple of useful fields in sub_klass:
-  int ss_offset = in_bytes(Klass::secondary_supers_offset());
-  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
-
-  // Do a linear scan of the secondary super-klass chain.
-  // This code is rarely used, so simplicity is a virtue here.
-
-#ifndef PRODUCT
-  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
-  inc_counter((address) pst_counter, count_temp, scan_temp);
-#endif
-
-  // We will consult the secondary-super array.
-  ld_ptr(sub_klass, ss_offset, scan_temp);
-
-  Register search_key = super_klass;
-
-  // Load the array length.  (Positive movl does right thing on LP64.)
-  lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
-
-  // Check for empty secondary super list
-  tst(count_temp);
-
-  // In the array of super classes elements are pointer sized.
-  int element_size = wordSize;
-
-  // Top of search loop
-  bind(L_loop);
-  br(Assembler::equal, false, Assembler::pn, *L_failure);
-  delayed()->add(scan_temp, element_size, scan_temp);
-
-  // Skip the array header in all array accesses.
-  int elem_offset = Array<Klass*>::base_offset_in_bytes();
-  elem_offset -= element_size;   // the scan pointer was pre-incremented also
-
-  // Load next super to check
-    ld_ptr( scan_temp, elem_offset, scratch_reg );
-
-  // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
-  cmp(scratch_reg, search_key);
-
-  // A miss means we are NOT a subtype and need to keep looping
-  brx(Assembler::notEqual, false, Assembler::pn, L_loop);
-  delayed()->deccc(count_temp); // decrement trip counter in delay slot
-
-  // Success.  Cache the super we found and proceed in triumph.
-  st_ptr(super_klass, sub_klass, sc_offset);
-
-  if (L_success != &L_fallthrough) {
-    ba(*L_success);
-    delayed()->nop();
-  }
-
-  bind(L_fallthrough);
-}
-
-
-RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
-                                                   Register temp_reg,
-                                                   int extra_slot_offset) {
-  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
-  int stackElementSize = Interpreter::stackElementSize;
-  int offset = extra_slot_offset * stackElementSize;
-  if (arg_slot.is_constant()) {
-    offset += arg_slot.as_constant() * stackElementSize;
-    return offset;
-  } else {
-    assert(temp_reg != noreg, "must specify");
-    sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
-    if (offset != 0)
-      add(temp_reg, offset, temp_reg);
-    return temp_reg;
-  }
-}
-
-
-Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
-                                         Register temp_reg,
-                                         int extra_slot_offset) {
-  return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
-}
-
-
-void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
-                                          Register temp_reg,
-                                          Label& done, Label* slow_case,
-                                          BiasedLockingCounters* counters) {
-  assert(UseBiasedLocking, "why call this otherwise?");
-
-  if (PrintBiasedLockingStatistics) {
-    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
-    if (counters == NULL)
-      counters = BiasedLocking::counters();
-  }
-
-  Label cas_label;
-
-  // Biased locking
-  // See whether the lock is currently biased toward our thread and
-  // whether the epoch is still valid
-  // Note that the runtime guarantees sufficient alignment of JavaThread
-  // pointers to allow age to be placed into low bits
-  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
-  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
-  cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
-
-  load_klass(obj_reg, temp_reg);
-  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
-  or3(G2_thread, temp_reg, temp_reg);
-  xor3(mark_reg, temp_reg, temp_reg);
-  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
-  if (counters != NULL) {
-    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
-    // Reload mark_reg as we may need it later
-    ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
-  }
-  brx(Assembler::equal, true, Assembler::pt, done);
-  delayed()->nop();
-
-  Label try_revoke_bias;
-  Label try_rebias;
-  Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
-  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
-
-  // At this point we know that the header has the bias pattern and
-  // that we are not the bias owner in the current epoch. We need to
-  // figure out more details about the state of the header in order to
-  // know what operations can be legally performed on the object's
-  // header.
-
-  // If the low three bits in the xor result aren't clear, that means
-  // the prototype header is no longer biased and we have to revoke
-  // the bias on this object.
-  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
-  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
-
-  // Biasing is still enabled for this data type. See whether the
-  // epoch of the current bias is still valid, meaning that the epoch
-  // bits of the mark word are equal to the epoch bits of the
-  // prototype header. (Note that the prototype header's epoch bits
-  // only change at a safepoint.) If not, attempt to rebias the object
-  // toward the current thread. Note that we must be absolutely sure
-  // that the current epoch is invalid in order to do this because
-  // otherwise the manipulations it performs on the mark word are
-  // illegal.
-  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
-  brx(Assembler::notZero, false, Assembler::pn, try_rebias);
-
-  // The epoch of the current bias is still valid but we know nothing
-  // about the owner; it might be set or it might be clear. Try to
-  // acquire the bias of the object using an atomic operation. If this
-  // fails we will go in to the runtime to revoke the object's bias.
-  // Note that we first construct the presumed unbiased header so we
-  // don't accidentally blow away another thread's valid bias.
-  delayed()->and3(mark_reg,
-                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
-                  mark_reg);
-  or3(G2_thread, mark_reg, temp_reg);
-  casn(mark_addr.base(), mark_reg, temp_reg);
-  // If the biasing toward our thread failed, this means that
-  // another thread succeeded in biasing it toward itself and we
-  // need to revoke that bias. The revocation will occur in the
-  // interpreter runtime in the slow case.
-  cmp(mark_reg, temp_reg);
-  if (counters != NULL) {
-    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
-  }
-  if (slow_case != NULL) {
-    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
-    delayed()->nop();
-  }
-  ba_short(done);
-
-  bind(try_rebias);
-  // At this point we know the epoch has expired, meaning that the
-  // current "bias owner", if any, is actually invalid. Under these
-  // circumstances _only_, we are allowed to use the current header's
-  // value as the comparison value when doing the cas to acquire the
-  // bias in the current epoch. In other words, we allow transfer of
-  // the bias from one thread to another directly in this situation.
-  //
-  // FIXME: due to a lack of registers we currently blow away the age
-  // bits in this situation. Should attempt to preserve them.
-  load_klass(obj_reg, temp_reg);
-  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
-  or3(G2_thread, temp_reg, temp_reg);
-  casn(mark_addr.base(), mark_reg, temp_reg);
-  // If the biasing toward our thread failed, this means that
-  // another thread succeeded in biasing it toward itself and we
-  // need to revoke that bias. The revocation will occur in the
-  // interpreter runtime in the slow case.
-  cmp(mark_reg, temp_reg);
-  if (counters != NULL) {
-    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
-  }
-  if (slow_case != NULL) {
-    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
-    delayed()->nop();
-  }
-  ba_short(done);
-
-  bind(try_revoke_bias);
-  // The prototype mark in the klass doesn't have the bias bit set any
-  // more, indicating that objects of this data type are not supposed
-  // to be biased any more. We are going to try to reset the mark of
-  // this object to the prototype value and fall through to the
-  // CAS-based locking scheme. Note that if our CAS fails, it means
-  // that another thread raced us for the privilege of revoking the
-  // bias of this particular object, so it's okay to continue in the
-  // normal locking code.
-  //
-  // FIXME: due to a lack of registers we currently blow away the age
-  // bits in this situation. Should attempt to preserve them.
-  load_klass(obj_reg, temp_reg);
-  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
-  casn(mark_addr.base(), mark_reg, temp_reg);
-  // Fall through to the normal CAS-based lock, because no matter what
-  // the result of the above CAS, some thread must have succeeded in
-  // removing the bias bit from the object's header.
-  if (counters != NULL) {
-    cmp(mark_reg, temp_reg);
-    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
-  }
-
-  bind(cas_label);
-}
-
-void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
-                                          bool allow_delay_slot_filling) {
-  // Check for biased locking unlock case, which is a no-op
-  // Note: we do not have to check the thread ID for two reasons.
-  // First, the interpreter checks for IllegalMonitorStateException at
-  // a higher level. Second, if the bias was revoked while we held the
-  // lock, the object could not be rebiased toward another thread, so
-  // the bias bit would be clear.
-  ld_ptr(mark_addr, temp_reg);
-  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
-  cmp(temp_reg, markOopDesc::biased_lock_pattern);
-  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
-  delayed();
-  if (!allow_delay_slot_filling) {
-    nop();
-  }
-}
-
-
-// CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
-// Solaris/SPARC's "as".  Another apt name would be cas_ptr()
-
-void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
-  casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
-}
-
-
-
-// compiler_lock_object() and compiler_unlock_object() are direct transliterations
-// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
-// The code could be tightened up considerably.
-//
-// box->dhw disposition - post-conditions at DONE_LABEL.
-// -   Successful inflated lock:  box->dhw != 0.
-//     Any non-zero value suffices.
-//     Consider G2_thread, rsp, boxReg, or unused_mark()
-// -   Successful Stack-lock: box->dhw == mark.
-//     box->dhw must contain the displaced mark word value
-// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
-//     The slow-path fast_enter() and slow_enter() operators
-//     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
-// -   Biased: box->dhw is undefined
-//
-// SPARC refworkload performance - specifically jetstream and scimark - are
-// extremely sensitive to the size of the code emitted by compiler_lock_object
-// and compiler_unlock_object.  Critically, the key factor is code size, not path
-// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
-// effect).
-
-
-void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
-                                          Register Rbox, Register Rscratch,
-                                          BiasedLockingCounters* counters,
-                                          bool try_bias) {
-   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
-
-   verify_oop(Roop);
-   Label done ;
-
-   if (counters != NULL) {
-     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
-   }
-
-   if (EmitSync & 1) {
-     mov(3, Rscratch);
-     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
-     cmp(SP, G0);
-     return ;
-   }
-
-   if (EmitSync & 2) {
-
-     // Fetch object's markword
-     ld_ptr(mark_addr, Rmark);
-
-     if (try_bias) {
-        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
-     }
-
-     // Save Rbox in Rscratch to be used for the cas operation
-     mov(Rbox, Rscratch);
-
-     // set Rmark to markOop | markOopDesc::unlocked_value
-     or3(Rmark, markOopDesc::unlocked_value, Rmark);
-
-     // Initialize the box.  (Must happen before we update the object mark!)
-     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
-
-     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
-     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
-     casx_under_lock(mark_addr.base(), Rmark, Rscratch,
-        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
-
-     // if compare/exchange succeeded we found an unlocked object and we now have locked it
-     // hence we are done
-     cmp(Rmark, Rscratch);
-#ifdef _LP64
-     sub(Rscratch, STACK_BIAS, Rscratch);
-#endif
-     brx(Assembler::equal, false, Assembler::pt, done);
-     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
-
-     // we did not find an unlocked object so see if this is a recursive case
-     // sub(Rscratch, SP, Rscratch);
-     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
-     andcc(Rscratch, 0xfffff003, Rscratch);
-     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
-     bind (done);
-     return ;
-   }
-
-   Label Egress ;
-
-   if (EmitSync & 256) {
-      Label IsInflated ;
-
-      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
-      // Triage: biased, stack-locked, neutral, inflated
-      if (try_bias) {
-        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
-        // Invariant: if control reaches this point in the emitted stream
-        // then Rmark has not been modified.
-      }
-
-      // Store mark into displaced mark field in the on-stack basic-lock "box"
-      // Critically, this must happen before the CAS
-      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
-      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
-      andcc(Rmark, 2, G0);
-      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
-      delayed()->
-
-      // Try stack-lock acquisition.
-      // Beware: the 1st instruction is in a delay slot
-      mov(Rbox,  Rscratch);
-      or3(Rmark, markOopDesc::unlocked_value, Rmark);
-      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
-      casn(mark_addr.base(), Rmark, Rscratch);
-      cmp(Rmark, Rscratch);
-      brx(Assembler::equal, false, Assembler::pt, done);
-      delayed()->sub(Rscratch, SP, Rscratch);
-
-      // Stack-lock attempt failed - check for recursive stack-lock.
-      // See the comments below about how we might remove this case.
-#ifdef _LP64
-      sub(Rscratch, STACK_BIAS, Rscratch);
-#endif
-      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
-      andcc(Rscratch, 0xfffff003, Rscratch);
-      br(Assembler::always, false, Assembler::pt, done);
-      delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
-
-      bind(IsInflated);
-      if (EmitSync & 64) {
-         // If m->owner != null goto IsLocked
-         // Pessimistic form: Test-and-CAS vs CAS
-         // The optimistic form avoids RTS->RTO cache line upgrades.
-         ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
-         andcc(Rscratch, Rscratch, G0);
-         brx(Assembler::notZero, false, Assembler::pn, done);
-         delayed()->nop();
-         // m->owner == null : it's unlocked.
-      }
-
-      // Try to CAS m->owner from null to Self
-      // Invariant: if we acquire the lock then _recursions should be 0.
-      add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
-      mov(G2_thread, Rscratch);
-      casn(Rmark, G0, Rscratch);
-      cmp(Rscratch, G0);
-      // Intentional fall-through into done
-   } else {
-      // Aggressively avoid the Store-before-CAS penalty
-      // Defer the store into box->dhw until after the CAS
-      Label IsInflated, Recursive ;
-
-// Anticipate CAS -- Avoid RTS->RTO upgrade
-// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
-
-      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
-      // Triage: biased, stack-locked, neutral, inflated
-
-      if (try_bias) {
-        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
-        // Invariant: if control reaches this point in the emitted stream
-        // then Rmark has not been modified.
-      }
-      andcc(Rmark, 2, G0);
-      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
-      delayed()->                         // Beware - dangling delay-slot
-
-      // Try stack-lock acquisition.
-      // Transiently install BUSY (0) encoding in the mark word.
-      // if the CAS of 0 into the mark was successful then we execute:
-      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
-      //   ST obj->mark = box    -- overwrite transient 0 value
-      // This presumes TSO, of course.
-
-      mov(0, Rscratch);
-      or3(Rmark, markOopDesc::unlocked_value, Rmark);
-      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
-      casn(mark_addr.base(), Rmark, Rscratch);
-// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
-      cmp(Rscratch, Rmark);
-      brx(Assembler::notZero, false, Assembler::pn, Recursive);
-      delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
-      if (counters != NULL) {
-        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
-      }
-      ba(done);
-      delayed()->st_ptr(Rbox, mark_addr);
-
-      bind(Recursive);
-      // Stack-lock attempt failed - check for recursive stack-lock.
-      // Tests show that we can remove the recursive case with no impact
-      // on refworkload 0.83.  If we need to reduce the size of the code
-      // emitted by compiler_lock_object() the recursive case is perfect
-      // candidate.
-      //
-      // A more extreme idea is to always inflate on stack-lock recursion.
-      // This lets us eliminate the recursive checks in compiler_lock_object
-      // and compiler_unlock_object and the (box->dhw == 0) encoding.
-      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
-      // and showed a performance *increase*.  In the same experiment I eliminated
-      // the fast-path stack-lock code from the interpreter and always passed
-      // control to the "slow" operators in synchronizer.cpp.
-
-      // RScratch contains the fetched obj->mark value from the failed CASN.
-#ifdef _LP64
-      sub(Rscratch, STACK_BIAS, Rscratch);
-#endif
-      sub(Rscratch, SP, Rscratch);
-      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
-      andcc(Rscratch, 0xfffff003, Rscratch);
-      if (counters != NULL) {
-        // Accounting needs the Rscratch register
-        st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
-        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
-        ba_short(done);
-      } else {
-        ba(done);
-        delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
-      }
-
-      bind   (IsInflated);
-      if (EmitSync & 64) {
-         // If m->owner != null goto IsLocked
-         // Test-and-CAS vs CAS
-         // Pessimistic form avoids futile (doomed) CAS attempts
-         // The optimistic form avoids RTS->RTO cache line upgrades.
-         ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
-         andcc(Rscratch, Rscratch, G0);
-         brx(Assembler::notZero, false, Assembler::pn, done);
-         delayed()->nop();
-         // m->owner == null : it's unlocked.
-      }
-
-      // Try to CAS m->owner from null to Self
-      // Invariant: if we acquire the lock then _recursions should be 0.
-      add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
-      mov(G2_thread, Rscratch);
-      casn(Rmark, G0, Rscratch);
-      cmp(Rscratch, G0);
-      // ST box->displaced_header = NonZero.
-      // Any non-zero value suffices:
-      //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
-      st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
-      // Intentional fall-through into done
-   }
-
-   bind   (done);
-}
-
-void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
-                                            Register Rbox, Register Rscratch,
-                                            bool try_bias) {
-   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
-
-   Label done ;
-
-   if (EmitSync & 4) {
-     cmp(SP, G0);
-     return ;
-   }
-
-   if (EmitSync & 8) {
-     if (try_bias) {
-        biased_locking_exit(mark_addr, Rscratch, done);
-     }
-
-     // Test first if it is a fast recursive unlock
-     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
-     br_null_short(Rmark, Assembler::pt, done);
-
-     // Check if it is still a light weight lock, this is is true if we see
-     // the stack address of the basicLock in the markOop of the object
-     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
-     casx_under_lock(mark_addr.base(), Rbox, Rmark,
-       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
-     ba(done);
-     delayed()->cmp(Rbox, Rmark);
-     bind(done);
-     return ;
-   }
-
-   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
-   // is too large performance rolls abruptly off a cliff.
-   // This could be related to inlining policies, code cache management, or
-   // I$ effects.
-   Label LStacked ;
-
-   if (try_bias) {
-      // TODO: eliminate redundant LDs of obj->mark
-      biased_locking_exit(mark_addr, Rscratch, done);
-   }
-
-   ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
-   ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
-   andcc(Rscratch, Rscratch, G0);
-   brx(Assembler::zero, false, Assembler::pn, done);
-   delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
-   andcc(Rmark, 2, G0);
-   brx(Assembler::zero, false, Assembler::pt, LStacked);
-   delayed()->nop();
-
-   // It's inflated
-   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
-   // the ST of 0 into _owner which releases the lock.  This prevents loads
-   // and stores within the critical section from reordering (floating)
-   // past the store that releases the lock.  But TSO is a strong memory model
-   // and that particular flavor of barrier is a noop, so we can safely elide it.
-   // Note that we use 1-0 locking by default for the inflated case.  We
-   // close the resultant (and rare) race by having contented threads in
-   // monitorenter periodically poll _owner.
-   ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
-   ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
-   xor3(Rscratch, G2_thread, Rscratch);
-   orcc(Rbox, Rscratch, Rbox);
-   brx(Assembler::notZero, false, Assembler::pn, done);
-   delayed()->
-   ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
-   ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
-   orcc(Rbox, Rscratch, G0);
-   if (EmitSync & 65536) {
-      Label LSucc ;
-      brx(Assembler::notZero, false, Assembler::pn, LSucc);
-      delayed()->nop();
-      ba(done);
-      delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
-
-      bind(LSucc);
-      st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
-      if (os::is_MP()) { membar (StoreLoad); }
-      ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
-      andcc(Rscratch, Rscratch, G0);
-      brx(Assembler::notZero, false, Assembler::pt, done);
-      delayed()->andcc(G0, G0, G0);
-      add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
-      mov(G2_thread, Rscratch);
-      casn(Rmark, G0, Rscratch);
-      // invert icc.zf and goto done
-      br_notnull(Rscratch, false, Assembler::pt, done);
-      delayed()->cmp(G0, G0);
-      ba(done);
-      delayed()->cmp(G0, 1);
-   } else {
-      brx(Assembler::notZero, false, Assembler::pn, done);
-      delayed()->nop();
-      ba(done);
-      delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
-   }
-
-   bind   (LStacked);
-   // Consider: we could replace the expensive CAS in the exit
-   // path with a simple ST of the displaced mark value fetched from
-   // the on-stack basiclock box.  That admits a race where a thread T2
-   // in the slow lock path -- inflating with monitor M -- could race a
-   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
-   // More precisely T1 in the stack-lock unlock path could "stomp" the
-   // inflated mark value M installed by T2, resulting in an orphan
-   // object monitor M and T2 becoming stranded.  We can remedy that situation
-   // by having T2 periodically poll the object's mark word using timed wait
-   // operations.  If T2 discovers that a stomp has occurred it vacates
-   // the monitor M and wakes any other threads stranded on the now-orphan M.
-   // In addition the monitor scavenger, which performs deflation,
-   // would also need to check for orpan monitors and stranded threads.
-   //
-   // Finally, inflation is also used when T2 needs to assign a hashCode
-   // to O and O is stack-locked by T1.  The "stomp" race could cause
-   // an assigned hashCode value to be lost.  We can avoid that condition
-   // and provide the necessary hashCode stability invariants by ensuring
-   // that hashCode generation is idempotent between copying GCs.
-   // For example we could compute the hashCode of an object O as
-   // O's heap address XOR some high quality RNG value that is refreshed
-   // at GC-time.  The monitor scavenger would install the hashCode
-   // found in any orphan monitors.  Again, the mechanism admits a
-   // lost-update "stomp" WAW race but detects and recovers as needed.
-   //
-   // A prototype implementation showed excellent results, although
-   // the scavenger and timeout code was rather involved.
-
-   casn(mark_addr.base(), Rbox, Rscratch);
-   cmp(Rbox, Rscratch);
-   // Intentional fall through into done ...
-
-   bind(done);
-}
-
-
-
-void MacroAssembler::print_CPU_state() {
-  // %%%%% need to implement this
-}
-
-void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
-  // %%%%% need to implement this
-}
-
-void MacroAssembler::push_IU_state() {
-  // %%%%% need to implement this
-}
-
-
-void MacroAssembler::pop_IU_state() {
-  // %%%%% need to implement this
-}
-
-
-void MacroAssembler::push_FPU_state() {
-  // %%%%% need to implement this
-}
-
-
-void MacroAssembler::pop_FPU_state() {
-  // %%%%% need to implement this
-}
-
-
-void MacroAssembler::push_CPU_state() {
-  // %%%%% need to implement this
-}
-
-
-void MacroAssembler::pop_CPU_state() {
-  // %%%%% need to implement this
-}
-
-
-
-void MacroAssembler::verify_tlab() {
-#ifdef ASSERT
-  if (UseTLAB && VerifyOops) {
-    Label next, next2, ok;
-    Register t1 = L0;
-    Register t2 = L1;
-    Register t3 = L2;
-
-    save_frame(0);
-    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
-    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
-    or3(t1, t2, t3);
-    cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
-    STOP("assert(top >= start)");
-    should_not_reach_here();
-
-    bind(next);
-    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
-    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
-    or3(t3, t2, t3);
-    cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
-    STOP("assert(top <= end)");
-    should_not_reach_here();
-
-    bind(next2);
-    and3(t3, MinObjAlignmentInBytesMask, t3);
-    cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
-    STOP("assert(aligned)");
-    should_not_reach_here();
-
-    bind(ok);
-    restore();
-  }
-#endif
-}
-
-
-void MacroAssembler::eden_allocate(
-  Register obj,                        // result: pointer to object after successful allocation
-  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
-  int      con_size_in_bytes,          // object size in bytes if   known at compile time
-  Register t1,                         // temp register
-  Register t2,                         // temp register
-  Label&   slow_case                   // continuation point if fast allocation fails
-){
-  // make sure arguments make sense
-  assert_different_registers(obj, var_size_in_bytes, t1, t2);
-  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
-  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
-
-  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
-    // No allocation in the shared eden.
-    ba_short(slow_case);
-  } else {
-    // get eden boundaries
-    // note: we need both top & top_addr!
-    const Register top_addr = t1;
-    const Register end      = t2;
-
-    CollectedHeap* ch = Universe::heap();
-    set((intx)ch->top_addr(), top_addr);
-    intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
-    ld_ptr(top_addr, delta, end);
-    ld_ptr(top_addr, 0, obj);
-
-    // try to allocate
-    Label retry;
-    bind(retry);
-#ifdef ASSERT
-    // make sure eden top is properly aligned
-    {
-      Label L;
-      btst(MinObjAlignmentInBytesMask, obj);
-      br(Assembler::zero, false, Assembler::pt, L);
-      delayed()->nop();
-      STOP("eden top is not properly aligned");
-      bind(L);
-    }
-#endif // ASSERT
-    const Register free = end;
-    sub(end, obj, free);                                   // compute amount of free space
-    if (var_size_in_bytes->is_valid()) {
-      // size is unknown at compile time
-      cmp(free, var_size_in_bytes);
-      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
-      delayed()->add(obj, var_size_in_bytes, end);
-    } else {
-      // size is known at compile time
-      cmp(free, con_size_in_bytes);
-      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
-      delayed()->add(obj, con_size_in_bytes, end);
-    }
-    // Compare obj with the value at top_addr; if still equal, swap the value of
-    // end with the value at top_addr. If not equal, read the value at top_addr
-    // into end.
-    casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
-    // if someone beat us on the allocation, try again, otherwise continue
-    cmp(obj, end);
-    brx(Assembler::notEqual, false, Assembler::pn, retry);
-    delayed()->mov(end, obj);                              // nop if successfull since obj == end
-
-#ifdef ASSERT
-    // make sure eden top is properly aligned
-    {
-      Label L;
-      const Register top_addr = t1;
-
-      set((intx)ch->top_addr(), top_addr);
-      ld_ptr(top_addr, 0, top_addr);
-      btst(MinObjAlignmentInBytesMask, top_addr);
-      br(Assembler::zero, false, Assembler::pt, L);
-      delayed()->nop();
-      STOP("eden top is not properly aligned");
-      bind(L);
-    }
-#endif // ASSERT
-  }
-}
-
-
-void MacroAssembler::tlab_allocate(
-  Register obj,                        // result: pointer to object after successful allocation
-  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
-  int      con_size_in_bytes,          // object size in bytes if   known at compile time
-  Register t1,                         // temp register
-  Label&   slow_case                   // continuation point if fast allocation fails
-){
-  // make sure arguments make sense
-  assert_different_registers(obj, var_size_in_bytes, t1);
-  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
-  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
-
-  const Register free  = t1;
-
-  verify_tlab();
-
-  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
-
-  // calculate amount of free space
-  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
-  sub(free, obj, free);
-
-  Label done;
-  if (var_size_in_bytes == noreg) {
-    cmp(free, con_size_in_bytes);
-  } else {
-    cmp(free, var_size_in_bytes);
-  }
-  br(Assembler::less, false, Assembler::pn, slow_case);
-  // calculate the new top pointer
-  if (var_size_in_bytes == noreg) {
-    delayed()->add(obj, con_size_in_bytes, free);
-  } else {
-    delayed()->add(obj, var_size_in_bytes, free);
-  }
-
-  bind(done);
-
-#ifdef ASSERT
-  // make sure new free pointer is properly aligned
-  {
-    Label L;
-    btst(MinObjAlignmentInBytesMask, free);
-    br(Assembler::zero, false, Assembler::pt, L);
-    delayed()->nop();
-    STOP("updated TLAB free is not properly aligned");
-    bind(L);
-  }
-#endif // ASSERT
-
-  // update the tlab top pointer
-  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
-  verify_tlab();
-}
-
-
-void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
-  Register top = O0;
-  Register t1 = G1;
-  Register t2 = G3;
-  Register t3 = O1;
-  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
-  Label do_refill, discard_tlab;
-
-  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
-    // No allocation in the shared eden.
-    ba_short(slow_case);
-  }
-
-  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
-  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
-  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
-
-  // calculate amount of free space
-  sub(t1, top, t1);
-  srl_ptr(t1, LogHeapWordSize, t1);
-
-  // Retain tlab and allocate object in shared space if
-  // the amount free in the tlab is too large to discard.
-  cmp(t1, t2);
-  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
-
-  // increment waste limit to prevent getting stuck on this slow path
-  delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
-  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
-  if (TLABStats) {
-    // increment number of slow_allocations
-    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
-    add(t2, 1, t2);
-    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
-  }
-  ba_short(try_eden);
-
-  bind(discard_tlab);
-  if (TLABStats) {
-    // increment number of refills
-    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
-    add(t2, 1, t2);
-    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
-    // accumulate wastage
-    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
-    add(t2, t1, t2);
-    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
-  }
-
-  // if tlab is currently allocated (top or end != null) then
-  // fill [top, end + alignment_reserve) with array object
-  br_null_short(top, Assembler::pn, do_refill);
-
-  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
-  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
-  // set klass to intArrayKlass
-  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
-  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
-  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
-  st(t1, top, arrayOopDesc::length_offset_in_bytes());
-  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
-  ld_ptr(t2, 0, t2);
-  // store klass last.  concurrent gcs assumes klass length is valid if
-  // klass field is not null.
-  store_klass(t2, top);
-  verify_oop(top);
-
-  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
-  sub(top, t1, t1); // size of tlab's allocated portion
-  incr_allocated_bytes(t1, t2, t3);
-
-  // refill the tlab with an eden allocation
-  bind(do_refill);
-  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
-  sll_ptr(t1, LogHeapWordSize, t1);
-  // allocate new tlab, address returned in top
-  eden_allocate(top, t1, 0, t2, t3, slow_case);
-
-  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
-  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
-#ifdef ASSERT
-  // check that tlab_size (t1) is still valid
-  {
-    Label ok;
-    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
-    sll_ptr(t2, LogHeapWordSize, t2);
-    cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
-    STOP("assert(t1 == tlab_size)");
-    should_not_reach_here();
-
-    bind(ok);
-  }
-#endif // ASSERT
-  add(top, t1, top); // t1 is tlab_size
-  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
-  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
-  verify_tlab();
-  ba_short(retry);
-}
-
-void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
-                                          Register t1, Register t2) {
-  // Bump total bytes allocated by this thread
-  assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
-  assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
-  // v8 support has gone the way of the dodo
-  ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
-  add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
-  stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
-}
-
-Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
-  switch (cond) {
-    // Note some conditions are synonyms for others
-    case Assembler::never:                return Assembler::always;
-    case Assembler::zero:                 return Assembler::notZero;
-    case Assembler::lessEqual:            return Assembler::greater;
-    case Assembler::less:                 return Assembler::greaterEqual;
-    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
-    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
-    case Assembler::negative:             return Assembler::positive;
-    case Assembler::overflowSet:          return Assembler::overflowClear;
-    case Assembler::always:               return Assembler::never;
-    case Assembler::notZero:              return Assembler::zero;
-    case Assembler::greater:              return Assembler::lessEqual;
-    case Assembler::greaterEqual:         return Assembler::less;
-    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
-    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
-    case Assembler::positive:             return Assembler::negative;
-    case Assembler::overflowClear:        return Assembler::overflowSet;
-  }
-
-  ShouldNotReachHere(); return Assembler::overflowClear;
-}
-
-void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
-                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
-  Condition negated_cond = negate_condition(cond);
-  Label L;
-  brx(negated_cond, false, Assembler::pt, L);
-  delayed()->nop();
-  inc_counter(counter_ptr, Rtmp1, Rtmp2);
-  bind(L);
-}
-
-void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
-  AddressLiteral addrlit(counter_addr);
-  sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
-  Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
-  ld(addr, Rtmp2);
-  inc(Rtmp2);
-  st(Rtmp2, addr);
-}
-
-void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
-  inc_counter((address) counter_addr, Rtmp1, Rtmp2);
-}
-
-SkipIfEqual::SkipIfEqual(
-    MacroAssembler* masm, Register temp, const bool* flag_addr,
-    Assembler::Condition condition) {
-  _masm = masm;
-  AddressLiteral flag(flag_addr);
-  _masm->sethi(flag, temp);
-  _masm->ldub(temp, flag.low10(), temp);
-  _masm->tst(temp);
-  _masm->br(condition, false, Assembler::pt, _label);
-  _masm->delayed()->nop();
-}
-
-SkipIfEqual::~SkipIfEqual() {
-  _masm->bind(_label);
-}
-
-
-// Writes to stack successive pages until offset reached to check for
-// stack overflow + shadow pages.  This clobbers tsp and scratch.
-void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
-                                     Register Rscratch) {
-  // Use stack pointer in temp stack pointer
-  mov(SP, Rtsp);
-
-  // Bang stack for total size given plus stack shadow page size.
-  // Bang one page at a time because a large size can overflow yellow and
-  // red zones (the bang will fail but stack overflow handling can't tell that
-  // it was a stack overflow bang vs a regular segv).
-  int offset = os::vm_page_size();
-  Register Roffset = Rscratch;
-
-  Label loop;
-  bind(loop);
-  set((-offset)+STACK_BIAS, Rscratch);
-  st(G0, Rtsp, Rscratch);
-  set(offset, Roffset);
-  sub(Rsize, Roffset, Rsize);
-  cmp(Rsize, G0);
-  br(Assembler::greater, false, Assembler::pn, loop);
-  delayed()->sub(Rtsp, Roffset, Rtsp);
-
-  // Bang down shadow pages too.
-  // The -1 because we already subtracted 1 page.
-  for (int i = 0; i< StackShadowPages-1; i++) {
-    set((-i*offset)+STACK_BIAS, Rscratch);
-    st(G0, Rtsp, Rscratch);
-  }
-}
-
-///////////////////////////////////////////////////////////////////////////////////
-#ifndef SERIALGC
-
-static address satb_log_enqueue_with_frame = NULL;
-static u_char* satb_log_enqueue_with_frame_end = NULL;
-
-static address satb_log_enqueue_frameless = NULL;
-static u_char* satb_log_enqueue_frameless_end = NULL;
-
-static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
-
-static void generate_satb_log_enqueue(bool with_frame) {
-  BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
-  CodeBuffer buf(bb);
-  MacroAssembler masm(&buf);
-
-#define __ masm.
-
-  address start = __ pc();
-  Register pre_val;
-
-  Label refill, restart;
-  if (with_frame) {
-    __ save_frame(0);
-    pre_val = I0;  // Was O0 before the save.
-  } else {
-    pre_val = O0;
-  }
-
-  int satb_q_index_byte_offset =
-    in_bytes(JavaThread::satb_mark_queue_offset() +
-             PtrQueue::byte_offset_of_index());
-
-  int satb_q_buf_byte_offset =
-    in_bytes(JavaThread::satb_mark_queue_offset() +
-             PtrQueue::byte_offset_of_buf());
-
-  assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
-         in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
-         "check sizes in assembly below");
-
-  __ bind(restart);
-
-  // Load the index into the SATB buffer. PtrQueue::_index is a size_t
-  // so ld_ptr is appropriate.
-  __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
-
-  // index == 0?
-  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
-
-  __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
-  __ sub(L0, oopSize, L0);
-
-  __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
-  if (!with_frame) {
-    // Use return-from-leaf
-    __ retl();
-    __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
-  } else {
-    // Not delayed.
-    __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
-  }
-  if (with_frame) {
-    __ ret();
-    __ delayed()->restore();
-  }
-  __ bind(refill);
-
-  address handle_zero =
-    CAST_FROM_FN_PTR(address,
-                     &SATBMarkQueueSet::handle_zero_index_for_thread);
-  // This should be rare enough that we can afford to save all the
-  // scratch registers that the calling context might be using.
-  __ mov(G1_scratch, L0);
-  __ mov(G3_scratch, L1);
-  __ mov(G4, L2);
-  // We need the value of O0 above (for the write into the buffer), so we
-  // save and restore it.
-  __ mov(O0, L3);
-  // Since the call will overwrite O7, we save and restore that, as well.
-  __ mov(O7, L4);
-  __ call_VM_leaf(L5, handle_zero, G2_thread);
-  __ mov(L0, G1_scratch);
-  __ mov(L1, G3_scratch);
-  __ mov(L2, G4);
-  __ mov(L3, O0);
-  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
-  __ delayed()->mov(L4, O7);
-
-  if (with_frame) {
-    satb_log_enqueue_with_frame = start;
-    satb_log_enqueue_with_frame_end = __ pc();
-  } else {
-    satb_log_enqueue_frameless = start;
-    satb_log_enqueue_frameless_end = __ pc();
-  }
-
-#undef __
-}
-
-static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
-  if (with_frame) {
-    if (satb_log_enqueue_with_frame == 0) {
-      generate_satb_log_enqueue(with_frame);
-      assert(satb_log_enqueue_with_frame != 0, "postcondition.");
-      if (G1SATBPrintStubs) {
-        tty->print_cr("Generated with-frame satb enqueue:");
-        Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
-                             satb_log_enqueue_with_frame_end,
-                             tty);
-      }
-    }
-  } else {
-    if (satb_log_enqueue_frameless == 0) {
-      generate_satb_log_enqueue(with_frame);
-      assert(satb_log_enqueue_frameless != 0, "postcondition.");
-      if (G1SATBPrintStubs) {
-        tty->print_cr("Generated frameless satb enqueue:");
-        Disassembler::decode((u_char*)satb_log_enqueue_frameless,
-                             satb_log_enqueue_frameless_end,
-                             tty);
-      }
-    }
-  }
-}
-
-void MacroAssembler::g1_write_barrier_pre(Register obj,
-                                          Register index,
-                                          int offset,
-                                          Register pre_val,
-                                          Register tmp,
-                                          bool preserve_o_regs) {
-  Label filtered;
-
-  if (obj == noreg) {
-    // We are not loading the previous value so make
-    // sure that we don't trash the value in pre_val
-    // with the code below.
-    assert_different_registers(pre_val, tmp);
-  } else {
-    // We will be loading the previous value
-    // in this code so...
-    assert(offset == 0 || index == noreg, "choose one");
-    assert(pre_val == noreg, "check this code");
-  }
-
-  // Is marking active?
-  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
-    ld(G2,
-       in_bytes(JavaThread::satb_mark_queue_offset() +
-                PtrQueue::byte_offset_of_active()),
-       tmp);
-  } else {
-    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
-              "Assumption");
-    ldsb(G2,
-         in_bytes(JavaThread::satb_mark_queue_offset() +
-                  PtrQueue::byte_offset_of_active()),
-         tmp);
-  }
-
-  // Is marking active?
-  cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
-
-  // Do we need to load the previous value?
-  if (obj != noreg) {
-    // Load the previous value...
-    if (index == noreg) {
-      if (Assembler::is_simm13(offset)) {
-        load_heap_oop(obj, offset, tmp);
-      } else {
-        set(offset, tmp);
-        load_heap_oop(obj, tmp, tmp);
-      }
-    } else {
-      load_heap_oop(obj, index, tmp);
-    }
-    // Previous value has been loaded into tmp
-    pre_val = tmp;
-  }
-
-  assert(pre_val != noreg, "must have a real register");
-
-  // Is the previous value null?
-  cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
-
-  // OK, it's not filtered, so we'll need to call enqueue.  In the normal
-  // case, pre_val will be a scratch G-reg, but there are some cases in
-  // which it's an O-reg.  In the first case, do a normal call.  In the
-  // latter, do a save here and call the frameless version.
-
-  guarantee(pre_val->is_global() || pre_val->is_out(),
-            "Or we need to think harder.");
-
-  if (pre_val->is_global() && !preserve_o_regs) {
-    generate_satb_log_enqueue_if_necessary(true); // with frame
-
-    call(satb_log_enqueue_with_frame);
-    delayed()->mov(pre_val, O0);
-  } else {
-    generate_satb_log_enqueue_if_necessary(false); // frameless
-
-    save_frame(0);
-    call(satb_log_enqueue_frameless);
-    delayed()->mov(pre_val->after_save(), O0);
-    restore();
-  }
-
-  bind(filtered);
-}
-
-static address dirty_card_log_enqueue = 0;
-static u_char* dirty_card_log_enqueue_end = 0;
-
-// This gets to assume that o0 contains the object address.
-static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
-  BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
-  CodeBuffer buf(bb);
-  MacroAssembler masm(&buf);
-#define __ masm.
-  address start = __ pc();
-
-  Label not_already_dirty, restart, refill;
-
-#ifdef _LP64
-  __ srlx(O0, CardTableModRefBS::card_shift, O0);
-#else
-  __ srl(O0, CardTableModRefBS::card_shift, O0);
-#endif
-  AddressLiteral addrlit(byte_map_base);
-  __ set(addrlit, O1); // O1 := <card table base>
-  __ ldub(O0, O1, O2); // O2 := [O0 + O1]
-
-  assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
-  __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
-
-  // We didn't take the branch, so we're already dirty: return.
-  // Use return-from-leaf
-  __ retl();
-  __ delayed()->nop();
-
-  // Not dirty.
-  __ bind(not_already_dirty);
-
-  // Get O0 + O1 into a reg by itself
-  __ add(O0, O1, O3);
-
-  // First, dirty it.
-  __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
-
-  int dirty_card_q_index_byte_offset =
-    in_bytes(JavaThread::dirty_card_queue_offset() +
-             PtrQueue::byte_offset_of_index());
-  int dirty_card_q_buf_byte_offset =
-    in_bytes(JavaThread::dirty_card_queue_offset() +
-             PtrQueue::byte_offset_of_buf());
-  __ bind(restart);
-
-  // Load the index into the update buffer. PtrQueue::_index is
-  // a size_t so ld_ptr is appropriate here.
-  __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
-
-  // index == 0?
-  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
-
-  __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
-  __ sub(L0, oopSize, L0);
-
-  __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
-  // Use return-from-leaf
-  __ retl();
-  __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
-
-  __ bind(refill);
-  address handle_zero =
-    CAST_FROM_FN_PTR(address,
-                     &DirtyCardQueueSet::handle_zero_index_for_thread);
-  // This should be rare enough that we can afford to save all the
-  // scratch registers that the calling context might be using.
-  __ mov(G1_scratch, L3);
-  __ mov(G3_scratch, L5);
-  // We need the value of O3 above (for the write into the buffer), so we
-  // save and restore it.
-  __ mov(O3, L6);
-  // Since the call will overwrite O7, we save and restore that, as well.
-  __ mov(O7, L4);
-
-  __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
-  __ mov(L3, G1_scratch);
-  __ mov(L5, G3_scratch);
-  __ mov(L6, O3);
-  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
-  __ delayed()->mov(L4, O7);
-
-  dirty_card_log_enqueue = start;
-  dirty_card_log_enqueue_end = __ pc();
-  // XXX Should have a guarantee here about not going off the end!
-  // Does it already do so?  Do an experiment...
-
-#undef __
-
-}
-
-static inline void
-generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
-  if (dirty_card_log_enqueue == 0) {
-    generate_dirty_card_log_enqueue(byte_map_base);
-    assert(dirty_card_log_enqueue != 0, "postcondition.");
-    if (G1SATBPrintStubs) {
-      tty->print_cr("Generated dirty_card enqueue:");
-      Disassembler::decode((u_char*)dirty_card_log_enqueue,
-                           dirty_card_log_enqueue_end,
-                           tty);
-    }
-  }
-}
-
-
-void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
-
-  Label filtered;
-  MacroAssembler* post_filter_masm = this;
-
-  if (new_val == G0) return;
-
-  G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
-  assert(bs->kind() == BarrierSet::G1SATBCT ||
-         bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
-
-  if (G1RSBarrierRegionFilter) {
-    xor3(store_addr, new_val, tmp);
-#ifdef _LP64
-    srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
-#else
-    srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
-#endif
-
-    // XXX Should I predict this taken or not?  Does it matter?
-    cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
-  }
-
-  // If the "store_addr" register is an "in" or "local" register, move it to
-  // a scratch reg so we can pass it as an argument.
-  bool use_scr = !(store_addr->is_global() || store_addr->is_out());
-  // Pick a scratch register different from "tmp".
-  Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
-  // Make sure we use up the delay slot!
-  if (use_scr) {
-    post_filter_masm->mov(store_addr, scr);
-  } else {
-    post_filter_masm->nop();
-  }
-  generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
-  save_frame(0);
-  call(dirty_card_log_enqueue);
-  if (use_scr) {
-    delayed()->mov(scr, O0);
-  } else {
-    delayed()->mov(store_addr->after_save(), O0);
-  }
-  restore();
-
-  bind(filtered);
-}
-
-#endif  // SERIALGC
-///////////////////////////////////////////////////////////////////////////////////
-
-void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
-  // If we're writing constant NULL, we can skip the write barrier.
-  if (new_val == G0) return;
-  CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
-  assert(bs->kind() == BarrierSet::CardTableModRef ||
-         bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
-  card_table_write(bs->byte_map_base, tmp, store_addr);
-}
-
-void MacroAssembler::load_klass(Register src_oop, Register klass) {
-  // The number of bytes in this code is used by
-  // MachCallDynamicJavaNode::ret_addr_offset()
-  // if this changes, change that.
-  if (UseCompressedKlassPointers) {
-    lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
-    decode_klass_not_null(klass);
-  } else {
-    ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
-  }
-}
-
-void MacroAssembler::store_klass(Register klass, Register dst_oop) {
-  if (UseCompressedKlassPointers) {
-    assert(dst_oop != klass, "not enough registers");
-    encode_klass_not_null(klass);
-    st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
-  } else {
-    st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
-  }
-}
-
-void MacroAssembler::store_klass_gap(Register s, Register d) {
-  if (UseCompressedKlassPointers) {
-    assert(s != d, "not enough registers");
-    st(s, d, oopDesc::klass_gap_offset_in_bytes());
-  }
-}
-
-void MacroAssembler::load_heap_oop(const Address& s, Register d) {
-  if (UseCompressedOops) {
-    lduw(s, d);
-    decode_heap_oop(d);
-  } else {
-    ld_ptr(s, d);
-  }
-}
-
-void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
-   if (UseCompressedOops) {
-    lduw(s1, s2, d);
-    decode_heap_oop(d, d);
-  } else {
-    ld_ptr(s1, s2, d);
-  }
-}
-
-void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
-   if (UseCompressedOops) {
-    lduw(s1, simm13a, d);
-    decode_heap_oop(d, d);
-  } else {
-    ld_ptr(s1, simm13a, d);
-  }
-}
-
-void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
-  if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
-  else                   load_heap_oop(s1, s2.as_register(), d);
-}
-
-void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
-  if (UseCompressedOops) {
-    assert(s1 != d && s2 != d, "not enough registers");
-    encode_heap_oop(d);
-    st(d, s1, s2);
-  } else {
-    st_ptr(d, s1, s2);
-  }
-}
-
-void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
-  if (UseCompressedOops) {
-    assert(s1 != d, "not enough registers");
-    encode_heap_oop(d);
-    st(d, s1, simm13a);
-  } else {
-    st_ptr(d, s1, simm13a);
-  }
-}
-
-void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
-  if (UseCompressedOops) {
-    assert(a.base() != d, "not enough registers");
-    encode_heap_oop(d);
-    st(d, a, offset);
-  } else {
-    st_ptr(d, a, offset);
-  }
-}
-
-
-void MacroAssembler::encode_heap_oop(Register src, Register dst) {
-  assert (UseCompressedOops, "must be compressed");
-  assert (Universe::heap() != NULL, "java heap should be initialized");
-  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
-  verify_oop(src);
-  if (Universe::narrow_oop_base() == NULL) {
-    srlx(src, LogMinObjAlignmentInBytes, dst);
-    return;
-  }
-  Label done;
-  if (src == dst) {
-    // optimize for frequent case src == dst
-    bpr(rc_nz, true, Assembler::pt, src, done);
-    delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
-    bind(done);
-    srlx(src, LogMinObjAlignmentInBytes, dst);
-  } else {
-    bpr(rc_z, false, Assembler::pn, src, done);
-    delayed() -> mov(G0, dst);
-    // could be moved before branch, and annulate delay,
-    // but may add some unneeded work decoding null
-    sub(src, G6_heapbase, dst);
-    srlx(dst, LogMinObjAlignmentInBytes, dst);
-    bind(done);
-  }
-}
-
-
-void MacroAssembler::encode_heap_oop_not_null(Register r) {
-  assert (UseCompressedOops, "must be compressed");
-  assert (Universe::heap() != NULL, "java heap should be initialized");
-  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
-  verify_oop(r);
-  if (Universe::narrow_oop_base() != NULL)
-    sub(r, G6_heapbase, r);
-  srlx(r, LogMinObjAlignmentInBytes, r);
-}
-
-void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
-  assert (UseCompressedOops, "must be compressed");
-  assert (Universe::heap() != NULL, "java heap should be initialized");
-  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
-  verify_oop(src);
-  if (Universe::narrow_oop_base() == NULL) {
-    srlx(src, LogMinObjAlignmentInBytes, dst);
-  } else {
-    sub(src, G6_heapbase, dst);
-    srlx(dst, LogMinObjAlignmentInBytes, dst);
-  }
-}
-
-// Same algorithm as oops.inline.hpp decode_heap_oop.
-void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
-  assert (UseCompressedOops, "must be compressed");
-  assert (Universe::heap() != NULL, "java heap should be initialized");
-  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
-  sllx(src, LogMinObjAlignmentInBytes, dst);
-  if (Universe::narrow_oop_base() != NULL) {
-    Label done;
-    bpr(rc_nz, true, Assembler::pt, dst, done);
-    delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
-    bind(done);
-  }
-  verify_oop(dst);
-}
-
-void  MacroAssembler::decode_heap_oop_not_null(Register r) {
-  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
-  // pd_code_size_limit.
-  // Also do not verify_oop as this is called by verify_oop.
-  assert (UseCompressedOops, "must be compressed");
-  assert (Universe::heap() != NULL, "java heap should be initialized");
-  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
-  sllx(r, LogMinObjAlignmentInBytes, r);
-  if (Universe::narrow_oop_base() != NULL)
-    add(r, G6_heapbase, r);
-}
-
-void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
-  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
-  // pd_code_size_limit.
-  // Also do not verify_oop as this is called by verify_oop.
-  assert (UseCompressedOops, "must be compressed");
-  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
-  sllx(src, LogMinObjAlignmentInBytes, dst);
-  if (Universe::narrow_oop_base() != NULL)
-    add(dst, G6_heapbase, dst);
-}
-
-void MacroAssembler::encode_klass_not_null(Register r) {
-  assert(Metaspace::is_initialized(), "metaspace should be initialized");
-  assert (UseCompressedKlassPointers, "must be compressed");
-  assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
-  if (Universe::narrow_klass_base() != NULL)
-    sub(r, G6_heapbase, r);
-  srlx(r, LogKlassAlignmentInBytes, r);
-}
-
-void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
-  assert(Metaspace::is_initialized(), "metaspace should be initialized");
-  assert (UseCompressedKlassPointers, "must be compressed");
-  assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
-  if (Universe::narrow_klass_base() == NULL) {
-    srlx(src, LogKlassAlignmentInBytes, dst);
-  } else {
-    sub(src, G6_heapbase, dst);
-    srlx(dst, LogKlassAlignmentInBytes, dst);
-  }
-}
-
-void  MacroAssembler::decode_klass_not_null(Register r) {
-  assert(Metaspace::is_initialized(), "metaspace should be initialized");
-  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
-  // pd_code_size_limit.
-  assert (UseCompressedKlassPointers, "must be compressed");
-  assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
-  sllx(r, LogKlassAlignmentInBytes, r);
-  if (Universe::narrow_klass_base() != NULL)
-    add(r, G6_heapbase, r);
-}
-
-void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
-  assert(Metaspace::is_initialized(), "metaspace should be initialized");
-  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
-  // pd_code_size_limit.
-  assert (UseCompressedKlassPointers, "must be compressed");
-  assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
-  sllx(src, LogKlassAlignmentInBytes, dst);
-  if (Universe::narrow_klass_base() != NULL)
-    add(dst, G6_heapbase, dst);
-}
-
-void MacroAssembler::reinit_heapbase() {
-  if (UseCompressedOops || UseCompressedKlassPointers) {
-    AddressLiteral base(Universe::narrow_ptrs_base_addr());
-    load_ptr_contents(base, G6_heapbase);
-  }
-}
-
-// Compare char[] arrays aligned to 4 bytes.
-void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
-                                        Register limit, Register result,
-                                        Register chr1, Register chr2, Label& Ldone) {
-  Label Lvector, Lloop;
-  assert(chr1 == result, "should be the same");
-
-  // Note: limit contains number of bytes (2*char_elements) != 0.
-  andcc(limit, 0x2, chr1); // trailing character ?
-  br(Assembler::zero, false, Assembler::pt, Lvector);
-  delayed()->nop();
-
-  // compare the trailing char
-  sub(limit, sizeof(jchar), limit);
-  lduh(ary1, limit, chr1);
-  lduh(ary2, limit, chr2);
-  cmp(chr1, chr2);
-  br(Assembler::notEqual, true, Assembler::pt, Ldone);
-  delayed()->mov(G0, result);     // not equal
-
-  // only one char ?
-  cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
-  delayed()->add(G0, 1, result); // zero-length arrays are equal
-
-  // word by word compare, dont't need alignment check
-  bind(Lvector);
-  // Shift ary1 and ary2 to the end of the arrays, negate limit
-  add(ary1, limit, ary1);
-  add(ary2, limit, ary2);
-  neg(limit, limit);
-
-  lduw(ary1, limit, chr1);
-  bind(Lloop);
-  lduw(ary2, limit, chr2);
-  cmp(chr1, chr2);
-  br(Assembler::notEqual, true, Assembler::pt, Ldone);
-  delayed()->mov(G0, result);     // not equal
-  inccc(limit, 2*sizeof(jchar));
-  // annul LDUW if branch is not taken to prevent access past end of array
-  br(Assembler::notZero, true, Assembler::pt, Lloop);
-  delayed()->lduw(ary1, limit, chr1); // hoisted
-
-  // Caller should set it:
-  // add(G0, 1, result); // equals
-}
-
-// Use BIS for zeroing (count is in bytes).
-void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
-  assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
-  Register end = count;
-  int cache_line_size = VM_Version::prefetch_data_size();
-  // Minimum count when BIS zeroing can be used since
-  // it needs membar which is expensive.
-  int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
-
-  Label small_loop;
-  // Check if count is negative (dead code) or zero.
-  // Note, count uses 64bit in 64 bit VM.
-  cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
-
-  // Use BIS zeroing only for big arrays since it requires membar.
-  if (Assembler::is_simm13(block_zero_size)) { // < 4096
-    cmp(count, block_zero_size);
-  } else {
-    set(block_zero_size, temp);
-    cmp(count, temp);
-  }
-  br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
-  delayed()->add(to, count, end);
-
-  // Note: size is >= three (32 bytes) cache lines.
-
-  // Clean the beginning of space up to next cache line.
-  for (int offs = 0; offs < cache_line_size; offs += 8) {
-    stx(G0, to, offs);
-  }
-
-  // align to next cache line
-  add(to, cache_line_size, to);
-  and3(to, -cache_line_size, to);
-
-  // Note: size left >= two (32 bytes) cache lines.
-
-  // BIS should not be used to zero tail (64 bytes)
-  // to avoid zeroing a header of the following object.
-  sub(end, (cache_line_size*2)-8, end);
-
-  Label bis_loop;
-  bind(bis_loop);
-  stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
-  add(to, cache_line_size, to);
-  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
-
-  // BIS needs membar.
-  membar(Assembler::StoreLoad);
-
-  add(end, (cache_line_size*2)-8, end); // restore end
-  cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
-
-  // Clean the tail.
-  bind(small_loop);
-  stx(G0, to, 0);
-  add(to, 8, to);
-  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
-  nop(); // Separate short branches
-}
--- a/hotspot/src/cpu/sparc/vm/assembler_sparc.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/assembler_sparc.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -25,554 +25,13 @@
 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
 
-class BiasedLockingCounters;
-
-// <sys/trap.h> promises that the system will not use traps 16-31
-#define ST_RESERVED_FOR_USER_0 0x10
-
-/* Written: David Ungar 4/19/97 */
-
-// Contains all the definitions needed for sparc assembly code generation.
-
-// Register aliases for parts of the system:
-
-// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
-// across context switches in V8+ ABI.  Of course, there are no 64 bit regs
-// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
-
-// g2-g4 are scratch registers called "application globals".  Their
-// meaning is reserved to the "compilation system"--which means us!
-// They are are not supposed to be touched by ordinary C code, although
-// highly-optimized C code might steal them for temps.  They are safe
-// across thread switches, and the ABI requires that they be safe
-// across function calls.
-//
-// g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
-// across func calls, and V8+ also allows g5 to be clobbered across
-// func calls.  Also, g1 and g5 can get touched while doing shared
-// library loading.
-//
-// We must not touch g7 (it is the thread-self register) and g6 is
-// reserved for certain tools.  g0, of course, is always zero.
-//
-// (Sources:  SunSoft Compilers Group, thread library engineers.)
-
-// %%%% The interpreter should be revisited to reduce global scratch regs.
-
-// This global always holds the current JavaThread pointer:
-
-REGISTER_DECLARATION(Register, G2_thread , G2);
-REGISTER_DECLARATION(Register, G6_heapbase , G6);
-
-// The following globals are part of the Java calling convention:
-
-REGISTER_DECLARATION(Register, G5_method             , G5);
-REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
-REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
-
-// The following globals are used for the new C1 & interpreter calling convention:
-REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
-
-// This local is used to preserve G2_thread in the interpreter and in stubs:
-REGISTER_DECLARATION(Register, L7_thread_cache , L7);
-
-// These globals are used as scratch registers in the interpreter:
-
-REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
-REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
-REGISTER_DECLARATION(Register, G3_scratch    , G3);
-REGISTER_DECLARATION(Register, G4_scratch    , G4);
-
-// These globals are used as short-lived scratch registers in the compiler:
-
-REGISTER_DECLARATION(Register, Gtemp  , G5);
-
-// JSR 292 fixed register usages:
-REGISTER_DECLARATION(Register, G5_method_type        , G5);
-REGISTER_DECLARATION(Register, G3_method_handle      , G3);
-REGISTER_DECLARATION(Register, L7_mh_SP_save         , L7);
-
-// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
-// because a single patchable "set" instruction (NativeMovConstReg,
-// or NativeMovConstPatching for compiler1) instruction
-// serves to set up either quantity, depending on whether the compiled
-// call site is an inline cache or is megamorphic.  See the function
-// CompiledIC::set_to_megamorphic.
-//
-// If a inline cache targets an interpreted method, then the
-// G5 register will be used twice during the call.  First,
-// the call site will be patched to load a compiledICHolder
-// into G5. (This is an ordered pair of ic_klass, method.)
-// The c2i adapter will first check the ic_klass, then load
-// G5_method with the method part of the pair just before
-// jumping into the interpreter.
-//
-// Note that G5_method is only the method-self for the interpreter,
-// and is logically unrelated to G5_megamorphic_method.
-//
-// Invariants on G2_thread (the JavaThread pointer):
-//  - it should not be used for any other purpose anywhere
-//  - it must be re-initialized by StubRoutines::call_stub()
-//  - it must be preserved around every use of call_VM
-
-// We can consider using g2/g3/g4 to cache more values than the
-// JavaThread, such as the card-marking base or perhaps pointers into
-// Eden.  It's something of a waste to use them as scratch temporaries,
-// since they are not supposed to be volatile.  (Of course, if we find
-// that Java doesn't benefit from application globals, then we can just
-// use them as ordinary temporaries.)
-//
-// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
-// it makes sense to use them routinely for procedure linkage,
-// whenever the On registers are not applicable.  Examples:  G5_method,
-// G5_inline_cache_klass, and a double handful of miscellaneous compiler
-// stubs.  This means that compiler stubs, etc., should be kept to a
-// maximum of two or three G-register arguments.
-
-
-// stub frames
-
-REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
-
-// Interpreter frames
-
-#ifdef CC_INTERP
-REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
-REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
-REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
-REGISTER_DECLARATION(Register, L2_scratch       , L2);
-REGISTER_DECLARATION(Register, L3_scratch       , L3);
-REGISTER_DECLARATION(Register, L4_scratch       , L4);
-REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
-REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
-REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
-REGISTER_DECLARATION(Register, O5_savedSP       , O5);
-REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
-                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
-                                                       // is added and removed as needed in the frame code.
-// Interface to signature handler
-REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
-REGISTER_DECLARATION(Register, Lmethod          , L6); // Method* when calling signature handler
-
-#else
-REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
-REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
-REGISTER_DECLARATION(Register, Lmethod          , L2);
-REGISTER_DECLARATION(Register, Llocals          , L3);
-REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
-                                                       // must match Llocals in asm interpreter
-REGISTER_DECLARATION(Register, Lmonitors        , L4);
-REGISTER_DECLARATION(Register, Lbyte_code       , L5);
-// When calling out from the interpreter we record SP so that we can remove any extra stack
-// space allocated during adapter transitions. This register is only live from the point
-// of the call until we return.
-REGISTER_DECLARATION(Register, Llast_SP         , L5);
-REGISTER_DECLARATION(Register, Lscratch         , L5);
-REGISTER_DECLARATION(Register, Lscratch2        , L6);
-REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
-
-REGISTER_DECLARATION(Register, O5_savedSP       , O5);
-REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
-                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
-                                                       // is added and removed as needed in the frame code.
-REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
-REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
-REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
-#endif /* CC_INTERP */
-
-// NOTE: Lscratch2 and LcpoolCache point to the same registers in
-//       the interpreter code. If Lscratch2 needs to be used for some
-//       purpose than LcpoolCache should be restore after that for
-//       the interpreter to work right
-// (These assignments must be compatible with L7_thread_cache; see above.)
-
-// Since Lbcp points into the middle of the method object,
-// it is temporarily converted into a "bcx" during GC.
-
-// Exception processing
-// These registers are passed into exception handlers.
-// All exception handlers require the exception object being thrown.
-// In addition, an nmethod's exception handler must be passed
-// the address of the call site within the nmethod, to allow
-// proper selection of the applicable catch block.
-// (Interpreter frames use their own bcp() for this purpose.)
-//
-// The Oissuing_pc value is not always needed.  When jumping to a
-// handler that is known to be interpreted, the Oissuing_pc value can be
-// omitted.  An actual catch block in compiled code receives (from its
-// nmethod's exception handler) the thrown exception in the Oexception,
-// but it doesn't need the Oissuing_pc.
-//
-// If an exception handler (either interpreted or compiled)
-// discovers there is no applicable catch block, it updates
-// the Oissuing_pc to the continuation PC of its own caller,
-// pops back to that caller's stack frame, and executes that
-// caller's exception handler.  Obviously, this process will
-// iterate until the control stack is popped back to a method
-// containing an applicable catch block.  A key invariant is
-// that the Oissuing_pc value is always a value local to
-// the method whose exception handler is currently executing.
-//
-// Note:  The issuing PC value is __not__ a raw return address (I7 value).
-// It is a "return pc", the address __following__ the call.
-// Raw return addresses are converted to issuing PCs by frame::pc(),
-// or by stubs.  Issuing PCs can be used directly with PC range tables.
-//
-REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
-REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
-
-
-// These must occur after the declarations above
-#ifndef DONT_USE_REGISTER_DEFINES
-
-#define Gthread             AS_REGISTER(Register, Gthread)
-#define Gmethod             AS_REGISTER(Register, Gmethod)
-#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
-#define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
-#define Gargs               AS_REGISTER(Register, Gargs)
-#define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
-#define Gframe_size         AS_REGISTER(Register, Gframe_size)
-#define Gtemp               AS_REGISTER(Register, Gtemp)
-
-#ifdef CC_INTERP
-#define Lstate              AS_REGISTER(Register, Lstate)
-#define Lesp                AS_REGISTER(Register, Lesp)
-#define L1_scratch          AS_REGISTER(Register, L1_scratch)
-#define Lmirror             AS_REGISTER(Register, Lmirror)
-#define L2_scratch          AS_REGISTER(Register, L2_scratch)
-#define L3_scratch          AS_REGISTER(Register, L3_scratch)
-#define L4_scratch          AS_REGISTER(Register, L4_scratch)
-#define Lscratch            AS_REGISTER(Register, Lscratch)
-#define Lscratch2           AS_REGISTER(Register, Lscratch2)
-#define L7_scratch          AS_REGISTER(Register, L7_scratch)
-#define Ostate              AS_REGISTER(Register, Ostate)
-#else
-#define Lesp                AS_REGISTER(Register, Lesp)
-#define Lbcp                AS_REGISTER(Register, Lbcp)
-#define Lmethod             AS_REGISTER(Register, Lmethod)
-#define Llocals             AS_REGISTER(Register, Llocals)
-#define Lmonitors           AS_REGISTER(Register, Lmonitors)
-#define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
-#define Lscratch            AS_REGISTER(Register, Lscratch)
-#define Lscratch2           AS_REGISTER(Register, Lscratch2)
-#define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
-#endif /* ! CC_INTERP */
-
-#define Lentry_args         AS_REGISTER(Register, Lentry_args)
-#define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
-#define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
-#define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
-#define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
-#define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
-
-#define Oexception          AS_REGISTER(Register, Oexception)
-#define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
-
-
-#endif
-
-// Address is an abstraction used to represent a memory location.
-//
-// Note: A register location is represented via a Register, not
-//       via an address for efficiency & simplicity reasons.
-
-class Address VALUE_OBJ_CLASS_SPEC {
- private:
-  Register           _base;           // Base register.
-  RegisterOrConstant _index_or_disp;  // Index register or constant displacement.
-  RelocationHolder   _rspec;
-
- public:
-  Address() : _base(noreg), _index_or_disp(noreg) {}
-
-  Address(Register base, RegisterOrConstant index_or_disp)
-    : _base(base),
-      _index_or_disp(index_or_disp) {
-  }
-
-  Address(Register base, Register index)
-    : _base(base),
-      _index_or_disp(index) {
-  }
-
-  Address(Register base, int disp)
-    : _base(base),
-      _index_or_disp(disp) {
-  }
-
-#ifdef ASSERT
-  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
-  Address(Register base, ByteSize disp)
-    : _base(base),
-      _index_or_disp(in_bytes(disp)) {
-  }
-#endif
-
-  // accessors
-  Register base()             const { return _base; }
-  Register index()            const { return _index_or_disp.as_register(); }
-  int      disp()             const { return _index_or_disp.as_constant(); }
-
-  bool     has_index()        const { return _index_or_disp.is_register(); }
-  bool     has_disp()         const { return _index_or_disp.is_constant(); }
-
-  bool     uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
-
-  const relocInfo::relocType rtype() { return _rspec.type(); }
-  const RelocationHolder&    rspec() { return _rspec; }
-
-  RelocationHolder rspec(int offset) const {
-    return offset == 0 ? _rspec : _rspec.plus(offset);
-  }
-
-  inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
-
-  Address plus_disp(int plusdisp) const {     // bump disp by a small amount
-    assert(_index_or_disp.is_constant(), "must have a displacement");
-    Address a(base(), disp() + plusdisp);
-    return a;
-  }
-  bool is_same_address(Address a) const {
-    // disregard _rspec
-    return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
-  }
-
-  Address after_save() const {
-    Address a = (*this);
-    a._base = a._base->after_save();
-    return a;
-  }
-
-  Address after_restore() const {
-    Address a = (*this);
-    a._base = a._base->after_restore();
-    return a;
-  }
-
-  // Convert the raw encoding form into the form expected by the
-  // constructor for Address.
-  static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
-
-  friend class Assembler;
-};
-
-
-class AddressLiteral VALUE_OBJ_CLASS_SPEC {
- private:
-  address          _address;
-  RelocationHolder _rspec;
-
-  RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
-    switch (rtype) {
-    case relocInfo::external_word_type:
-      return external_word_Relocation::spec(addr);
-    case relocInfo::internal_word_type:
-      return internal_word_Relocation::spec(addr);
-#ifdef _LP64
-    case relocInfo::opt_virtual_call_type:
-      return opt_virtual_call_Relocation::spec();
-    case relocInfo::static_call_type:
-      return static_call_Relocation::spec();
-    case relocInfo::runtime_call_type:
-      return runtime_call_Relocation::spec();
-#endif
-    case relocInfo::none:
-      return RelocationHolder();
-    default:
-      ShouldNotReachHere();
-      return RelocationHolder();
-    }
-  }
-
- protected:
-  // creation
-  AddressLiteral() : _address(NULL), _rspec(NULL) {}
-
- public:
-  AddressLiteral(address addr, RelocationHolder const& rspec)
-    : _address(addr),
-      _rspec(rspec) {}
-
-  // Some constructors to avoid casting at the call site.
-  AddressLiteral(jobject obj, RelocationHolder const& rspec)
-    : _address((address) obj),
-      _rspec(rspec) {}
-
-  AddressLiteral(intptr_t value, RelocationHolder const& rspec)
-    : _address((address) value),
-      _rspec(rspec) {}
-
-  AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-  // Some constructors to avoid casting at the call site.
-  AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-  AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-  AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-  AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-  AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-  AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-#ifdef _LP64
-  // 32-bit complains about a multiple declaration for int*.
-  AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-#endif
-
-  AddressLiteral(Metadata* addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-  AddressLiteral(Metadata** addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-  AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-  AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
-    : _address((address) addr),
-      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
-
-  intptr_t value() const { return (intptr_t) _address; }
-  int      low10() const;
-
-  const relocInfo::relocType rtype() const { return _rspec.type(); }
-  const RelocationHolder&    rspec() const { return _rspec; }
-
-  RelocationHolder rspec(int offset) const {
-    return offset == 0 ? _rspec : _rspec.plus(offset);
-  }
-};
-
-// Convenience classes
-class ExternalAddress: public AddressLiteral {
- private:
-  static relocInfo::relocType reloc_for_target(address target) {
-    // Sometimes ExternalAddress is used for values which aren't
-    // exactly addresses, like the card table base.
-    // external_word_type can't be used for values in the first page
-    // so just skip the reloc in that case.
-    return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
-  }
-
- public:
-  ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(          target)) {}
-  ExternalAddress(Metadata** target) : AddressLiteral(target, reloc_for_target((address) target)) {}
-};
-
-inline Address RegisterImpl::address_in_saved_window() const {
-   return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
-}
-
-
-
-// Argument is an abstraction used to represent an outgoing
-// actual argument or an incoming formal parameter, whether
-// it resides in memory or in a register, in a manner consistent
-// with the SPARC Application Binary Interface, or ABI.  This is
-// often referred to as the native or C calling convention.
-
-class Argument VALUE_OBJ_CLASS_SPEC {
- private:
-  int _number;
-  bool _is_in;
-
- public:
-#ifdef _LP64
-  enum {
-    n_register_parameters = 6,          // only 6 registers may contain integer parameters
-    n_float_register_parameters = 16    // Can have up to 16 floating registers
-  };
-#else
-  enum {
-    n_register_parameters = 6           // only 6 registers may contain integer parameters
-  };
-#endif
-
-  // creation
-  Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
-
-  int  number() const  { return _number;  }
-  bool is_in()  const  { return _is_in;   }
-  bool is_out() const  { return !is_in(); }
-
-  Argument successor() const  { return Argument(number() + 1, is_in()); }
-  Argument as_in()     const  { return Argument(number(), true ); }
-  Argument as_out()    const  { return Argument(number(), false); }
-
-  // locating register-based arguments:
-  bool is_register() const { return _number < n_register_parameters; }
-
-#ifdef _LP64
-  // locating Floating Point register-based arguments:
-  bool is_float_register() const { return _number < n_float_register_parameters; }
-
-  FloatRegister as_float_register() const {
-    assert(is_float_register(), "must be a register argument");
-    return as_FloatRegister(( number() *2 ) + 1);
-  }
-  FloatRegister as_double_register() const {
-    assert(is_float_register(), "must be a register argument");
-    return as_FloatRegister(( number() *2 ));
-  }
-#endif
-
-  Register as_register() const {
-    assert(is_register(), "must be a register argument");
-    return is_in() ? as_iRegister(number()) : as_oRegister(number());
-  }
-
-  // locating memory-based arguments
-  Address as_address() const {
-    assert(!is_register(), "must be a memory argument");
-    return address_in_frame();
-  }
-
-  // When applied to a register-based argument, give the corresponding address
-  // into the 6-word area "into which callee may store register arguments"
-  // (This is a different place than the corresponding register-save area location.)
-  Address address_in_frame() const;
-
-  // debugging
-  const char* name() const;
-
-  friend class Assembler;
-};
-
+#include "asm/register.hpp"
 
 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
 // level; i.e., what you write
 // is what you get. The Assembler is generating code into a CodeBuffer.
 
 class Assembler : public AbstractAssembler  {
- protected:
-
-  static void print_instruction(int inst);
-  static int  patched_branch(int dest_pos, int inst, int inst_pos);
-  static int  branch_destination(int inst, int pos);
-
-
   friend class AbstractAssembler;
   friend class AddressLiteral;
 
@@ -1230,10 +689,7 @@
   // pp 135 (addc was addx in v8)
 
   inline void add(Register s1, Register s2, Register d );
-  inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
-  inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
-  inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
-  inline void add(const Address& a, Register d, int offset = 0);
+  inline void add(Register s1, int simm13a, Register d );
 
   void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
@@ -1395,12 +851,9 @@
 
   // 171
 
-  inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
   inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
   inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
 
-  inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
-
 
   inline void ldfsr(  Register s1, Register s2 );
   inline void ldfsr(  Register s1, int simm13a);
@@ -1438,36 +891,9 @@
   inline void lduw(  Register s1, int simm13a, Register d);
   inline void ldx(   Register s1, Register s2, Register d );
   inline void ldx(   Register s1, int simm13a, Register d);
-  inline void ld(    Register s1, Register s2, Register d );
-  inline void ld(    Register s1, int simm13a, Register d);
   inline void ldd(   Register s1, Register s2, Register d );
   inline void ldd(   Register s1, int simm13a, Register d);
 
-#ifdef ASSERT
-  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
-  inline void ld(    Register s1, ByteSize simm13a, Register d);
-#endif
-
-  inline void ldsb(const Address& a, Register d, int offset = 0);
-  inline void ldsh(const Address& a, Register d, int offset = 0);
-  inline void ldsw(const Address& a, Register d, int offset = 0);
-  inline void ldub(const Address& a, Register d, int offset = 0);
-  inline void lduh(const Address& a, Register d, int offset = 0);
-  inline void lduw(const Address& a, Register d, int offset = 0);
-  inline void ldx( const Address& a, Register d, int offset = 0);
-  inline void ld(  const Address& a, Register d, int offset = 0);
-  inline void ldd( const Address& a, Register d, int offset = 0);
-
-  inline void ldub(  Register s1, RegisterOrConstant s2, Register d );
-  inline void ldsb(  Register s1, RegisterOrConstant s2, Register d );
-  inline void lduh(  Register s1, RegisterOrConstant s2, Register d );
-  inline void ldsh(  Register s1, RegisterOrConstant s2, Register d );
-  inline void lduw(  Register s1, RegisterOrConstant s2, Register d );
-  inline void ldsw(  Register s1, RegisterOrConstant s2, Register d );
-  inline void ldx(   Register s1, RegisterOrConstant s2, Register d );
-  inline void ld(    Register s1, RegisterOrConstant s2, Register d );
-  inline void ldd(   Register s1, RegisterOrConstant s2, Register d );
-
   // pp 177
 
   void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
@@ -1505,7 +931,6 @@
   void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
   void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
-  void andn(    Register s1, RegisterOrConstant s2, Register d);
   void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
   void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   void or3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
@@ -1584,13 +1009,12 @@
 
   // pp 203
 
-  void prefetch(   Register s1, Register s2,         PrefetchFcn f);
-  void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
+  void prefetch(   Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
+  void prefetch(   Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
+
   void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
   void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
 
-  inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
-
   // pp 208
 
   // not implementing read privileged register
@@ -1653,10 +1077,8 @@
 
   // pp 222
 
-  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
-  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
 
   inline void stfsr(  Register s1, Register s2 );
   inline void stfsr(  Register s1, int simm13a);
@@ -1676,32 +1098,11 @@
   inline void sth(  Register d, Register s1, int simm13a);
   inline void stw(  Register d, Register s1, Register s2 );
   inline void stw(  Register d, Register s1, int simm13a);
-  inline void st(   Register d, Register s1, Register s2 );
-  inline void st(   Register d, Register s1, int simm13a);
   inline void stx(  Register d, Register s1, Register s2 );
   inline void stx(  Register d, Register s1, int simm13a);
   inline void std(  Register d, Register s1, Register s2 );
   inline void std(  Register d, Register s1, int simm13a);
 
-#ifdef ASSERT
-  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
-  inline void st(   Register d, Register s1, ByteSize simm13a);
-#endif
-
-  inline void stb(  Register d, const Address& a, int offset = 0 );
-  inline void sth(  Register d, const Address& a, int offset = 0 );
-  inline void stw(  Register d, const Address& a, int offset = 0 );
-  inline void stx(  Register d, const Address& a, int offset = 0 );
-  inline void st(   Register d, const Address& a, int offset = 0 );
-  inline void std(  Register d, const Address& a, int offset = 0 );
-
-  inline void stb(  Register d, Register s1, RegisterOrConstant s2 );
-  inline void sth(  Register d, Register s1, RegisterOrConstant s2 );
-  inline void stw(  Register d, Register s1, RegisterOrConstant s2 );
-  inline void stx(  Register d, Register s1, RegisterOrConstant s2 );
-  inline void std(  Register d, Register s1, RegisterOrConstant s2 );
-  inline void st(   Register d, Register s1, RegisterOrConstant s2 );
-
   // pp 177
 
   void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
@@ -1731,9 +1132,6 @@
   void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
   void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
 
-  // Note: offset is added to s2.
-  inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
-
   void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
   void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
   void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
@@ -1745,7 +1143,6 @@
 
   inline void swap( Register s1, Register s2, Register d );
   inline void swap( Register s1, int simm13a, Register d);
-  inline void swap( Address& a,               Register d, int offset = 0 );
 
   // pp 232
 
@@ -1799,879 +1196,12 @@
   void movwtos( Register s, FloatRegister d ) { vis3_only();  emit_long( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
   void movxtod( Register s, FloatRegister d ) { vis3_only();  emit_long( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
 
-
-
-
-  // For a given register condition, return the appropriate condition code
-  // Condition (the one you would use to get the same effect after "tst" on
-  // the target register.)
-  Assembler::Condition reg_cond_to_cc_cond(RCondition in);
-
-
   // Creation
   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
 #ifdef CHECK_DELAY
     delay_state = no_delay;
 #endif
   }
-
-  // Testing
-#ifndef PRODUCT
-  void test_v9();
-  void test_v8_onlys();
-#endif
-};
-
-
-class RegistersForDebugging : public StackObj {
- public:
-  intptr_t i[8], l[8], o[8], g[8];
-  float    f[32];
-  double   d[32];
-
-  void print(outputStream* s);
-
-  static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
-  static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
-  static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
-  static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
-  static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
-  static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
-
-  // gen asm code to save regs
-  static void save_registers(MacroAssembler* a);
-
-  // restore global registers in case C code disturbed them
-  static void restore_registers(MacroAssembler* a, Register r);
-
-
 };
 
-
-// MacroAssembler extends Assembler by a few frequently used macros.
-//
-// Most of the standard SPARC synthetic ops are defined here.
-// Instructions for which a 'better' code sequence exists depending
-// on arguments should also go in here.
-
-#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
-#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
-#define JUMP(a, temp, off)     jump(a, temp, off, __FILE__, __LINE__)
-#define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
-
-
-class MacroAssembler: public Assembler {
- protected:
-  // Support for VM calls
-  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
-  // may customize this version by overriding it for its purposes (e.g., to save/restore
-  // additional registers when doing a VM call).
-#ifdef CC_INTERP
-  #define VIRTUAL
-#else
-  #define VIRTUAL virtual
-#endif
-
-  VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
-
-  //
-  // It is imperative that all calls into the VM are handled via the call_VM macros.
-  // They make sure that the stack linkage is setup correctly. call_VM's correspond
-  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
-  //
-  // This is the base routine called by the different versions of call_VM. The interpreter
-  // may customize this version by overriding it for its purposes (e.g., to save/restore
-  // additional registers when doing a VM call).
-  //
-  // A non-volatile java_thread_cache register should be specified so
-  // that the G2_thread value can be preserved across the call.
-  // (If java_thread_cache is noreg, then a slow get_thread call
-  // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
-  // thread.
-  //
-  // If no last_java_sp is specified (noreg) than SP will be used instead.
-
-  virtual void call_VM_base(
-    Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
-    Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
-    Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
-    address         entry_point,            // the entry point
-    int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
-    bool            check_exception=true    // flag which indicates if exception should be checked
-  );
-
-  // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
-  // The implementation is only non-empty for the InterpreterMacroAssembler,
-  // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
-  virtual void check_and_handle_popframe(Register scratch_reg);
-  virtual void check_and_handle_earlyret(Register scratch_reg);
-
- public:
-  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
-
-  // Support for NULL-checks
-  //
-  // Generates code that causes a NULL OS exception if the content of reg is NULL.
-  // If the accessed location is M[reg + offset] and the offset is known, provide the
-  // offset.  No explicit code generation is needed if the offset is within a certain
-  // range (0 <= offset <= page_size).
-  //
-  // %%%%%% Currently not done for SPARC
-
-  void null_check(Register reg, int offset = -1);
-  static bool needs_explicit_null_check(intptr_t offset);
-
-  // support for delayed instructions
-  MacroAssembler* delayed() { Assembler::delayed();  return this; }
-
-  // branches that use right instruction for v8 vs. v9
-  inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
-  inline void br( Condition c, bool a, Predict p, Label& L );
-
-  inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
-  inline void fb( Condition c, bool a, Predict p, Label& L );
-
-  // compares register with zero (32 bit) and branches (V9 and V8 instructions)
-  void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn );
-  // Compares a pointer register with zero and branches on (not)null.
-  // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
-  void br_null   ( Register s1, bool a, Predict p, Label& L );
-  void br_notnull( Register s1, bool a, Predict p, Label& L );
-
-  //
-  // Compare registers and branch with nop in delay slot or cbcond without delay slot.
-  //
-  // ATTENTION: use these instructions with caution because cbcond instruction
-  //            has very short distance: 512 instructions (2Kbyte).
-
-  // Compare integer (32 bit) values (icc only).
-  void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L);
-  void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
-  // Platform depending version for pointer compare (icc on !LP64 and xcc on LP64).
-  void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L);
-  void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
-
-  // Short branch version for compares a pointer pwith zero.
-  void br_null_short   ( Register s1, Predict p, Label& L );
-  void br_notnull_short( Register s1, Predict p, Label& L );
-
-  // unconditional short branch
-  void ba_short(Label& L);
-
-  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
-  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
-
-  // Branch that tests xcc in LP64 and icc in !LP64
-  inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
-  inline void brx( Condition c, bool a, Predict p, Label& L );
-
-  // unconditional branch
-  inline void ba( Label& L );
-
-  // Branch that tests fp condition codes
-  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
-  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
-
-  // get PC the best way
-  inline int get_pc( Register d );
-
-  // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
-  inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
-  inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
-
-  inline void jmp( Register s1, Register s2 );
-  inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
-
-  // Check if the call target is out of wdisp30 range (relative to the code cache)
-  static inline bool is_far_target(address d);
-  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
-  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
-  inline void callr( Register s1, Register s2 );
-  inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
-
-  // Emits nothing on V8
-  inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
-  inline void iprefetch( Label& L);
-
-  inline void tst( Register s ) { orcc( G0, s, G0 ); }
-
-#ifdef PRODUCT
-  inline void ret(  bool trace = TraceJumps )   { if (trace) {
-                                                    mov(I7, O7); // traceable register
-                                                    JMP(O7, 2 * BytesPerInstWord);
-                                                  } else {
-                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
-                                                  }
-                                                }
-
-  inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
-                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
-#else
-  void ret(  bool trace = TraceJumps );
-  void retl( bool trace = TraceJumps );
-#endif /* PRODUCT */
-
-  // Required platform-specific helpers for Label::patch_instructions.
-  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
-  void pd_patch_instruction(address branch, address target);
-#ifndef PRODUCT
-  static void pd_print_patched_instruction(address branch);
-#endif
-
-  // sethi Macro handles optimizations and relocations
-private:
-  void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
-public:
-  void sethi(const AddressLiteral& addrlit, Register d);
-  void patchable_sethi(const AddressLiteral& addrlit, Register d);
-
-  // compute the number of instructions for a sethi/set
-  static int  insts_for_sethi( address a, bool worst_case = false );
-  static int  worst_case_insts_for_set();
-
-  // set may be either setsw or setuw (high 32 bits may be zero or sign)
-private:
-  void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
-  static int insts_for_internal_set(intptr_t value);
-public:
-  void set(const AddressLiteral& addrlit, Register d);
-  void set(intptr_t value, Register d);
-  void set(address addr, Register d, RelocationHolder const& rspec);
-  static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
-
-  void patchable_set(const AddressLiteral& addrlit, Register d);
-  void patchable_set(intptr_t value, Register d);
-  void set64(jlong value, Register d, Register tmp);
-  static int insts_for_set64(jlong value);
-
-  // sign-extend 32 to 64
-  inline void signx( Register s, Register d ) { sra( s, G0, d); }
-  inline void signx( Register d )             { sra( d, G0, d); }
-
-  inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
-  inline void not1( Register d )             { xnor( d, G0, d ); }
-
-  inline void neg( Register s, Register d ) { sub( G0, s, d ); }
-  inline void neg( Register d )             { sub( G0, d, d ); }
-
-  inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
-  inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
-  // Functions for isolating 64 bit atomic swaps for LP64
-  // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
-  inline void cas_ptr(  Register s1, Register s2, Register d) {
-#ifdef _LP64
-    casx( s1, s2, d );
-#else
-    cas( s1, s2, d );
-#endif
-  }
-
-  // Functions for isolating 64 bit shifts for LP64
-  inline void sll_ptr( Register s1, Register s2, Register d );
-  inline void sll_ptr( Register s1, int imm6a,   Register d );
-  inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
-  inline void srl_ptr( Register s1, Register s2, Register d );
-  inline void srl_ptr( Register s1, int imm6a,   Register d );
-
-  // little-endian
-  inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
-  inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
-
-  inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
-  inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
-
-  inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
-  inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
-
-  inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
-  inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
-
-  inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
-  inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
-
-  inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
-  inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
-
-  inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
-  inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
-
-  inline void clr( Register d ) { or3( G0, G0, d ); }
-
-  inline void clrb( Register s1, Register s2);
-  inline void clrh( Register s1, Register s2);
-  inline void clr(  Register s1, Register s2);
-  inline void clrx( Register s1, Register s2);
-
-  inline void clrb( Register s1, int simm13a);
-  inline void clrh( Register s1, int simm13a);
-  inline void clr(  Register s1, int simm13a);
-  inline void clrx( Register s1, int simm13a);
-
-  // copy & clear upper word
-  inline void clruw( Register s, Register d ) { srl( s, G0, d); }
-  // clear upper word
-  inline void clruwu( Register d ) { srl( d, G0, d); }
-
-  // membar psuedo instruction.  takes into account target memory model.
-  inline void membar( Assembler::Membar_mask_bits const7a );
-
-  // returns if membar generates anything.
-  inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
-
-  // mov pseudo instructions
-  inline void mov( Register s,  Register d) {
-    if ( s != d )    or3( G0, s, d);
-    else             assert_not_delayed();  // Put something useful in the delay slot!
-  }
-
-  inline void mov_or_nop( Register s,  Register d) {
-    if ( s != d )    or3( G0, s, d);
-    else             nop();
-  }
-
-  inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
-
-  // address pseudos: make these names unlike instruction names to avoid confusion
-  inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
-  inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
-  inline void load_bool_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
-  inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
-  inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
-  inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
-  inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
-  inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
-  inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
-
-  // ring buffer traceable jumps
-
-  void jmp2( Register r1, Register r2, const char* file, int line );
-  void jmp ( Register r1, int offset,  const char* file, int line );
-
-  void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
-  void jump (const AddressLiteral& addrlit, Register temp,             int offset, const char* file, int line);
-
-
-  // argument pseudos:
-
-  inline void load_argument( Argument& a, Register  d );
-  inline void store_argument( Register s, Argument& a );
-  inline void store_ptr_argument( Register s, Argument& a );
-  inline void store_float_argument( FloatRegister s, Argument& a );
-  inline void store_double_argument( FloatRegister s, Argument& a );
-  inline void store_long_argument( Register s, Argument& a );
-
-  // handy macros:
-
-  inline void round_to( Register r, int modulus ) {
-    assert_not_delayed();
-    inc( r, modulus - 1 );
-    and3( r, -modulus, r );
-  }
-
-  // --------------------------------------------------
-
-  // Functions for isolating 64 bit loads for LP64
-  // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
-  // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
-  inline void ld_ptr(Register s1, Register s2, Register d);
-  inline void ld_ptr(Register s1, int simm13a, Register d);
-  inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
-  inline void ld_ptr(const Address& a, Register d, int offset = 0);
-  inline void st_ptr(Register d, Register s1, Register s2);
-  inline void st_ptr(Register d, Register s1, int simm13a);
-  inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
-  inline void st_ptr(Register d, const Address& a, int offset = 0);
-
-#ifdef ASSERT
-  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
-  inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
-  inline void st_ptr(Register d, Register s1, ByteSize simm13a);
-#endif
-
-  // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
-  // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
-  inline void ld_long(Register s1, Register s2, Register d);
-  inline void ld_long(Register s1, int simm13a, Register d);
-  inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
-  inline void ld_long(const Address& a, Register d, int offset = 0);
-  inline void st_long(Register d, Register s1, Register s2);
-  inline void st_long(Register d, Register s1, int simm13a);
-  inline void st_long(Register d, Register s1, RegisterOrConstant s2);
-  inline void st_long(Register d, const Address& a, int offset = 0);
-
-  // Helpers for address formation.
-  // - They emit only a move if s2 is a constant zero.
-  // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
-  // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
-  RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
-  RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
-  RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
-
-  RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
-    if (is_simm13(src.constant_or_zero()))
-      return src;               // register or short constant
-    guarantee(temp != noreg, "constant offset overflow");
-    set(src.as_constant(), temp);
-    return temp;
-  }
-
-  // --------------------------------------------------
-
- public:
-  // traps as per trap.h (SPARC ABI?)
-
-  void breakpoint_trap();
-  void breakpoint_trap(Condition c, CC cc);
-  void flush_windows_trap();
-  void clean_windows_trap();
-  void get_psr_trap();
-  void set_psr_trap();
-
-  // V8/V9 flush_windows
-  void flush_windows();
-
-  // Support for serializing memory accesses between threads
-  void serialize_memory(Register thread, Register tmp1, Register tmp2);
-
-  // Stack frame creation/removal
-  void enter();
-  void leave();
-
-  // V8/V9 integer multiply
-  void mult(Register s1, Register s2, Register d);
-  void mult(Register s1, int simm13a, Register d);
-
-  // V8/V9 read and write of condition codes.
-  void read_ccr(Register d);
-  void write_ccr(Register s);
-
-  // Manipulation of C++ bools
-  // These are idioms to flag the need for care with accessing bools but on
-  // this platform we assume byte size
-
-  inline void stbool(Register d, const Address& a) { stb(d, a); }
-  inline void ldbool(const Address& a, Register d) { ldub(a, d); }
-  inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
-
-  // klass oop manipulations if compressed
-  void load_klass(Register src_oop, Register klass);
-  void store_klass(Register klass, Register dst_oop);
-  void store_klass_gap(Register s, Register dst_oop);
-
-   // oop manipulations
-  void load_heap_oop(const Address& s, Register d);
-  void load_heap_oop(Register s1, Register s2, Register d);
-  void load_heap_oop(Register s1, int simm13a, Register d);
-  void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
-  void store_heap_oop(Register d, Register s1, Register s2);
-  void store_heap_oop(Register d, Register s1, int simm13a);
-  void store_heap_oop(Register d, const Address& a, int offset = 0);
-
-  void encode_heap_oop(Register src, Register dst);
-  void encode_heap_oop(Register r) {
-    encode_heap_oop(r, r);
-  }
-  void decode_heap_oop(Register src, Register dst);
-  void decode_heap_oop(Register r) {
-    decode_heap_oop(r, r);
-  }
-  void encode_heap_oop_not_null(Register r);
-  void decode_heap_oop_not_null(Register r);
-  void encode_heap_oop_not_null(Register src, Register dst);
-  void decode_heap_oop_not_null(Register src, Register dst);
-
-  void encode_klass_not_null(Register r);
-  void decode_klass_not_null(Register r);
-  void encode_klass_not_null(Register src, Register dst);
-  void decode_klass_not_null(Register src, Register dst);
-
-  // Support for managing the JavaThread pointer (i.e.; the reference to
-  // thread-local information).
-  void get_thread();                                // load G2_thread
-  void verify_thread();                             // verify G2_thread contents
-  void save_thread   (const Register threache); // save to cache
-  void restore_thread(const Register thread_cache); // restore from cache
-
-  // Support for last Java frame (but use call_VM instead where possible)
-  void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
-  void reset_last_Java_frame(void);
-
-  // Call into the VM.
-  // Passes the thread pointer (in O0) as a prepended argument.
-  // Makes sure oop return values are visible to the GC.
-  void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
-  void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
-  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
-  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
-
-  // these overloadings are not presently used on SPARC:
-  void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
-  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
-  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
-  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
-
-  void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
-  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
-  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
-  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
-
-  void get_vm_result  (Register oop_result);
-  void get_vm_result_2(Register metadata_result);
-
-  // vm result is currently getting hijacked to for oop preservation
-  void set_vm_result(Register oop_result);
-
-  // Emit the CompiledIC call idiom
-  void ic_call(address entry, bool emit_delay = true);
-
-  // if call_VM_base was called with check_exceptions=false, then call
-  // check_and_forward_exception to handle exceptions when it is safe
-  void check_and_forward_exception(Register scratch_reg);
-
- private:
-  // For V8
-  void read_ccr_trap(Register ccr_save);
-  void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
-
-#ifdef ASSERT
-  // For V8 debugging.  Uses V8 instruction sequence and checks
-  // result with V9 insturctions rdccr and wrccr.
-  // Uses Gscatch and Gscatch2
-  void read_ccr_v8_assert(Register ccr_save);
-  void write_ccr_v8_assert(Register ccr_save);
-#endif // ASSERT
-
- public:
-
-  // Write to card table for - register is destroyed afterwards.
-  void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
-
-  void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
-
-#ifndef SERIALGC
-  // General G1 pre-barrier generator.
-  void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
-
-  // General G1 post-barrier generator
-  void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
-#endif // SERIALGC
-
-  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
-  void push_fTOS();
-
-  // pops double TOS element from CPU stack and pushes on FPU stack
-  void pop_fTOS();
-
-  void empty_FPU_stack();
-
-  void push_IU_state();
-  void pop_IU_state();
-
-  void push_FPU_state();
-  void pop_FPU_state();
-
-  void push_CPU_state();
-  void pop_CPU_state();
-
-  // if heap base register is used - reinit it with the correct value
-  void reinit_heapbase();
-
-  // Debugging
-  void _verify_oop(Register reg, const char * msg, const char * file, int line);
-  void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
-
-  // TODO: verify_method and klass metadata (compare against vptr?)
-  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
-  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
-
-#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
-#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
-#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
-#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
-
-        // only if +VerifyOops
-  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
-        // only if +VerifyFPU
-  void stop(const char* msg);                          // prints msg, dumps registers and stops execution
-  void warn(const char* msg);                          // prints msg, but don't stop
-  void untested(const char* what = "");
-  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
-  void should_not_reach_here()                   { stop("should not reach here"); }
-  void print_CPU_state();
-
-  // oops in code
-  AddressLiteral allocate_oop_address(jobject obj);                          // allocate_index
-  AddressLiteral constant_oop_address(jobject obj);                          // find_index
-  inline void    set_oop             (jobject obj, Register d);              // uses allocate_oop_address
-  inline void    set_oop_constant    (jobject obj, Register d);              // uses constant_oop_address
-  inline void    set_oop             (const AddressLiteral& obj_addr, Register d); // same as load_address
-
-  // metadata in code that we have to keep track of
-  AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
-  AddressLiteral constant_metadata_address(Metadata* obj); // find_index
-  inline void    set_metadata             (Metadata* obj, Register d);              // uses allocate_metadata_address
-  inline void    set_metadata_constant    (Metadata* obj, Register d);              // uses constant_metadata_address
-  inline void    set_metadata             (const AddressLiteral& obj_addr, Register d); // same as load_address
-
-  void set_narrow_oop( jobject obj, Register d );
-  void set_narrow_klass( Klass* k, Register d );
-
-  // nop padding
-  void align(int modulus);
-
-  // declare a safepoint
-  void safepoint();
-
-  // factor out part of stop into subroutine to save space
-  void stop_subroutine();
-  // factor out part of verify_oop into subroutine to save space
-  void verify_oop_subroutine();
-
-  // side-door communication with signalHandler in os_solaris.cpp
-  static address _verify_oop_implicit_branch[3];
-
-#ifndef PRODUCT
-  static void test();
-#endif
-
-  int total_frame_size_in_bytes(int extraWords);
-
-  // used when extraWords known statically
-  void save_frame(int extraWords = 0);
-  void save_frame_c1(int size_in_bytes);
-  // make a frame, and simultaneously pass up one or two register value
-  // into the new register window
-  void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
-
-  // give no. (outgoing) params, calc # of words will need on frame
-  void calc_mem_param_words(Register Rparam_words, Register Rresult);
-
-  // used to calculate frame size dynamically
-  // result is in bytes and must be negated for save inst
-  void calc_frame_size(Register extraWords, Register resultReg);
-
-  // calc and also save
-  void calc_frame_size_and_save(Register extraWords, Register resultReg);
-
-  static void debug(char* msg, RegistersForDebugging* outWindow);
-
-  // implementations of bytecodes used by both interpreter and compiler
-
-  void lcmp( Register Ra_hi, Register Ra_low,
-             Register Rb_hi, Register Rb_low,
-             Register Rresult);
-
-  void lneg( Register Rhi, Register Rlow );
-
-  void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
-              Register Rout_high, Register Rout_low, Register Rtemp );
-
-  void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
-              Register Rout_high, Register Rout_low, Register Rtemp );
-
-  void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
-              Register Rout_high, Register Rout_low, Register Rtemp );
-
-#ifdef _LP64
-  void lcmp( Register Ra, Register Rb, Register Rresult);
-#endif
-
-  // Load and store values by size and signed-ness
-  void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
-  void store_sized_value(Register src, Address dst, size_t size_in_bytes);
-
-  void float_cmp( bool is_float, int unordered_result,
-                  FloatRegister Fa, FloatRegister Fb,
-                  Register Rresult);
-
-  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
-  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
-  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
-  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
-
-  void save_all_globals_into_locals();
-  void restore_globals_from_locals();
-
-  void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
-    address lock_addr=0, bool use_call_vm=false);
-  void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
-    address lock_addr=0, bool use_call_vm=false);
-  void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
-
-  // These set the icc condition code to equal if the lock succeeded
-  // and notEqual if it failed and requires a slow case
-  void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
-                            Register Rscratch,
-                            BiasedLockingCounters* counters = NULL,
-                            bool try_bias = UseBiasedLocking);
-  void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
-                              Register Rscratch,
-                              bool try_bias = UseBiasedLocking);
-
-  // Biased locking support
-  // Upon entry, lock_reg must point to the lock record on the stack,
-  // obj_reg must contain the target object, and mark_reg must contain
-  // the target object's header.
-  // Destroys mark_reg if an attempt is made to bias an anonymously
-  // biased lock. In this case a failure will go either to the slow
-  // case or fall through with the notEqual condition code set with
-  // the expectation that the slow case in the runtime will be called.
-  // In the fall-through case where the CAS-based lock is done,
-  // mark_reg is not destroyed.
-  void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
-                            Label& done, Label* slow_case = NULL,
-                            BiasedLockingCounters* counters = NULL);
-  // Upon entry, the base register of mark_addr must contain the oop.
-  // Destroys temp_reg.
-
-  // If allow_delay_slot_filling is set to true, the next instruction
-  // emitted after this one will go in an annulled delay slot if the
-  // biased locking exit case failed.
-  void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
-
-  // allocation
-  void eden_allocate(
-    Register obj,                      // result: pointer to object after successful allocation
-    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
-    int      con_size_in_bytes,        // object size in bytes if   known at compile time
-    Register t1,                       // temp register
-    Register t2,                       // temp register
-    Label&   slow_case                 // continuation point if fast allocation fails
-  );
-  void tlab_allocate(
-    Register obj,                      // result: pointer to object after successful allocation
-    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
-    int      con_size_in_bytes,        // object size in bytes if   known at compile time
-    Register t1,                       // temp register
-    Label&   slow_case                 // continuation point if fast allocation fails
-  );
-  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
-  void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
-                            Register t1, Register t2);
-
-  // interface method calling
-  void lookup_interface_method(Register recv_klass,
-                               Register intf_klass,
-                               RegisterOrConstant itable_index,
-                               Register method_result,
-                               Register temp_reg, Register temp2_reg,
-                               Label& no_such_interface);
-
-  // virtual method calling
-  void lookup_virtual_method(Register recv_klass,
-                             RegisterOrConstant vtable_index,
-                             Register method_result);
-
-  // Test sub_klass against super_klass, with fast and slow paths.
-
-  // The fast path produces a tri-state answer: yes / no / maybe-slow.
-  // One of the three labels can be NULL, meaning take the fall-through.
-  // If super_check_offset is -1, the value is loaded up from super_klass.
-  // No registers are killed, except temp_reg and temp2_reg.
-  // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
-  void check_klass_subtype_fast_path(Register sub_klass,
-                                     Register super_klass,
-                                     Register temp_reg,
-                                     Register temp2_reg,
-                                     Label* L_success,
-                                     Label* L_failure,
-                                     Label* L_slow_path,
-                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
-
-  // The rest of the type check; must be wired to a corresponding fast path.
-  // It does not repeat the fast path logic, so don't use it standalone.
-  // The temp_reg can be noreg, if no temps are available.
-  // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
-  // Updates the sub's secondary super cache as necessary.
-  void check_klass_subtype_slow_path(Register sub_klass,
-                                     Register super_klass,
-                                     Register temp_reg,
-                                     Register temp2_reg,
-                                     Register temp3_reg,
-                                     Register temp4_reg,
-                                     Label* L_success,
-                                     Label* L_failure);
-
-  // Simplified, combined version, good for typical uses.
-  // Falls through on failure.
-  void check_klass_subtype(Register sub_klass,
-                           Register super_klass,
-                           Register temp_reg,
-                           Register temp2_reg,
-                           Label& L_success);
-
-  // method handles (JSR 292)
-  // offset relative to Gargs of argument at tos[arg_slot].
-  // (arg_slot == 0 means the last argument, not the first).
-  RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
-                                     Register temp_reg,
-                                     int extra_slot_offset = 0);
-  // Address of Gargs and argument_offset.
-  Address            argument_address(RegisterOrConstant arg_slot,
-                                      Register temp_reg = noreg,
-                                      int extra_slot_offset = 0);
-
-  // Stack overflow checking
-
-  // Note: this clobbers G3_scratch
-  void bang_stack_with_offset(int offset) {
-    // stack grows down, caller passes positive offset
-    assert(offset > 0, "must bang with negative offset");
-    set((-offset)+STACK_BIAS, G3_scratch);
-    st(G0, SP, G3_scratch);
-  }
-
-  // Writes to stack successive pages until offset reached to check for
-  // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
-  void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
-
-  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
-
-  void verify_tlab();
-
-  Condition negate_condition(Condition cond);
-
-  // Helper functions for statistics gathering.
-  // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
-  void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
-  // Unconditional increment.
-  void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
-  void inc_counter(int*    counter_addr, Register Rtmp1, Register Rtmp2);
-
-  // Compare char[] arrays aligned to 4 bytes.
-  void char_arrays_equals(Register ary1, Register ary2,
-                          Register limit, Register result,
-                          Register chr1, Register chr2, Label& Ldone);
-  // Use BIS for zeroing
-  void bis_zeroing(Register to, Register count, Register temp, Label& Ldone);
-
-#undef VIRTUAL
-
-};
-
-/**
- * class SkipIfEqual:
- *
- * Instantiating this class will result in assembly code being output that will
- * jump around any code emitted between the creation of the instance and it's
- * automatic destruction at the end of a scope block, depending on the value of
- * the flag passed to the constructor, which will be checked at run-time.
- */
-class SkipIfEqual : public StackObj {
- private:
-  MacroAssembler* _masm;
-  Label _label;
-
- public:
-   // 'temp' is a temp register that this object can use (and trash)
-   SkipIfEqual(MacroAssembler*, Register temp,
-               const bool* flag_addr, Assembler::Condition condition);
-   ~SkipIfEqual();
-};
-
-#ifdef ASSERT
-// On RISC, there's no benefit to verifying instruction boundaries.
-inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
-#endif
-
 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
--- a/hotspot/src/cpu/sparc/vm/assembler_sparc.inline.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/assembler_sparc.inline.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -25,33 +25,8 @@
 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
 #define CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
 
-#include "asm/assembler.inline.hpp"
-#include "asm/codeBuffer.hpp"
-#include "code/codeCache.hpp"
-#include "runtime/handles.inline.hpp"
-
-inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
-  jint& stub_inst = *(jint*) branch;
-  stub_inst = patched_branch(target - branch, stub_inst, 0);
-}
+#include "asm/assembler.hpp"
 
-#ifndef PRODUCT
-inline void MacroAssembler::pd_print_patched_instruction(address branch) {
-  jint stub_inst = *(jint*) branch;
-  print_instruction(stub_inst);
-  ::tty->print("%s", " (unresolved)");
-}
-#endif // PRODUCT
-
-inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
-
-
-inline int AddressLiteral::low10() const {
-  return Assembler::low10(value());
-}
-
-
-// inlines for SPARC assembler -- dmu 5/97
 
 inline void Assembler::check_delay() {
 # ifdef CHECK_DELAY
@@ -76,9 +51,8 @@
 }
 
 
-inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
-inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
-inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
+inline void Assembler::add(Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
+inline void Assembler::add(Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
 
 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
@@ -111,16 +85,9 @@
 inline void Assembler::jmpl( Register s1, Register s2, Register d ) { cti();  emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { cti();  emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
 
-inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
-  if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
-  else                  ldf(w, s1, s2.as_constant(), d);
-}
-
 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
 
-inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
-
 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
@@ -152,98 +119,9 @@
 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 
-#ifdef _LP64
-// Make all 32 bit loads signed so 64 bit registers maintain proper sign
-inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
-inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
-#else
-inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
-inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
-#endif
-
-#ifdef ASSERT
-  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
-# ifdef _LP64
-inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
-# else
-inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
-# endif
-#endif
-
-inline void Assembler::ld(  const Address& a, Register d, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
-  else               {                          ld(  a.base(), a.disp() + offset, d); }
-}
-inline void Assembler::ldsb(const Address& a, Register d, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
-  else               {                          ldsb(a.base(), a.disp() + offset, d); }
-}
-inline void Assembler::ldsh(const Address& a, Register d, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
-  else               {                          ldsh(a.base(), a.disp() + offset, d); }
-}
-inline void Assembler::ldsw(const Address& a, Register d, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
-  else               {                          ldsw(a.base(), a.disp() + offset, d); }
-}
-inline void Assembler::ldub(const Address& a, Register d, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
-  else               {                          ldub(a.base(), a.disp() + offset, d); }
-}
-inline void Assembler::lduh(const Address& a, Register d, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
-  else               {                          lduh(a.base(), a.disp() + offset, d); }
-}
-inline void Assembler::lduw(const Address& a, Register d, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
-  else               {                          lduw(a.base(), a.disp() + offset, d); }
-}
-inline void Assembler::ldd( const Address& a, Register d, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
-  else               {                          ldd( a.base(), a.disp() + offset, d); }
-}
-inline void Assembler::ldx( const Address& a, Register d, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
-  else               {                          ldx( a.base(), a.disp() + offset, d); }
-}
-
-inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
-inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
-inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
-inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
-inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
-inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
-inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
-inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
-inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
-
-// form effective addresses this way:
-inline void Assembler::add(const Address& a, Register d, int offset) {
-  if (a.has_index())   add(a.base(), a.index(),         d);
-  else               { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
-  if (offset != 0)     add(d,        offset,            d);
-}
-inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
-  if (s2.is_register())  add(s1, s2.as_register(),          d);
-  else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
-  if (offset != 0)       add(d,  offset,                    d);
-}
-
-inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
-  if (s2.is_register())  andn(s1, s2.as_register(), d);
-  else                   andn(s1, s2.as_constant(), d);
-}
-
 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 
-
-inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
-inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
-
-inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
-
-
 inline void Assembler::rett( Register s1, Register s2                         ) { cti();  emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { cti();  emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
 
@@ -251,20 +129,9 @@
 
   // pp 222
 
-inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
-  if (s2.is_register()) stf(w, d, s1, s2.as_register());
-  else                  stf(w, d, s1, s2.as_constant());
-}
-
 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 
-inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) {
-  relocate(a.rspec(offset));
-  if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index()        ); }
-  else               {                          stf(w, d, a.base(), a.disp() + offset); }
-}
-
 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
@@ -285,46 +152,6 @@
 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 
-inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
-inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
-
-#ifdef ASSERT
-// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
-inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
-#endif
-
-inline void Assembler::stb(Register d, const Address& a, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
-  else               {                          stb(d, a.base(), a.disp() + offset); }
-}
-inline void Assembler::sth(Register d, const Address& a, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
-  else               {                          sth(d, a.base(), a.disp() + offset); }
-}
-inline void Assembler::stw(Register d, const Address& a, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
-  else               {                          stw(d, a.base(), a.disp() + offset); }
-}
-inline void Assembler::st( Register d, const Address& a, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
-  else               {                          st( d, a.base(), a.disp() + offset); }
-}
-inline void Assembler::std(Register d, const Address& a, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
-  else               {                          std(d, a.base(), a.disp() + offset); }
-}
-inline void Assembler::stx(Register d, const Address& a, int offset) {
-  if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
-  else               {                          stx(d, a.base(), a.disp() + offset); }
-}
-
-inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
-inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
-inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
-inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
-inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
-inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
-
 // v8 p 99
 
 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
@@ -336,561 +163,9 @@
 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 
-inline void Assembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) {
-  if (s2.is_register())  sub(s1, s2.as_register(),          d);
-  else                 { sub(s1, s2.as_constant() + offset, d); offset = 0; }
-  if (offset != 0)       sub(d,  offset,                    d);
-}
-
 // pp 231
 
 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 
-inline void Assembler::swap(    Address& a, Register d, int offset ) {
-  relocate(a.rspec(offset));
-  if (a.has_index()) { assert(offset == 0, ""); swap( a.base(), a.index(), d         ); }
-  else               {                          swap( a.base(), a.disp() + offset, d ); }
-}
-
-
-// Use the right loads/stores for the platform
-inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
-#ifdef _LP64
-  Assembler::ldx(s1, s2, d);
-#else
-  Assembler::ld( s1, s2, d);
-#endif
-}
-
-inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
-#ifdef _LP64
-  Assembler::ldx(s1, simm13a, d);
-#else
-  Assembler::ld( s1, simm13a, d);
-#endif
-}
-
-#ifdef ASSERT
-// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
-inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
-  ld_ptr(s1, in_bytes(simm13a), d);
-}
-#endif
-
-inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
-#ifdef _LP64
-  Assembler::ldx(s1, s2, d);
-#else
-  Assembler::ld( s1, s2, d);
-#endif
-}
-
-inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
-#ifdef _LP64
-  Assembler::ldx(a, d, offset);
-#else
-  Assembler::ld( a, d, offset);
-#endif
-}
-
-inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
-#ifdef _LP64
-  Assembler::stx(d, s1, s2);
-#else
-  Assembler::st( d, s1, s2);
-#endif
-}
-
-inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
-#ifdef _LP64
-  Assembler::stx(d, s1, simm13a);
-#else
-  Assembler::st( d, s1, simm13a);
-#endif
-}
-
-#ifdef ASSERT
-// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
-inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
-  st_ptr(d, s1, in_bytes(simm13a));
-}
-#endif
-
-inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
-#ifdef _LP64
-  Assembler::stx(d, s1, s2);
-#else
-  Assembler::st( d, s1, s2);
-#endif
-}
-
-inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
-#ifdef _LP64
-  Assembler::stx(d, a, offset);
-#else
-  Assembler::st( d, a, offset);
-#endif
-}
-
-// Use the right loads/stores for the platform
-inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
-#ifdef _LP64
-  Assembler::ldx(s1, s2, d);
-#else
-  Assembler::ldd(s1, s2, d);
-#endif
-}
-
-inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
-#ifdef _LP64
-  Assembler::ldx(s1, simm13a, d);
-#else
-  Assembler::ldd(s1, simm13a, d);
-#endif
-}
-
-inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
-#ifdef _LP64
-  Assembler::ldx(s1, s2, d);
-#else
-  Assembler::ldd(s1, s2, d);
-#endif
-}
-
-inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
-#ifdef _LP64
-  Assembler::ldx(a, d, offset);
-#else
-  Assembler::ldd(a, d, offset);
-#endif
-}
-
-inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
-#ifdef _LP64
-  Assembler::stx(d, s1, s2);
-#else
-  Assembler::std(d, s1, s2);
-#endif
-}
-
-inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
-#ifdef _LP64
-  Assembler::stx(d, s1, simm13a);
-#else
-  Assembler::std(d, s1, simm13a);
-#endif
-}
-
-inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
-#ifdef _LP64
-  Assembler::stx(d, s1, s2);
-#else
-  Assembler::std(d, s1, s2);
-#endif
-}
-
-inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
-#ifdef _LP64
-  Assembler::stx(d, a, offset);
-#else
-  Assembler::std(d, a, offset);
-#endif
-}
-
-// Functions for isolating 64 bit shifts for LP64
-
-inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
-#ifdef _LP64
-  Assembler::sllx(s1, s2, d);
-#else
-  Assembler::sll( s1, s2, d);
-#endif
-}
-
-inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
-#ifdef _LP64
-  Assembler::sllx(s1, imm6a, d);
-#else
-  Assembler::sll( s1, imm6a, d);
-#endif
-}
-
-inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
-#ifdef _LP64
-  Assembler::srlx(s1, s2, d);
-#else
-  Assembler::srl( s1, s2, d);
-#endif
-}
-
-inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
-#ifdef _LP64
-  Assembler::srlx(s1, imm6a, d);
-#else
-  Assembler::srl( s1, imm6a, d);
-#endif
-}
-
-inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
-  if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
-  else                   sll_ptr(s1, s2.as_constant(), d);
-}
-
-// Use the right branch for the platform
-
-inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
-  if (VM_Version::v9_instructions_work())
-    Assembler::bp(c, a, icc, p, d, rt);
-  else
-    Assembler::br(c, a, d, rt);
-}
-
-inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
-  br(c, a, p, target(L));
-}
-
-
-// Branch that tests either xcc or icc depending on the
-// architecture compiled (LP64 or not)
-inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
-#ifdef _LP64
-    Assembler::bp(c, a, xcc, p, d, rt);
-#else
-    MacroAssembler::br(c, a, p, d, rt);
-#endif
-}
-
-inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
-  brx(c, a, p, target(L));
-}
-
-inline void MacroAssembler::ba( Label& L ) {
-  br(always, false, pt, L);
-}
-
-// Warning: V9 only functions
-inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
-  Assembler::bp(c, a, cc, p, d, rt);
-}
-
-inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
-  Assembler::bp(c, a, cc, p, L);
-}
-
-inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
-  if (VM_Version::v9_instructions_work())
-    fbp(c, a, fcc0, p, d, rt);
-  else
-    Assembler::fb(c, a, d, rt);
-}
-
-inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
-  fb(c, a, p, target(L));
-}
-
-inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
-  Assembler::fbp(c, a, cc, p, d, rt);
-}
-
-inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
-  Assembler::fbp(c, a, cc, p, L);
-}
-
-inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
-inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
-
-inline bool MacroAssembler::is_far_target(address d) {
-  if (ForceUnreachable) {
-    // References outside the code cache should be treated as far
-    return d < CodeCache::low_bound() || d > CodeCache::high_bound();
-  }
-  return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
-}
-
-// Call with a check to see if we need to deal with the added
-// expense of relocation and if we overflow the displacement
-// of the quick call instruction.
-inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
-#ifdef _LP64
-  intptr_t disp;
-  // NULL is ok because it will be relocated later.
-  // Must change NULL to a reachable address in order to
-  // pass asserts here and in wdisp.
-  if ( d == NULL )
-    d = pc();
-
-  // Is this address within range of the call instruction?
-  // If not, use the expensive instruction sequence
-  if (is_far_target(d)) {
-    relocate(rt);
-    AddressLiteral dest(d);
-    jumpl_to(dest, O7, O7);
-  } else {
-    Assembler::call(d, rt);
-  }
-#else
-  Assembler::call( d, rt );
-#endif
-}
-
-inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
-  MacroAssembler::call( target(L), rt);
-}
-
-
-
-inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
-inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
-
-// prefetch instruction
-inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
-  if (VM_Version::v9_instructions_work())
-    Assembler::bp( never, true, xcc, pt, d, rt );
-}
-inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
-
-
-// clobbers o7 on V8!!
-// returns delta from gotten pc to addr after
-inline int MacroAssembler::get_pc( Register d ) {
-  int x = offset();
-  if (VM_Version::v9_instructions_work())
-    rdpc(d);
-  else {
-    Label lbl;
-    Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
-    if (d == O7)  delayed()->nop();
-    else          delayed()->mov(O7, d);
-    bind(lbl);
-  }
-  return offset() - x;
-}
-
-
-// Note:  All MacroAssembler::set_foo functions are defined out-of-line.
-
-
-// Loads the current PC of the following instruction as an immediate value in
-// 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
-inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
-  intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
-#ifdef _LP64
-  Unimplemented();
-#else
-  Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
-  Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
-#endif
-  return thepc;
-}
-
-
-inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
-  assert_not_delayed();
-  if (ForceUnreachable) {
-    patchable_sethi(addrlit, d);
-  } else {
-    sethi(addrlit, d);
-  }
-  ld(d, addrlit.low10() + offset, d);
-}
-
-
-inline void MacroAssembler::load_bool_contents(const AddressLiteral& addrlit, Register d, int offset) {
-  assert_not_delayed();
-  if (ForceUnreachable) {
-    patchable_sethi(addrlit, d);
-  } else {
-    sethi(addrlit, d);
-  }
-  ldub(d, addrlit.low10() + offset, d);
-}
-
-
-inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
-  assert_not_delayed();
-  if (ForceUnreachable) {
-    patchable_sethi(addrlit, d);
-  } else {
-    sethi(addrlit, d);
-  }
-  ld_ptr(d, addrlit.low10() + offset, d);
-}
-
-
-inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
-  assert_not_delayed();
-  if (ForceUnreachable) {
-    patchable_sethi(addrlit, temp);
-  } else {
-    sethi(addrlit, temp);
-  }
-  st(s, temp, addrlit.low10() + offset);
-}
-
-
-inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
-  assert_not_delayed();
-  if (ForceUnreachable) {
-    patchable_sethi(addrlit, temp);
-  } else {
-    sethi(addrlit, temp);
-  }
-  st_ptr(s, temp, addrlit.low10() + offset);
-}
-
-
-// This code sequence is relocatable to any address, even on LP64.
-inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
-  assert_not_delayed();
-  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
-  // variable length instruction streams.
-  patchable_sethi(addrlit, temp);
-  jmpl(temp, addrlit.low10() + offset, d);
-}
-
-
-inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
-  jumpl_to(addrlit, temp, G0, offset);
-}
-
-
-inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
-                                             int ld_offset, int jmp_offset) {
-  assert_not_delayed();
-  //sethi(al);                   // sethi is caller responsibility for this one
-  ld_ptr(a, temp, ld_offset);
-  jmp(temp, jmp_offset);
-}
-
-
-inline void MacroAssembler::set_metadata(Metadata* obj, Register d) {
-  set_metadata(allocate_metadata_address(obj), d);
-}
-
-inline void MacroAssembler::set_metadata_constant(Metadata* obj, Register d) {
-  set_metadata(constant_metadata_address(obj), d);
-}
-
-inline void MacroAssembler::set_metadata(const AddressLiteral& obj_addr, Register d) {
-  assert(obj_addr.rspec().type() == relocInfo::metadata_type, "must be a metadata reloc");
-  set(obj_addr, d);
-}
-
-inline void MacroAssembler::set_oop(jobject obj, Register d) {
-  set_oop(allocate_oop_address(obj), d);
-}
-
-
-inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
-  set_oop(constant_oop_address(obj), d);
-}
-
-
-inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
-  assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
-  set(obj_addr, d);
-}
-
-
-inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
-  if (a.is_register())
-    mov(a.as_register(), d);
-  else
-    ld (a.as_address(),  d);
-}
-
-inline void MacroAssembler::store_argument( Register s, Argument& a ) {
-  if (a.is_register())
-    mov(s, a.as_register());
-  else
-    st_ptr (s, a.as_address());         // ABI says everything is right justified.
-}
-
-inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
-  if (a.is_register())
-    mov(s, a.as_register());
-  else
-    st_ptr (s, a.as_address());
-}
-
-
-#ifdef _LP64
-inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
-  if (a.is_float_register())
-// V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
-    fmov(FloatRegisterImpl::S, s, a.as_float_register() );
-  else
-    // Floats are stored in the high half of the stack entry
-    // The low half is undefined per the ABI.
-    stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
-}
-
-inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
-  if (a.is_float_register())
-// V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
-    fmov(FloatRegisterImpl::D, s, a.as_double_register() );
-  else
-    stf(FloatRegisterImpl::D, s, a.as_address());
-}
-
-inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
-  if (a.is_register())
-    mov(s, a.as_register());
-  else
-    stx(s, a.as_address());
-}
-#endif
-
-inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
-inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
-inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
-inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
-
-inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
-inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
-inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
-inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
-
-// returns if membar generates anything, obviously this code should mirror
-// membar below.
-inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
-  if( !os::is_MP() ) return false;  // Not needed on single CPU
-  if( VM_Version::v9_instructions_work() ) {
-    const Membar_mask_bits effective_mask =
-        Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
-    return (effective_mask != 0);
-  } else {
-    return true;
-  }
-}
-
-inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
-  // Uniprocessors do not need memory barriers
-  if (!os::is_MP()) return;
-  // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
-  // 8.4.4.3, a.31 and a.50.
-  if( VM_Version::v9_instructions_work() ) {
-    // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
-    // of the mmask subfield of const7a that does anything that isn't done
-    // implicitly is StoreLoad.
-    const Membar_mask_bits effective_mask =
-        Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
-    if ( effective_mask != 0 ) {
-      Assembler::membar( effective_mask );
-    }
-  } else {
-    // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
-    // do not issue the stbar because to my knowledge all v8 machines implement TSO,
-    // which guarantees that all stores behave as if an stbar were issued just after
-    // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
-    // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
-    // it can't be specified by stbar, nor have I come up with a way to simulate it.
-    //
-    // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
-    // space.  Put one here to be on the safe side.
-    Assembler::ldstub(SP, 0, G0);
-  }
-}
-
 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
--- a/hotspot/src/cpu/sparc/vm/frame_sparc.inline.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/frame_sparc.inline.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -25,6 +25,8 @@
 #ifndef CPU_SPARC_VM_FRAME_SPARC_INLINE_HPP
 #define CPU_SPARC_VM_FRAME_SPARC_INLINE_HPP
 
+#include "asm/macroAssembler.hpp"
+
 // Inline functions for SPARC frames:
 
 // Constructors
--- a/hotspot/src/cpu/sparc/vm/icBuffer_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/icBuffer_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,8 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "asm/assembler.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
 #include "code/icBuffer.hpp"
 #include "gc_interface/collectedHeap.inline.hpp"
 #include "interpreter/bytecodes.hpp"
--- a/hotspot/src/cpu/sparc/vm/icache_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/icache_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,7 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
 #include "runtime/icache.hpp"
 
 #define __ _masm->
--- a/hotspot/src/cpu/sparc/vm/interp_masm_sparc.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/interp_masm_sparc.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -25,7 +25,7 @@
 #ifndef CPU_SPARC_VM_INTERP_MASM_SPARC_HPP
 #define CPU_SPARC_VM_INTERP_MASM_SPARC_HPP
 
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
 #include "interpreter/invocationCounter.hpp"
 
 // This file specializes the assember with interpreter-specific macros
--- a/hotspot/src/cpu/sparc/vm/interpreter_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/interpreter_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,7 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "asm/assembler.hpp"
+#include "asm/macroAssembler.hpp"
 #include "interpreter/bytecodeHistogram.hpp"
 #include "interpreter/interpreter.hpp"
 #include "interpreter/interpreterGenerator.hpp"
--- a/hotspot/src/cpu/sparc/vm/jniFastGetField_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/jniFastGetField_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,7 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
 #include "memory/resourceArea.hpp"
 #include "prims/jniFastGetField.hpp"
 #include "prims/jvm_misc.hpp"
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/sparc/vm/macroAssembler_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -0,0 +1,4610 @@
+/*
+ * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "asm/assembler.inline.hpp"
+#include "compiler/disassembler.hpp"
+#include "gc_interface/collectedHeap.inline.hpp"
+#include "interpreter/interpreter.hpp"
+#include "memory/cardTableModRefBS.hpp"
+#include "memory/resourceArea.hpp"
+#include "prims/methodHandles.hpp"
+#include "runtime/biasedLocking.hpp"
+#include "runtime/interfaceSupport.hpp"
+#include "runtime/objectMonitor.hpp"
+#include "runtime/os.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/stubRoutines.hpp"
+#ifndef SERIALGC
+#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
+#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
+#include "gc_implementation/g1/heapRegion.hpp"
+#endif
+
+#ifdef PRODUCT
+#define BLOCK_COMMENT(str) /* nothing */
+#define STOP(error) stop(error)
+#else
+#define BLOCK_COMMENT(str) block_comment(str)
+#define STOP(error) block_comment(error); stop(error)
+#endif
+
+// Convert the raw encoding form into the form expected by the
+// constructor for Address.
+Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
+  assert(scale == 0, "not supported");
+  RelocationHolder rspec;
+  if (disp_reloc != relocInfo::none) {
+    rspec = Relocation::spec_simple(disp_reloc);
+  }
+
+  Register rindex = as_Register(index);
+  if (rindex != G0) {
+    Address madr(as_Register(base), rindex);
+    madr._rspec = rspec;
+    return madr;
+  } else {
+    Address madr(as_Register(base), disp);
+    madr._rspec = rspec;
+    return madr;
+  }
+}
+
+Address Argument::address_in_frame() const {
+  // Warning: In LP64 mode disp will occupy more than 10 bits, but
+  //          op codes such as ld or ldx, only access disp() to get
+  //          their simm13 argument.
+  int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
+  if (is_in())
+    return Address(FP, disp); // In argument.
+  else
+    return Address(SP, disp); // Out argument.
+}
+
+static const char* argumentNames[][2] = {
+  {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
+  {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
+  {"A(n>9)","P(n>9)"}
+};
+
+const char* Argument::name() const {
+  int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
+  int num = number();
+  if (num >= nofArgs)  num = nofArgs - 1;
+  return argumentNames[num][is_in() ? 1 : 0];
+}
+
+#ifdef ASSERT
+// On RISC, there's no benefit to verifying instruction boundaries.
+bool AbstractAssembler::pd_check_instruction_mark() { return false; }
+#endif
+
+
+void MacroAssembler::print_instruction(int inst) {
+  const char* s;
+  switch (inv_op(inst)) {
+  default:         s = "????"; break;
+  case call_op:    s = "call"; break;
+  case branch_op:
+    switch (inv_op2(inst)) {
+      case fb_op2:     s = "fb";   break;
+      case fbp_op2:    s = "fbp";  break;
+      case br_op2:     s = "br";   break;
+      case bp_op2:     s = "bp";   break;
+      case cb_op2:     s = "cb";   break;
+      case bpr_op2: {
+        if (is_cbcond(inst)) {
+          s = is_cxb(inst) ? "cxb" : "cwb";
+        } else {
+          s = "bpr";
+        }
+        break;
+      }
+      default:         s = "????"; break;
+    }
+  }
+  ::tty->print("%s", s);
+}
+
+
+// Patch instruction inst at offset inst_pos to refer to dest_pos
+// and return the resulting instruction.
+// We should have pcs, not offsets, but since all is relative, it will work out
+// OK.
+int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
+  int m; // mask for displacement field
+  int v; // new value for displacement field
+  const int word_aligned_ones = -4;
+  switch (inv_op(inst)) {
+  default: ShouldNotReachHere();
+  case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
+  case branch_op:
+    switch (inv_op2(inst)) {
+      case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
+      case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
+      case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
+      case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
+      case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
+      case bpr_op2: {
+        if (is_cbcond(inst)) {
+          m = wdisp10(word_aligned_ones, 0);
+          v = wdisp10(dest_pos, inst_pos);
+        } else {
+          m = wdisp16(word_aligned_ones, 0);
+          v = wdisp16(dest_pos, inst_pos);
+        }
+        break;
+      }
+      default: ShouldNotReachHere();
+    }
+  }
+  return  inst & ~m  |  v;
+}
+
+// Return the offset of the branch destionation of instruction inst
+// at offset pos.
+// Should have pcs, but since all is relative, it works out.
+int MacroAssembler::branch_destination(int inst, int pos) {
+  int r;
+  switch (inv_op(inst)) {
+  default: ShouldNotReachHere();
+  case call_op:        r = inv_wdisp(inst, pos, 30);  break;
+  case branch_op:
+    switch (inv_op2(inst)) {
+      case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
+      case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
+      case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
+      case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
+      case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
+      case bpr_op2: {
+        if (is_cbcond(inst)) {
+          r = inv_wdisp10(inst, pos);
+        } else {
+          r = inv_wdisp16(inst, pos);
+        }
+        break;
+      }
+      default: ShouldNotReachHere();
+    }
+  }
+  return r;
+}
+
+void MacroAssembler::null_check(Register reg, int offset) {
+  if (needs_explicit_null_check((intptr_t)offset)) {
+    // provoke OS NULL exception if reg = NULL by
+    // accessing M[reg] w/o changing any registers
+    ld_ptr(reg, 0, G0);
+  }
+  else {
+    // nothing to do, (later) access of M[reg + offset]
+    // will provoke OS NULL exception if reg = NULL
+  }
+}
+
+// Ring buffer jumps
+
+#ifndef PRODUCT
+void MacroAssembler::ret(  bool trace )   { if (trace) {
+                                                    mov(I7, O7); // traceable register
+                                                    JMP(O7, 2 * BytesPerInstWord);
+                                                  } else {
+                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
+                                                  }
+                                                }
+
+void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
+                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
+#endif /* PRODUCT */
+
+
+void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
+  assert_not_delayed();
+  // This can only be traceable if r1 & r2 are visible after a window save
+  if (TraceJumps) {
+#ifndef PRODUCT
+    save_frame(0);
+    verify_thread();
+    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
+    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
+    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
+    add(O2, O1, O1);
+
+    add(r1->after_save(), r2->after_save(), O2);
+    set((intptr_t)file, O3);
+    set(line, O4);
+    Label L;
+    // get nearby pc, store jmp target
+    call(L, relocInfo::none);  // No relocation for call to pc+0x8
+    delayed()->st(O2, O1, 0);
+    bind(L);
+
+    // store nearby pc
+    st(O7, O1, sizeof(intptr_t));
+    // store file
+    st(O3, O1, 2*sizeof(intptr_t));
+    // store line
+    st(O4, O1, 3*sizeof(intptr_t));
+    add(O0, 1, O0);
+    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
+    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
+    restore();
+#endif /* PRODUCT */
+  }
+  jmpl(r1, r2, G0);
+}
+void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
+  assert_not_delayed();
+  // This can only be traceable if r1 is visible after a window save
+  if (TraceJumps) {
+#ifndef PRODUCT
+    save_frame(0);
+    verify_thread();
+    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
+    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
+    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
+    add(O2, O1, O1);
+
+    add(r1->after_save(), offset, O2);
+    set((intptr_t)file, O3);
+    set(line, O4);
+    Label L;
+    // get nearby pc, store jmp target
+    call(L, relocInfo::none);  // No relocation for call to pc+0x8
+    delayed()->st(O2, O1, 0);
+    bind(L);
+
+    // store nearby pc
+    st(O7, O1, sizeof(intptr_t));
+    // store file
+    st(O3, O1, 2*sizeof(intptr_t));
+    // store line
+    st(O4, O1, 3*sizeof(intptr_t));
+    add(O0, 1, O0);
+    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
+    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
+    restore();
+#endif /* PRODUCT */
+  }
+  jmp(r1, offset);
+}
+
+// This code sequence is relocatable to any address, even on LP64.
+void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
+  assert_not_delayed();
+  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
+  // variable length instruction streams.
+  patchable_sethi(addrlit, temp);
+  Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
+  if (TraceJumps) {
+#ifndef PRODUCT
+    // Must do the add here so relocation can find the remainder of the
+    // value to be relocated.
+    add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
+    save_frame(0);
+    verify_thread();
+    ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
+    add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
+    sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
+    add(O2, O1, O1);
+
+    set((intptr_t)file, O3);
+    set(line, O4);
+    Label L;
+
+    // get nearby pc, store jmp target
+    call(L, relocInfo::none);  // No relocation for call to pc+0x8
+    delayed()->st(a.base()->after_save(), O1, 0);
+    bind(L);
+
+    // store nearby pc
+    st(O7, O1, sizeof(intptr_t));
+    // store file
+    st(O3, O1, 2*sizeof(intptr_t));
+    // store line
+    st(O4, O1, 3*sizeof(intptr_t));
+    add(O0, 1, O0);
+    and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
+    st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
+    restore();
+    jmpl(a.base(), G0, d);
+#else
+    jmpl(a.base(), a.disp(), d);
+#endif /* PRODUCT */
+  } else {
+    jmpl(a.base(), a.disp(), d);
+  }
+}
+
+void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
+  jumpl(addrlit, temp, G0, offset, file, line);
+}
+
+
+// Conditional breakpoint (for assertion checks in assembly code)
+void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
+  trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
+}
+
+// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
+void MacroAssembler::breakpoint_trap() {
+  trap(ST_RESERVED_FOR_USER_0);
+}
+
+// flush windows (except current) using flushw instruction if avail.
+void MacroAssembler::flush_windows() {
+  if (VM_Version::v9_instructions_work())  flushw();
+  else                                     flush_windows_trap();
+}
+
+// Write serialization page so VM thread can do a pseudo remote membar
+// We use the current thread pointer to calculate a thread specific
+// offset to write to within the page. This minimizes bus traffic
+// due to cache line collision.
+void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
+  srl(thread, os::get_serialize_page_shift_count(), tmp2);
+  if (Assembler::is_simm13(os::vm_page_size())) {
+    and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
+  }
+  else {
+    set((os::vm_page_size() - sizeof(int)), tmp1);
+    and3(tmp2, tmp1, tmp2);
+  }
+  set(os::get_memory_serialize_page(), tmp1);
+  st(G0, tmp1, tmp2);
+}
+
+
+
+void MacroAssembler::enter() {
+  Unimplemented();
+}
+
+void MacroAssembler::leave() {
+  Unimplemented();
+}
+
+void MacroAssembler::mult(Register s1, Register s2, Register d) {
+  if(VM_Version::v9_instructions_work()) {
+    mulx (s1, s2, d);
+  } else {
+    smul (s1, s2, d);
+  }
+}
+
+void MacroAssembler::mult(Register s1, int simm13a, Register d) {
+  if(VM_Version::v9_instructions_work()) {
+    mulx (s1, simm13a, d);
+  } else {
+    smul (s1, simm13a, d);
+  }
+}
+
+
+#ifdef ASSERT
+void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
+  const Register s1 = G3_scratch;
+  const Register s2 = G4_scratch;
+  Label get_psr_test;
+  // Get the condition codes the V8 way.
+  read_ccr_trap(s1);
+  mov(ccr_save, s2);
+  // This is a test of V8 which has icc but not xcc
+  // so mask off the xcc bits
+  and3(s2, 0xf, s2);
+  // Compare condition codes from the V8 and V9 ways.
+  subcc(s2, s1, G0);
+  br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
+  delayed()->breakpoint_trap();
+  bind(get_psr_test);
+}
+
+void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
+  const Register s1 = G3_scratch;
+  const Register s2 = G4_scratch;
+  Label set_psr_test;
+  // Write out the saved condition codes the V8 way
+  write_ccr_trap(ccr_save, s1, s2);
+  // Read back the condition codes using the V9 instruction
+  rdccr(s1);
+  mov(ccr_save, s2);
+  // This is a test of V8 which has icc but not xcc
+  // so mask off the xcc bits
+  and3(s2, 0xf, s2);
+  and3(s1, 0xf, s1);
+  // Compare the V8 way with the V9 way.
+  subcc(s2, s1, G0);
+  br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
+  delayed()->breakpoint_trap();
+  bind(set_psr_test);
+}
+#else
+#define read_ccr_v8_assert(x)
+#define write_ccr_v8_assert(x)
+#endif // ASSERT
+
+void MacroAssembler::read_ccr(Register ccr_save) {
+  if (VM_Version::v9_instructions_work()) {
+    rdccr(ccr_save);
+    // Test code sequence used on V8.  Do not move above rdccr.
+    read_ccr_v8_assert(ccr_save);
+  } else {
+    read_ccr_trap(ccr_save);
+  }
+}
+
+void MacroAssembler::write_ccr(Register ccr_save) {
+  if (VM_Version::v9_instructions_work()) {
+    // Test code sequence used on V8.  Do not move below wrccr.
+    write_ccr_v8_assert(ccr_save);
+    wrccr(ccr_save);
+  } else {
+    const Register temp_reg1 = G3_scratch;
+    const Register temp_reg2 = G4_scratch;
+    write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
+  }
+}
+
+
+// Calls to C land
+
+#ifdef ASSERT
+// a hook for debugging
+static Thread* reinitialize_thread() {
+  return ThreadLocalStorage::thread();
+}
+#else
+#define reinitialize_thread ThreadLocalStorage::thread
+#endif
+
+#ifdef ASSERT
+address last_get_thread = NULL;
+#endif
+
+// call this when G2_thread is not known to be valid
+void MacroAssembler::get_thread() {
+  save_frame(0);                // to avoid clobbering O0
+  mov(G1, L0);                  // avoid clobbering G1
+  mov(G5_method, L1);           // avoid clobbering G5
+  mov(G3, L2);                  // avoid clobbering G3 also
+  mov(G4, L5);                  // avoid clobbering G4
+#ifdef ASSERT
+  AddressLiteral last_get_thread_addrlit(&last_get_thread);
+  set(last_get_thread_addrlit, L3);
+  inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
+  st_ptr(L4, L3, 0);
+#endif
+  call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
+  delayed()->nop();
+  mov(L0, G1);
+  mov(L1, G5_method);
+  mov(L2, G3);
+  mov(L5, G4);
+  restore(O0, 0, G2_thread);
+}
+
+static Thread* verify_thread_subroutine(Thread* gthread_value) {
+  Thread* correct_value = ThreadLocalStorage::thread();
+  guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
+  return correct_value;
+}
+
+void MacroAssembler::verify_thread() {
+  if (VerifyThread) {
+    // NOTE: this chops off the heads of the 64-bit O registers.
+#ifdef CC_INTERP
+    save_frame(0);
+#else
+    // make sure G2_thread contains the right value
+    save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
+    mov(G1, L1);                // avoid clobbering G1
+    // G2 saved below
+    mov(G3, L3);                // avoid clobbering G3
+    mov(G4, L4);                // avoid clobbering G4
+    mov(G5_method, L5);         // avoid clobbering G5_method
+#endif /* CC_INTERP */
+#if defined(COMPILER2) && !defined(_LP64)
+    // Save & restore possible 64-bit Long arguments in G-regs
+    srlx(G1,32,L0);
+    srlx(G4,32,L6);
+#endif
+    call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
+    delayed()->mov(G2_thread, O0);
+
+    mov(L1, G1);                // Restore G1
+    // G2 restored below
+    mov(L3, G3);                // restore G3
+    mov(L4, G4);                // restore G4
+    mov(L5, G5_method);         // restore G5_method
+#if defined(COMPILER2) && !defined(_LP64)
+    // Save & restore possible 64-bit Long arguments in G-regs
+    sllx(L0,32,G2);             // Move old high G1 bits high in G2
+    srl(G1, 0,G1);              // Clear current high G1 bits
+    or3 (G1,G2,G1);             // Recover 64-bit G1
+    sllx(L6,32,G2);             // Move old high G4 bits high in G2
+    srl(G4, 0,G4);              // Clear current high G4 bits
+    or3 (G4,G2,G4);             // Recover 64-bit G4
+#endif
+    restore(O0, 0, G2_thread);
+  }
+}
+
+
+void MacroAssembler::save_thread(const Register thread_cache) {
+  verify_thread();
+  if (thread_cache->is_valid()) {
+    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
+    mov(G2_thread, thread_cache);
+  }
+  if (VerifyThread) {
+    // smash G2_thread, as if the VM were about to anyway
+    set(0x67676767, G2_thread);
+  }
+}
+
+
+void MacroAssembler::restore_thread(const Register thread_cache) {
+  if (thread_cache->is_valid()) {
+    assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
+    mov(thread_cache, G2_thread);
+    verify_thread();
+  } else {
+    // do it the slow way
+    get_thread();
+  }
+}
+
+
+// %%% maybe get rid of [re]set_last_Java_frame
+void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
+  assert_not_delayed();
+  Address flags(G2_thread, JavaThread::frame_anchor_offset() +
+                           JavaFrameAnchor::flags_offset());
+  Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
+
+  // Always set last_Java_pc and flags first because once last_Java_sp is visible
+  // has_last_Java_frame is true and users will look at the rest of the fields.
+  // (Note: flags should always be zero before we get here so doesn't need to be set.)
+
+#ifdef ASSERT
+  // Verify that flags was zeroed on return to Java
+  Label PcOk;
+  save_frame(0);                // to avoid clobbering O0
+  ld_ptr(pc_addr, L0);
+  br_null_short(L0, Assembler::pt, PcOk);
+  STOP("last_Java_pc not zeroed before leaving Java");
+  bind(PcOk);
+
+  // Verify that flags was zeroed on return to Java
+  Label FlagsOk;
+  ld(flags, L0);
+  tst(L0);
+  br(Assembler::zero, false, Assembler::pt, FlagsOk);
+  delayed() -> restore();
+  STOP("flags not zeroed before leaving Java");
+  bind(FlagsOk);
+#endif /* ASSERT */
+  //
+  // When returning from calling out from Java mode the frame anchor's last_Java_pc
+  // will always be set to NULL. It is set here so that if we are doing a call to
+  // native (not VM) that we capture the known pc and don't have to rely on the
+  // native call having a standard frame linkage where we can find the pc.
+
+  if (last_Java_pc->is_valid()) {
+    st_ptr(last_Java_pc, pc_addr);
+  }
+
+#ifdef _LP64
+#ifdef ASSERT
+  // Make sure that we have an odd stack
+  Label StackOk;
+  andcc(last_java_sp, 0x01, G0);
+  br(Assembler::notZero, false, Assembler::pt, StackOk);
+  delayed()->nop();
+  STOP("Stack Not Biased in set_last_Java_frame");
+  bind(StackOk);
+#endif // ASSERT
+  assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
+  add( last_java_sp, STACK_BIAS, G4_scratch );
+  st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
+#else
+  st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
+#endif // _LP64
+}
+
+void MacroAssembler::reset_last_Java_frame(void) {
+  assert_not_delayed();
+
+  Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
+  Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
+  Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
+
+#ifdef ASSERT
+  // check that it WAS previously set
+#ifdef CC_INTERP
+    save_frame(0);
+#else
+    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
+#endif /* CC_INTERP */
+    ld_ptr(sp_addr, L0);
+    tst(L0);
+    breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
+    restore();
+#endif // ASSERT
+
+  st_ptr(G0, sp_addr);
+  // Always return last_Java_pc to zero
+  st_ptr(G0, pc_addr);
+  // Always null flags after return to Java
+  st(G0, flags);
+}
+
+
+void MacroAssembler::call_VM_base(
+  Register        oop_result,
+  Register        thread_cache,
+  Register        last_java_sp,
+  address         entry_point,
+  int             number_of_arguments,
+  bool            check_exceptions)
+{
+  assert_not_delayed();
+
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = SP;
+  }
+  // debugging support
+  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
+
+  // 64-bit last_java_sp is biased!
+  set_last_Java_frame(last_java_sp, noreg);
+  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
+  save_thread(thread_cache);
+  // do the call
+  call(entry_point, relocInfo::runtime_call_type);
+  if (!VerifyThread)
+    delayed()->mov(G2_thread, O0);  // pass thread as first argument
+  else
+    delayed()->nop();             // (thread already passed)
+  restore_thread(thread_cache);
+  reset_last_Java_frame();
+
+  // check for pending exceptions. use Gtemp as scratch register.
+  if (check_exceptions) {
+    check_and_forward_exception(Gtemp);
+  }
+
+#ifdef ASSERT
+  set(badHeapWordVal, G3);
+  set(badHeapWordVal, G4);
+  set(badHeapWordVal, G5);
+#endif
+
+  // get oop result if there is one and reset the value in the thread
+  if (oop_result->is_valid()) {
+    get_vm_result(oop_result);
+  }
+}
+
+void MacroAssembler::check_and_forward_exception(Register scratch_reg)
+{
+  Label L;
+
+  check_and_handle_popframe(scratch_reg);
+  check_and_handle_earlyret(scratch_reg);
+
+  Address exception_addr(G2_thread, Thread::pending_exception_offset());
+  ld_ptr(exception_addr, scratch_reg);
+  br_null_short(scratch_reg, pt, L);
+  // we use O7 linkage so that forward_exception_entry has the issuing PC
+  call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
+  delayed()->nop();
+  bind(L);
+}
+
+
+void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
+}
+
+
+void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
+  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
+  // O0 is reserved for the thread
+  mov(arg_1, O1);
+  call_VM(oop_result, entry_point, 1, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
+  // O0 is reserved for the thread
+  mov(arg_1, O1);
+  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
+  call_VM(oop_result, entry_point, 2, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
+  // O0 is reserved for the thread
+  mov(arg_1, O1);
+  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
+  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
+  call_VM(oop_result, entry_point, 3, check_exceptions);
+}
+
+
+
+// Note: The following call_VM overloadings are useful when a "save"
+// has already been performed by a stub, and the last Java frame is
+// the previous one.  In that case, last_java_sp must be passed as FP
+// instead of SP.
+
+
+void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
+  call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
+  // O0 is reserved for the thread
+  mov(arg_1, O1);
+  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
+  // O0 is reserved for the thread
+  mov(arg_1, O1);
+  mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
+  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
+  // O0 is reserved for the thread
+  mov(arg_1, O1);
+  mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
+  mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
+  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
+}
+
+
+
+void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
+  assert_not_delayed();
+  save_thread(thread_cache);
+  // do the call
+  call(entry_point, relocInfo::runtime_call_type);
+  delayed()->nop();
+  restore_thread(thread_cache);
+#ifdef ASSERT
+  set(badHeapWordVal, G3);
+  set(badHeapWordVal, G4);
+  set(badHeapWordVal, G5);
+#endif
+}
+
+
+void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
+  call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
+}
+
+
+void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
+  mov(arg_1, O0);
+  call_VM_leaf(thread_cache, entry_point, 1);
+}
+
+
+void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
+  mov(arg_1, O0);
+  mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
+  call_VM_leaf(thread_cache, entry_point, 2);
+}
+
+
+void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
+  mov(arg_1, O0);
+  mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
+  mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
+  call_VM_leaf(thread_cache, entry_point, 3);
+}
+
+
+void MacroAssembler::get_vm_result(Register oop_result) {
+  verify_thread();
+  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
+  ld_ptr(    vm_result_addr, oop_result);
+  st_ptr(G0, vm_result_addr);
+  verify_oop(oop_result);
+}
+
+
+void MacroAssembler::get_vm_result_2(Register metadata_result) {
+  verify_thread();
+  Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
+  ld_ptr(vm_result_addr_2, metadata_result);
+  st_ptr(G0, vm_result_addr_2);
+}
+
+
+// We require that C code which does not return a value in vm_result will
+// leave it undisturbed.
+void MacroAssembler::set_vm_result(Register oop_result) {
+  verify_thread();
+  Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
+  verify_oop(oop_result);
+
+# ifdef ASSERT
+    // Check that we are not overwriting any other oop.
+#ifdef CC_INTERP
+    save_frame(0);
+#else
+    save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
+#endif /* CC_INTERP */
+    ld_ptr(vm_result_addr, L0);
+    tst(L0);
+    restore();
+    breakpoint_trap(notZero, Assembler::ptr_cc);
+    // }
+# endif
+
+  st_ptr(oop_result, vm_result_addr);
+}
+
+
+void MacroAssembler::ic_call(address entry, bool emit_delay) {
+  RelocationHolder rspec = virtual_call_Relocation::spec(pc());
+  patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
+  relocate(rspec);
+  call(entry, relocInfo::none);
+  if (emit_delay) {
+    delayed()->nop();
+  }
+}
+
+
+void MacroAssembler::card_table_write(jbyte* byte_map_base,
+                                      Register tmp, Register obj) {
+#ifdef _LP64
+  srlx(obj, CardTableModRefBS::card_shift, obj);
+#else
+  srl(obj, CardTableModRefBS::card_shift, obj);
+#endif
+  assert(tmp != obj, "need separate temp reg");
+  set((address) byte_map_base, tmp);
+  stb(G0, tmp, obj);
+}
+
+
+void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
+  address save_pc;
+  int shiftcnt;
+#ifdef _LP64
+# ifdef CHECK_DELAY
+  assert_not_delayed((char*) "cannot put two instructions in delay slot");
+# endif
+  v9_dep();
+  save_pc = pc();
+
+  int msb32 = (int) (addrlit.value() >> 32);
+  int lsb32 = (int) (addrlit.value());
+
+  if (msb32 == 0 && lsb32 >= 0) {
+    Assembler::sethi(lsb32, d, addrlit.rspec());
+  }
+  else if (msb32 == -1) {
+    Assembler::sethi(~lsb32, d, addrlit.rspec());
+    xor3(d, ~low10(~0), d);
+  }
+  else {
+    Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
+    if (msb32 & 0x3ff)                            // Any bits?
+      or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
+    if (lsb32 & 0xFFFFFC00) {                     // done?
+      if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
+        sllx(d, 12, d);                           // Make room for next 12 bits
+        or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
+        shiftcnt = 0;                             // We already shifted
+      }
+      else
+        shiftcnt = 12;
+      if ((lsb32 >> 10) & 0x3ff) {
+        sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
+        or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
+        shiftcnt = 0;
+      }
+      else
+        shiftcnt = 10;
+      sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
+    }
+    else
+      sllx(d, 32, d);
+  }
+  // Pad out the instruction sequence so it can be patched later.
+  if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
+                           addrlit.rtype() != relocInfo::runtime_call_type)) {
+    while (pc() < (save_pc + (7 * BytesPerInstWord)))
+      nop();
+  }
+#else
+  Assembler::sethi(addrlit.value(), d, addrlit.rspec());
+#endif
+}
+
+
+void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
+  internal_sethi(addrlit, d, false);
+}
+
+
+void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
+  internal_sethi(addrlit, d, true);
+}
+
+
+int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
+#ifdef _LP64
+  if (worst_case)  return 7;
+  intptr_t iaddr = (intptr_t) a;
+  int msb32 = (int) (iaddr >> 32);
+  int lsb32 = (int) (iaddr);
+  int count;
+  if (msb32 == 0 && lsb32 >= 0)
+    count = 1;
+  else if (msb32 == -1)
+    count = 2;
+  else {
+    count = 2;
+    if (msb32 & 0x3ff)
+      count++;
+    if (lsb32 & 0xFFFFFC00 ) {
+      if ((lsb32 >> 20) & 0xfff)  count += 2;
+      if ((lsb32 >> 10) & 0x3ff)  count += 2;
+    }
+  }
+  return count;
+#else
+  return 1;
+#endif
+}
+
+int MacroAssembler::worst_case_insts_for_set() {
+  return insts_for_sethi(NULL, true) + 1;
+}
+
+
+// Keep in sync with MacroAssembler::insts_for_internal_set
+void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
+  intptr_t value = addrlit.value();
+
+  if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
+    // can optimize
+    if (-4096 <= value && value <= 4095) {
+      or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
+      return;
+    }
+    if (inv_hi22(hi22(value)) == value) {
+      sethi(addrlit, d);
+      return;
+    }
+  }
+  assert_not_delayed((char*) "cannot put two instructions in delay slot");
+  internal_sethi(addrlit, d, ForceRelocatable);
+  if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
+    add(d, addrlit.low10(), d, addrlit.rspec());
+  }
+}
+
+// Keep in sync with MacroAssembler::internal_set
+int MacroAssembler::insts_for_internal_set(intptr_t value) {
+  // can optimize
+  if (-4096 <= value && value <= 4095) {
+    return 1;
+  }
+  if (inv_hi22(hi22(value)) == value) {
+    return insts_for_sethi((address) value);
+  }
+  int count = insts_for_sethi((address) value);
+  AddressLiteral al(value);
+  if (al.low10() != 0) {
+    count++;
+  }
+  return count;
+}
+
+void MacroAssembler::set(const AddressLiteral& al, Register d) {
+  internal_set(al, d, false);
+}
+
+void MacroAssembler::set(intptr_t value, Register d) {
+  AddressLiteral al(value);
+  internal_set(al, d, false);
+}
+
+void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
+  AddressLiteral al(addr, rspec);
+  internal_set(al, d, false);
+}
+
+void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
+  internal_set(al, d, true);
+}
+
+void MacroAssembler::patchable_set(intptr_t value, Register d) {
+  AddressLiteral al(value);
+  internal_set(al, d, true);
+}
+
+
+void MacroAssembler::set64(jlong value, Register d, Register tmp) {
+  assert_not_delayed();
+  v9_dep();
+
+  int hi = (int)(value >> 32);
+  int lo = (int)(value & ~0);
+  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
+  if (Assembler::is_simm13(lo) && value == lo) {
+    or3(G0, lo, d);
+  } else if (hi == 0) {
+    Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
+    if (low10(lo) != 0)
+      or3(d, low10(lo), d);
+  }
+  else if (hi == -1) {
+    Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
+    xor3(d, low10(lo) ^ ~low10(~0), d);
+  }
+  else if (lo == 0) {
+    if (Assembler::is_simm13(hi)) {
+      or3(G0, hi, d);
+    } else {
+      Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
+      if (low10(hi) != 0)
+        or3(d, low10(hi), d);
+    }
+    sllx(d, 32, d);
+  }
+  else {
+    Assembler::sethi(hi, tmp);
+    Assembler::sethi(lo,   d); // macro assembler version sign-extends
+    if (low10(hi) != 0)
+      or3 (tmp, low10(hi), tmp);
+    if (low10(lo) != 0)
+      or3 (  d, low10(lo),   d);
+    sllx(tmp, 32, tmp);
+    or3 (d, tmp, d);
+  }
+}
+
+int MacroAssembler::insts_for_set64(jlong value) {
+  v9_dep();
+
+  int hi = (int) (value >> 32);
+  int lo = (int) (value & ~0);
+  int count = 0;
+
+  // (Matcher::isSimpleConstant64 knows about the following optimizations.)
+  if (Assembler::is_simm13(lo) && value == lo) {
+    count++;
+  } else if (hi == 0) {
+    count++;
+    if (low10(lo) != 0)
+      count++;
+  }
+  else if (hi == -1) {
+    count += 2;
+  }
+  else if (lo == 0) {
+    if (Assembler::is_simm13(hi)) {
+      count++;
+    } else {
+      count++;
+      if (low10(hi) != 0)
+        count++;
+    }
+    count++;
+  }
+  else {
+    count += 2;
+    if (low10(hi) != 0)
+      count++;
+    if (low10(lo) != 0)
+      count++;
+    count += 2;
+  }
+  return count;
+}
+
+// compute size in bytes of sparc frame, given
+// number of extraWords
+int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
+
+  int nWords = frame::memory_parameter_word_sp_offset;
+
+  nWords += extraWords;
+
+  if (nWords & 1) ++nWords; // round up to double-word
+
+  return nWords * BytesPerWord;
+}
+
+
+// save_frame: given number of "extra" words in frame,
+// issue approp. save instruction (p 200, v8 manual)
+
+void MacroAssembler::save_frame(int extraWords) {
+  int delta = -total_frame_size_in_bytes(extraWords);
+  if (is_simm13(delta)) {
+    save(SP, delta, SP);
+  } else {
+    set(delta, G3_scratch);
+    save(SP, G3_scratch, SP);
+  }
+}
+
+
+void MacroAssembler::save_frame_c1(int size_in_bytes) {
+  if (is_simm13(-size_in_bytes)) {
+    save(SP, -size_in_bytes, SP);
+  } else {
+    set(-size_in_bytes, G3_scratch);
+    save(SP, G3_scratch, SP);
+  }
+}
+
+
+void MacroAssembler::save_frame_and_mov(int extraWords,
+                                        Register s1, Register d1,
+                                        Register s2, Register d2) {
+  assert_not_delayed();
+
+  // The trick here is to use precisely the same memory word
+  // that trap handlers also use to save the register.
+  // This word cannot be used for any other purpose, but
+  // it works fine to save the register's value, whether or not
+  // an interrupt flushes register windows at any given moment!
+  Address s1_addr;
+  if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
+    s1_addr = s1->address_in_saved_window();
+    st_ptr(s1, s1_addr);
+  }
+
+  Address s2_addr;
+  if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
+    s2_addr = s2->address_in_saved_window();
+    st_ptr(s2, s2_addr);
+  }
+
+  save_frame(extraWords);
+
+  if (s1_addr.base() == SP) {
+    ld_ptr(s1_addr.after_save(), d1);
+  } else if (s1->is_valid()) {
+    mov(s1->after_save(), d1);
+  }
+
+  if (s2_addr.base() == SP) {
+    ld_ptr(s2_addr.after_save(), d2);
+  } else if (s2->is_valid()) {
+    mov(s2->after_save(), d2);
+  }
+}
+
+
+AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
+  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
+  int index = oop_recorder()->allocate_metadata_index(obj);
+  RelocationHolder rspec = metadata_Relocation::spec(index);
+  return AddressLiteral((address)obj, rspec);
+}
+
+AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
+  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
+  int index = oop_recorder()->find_index(obj);
+  RelocationHolder rspec = metadata_Relocation::spec(index);
+  return AddressLiteral((address)obj, rspec);
+}
+
+
+AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
+  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
+  int oop_index = oop_recorder()->find_index(obj);
+  return AddressLiteral(obj, oop_Relocation::spec(oop_index));
+}
+
+void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
+  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int oop_index = oop_recorder()->find_index(obj);
+  RelocationHolder rspec = oop_Relocation::spec(oop_index);
+
+  assert_not_delayed();
+  // Relocation with special format (see relocInfo_sparc.hpp).
+  relocate(rspec, 1);
+  // Assembler::sethi(0x3fffff, d);
+  emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
+  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
+  add(d, 0x3ff, d);
+
+}
+
+void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
+  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int klass_index = oop_recorder()->find_index(k);
+  RelocationHolder rspec = metadata_Relocation::spec(klass_index);
+  narrowOop encoded_k = oopDesc::encode_klass(k);
+
+  assert_not_delayed();
+  // Relocation with special format (see relocInfo_sparc.hpp).
+  relocate(rspec, 1);
+  // Assembler::sethi(encoded_k, d);
+  emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
+  // Don't add relocation for 'add'. Do patching during 'sethi' processing.
+  add(d, low10(encoded_k), d);
+
+}
+
+void MacroAssembler::align(int modulus) {
+  while (offset() % modulus != 0) nop();
+}
+
+
+void MacroAssembler::safepoint() {
+  relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
+}
+
+
+void RegistersForDebugging::print(outputStream* s) {
+  FlagSetting fs(Debugging, true);
+  int j;
+  for (j = 0; j < 8; ++j) {
+    if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
+    else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
+  }
+  s->cr();
+
+  for (j = 0;  j < 8;  ++j) {
+    s->print("l%d = ", j); os::print_location(s, l[j]);
+  }
+  s->cr();
+
+  for (j = 0; j < 8; ++j) {
+    if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
+    else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
+  }
+  s->cr();
+
+  for (j = 0; j < 8; ++j) {
+    s->print("g%d = ", j); os::print_location(s, g[j]);
+  }
+  s->cr();
+
+  // print out floats with compression
+  for (j = 0; j < 32; ) {
+    jfloat val = f[j];
+    int last = j;
+    for ( ;  last+1 < 32;  ++last ) {
+      char b1[1024], b2[1024];
+      sprintf(b1, "%f", val);
+      sprintf(b2, "%f", f[last+1]);
+      if (strcmp(b1, b2))
+        break;
+    }
+    s->print("f%d", j);
+    if ( j != last )  s->print(" - f%d", last);
+    s->print(" = %f", val);
+    s->fill_to(25);
+    s->print_cr(" (0x%x)", val);
+    j = last + 1;
+  }
+  s->cr();
+
+  // and doubles (evens only)
+  for (j = 0; j < 32; ) {
+    jdouble val = d[j];
+    int last = j;
+    for ( ;  last+1 < 32;  ++last ) {
+      char b1[1024], b2[1024];
+      sprintf(b1, "%f", val);
+      sprintf(b2, "%f", d[last+1]);
+      if (strcmp(b1, b2))
+        break;
+    }
+    s->print("d%d", 2 * j);
+    if ( j != last )  s->print(" - d%d", last);
+    s->print(" = %f", val);
+    s->fill_to(30);
+    s->print("(0x%x)", *(int*)&val);
+    s->fill_to(42);
+    s->print_cr("(0x%x)", *(1 + (int*)&val));
+    j = last + 1;
+  }
+  s->cr();
+}
+
+void RegistersForDebugging::save_registers(MacroAssembler* a) {
+  a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
+  a->flush_windows();
+  int i;
+  for (i = 0; i < 8; ++i) {
+    a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
+    a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
+    a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
+    a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
+  }
+  for (i = 0;  i < 32; ++i) {
+    a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
+  }
+  for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
+    a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
+  }
+}
+
+void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
+  for (int i = 1; i < 8;  ++i) {
+    a->ld_ptr(r, g_offset(i), as_gRegister(i));
+  }
+  for (int j = 0; j < 32; ++j) {
+    a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
+  }
+  for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
+    a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
+  }
+}
+
+
+// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
+void MacroAssembler::push_fTOS() {
+  // %%%%%% need to implement this
+}
+
+// pops double TOS element from CPU stack and pushes on FPU stack
+void MacroAssembler::pop_fTOS() {
+  // %%%%%% need to implement this
+}
+
+void MacroAssembler::empty_FPU_stack() {
+  // %%%%%% need to implement this
+}
+
+void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
+  // plausibility check for oops
+  if (!VerifyOops) return;
+
+  if (reg == G0)  return;       // always NULL, which is always an oop
+
+  BLOCK_COMMENT("verify_oop {");
+  char buffer[64];
+#ifdef COMPILER1
+  if (CommentedAssembly) {
+    snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
+    block_comment(buffer);
+  }
+#endif
+
+  int len = strlen(file) + strlen(msg) + 1 + 4;
+  sprintf(buffer, "%d", line);
+  len += strlen(buffer);
+  sprintf(buffer, " at offset %d ", offset());
+  len += strlen(buffer);
+  char * real_msg = new char[len];
+  sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
+
+  // Call indirectly to solve generation ordering problem
+  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
+
+  // Make some space on stack above the current register window.
+  // Enough to hold 8 64-bit registers.
+  add(SP,-8*8,SP);
+
+  // Save some 64-bit registers; a normal 'save' chops the heads off
+  // of 64-bit longs in the 32-bit build.
+  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
+  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
+  mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
+  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
+
+  // Size of set() should stay the same
+  patchable_set((intptr_t)real_msg, O1);
+  // Load address to call to into O7
+  load_ptr_contents(a, O7);
+  // Register call to verify_oop_subroutine
+  callr(O7, G0);
+  delayed()->nop();
+  // recover frame size
+  add(SP, 8*8,SP);
+  BLOCK_COMMENT("} verify_oop");
+}
+
+void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
+  // plausibility check for oops
+  if (!VerifyOops) return;
+
+  char buffer[64];
+  sprintf(buffer, "%d", line);
+  int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
+  sprintf(buffer, " at SP+%d ", addr.disp());
+  len += strlen(buffer);
+  char * real_msg = new char[len];
+  sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
+
+  // Call indirectly to solve generation ordering problem
+  AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
+
+  // Make some space on stack above the current register window.
+  // Enough to hold 8 64-bit registers.
+  add(SP,-8*8,SP);
+
+  // Save some 64-bit registers; a normal 'save' chops the heads off
+  // of 64-bit longs in the 32-bit build.
+  stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
+  stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
+  ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
+  stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
+
+  // Size of set() should stay the same
+  patchable_set((intptr_t)real_msg, O1);
+  // Load address to call to into O7
+  load_ptr_contents(a, O7);
+  // Register call to verify_oop_subroutine
+  callr(O7, G0);
+  delayed()->nop();
+  // recover frame size
+  add(SP, 8*8,SP);
+}
+
+// side-door communication with signalHandler in os_solaris.cpp
+address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
+
+// This macro is expanded just once; it creates shared code.  Contract:
+// receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
+// registers, including flags.  May not use a register 'save', as this blows
+// the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
+// call.
+void MacroAssembler::verify_oop_subroutine() {
+  assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
+
+  // Leaf call; no frame.
+  Label succeed, fail, null_or_fail;
+
+  // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
+  // O0 is now the oop to be checked.  O7 is the return address.
+  Register O0_obj = O0;
+
+  // Save some more registers for temps.
+  stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
+  stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
+  stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
+  stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
+
+  // Save flags
+  Register O5_save_flags = O5;
+  rdccr( O5_save_flags );
+
+  { // count number of verifies
+    Register O2_adr   = O2;
+    Register O3_accum = O3;
+    inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
+  }
+
+  Register O2_mask = O2;
+  Register O3_bits = O3;
+  Register O4_temp = O4;
+
+  // mark lower end of faulting range
+  assert(_verify_oop_implicit_branch[0] == NULL, "set once");
+  _verify_oop_implicit_branch[0] = pc();
+
+  // We can't check the mark oop because it could be in the process of
+  // locking or unlocking while this is running.
+  set(Universe::verify_oop_mask (), O2_mask);
+  set(Universe::verify_oop_bits (), O3_bits);
+
+  // assert((obj & oop_mask) == oop_bits);
+  and3(O0_obj, O2_mask, O4_temp);
+  cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
+
+  if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
+    // the null_or_fail case is useless; must test for null separately
+    br_null_short(O0_obj, pn, succeed);
+  }
+
+  // Check the Klass* of this object for being in the right area of memory.
+  // Cannot do the load in the delay above slot in case O0 is null
+  load_klass(O0_obj, O0_obj);
+  // assert((klass != NULL)
+  br_null_short(O0_obj, pn, fail);
+  // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
+
+  wrccr( O5_save_flags ); // Restore CCR's
+
+  // mark upper end of faulting range
+  _verify_oop_implicit_branch[1] = pc();
+
+  //-----------------------
+  // all tests pass
+  bind(succeed);
+
+  // Restore prior 64-bit registers
+  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
+  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
+  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
+  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
+  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
+  ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
+
+  retl();                       // Leaf return; restore prior O7 in delay slot
+  delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
+
+  //-----------------------
+  bind(null_or_fail);           // nulls are less common but OK
+  br_null(O0_obj, false, pt, succeed);
+  delayed()->wrccr( O5_save_flags ); // Restore CCR's
+
+  //-----------------------
+  // report failure:
+  bind(fail);
+  _verify_oop_implicit_branch[2] = pc();
+
+  wrccr( O5_save_flags ); // Restore CCR's
+
+  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
+
+  // stop_subroutine expects message pointer in I1.
+  mov(I1, O1);
+
+  // Restore prior 64-bit registers
+  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
+  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
+  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
+  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
+  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
+  ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
+
+  // factor long stop-sequence into subroutine to save space
+  assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
+
+  // call indirectly to solve generation ordering problem
+  AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
+  load_ptr_contents(al, O5);
+  jmpl(O5, 0, O7);
+  delayed()->nop();
+}
+
+
+void MacroAssembler::stop(const char* msg) {
+  // save frame first to get O7 for return address
+  // add one word to size in case struct is odd number of words long
+  // It must be doubleword-aligned for storing doubles into it.
+
+    save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
+
+    // stop_subroutine expects message pointer in I1.
+    // Size of set() should stay the same
+    patchable_set((intptr_t)msg, O1);
+
+    // factor long stop-sequence into subroutine to save space
+    assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
+
+    // call indirectly to solve generation ordering problem
+    AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
+    load_ptr_contents(a, O5);
+    jmpl(O5, 0, O7);
+    delayed()->nop();
+
+    breakpoint_trap();   // make stop actually stop rather than writing
+                         // unnoticeable results in the output files.
+
+    // restore(); done in callee to save space!
+}
+
+
+void MacroAssembler::warn(const char* msg) {
+  save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
+  RegistersForDebugging::save_registers(this);
+  mov(O0, L0);
+  // Size of set() should stay the same
+  patchable_set((intptr_t)msg, O0);
+  call( CAST_FROM_FN_PTR(address, warning) );
+  delayed()->nop();
+//  ret();
+//  delayed()->restore();
+  RegistersForDebugging::restore_registers(this, L0);
+  restore();
+}
+
+
+void MacroAssembler::untested(const char* what) {
+  // We must be able to turn interactive prompting off
+  // in order to run automated test scripts on the VM
+  // Use the flag ShowMessageBoxOnError
+
+  char* b = new char[1024];
+  sprintf(b, "untested: %s", what);
+
+  if (ShowMessageBoxOnError) { STOP(b); }
+  else                       { warn(b); }
+}
+
+
+void MacroAssembler::stop_subroutine() {
+  RegistersForDebugging::save_registers(this);
+
+  // for the sake of the debugger, stick a PC on the current frame
+  // (this assumes that the caller has performed an extra "save")
+  mov(I7, L7);
+  add(O7, -7 * BytesPerInt, I7);
+
+  save_frame(); // one more save to free up another O7 register
+  mov(I0, O1); // addr of reg save area
+
+  // We expect pointer to message in I1. Caller must set it up in O1
+  mov(I1, O0); // get msg
+  call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
+  delayed()->nop();
+
+  restore();
+
+  RegistersForDebugging::restore_registers(this, O0);
+
+  save_frame(0);
+  call(CAST_FROM_FN_PTR(address,breakpoint));
+  delayed()->nop();
+  restore();
+
+  mov(L7, I7);
+  retl();
+  delayed()->restore(); // see stop above
+}
+
+
+void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
+  if ( ShowMessageBoxOnError ) {
+    JavaThread* thread = JavaThread::current();
+    JavaThreadState saved_state = thread->thread_state();
+    thread->set_thread_state(_thread_in_vm);
+      {
+        // In order to get locks work, we need to fake a in_VM state
+        ttyLocker ttyl;
+        ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
+        if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
+        BytecodeCounter::print();
+        }
+        if (os::message_box(msg, "Execution stopped, print registers?"))
+          regs->print(::tty);
+      }
+    BREAKPOINT;
+      ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
+  }
+  else {
+     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
+  }
+  assert(false, err_msg("DEBUG MESSAGE: %s", msg));
+}
+
+
+void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
+  subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
+  Label no_extras;
+  br( negative, true, pt, no_extras ); // if neg, clear reg
+  delayed()->set(0, Rresult);          // annuled, so only if taken
+  bind( no_extras );
+}
+
+
+void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
+#ifdef _LP64
+  add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
+#else
+  add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
+#endif
+  bclr(1, Rresult);
+  sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
+}
+
+
+void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
+  calc_frame_size(Rextra_words, Rresult);
+  neg(Rresult);
+  save(SP, Rresult, SP);
+}
+
+
+// ---------------------------------------------------------
+Assembler::RCondition cond2rcond(Assembler::Condition c) {
+  switch (c) {
+    /*case zero: */
+    case Assembler::equal:        return Assembler::rc_z;
+    case Assembler::lessEqual:    return Assembler::rc_lez;
+    case Assembler::less:         return Assembler::rc_lz;
+    /*case notZero:*/
+    case Assembler::notEqual:     return Assembler::rc_nz;
+    case Assembler::greater:      return Assembler::rc_gz;
+    case Assembler::greaterEqual: return Assembler::rc_gez;
+  }
+  ShouldNotReachHere();
+  return Assembler::rc_z;
+}
+
+// compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
+void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
+  tst(s1);
+  br (c, a, p, L);
+}
+
+// Compares a pointer register with zero and branches on null.
+// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
+void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
+  assert_not_delayed();
+#ifdef _LP64
+  bpr( rc_z, a, p, s1, L );
+#else
+  tst(s1);
+  br ( zero, a, p, L );
+#endif
+}
+
+void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
+  assert_not_delayed();
+#ifdef _LP64
+  bpr( rc_nz, a, p, s1, L );
+#else
+  tst(s1);
+  br ( notZero, a, p, L );
+#endif
+}
+
+// Compare registers and branch with nop in delay slot or cbcond without delay slot.
+
+// Compare integer (32 bit) values (icc only).
+void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
+                                      Predict p, Label& L) {
+  assert_not_delayed();
+  if (use_cbcond(L)) {
+    Assembler::cbcond(c, icc, s1, s2, L);
+  } else {
+    cmp(s1, s2);
+    br(c, false, p, L);
+    delayed()->nop();
+  }
+}
+
+// Compare integer (32 bit) values (icc only).
+void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
+                                      Predict p, Label& L) {
+  assert_not_delayed();
+  if (is_simm(simm13a,5) && use_cbcond(L)) {
+    Assembler::cbcond(c, icc, s1, simm13a, L);
+  } else {
+    cmp(s1, simm13a);
+    br(c, false, p, L);
+    delayed()->nop();
+  }
+}
+
+// Branch that tests xcc in LP64 and icc in !LP64
+void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
+                                       Predict p, Label& L) {
+  assert_not_delayed();
+  if (use_cbcond(L)) {
+    Assembler::cbcond(c, ptr_cc, s1, s2, L);
+  } else {
+    cmp(s1, s2);
+    brx(c, false, p, L);
+    delayed()->nop();
+  }
+}
+
+// Branch that tests xcc in LP64 and icc in !LP64
+void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
+                                       Predict p, Label& L) {
+  assert_not_delayed();
+  if (is_simm(simm13a,5) && use_cbcond(L)) {
+    Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
+  } else {
+    cmp(s1, simm13a);
+    brx(c, false, p, L);
+    delayed()->nop();
+  }
+}
+
+// Short branch version for compares a pointer with zero.
+
+void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
+  assert_not_delayed();
+  if (use_cbcond(L)) {
+    Assembler::cbcond(zero, ptr_cc, s1, 0, L);
+    return;
+  }
+  br_null(s1, false, p, L);
+  delayed()->nop();
+}
+
+void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
+  assert_not_delayed();
+  if (use_cbcond(L)) {
+    Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
+    return;
+  }
+  br_notnull(s1, false, p, L);
+  delayed()->nop();
+}
+
+// Unconditional short branch
+void MacroAssembler::ba_short(Label& L) {
+  if (use_cbcond(L)) {
+    Assembler::cbcond(equal, icc, G0, G0, L);
+    return;
+  }
+  br(always, false, pt, L);
+  delayed()->nop();
+}
+
+// instruction sequences factored across compiler & interpreter
+
+
+void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
+                           Register Rb_hi, Register Rb_low,
+                           Register Rresult) {
+
+  Label check_low_parts, done;
+
+  cmp(Ra_hi, Rb_hi );  // compare hi parts
+  br(equal, true, pt, check_low_parts);
+  delayed()->cmp(Ra_low, Rb_low); // test low parts
+
+  // And, with an unsigned comparison, it does not matter if the numbers
+  // are negative or not.
+  // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
+  // The second one is bigger (unsignedly).
+
+  // Other notes:  The first move in each triplet can be unconditional
+  // (and therefore probably prefetchable).
+  // And the equals case for the high part does not need testing,
+  // since that triplet is reached only after finding the high halves differ.
+
+  if (VM_Version::v9_instructions_work()) {
+    mov(-1, Rresult);
+    ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
+  } else {
+    br(less,    true, pt, done); delayed()-> set(-1, Rresult);
+    br(greater, true, pt, done); delayed()-> set( 1, Rresult);
+  }
+
+  bind( check_low_parts );
+
+  if (VM_Version::v9_instructions_work()) {
+    mov(                               -1, Rresult);
+    movcc(equal,           false, icc,  0, Rresult);
+    movcc(greaterUnsigned, false, icc,  1, Rresult);
+  } else {
+    set(-1, Rresult);
+    br(equal,           true, pt, done); delayed()->set( 0, Rresult);
+    br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
+  }
+  bind( done );
+}
+
+void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
+  subcc(  G0, Rlow, Rlow );
+  subc(   G0, Rhi,  Rhi  );
+}
+
+void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
+                           Register Rcount,
+                           Register Rout_high, Register Rout_low,
+                           Register Rtemp ) {
+
+
+  Register Ralt_count = Rtemp;
+  Register Rxfer_bits = Rtemp;
+
+  assert( Ralt_count != Rin_high
+      &&  Ralt_count != Rin_low
+      &&  Ralt_count != Rcount
+      &&  Rxfer_bits != Rin_low
+      &&  Rxfer_bits != Rin_high
+      &&  Rxfer_bits != Rcount
+      &&  Rxfer_bits != Rout_low
+      &&  Rout_low   != Rin_high,
+        "register alias checks");
+
+  Label big_shift, done;
+
+  // This code can be optimized to use the 64 bit shifts in V9.
+  // Here we use the 32 bit shifts.
+
+  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
+  subcc(Rcount,   31, Ralt_count);
+  br(greater, true, pn, big_shift);
+  delayed()->dec(Ralt_count);
+
+  // shift < 32 bits, Ralt_count = Rcount-31
+
+  // We get the transfer bits by shifting right by 32-count the low
+  // register. This is done by shifting right by 31-count and then by one
+  // more to take care of the special (rare) case where count is zero
+  // (shifting by 32 would not work).
+
+  neg(Ralt_count);
+
+  // The order of the next two instructions is critical in the case where
+  // Rin and Rout are the same and should not be reversed.
+
+  srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
+  if (Rcount != Rout_low) {
+    sll(Rin_low, Rcount, Rout_low); // low half
+  }
+  sll(Rin_high, Rcount, Rout_high);
+  if (Rcount == Rout_low) {
+    sll(Rin_low, Rcount, Rout_low); // low half
+  }
+  srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
+  ba(done);
+  delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
+
+  // shift >= 32 bits, Ralt_count = Rcount-32
+  bind(big_shift);
+  sll(Rin_low, Ralt_count, Rout_high  );
+  clr(Rout_low);
+
+  bind(done);
+}
+
+
+void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
+                           Register Rcount,
+                           Register Rout_high, Register Rout_low,
+                           Register Rtemp ) {
+
+  Register Ralt_count = Rtemp;
+  Register Rxfer_bits = Rtemp;
+
+  assert( Ralt_count != Rin_high
+      &&  Ralt_count != Rin_low
+      &&  Ralt_count != Rcount
+      &&  Rxfer_bits != Rin_low
+      &&  Rxfer_bits != Rin_high
+      &&  Rxfer_bits != Rcount
+      &&  Rxfer_bits != Rout_high
+      &&  Rout_high  != Rin_low,
+        "register alias checks");
+
+  Label big_shift, done;
+
+  // This code can be optimized to use the 64 bit shifts in V9.
+  // Here we use the 32 bit shifts.
+
+  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
+  subcc(Rcount,   31, Ralt_count);
+  br(greater, true, pn, big_shift);
+  delayed()->dec(Ralt_count);
+
+  // shift < 32 bits, Ralt_count = Rcount-31
+
+  // We get the transfer bits by shifting left by 32-count the high
+  // register. This is done by shifting left by 31-count and then by one
+  // more to take care of the special (rare) case where count is zero
+  // (shifting by 32 would not work).
+
+  neg(Ralt_count);
+  if (Rcount != Rout_low) {
+    srl(Rin_low, Rcount, Rout_low);
+  }
+
+  // The order of the next two instructions is critical in the case where
+  // Rin and Rout are the same and should not be reversed.
+
+  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
+  sra(Rin_high,     Rcount, Rout_high ); // high half
+  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
+  if (Rcount == Rout_low) {
+    srl(Rin_low, Rcount, Rout_low);
+  }
+  ba(done);
+  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
+
+  // shift >= 32 bits, Ralt_count = Rcount-32
+  bind(big_shift);
+
+  sra(Rin_high, Ralt_count, Rout_low);
+  sra(Rin_high,         31, Rout_high); // sign into hi
+
+  bind( done );
+}
+
+
+
+void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
+                            Register Rcount,
+                            Register Rout_high, Register Rout_low,
+                            Register Rtemp ) {
+
+  Register Ralt_count = Rtemp;
+  Register Rxfer_bits = Rtemp;
+
+  assert( Ralt_count != Rin_high
+      &&  Ralt_count != Rin_low
+      &&  Ralt_count != Rcount
+      &&  Rxfer_bits != Rin_low
+      &&  Rxfer_bits != Rin_high
+      &&  Rxfer_bits != Rcount
+      &&  Rxfer_bits != Rout_high
+      &&  Rout_high  != Rin_low,
+        "register alias checks");
+
+  Label big_shift, done;
+
+  // This code can be optimized to use the 64 bit shifts in V9.
+  // Here we use the 32 bit shifts.
+
+  and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
+  subcc(Rcount,   31, Ralt_count);
+  br(greater, true, pn, big_shift);
+  delayed()->dec(Ralt_count);
+
+  // shift < 32 bits, Ralt_count = Rcount-31
+
+  // We get the transfer bits by shifting left by 32-count the high
+  // register. This is done by shifting left by 31-count and then by one
+  // more to take care of the special (rare) case where count is zero
+  // (shifting by 32 would not work).
+
+  neg(Ralt_count);
+  if (Rcount != Rout_low) {
+    srl(Rin_low, Rcount, Rout_low);
+  }
+
+  // The order of the next two instructions is critical in the case where
+  // Rin and Rout are the same and should not be reversed.
+
+  sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
+  srl(Rin_high,     Rcount, Rout_high ); // high half
+  sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
+  if (Rcount == Rout_low) {
+    srl(Rin_low, Rcount, Rout_low);
+  }
+  ba(done);
+  delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
+
+  // shift >= 32 bits, Ralt_count = Rcount-32
+  bind(big_shift);
+
+  srl(Rin_high, Ralt_count, Rout_low);
+  clr(Rout_high);
+
+  bind( done );
+}
+
+#ifdef _LP64
+void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
+  cmp(Ra, Rb);
+  mov(-1, Rresult);
+  movcc(equal,   false, xcc,  0, Rresult);
+  movcc(greater, false, xcc,  1, Rresult);
+}
+#endif
+
+
+void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
+  switch (size_in_bytes) {
+  case  8:  ld_long(src, dst); break;
+  case  4:  ld(     src, dst); break;
+  case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
+  case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
+  default:  ShouldNotReachHere();
+  }
+}
+
+void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
+  switch (size_in_bytes) {
+  case  8:  st_long(src, dst); break;
+  case  4:  st(     src, dst); break;
+  case  2:  sth(    src, dst); break;
+  case  1:  stb(    src, dst); break;
+  default:  ShouldNotReachHere();
+  }
+}
+
+
+void MacroAssembler::float_cmp( bool is_float, int unordered_result,
+                                FloatRegister Fa, FloatRegister Fb,
+                                Register Rresult) {
+
+  fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
+
+  Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
+  Condition eq =                          f_equal;
+  Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
+
+  if (VM_Version::v9_instructions_work()) {
+
+    mov(-1, Rresult);
+    movcc(eq, true, fcc0, 0, Rresult);
+    movcc(gt, true, fcc0, 1, Rresult);
+
+  } else {
+    Label done;
+
+    set( -1, Rresult );
+    //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
+    fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
+    fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
+
+    bind (done);
+  }
+}
+
+
+void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
+{
+  if (VM_Version::v9_instructions_work()) {
+    Assembler::fneg(w, s, d);
+  } else {
+    if (w == FloatRegisterImpl::S) {
+      Assembler::fneg(w, s, d);
+    } else if (w == FloatRegisterImpl::D) {
+      // number() does a sanity check on the alignment.
+      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
+        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
+
+      Assembler::fneg(FloatRegisterImpl::S, s, d);
+      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
+    } else {
+      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
+
+      // number() does a sanity check on the alignment.
+      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
+        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
+
+      Assembler::fneg(FloatRegisterImpl::S, s, d);
+      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
+      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
+      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
+    }
+  }
+}
+
+void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
+{
+  if (VM_Version::v9_instructions_work()) {
+    Assembler::fmov(w, s, d);
+  } else {
+    if (w == FloatRegisterImpl::S) {
+      Assembler::fmov(w, s, d);
+    } else if (w == FloatRegisterImpl::D) {
+      // number() does a sanity check on the alignment.
+      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
+        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
+
+      Assembler::fmov(FloatRegisterImpl::S, s, d);
+      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
+    } else {
+      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
+
+      // number() does a sanity check on the alignment.
+      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
+        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
+
+      Assembler::fmov(FloatRegisterImpl::S, s, d);
+      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
+      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
+      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
+    }
+  }
+}
+
+void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
+{
+  if (VM_Version::v9_instructions_work()) {
+    Assembler::fabs(w, s, d);
+  } else {
+    if (w == FloatRegisterImpl::S) {
+      Assembler::fabs(w, s, d);
+    } else if (w == FloatRegisterImpl::D) {
+      // number() does a sanity check on the alignment.
+      assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
+        ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
+
+      Assembler::fabs(FloatRegisterImpl::S, s, d);
+      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
+    } else {
+      assert(w == FloatRegisterImpl::Q, "Invalid float register width");
+
+      // number() does a sanity check on the alignment.
+      assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
+       ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
+
+      Assembler::fabs(FloatRegisterImpl::S, s, d);
+      Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
+      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
+      Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
+    }
+  }
+}
+
+void MacroAssembler::save_all_globals_into_locals() {
+  mov(G1,L1);
+  mov(G2,L2);
+  mov(G3,L3);
+  mov(G4,L4);
+  mov(G5,L5);
+  mov(G6,L6);
+  mov(G7,L7);
+}
+
+void MacroAssembler::restore_globals_from_locals() {
+  mov(L1,G1);
+  mov(L2,G2);
+  mov(L3,G3);
+  mov(L4,G4);
+  mov(L5,G5);
+  mov(L6,G6);
+  mov(L7,G7);
+}
+
+// Use for 64 bit operation.
+void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
+{
+  // store ptr_reg as the new top value
+#ifdef _LP64
+  casx(top_ptr_reg, top_reg, ptr_reg);
+#else
+  cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
+#endif // _LP64
+}
+
+// [RGV] This routine does not handle 64 bit operations.
+//       use casx_under_lock() or casx directly!!!
+void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
+{
+  // store ptr_reg as the new top value
+  if (VM_Version::v9_instructions_work()) {
+    cas(top_ptr_reg, top_reg, ptr_reg);
+  } else {
+
+    // If the register is not an out nor global, it is not visible
+    // after the save.  Allocate a register for it, save its
+    // value in the register save area (the save may not flush
+    // registers to the save area).
+
+    Register top_ptr_reg_after_save;
+    Register top_reg_after_save;
+    Register ptr_reg_after_save;
+
+    if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
+      top_ptr_reg_after_save = top_ptr_reg->after_save();
+    } else {
+      Address reg_save_addr = top_ptr_reg->address_in_saved_window();
+      top_ptr_reg_after_save = L0;
+      st(top_ptr_reg, reg_save_addr);
+    }
+
+    if (top_reg->is_out() || top_reg->is_global()) {
+      top_reg_after_save = top_reg->after_save();
+    } else {
+      Address reg_save_addr = top_reg->address_in_saved_window();
+      top_reg_after_save = L1;
+      st(top_reg, reg_save_addr);
+    }
+
+    if (ptr_reg->is_out() || ptr_reg->is_global()) {
+      ptr_reg_after_save = ptr_reg->after_save();
+    } else {
+      Address reg_save_addr = ptr_reg->address_in_saved_window();
+      ptr_reg_after_save = L2;
+      st(ptr_reg, reg_save_addr);
+    }
+
+    const Register& lock_reg = L3;
+    const Register& lock_ptr_reg = L4;
+    const Register& value_reg = L5;
+    const Register& yield_reg = L6;
+    const Register& yieldall_reg = L7;
+
+    save_frame();
+
+    if (top_ptr_reg_after_save == L0) {
+      ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
+    }
+
+    if (top_reg_after_save == L1) {
+      ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
+    }
+
+    if (ptr_reg_after_save == L2) {
+      ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
+    }
+
+    Label(retry_get_lock);
+    Label(not_same);
+    Label(dont_yield);
+
+    assert(lock_addr, "lock_address should be non null for v8");
+    set((intptr_t)lock_addr, lock_ptr_reg);
+    // Initialize yield counter
+    mov(G0,yield_reg);
+    mov(G0, yieldall_reg);
+    set(StubRoutines::Sparc::locked, lock_reg);
+
+    bind(retry_get_lock);
+    cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
+
+    if(use_call_vm) {
+      Untested("Need to verify global reg consistancy");
+      call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
+    } else {
+      // Save the regs and make space for a C call
+      save(SP, -96, SP);
+      save_all_globals_into_locals();
+      call(CAST_FROM_FN_PTR(address,os::yield_all));
+      delayed()->mov(yieldall_reg, O0);
+      restore_globals_from_locals();
+      restore();
+    }
+
+    // reset the counter
+    mov(G0,yield_reg);
+    add(yieldall_reg, 1, yieldall_reg);
+
+    bind(dont_yield);
+    // try to get lock
+    Assembler::swap(lock_ptr_reg, 0, lock_reg);
+
+    // did we get the lock?
+    cmp(lock_reg, StubRoutines::Sparc::unlocked);
+    br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
+    delayed()->add(yield_reg,1,yield_reg);
+
+    // yes, got lock.  do we have the same top?
+    ld(top_ptr_reg_after_save, 0, value_reg);
+    cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
+
+    // yes, same top.
+    st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
+    membar(Assembler::StoreStore);
+
+    bind(not_same);
+    mov(value_reg, ptr_reg_after_save);
+    st(lock_reg, lock_ptr_reg, 0); // unlock
+
+    restore();
+  }
+}
+
+RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
+                                                      Register tmp,
+                                                      int offset) {
+  intptr_t value = *delayed_value_addr;
+  if (value != 0)
+    return RegisterOrConstant(value + offset);
+
+  // load indirectly to solve generation ordering problem
+  AddressLiteral a(delayed_value_addr);
+  load_ptr_contents(a, tmp);
+
+#ifdef ASSERT
+  tst(tmp);
+  breakpoint_trap(zero, xcc);
+#endif
+
+  if (offset != 0)
+    add(tmp, offset, tmp);
+
+  return RegisterOrConstant(tmp);
+}
+
+
+RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
+  assert(d.register_or_noreg() != G0, "lost side effect");
+  if ((s2.is_constant() && s2.as_constant() == 0) ||
+      (s2.is_register() && s2.as_register() == G0)) {
+    // Do nothing, just move value.
+    if (s1.is_register()) {
+      if (d.is_constant())  d = temp;
+      mov(s1.as_register(), d.as_register());
+      return d;
+    } else {
+      return s1;
+    }
+  }
+
+  if (s1.is_register()) {
+    assert_different_registers(s1.as_register(), temp);
+    if (d.is_constant())  d = temp;
+    andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
+    return d;
+  } else {
+    if (s2.is_register()) {
+      assert_different_registers(s2.as_register(), temp);
+      if (d.is_constant())  d = temp;
+      set(s1.as_constant(), temp);
+      andn(temp, s2.as_register(), d.as_register());
+      return d;
+    } else {
+      intptr_t res = s1.as_constant() & ~s2.as_constant();
+      return res;
+    }
+  }
+}
+
+RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
+  assert(d.register_or_noreg() != G0, "lost side effect");
+  if ((s2.is_constant() && s2.as_constant() == 0) ||
+      (s2.is_register() && s2.as_register() == G0)) {
+    // Do nothing, just move value.
+    if (s1.is_register()) {
+      if (d.is_constant())  d = temp;
+      mov(s1.as_register(), d.as_register());
+      return d;
+    } else {
+      return s1;
+    }
+  }
+
+  if (s1.is_register()) {
+    assert_different_registers(s1.as_register(), temp);
+    if (d.is_constant())  d = temp;
+    add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
+    return d;
+  } else {
+    if (s2.is_register()) {
+      assert_different_registers(s2.as_register(), temp);
+      if (d.is_constant())  d = temp;
+      add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
+      return d;
+    } else {
+      intptr_t res = s1.as_constant() + s2.as_constant();
+      return res;
+    }
+  }
+}
+
+RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
+  assert(d.register_or_noreg() != G0, "lost side effect");
+  if (!is_simm13(s2.constant_or_zero()))
+    s2 = (s2.as_constant() & 0xFF);
+  if ((s2.is_constant() && s2.as_constant() == 0) ||
+      (s2.is_register() && s2.as_register() == G0)) {
+    // Do nothing, just move value.
+    if (s1.is_register()) {
+      if (d.is_constant())  d = temp;
+      mov(s1.as_register(), d.as_register());
+      return d;
+    } else {
+      return s1;
+    }
+  }
+
+  if (s1.is_register()) {
+    assert_different_registers(s1.as_register(), temp);
+    if (d.is_constant())  d = temp;
+    sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
+    return d;
+  } else {
+    if (s2.is_register()) {
+      assert_different_registers(s2.as_register(), temp);
+      if (d.is_constant())  d = temp;
+      set(s1.as_constant(), temp);
+      sll_ptr(temp, s2.as_register(), d.as_register());
+      return d;
+    } else {
+      intptr_t res = s1.as_constant() << s2.as_constant();
+      return res;
+    }
+  }
+}
+
+
+// Look up the method for a megamorphic invokeinterface call.
+// The target method is determined by <intf_klass, itable_index>.
+// The receiver klass is in recv_klass.
+// On success, the result will be in method_result, and execution falls through.
+// On failure, execution transfers to the given label.
+void MacroAssembler::lookup_interface_method(Register recv_klass,
+                                             Register intf_klass,
+                                             RegisterOrConstant itable_index,
+                                             Register method_result,
+                                             Register scan_temp,
+                                             Register sethi_temp,
+                                             Label& L_no_such_interface) {
+  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
+  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
+         "caller must use same register for non-constant itable index as for method");
+
+  Label L_no_such_interface_restore;
+  bool did_save = false;
+  if (scan_temp == noreg || sethi_temp == noreg) {
+    Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
+    Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
+    assert(method_result->is_global(), "must be able to return value");
+    scan_temp  = L2;
+    sethi_temp = L3;
+    save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
+    recv_klass = recv_2;
+    intf_klass = intf_2;
+    did_save = true;
+  }
+
+  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
+  int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
+  int scan_step   = itableOffsetEntry::size() * wordSize;
+  int vte_size    = vtableEntry::size() * wordSize;
+
+  lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
+  // %%% We should store the aligned, prescaled offset in the klassoop.
+  // Then the next several instructions would fold away.
+
+  int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
+  int itb_offset = vtable_base;
+  if (round_to_unit != 0) {
+    // hoist first instruction of round_to(scan_temp, BytesPerLong):
+    itb_offset += round_to_unit - wordSize;
+  }
+  int itb_scale = exact_log2(vtableEntry::size() * wordSize);
+  sll(scan_temp, itb_scale,  scan_temp);
+  add(scan_temp, itb_offset, scan_temp);
+  if (round_to_unit != 0) {
+    // Round up to align_object_offset boundary
+    // see code for InstanceKlass::start_of_itable!
+    // Was: round_to(scan_temp, BytesPerLong);
+    // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
+    and3(scan_temp, -round_to_unit, scan_temp);
+  }
+  add(recv_klass, scan_temp, scan_temp);
+
+  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
+  RegisterOrConstant itable_offset = itable_index;
+  itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
+  itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
+  add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
+
+  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
+  //   if (scan->interface() == intf) {
+  //     result = (klass + scan->offset() + itable_index);
+  //   }
+  // }
+  Label L_search, L_found_method;
+
+  for (int peel = 1; peel >= 0; peel--) {
+    // %%%% Could load both offset and interface in one ldx, if they were
+    // in the opposite order.  This would save a load.
+    ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
+
+    // Check that this entry is non-null.  A null entry means that
+    // the receiver class doesn't implement the interface, and wasn't the
+    // same as when the caller was compiled.
+    bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
+    delayed()->cmp(method_result, intf_klass);
+
+    if (peel) {
+      brx(Assembler::equal,    false, Assembler::pt, L_found_method);
+    } else {
+      brx(Assembler::notEqual, false, Assembler::pn, L_search);
+      // (invert the test to fall through to found_method...)
+    }
+    delayed()->add(scan_temp, scan_step, scan_temp);
+
+    if (!peel)  break;
+
+    bind(L_search);
+  }
+
+  bind(L_found_method);
+
+  // Got a hit.
+  int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
+  // scan_temp[-scan_step] points to the vtable offset we need
+  ito_offset -= scan_step;
+  lduw(scan_temp, ito_offset, scan_temp);
+  ld_ptr(recv_klass, scan_temp, method_result);
+
+  if (did_save) {
+    Label L_done;
+    ba(L_done);
+    delayed()->restore();
+
+    bind(L_no_such_interface_restore);
+    ba(L_no_such_interface);
+    delayed()->restore();
+
+    bind(L_done);
+  }
+}
+
+
+// virtual method calling
+void MacroAssembler::lookup_virtual_method(Register recv_klass,
+                                           RegisterOrConstant vtable_index,
+                                           Register method_result) {
+  assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
+  Register sethi_temp = method_result;
+  const int base = (InstanceKlass::vtable_start_offset() * wordSize +
+                    // method pointer offset within the vtable entry:
+                    vtableEntry::method_offset_in_bytes());
+  RegisterOrConstant vtable_offset = vtable_index;
+  // Each of the following three lines potentially generates an instruction.
+  // But the total number of address formation instructions will always be
+  // at most two, and will often be zero.  In any case, it will be optimal.
+  // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
+  // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
+  vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
+  vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
+  Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
+  ld_ptr(vtable_entry_addr, method_result);
+}
+
+
+void MacroAssembler::check_klass_subtype(Register sub_klass,
+                                         Register super_klass,
+                                         Register temp_reg,
+                                         Register temp2_reg,
+                                         Label& L_success) {
+  Register sub_2 = sub_klass;
+  Register sup_2 = super_klass;
+  if (!sub_2->is_global())  sub_2 = L0;
+  if (!sup_2->is_global())  sup_2 = L1;
+  bool did_save = false;
+  if (temp_reg == noreg || temp2_reg == noreg) {
+    temp_reg = L2;
+    temp2_reg = L3;
+    save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
+    sub_klass = sub_2;
+    super_klass = sup_2;
+    did_save = true;
+  }
+  Label L_failure, L_pop_to_failure, L_pop_to_success;
+  check_klass_subtype_fast_path(sub_klass, super_klass,
+                                temp_reg, temp2_reg,
+                                (did_save ? &L_pop_to_success : &L_success),
+                                (did_save ? &L_pop_to_failure : &L_failure), NULL);
+
+  if (!did_save)
+    save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
+  check_klass_subtype_slow_path(sub_2, sup_2,
+                                L2, L3, L4, L5,
+                                NULL, &L_pop_to_failure);
+
+  // on success:
+  bind(L_pop_to_success);
+  restore();
+  ba_short(L_success);
+
+  // on failure:
+  bind(L_pop_to_failure);
+  restore();
+  bind(L_failure);
+}
+
+
+void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
+                                                   Register super_klass,
+                                                   Register temp_reg,
+                                                   Register temp2_reg,
+                                                   Label* L_success,
+                                                   Label* L_failure,
+                                                   Label* L_slow_path,
+                                        RegisterOrConstant super_check_offset) {
+  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
+  int sco_offset = in_bytes(Klass::super_check_offset_offset());
+
+  bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
+  bool need_slow_path = (must_load_sco ||
+                         super_check_offset.constant_or_zero() == sco_offset);
+
+  assert_different_registers(sub_klass, super_klass, temp_reg);
+  if (super_check_offset.is_register()) {
+    assert_different_registers(sub_klass, super_klass, temp_reg,
+                               super_check_offset.as_register());
+  } else if (must_load_sco) {
+    assert(temp2_reg != noreg, "supply either a temp or a register offset");
+  }
+
+  Label L_fallthrough;
+  int label_nulls = 0;
+  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
+  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
+  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
+  assert(label_nulls <= 1 ||
+         (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
+         "at most one NULL in the batch, usually");
+
+  // If the pointers are equal, we are done (e.g., String[] elements).
+  // This self-check enables sharing of secondary supertype arrays among
+  // non-primary types such as array-of-interface.  Otherwise, each such
+  // type would need its own customized SSA.
+  // We move this check to the front of the fast path because many
+  // type checks are in fact trivially successful in this manner,
+  // so we get a nicely predicted branch right at the start of the check.
+  cmp(super_klass, sub_klass);
+  brx(Assembler::equal, false, Assembler::pn, *L_success);
+  delayed()->nop();
+
+  // Check the supertype display:
+  if (must_load_sco) {
+    // The super check offset is always positive...
+    lduw(super_klass, sco_offset, temp2_reg);
+    super_check_offset = RegisterOrConstant(temp2_reg);
+    // super_check_offset is register.
+    assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
+  }
+  ld_ptr(sub_klass, super_check_offset, temp_reg);
+  cmp(super_klass, temp_reg);
+
+  // This check has worked decisively for primary supers.
+  // Secondary supers are sought in the super_cache ('super_cache_addr').
+  // (Secondary supers are interfaces and very deeply nested subtypes.)
+  // This works in the same check above because of a tricky aliasing
+  // between the super_cache and the primary super display elements.
+  // (The 'super_check_addr' can address either, as the case requires.)
+  // Note that the cache is updated below if it does not help us find
+  // what we need immediately.
+  // So if it was a primary super, we can just fail immediately.
+  // Otherwise, it's the slow path for us (no success at this point).
+
+  // Hacked ba(), which may only be used just before L_fallthrough.
+#define FINAL_JUMP(label)            \
+  if (&(label) != &L_fallthrough) {  \
+    ba(label);  delayed()->nop();    \
+  }
+
+  if (super_check_offset.is_register()) {
+    brx(Assembler::equal, false, Assembler::pn, *L_success);
+    delayed()->cmp(super_check_offset.as_register(), sc_offset);
+
+    if (L_failure == &L_fallthrough) {
+      brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
+      delayed()->nop();
+    } else {
+      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
+      delayed()->nop();
+      FINAL_JUMP(*L_slow_path);
+    }
+  } else if (super_check_offset.as_constant() == sc_offset) {
+    // Need a slow path; fast failure is impossible.
+    if (L_slow_path == &L_fallthrough) {
+      brx(Assembler::equal, false, Assembler::pt, *L_success);
+      delayed()->nop();
+    } else {
+      brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
+      delayed()->nop();
+      FINAL_JUMP(*L_success);
+    }
+  } else {
+    // No slow path; it's a fast decision.
+    if (L_failure == &L_fallthrough) {
+      brx(Assembler::equal, false, Assembler::pt, *L_success);
+      delayed()->nop();
+    } else {
+      brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
+      delayed()->nop();
+      FINAL_JUMP(*L_success);
+    }
+  }
+
+  bind(L_fallthrough);
+
+#undef FINAL_JUMP
+}
+
+
+void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
+                                                   Register super_klass,
+                                                   Register count_temp,
+                                                   Register scan_temp,
+                                                   Register scratch_reg,
+                                                   Register coop_reg,
+                                                   Label* L_success,
+                                                   Label* L_failure) {
+  assert_different_registers(sub_klass, super_klass,
+                             count_temp, scan_temp, scratch_reg, coop_reg);
+
+  Label L_fallthrough, L_loop;
+  int label_nulls = 0;
+  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
+  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
+  assert(label_nulls <= 1, "at most one NULL in the batch");
+
+  // a couple of useful fields in sub_klass:
+  int ss_offset = in_bytes(Klass::secondary_supers_offset());
+  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
+
+  // Do a linear scan of the secondary super-klass chain.
+  // This code is rarely used, so simplicity is a virtue here.
+
+#ifndef PRODUCT
+  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
+  inc_counter((address) pst_counter, count_temp, scan_temp);
+#endif
+
+  // We will consult the secondary-super array.
+  ld_ptr(sub_klass, ss_offset, scan_temp);
+
+  Register search_key = super_klass;
+
+  // Load the array length.  (Positive movl does right thing on LP64.)
+  lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
+
+  // Check for empty secondary super list
+  tst(count_temp);
+
+  // In the array of super classes elements are pointer sized.
+  int element_size = wordSize;
+
+  // Top of search loop
+  bind(L_loop);
+  br(Assembler::equal, false, Assembler::pn, *L_failure);
+  delayed()->add(scan_temp, element_size, scan_temp);
+
+  // Skip the array header in all array accesses.
+  int elem_offset = Array<Klass*>::base_offset_in_bytes();
+  elem_offset -= element_size;   // the scan pointer was pre-incremented also
+
+  // Load next super to check
+    ld_ptr( scan_temp, elem_offset, scratch_reg );
+
+  // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
+  cmp(scratch_reg, search_key);
+
+  // A miss means we are NOT a subtype and need to keep looping
+  brx(Assembler::notEqual, false, Assembler::pn, L_loop);
+  delayed()->deccc(count_temp); // decrement trip counter in delay slot
+
+  // Success.  Cache the super we found and proceed in triumph.
+  st_ptr(super_klass, sub_klass, sc_offset);
+
+  if (L_success != &L_fallthrough) {
+    ba(*L_success);
+    delayed()->nop();
+  }
+
+  bind(L_fallthrough);
+}
+
+
+RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
+                                                   Register temp_reg,
+                                                   int extra_slot_offset) {
+  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
+  int stackElementSize = Interpreter::stackElementSize;
+  int offset = extra_slot_offset * stackElementSize;
+  if (arg_slot.is_constant()) {
+    offset += arg_slot.as_constant() * stackElementSize;
+    return offset;
+  } else {
+    assert(temp_reg != noreg, "must specify");
+    sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
+    if (offset != 0)
+      add(temp_reg, offset, temp_reg);
+    return temp_reg;
+  }
+}
+
+
+Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
+                                         Register temp_reg,
+                                         int extra_slot_offset) {
+  return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
+}
+
+
+void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
+                                          Register temp_reg,
+                                          Label& done, Label* slow_case,
+                                          BiasedLockingCounters* counters) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+
+  if (PrintBiasedLockingStatistics) {
+    assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
+    if (counters == NULL)
+      counters = BiasedLocking::counters();
+  }
+
+  Label cas_label;
+
+  // Biased locking
+  // See whether the lock is currently biased toward our thread and
+  // whether the epoch is still valid
+  // Note that the runtime guarantees sufficient alignment of JavaThread
+  // pointers to allow age to be placed into low bits
+  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
+  and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
+  cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
+
+  load_klass(obj_reg, temp_reg);
+  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
+  or3(G2_thread, temp_reg, temp_reg);
+  xor3(mark_reg, temp_reg, temp_reg);
+  andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
+  if (counters != NULL) {
+    cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
+    // Reload mark_reg as we may need it later
+    ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
+  }
+  brx(Assembler::equal, true, Assembler::pt, done);
+  delayed()->nop();
+
+  Label try_revoke_bias;
+  Label try_rebias;
+  Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
+  assert(mark_addr.disp() == 0, "cas must take a zero displacement");
+
+  // At this point we know that the header has the bias pattern and
+  // that we are not the bias owner in the current epoch. We need to
+  // figure out more details about the state of the header in order to
+  // know what operations can be legally performed on the object's
+  // header.
+
+  // If the low three bits in the xor result aren't clear, that means
+  // the prototype header is no longer biased and we have to revoke
+  // the bias on this object.
+  btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
+  brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
+
+  // Biasing is still enabled for this data type. See whether the
+  // epoch of the current bias is still valid, meaning that the epoch
+  // bits of the mark word are equal to the epoch bits of the
+  // prototype header. (Note that the prototype header's epoch bits
+  // only change at a safepoint.) If not, attempt to rebias the object
+  // toward the current thread. Note that we must be absolutely sure
+  // that the current epoch is invalid in order to do this because
+  // otherwise the manipulations it performs on the mark word are
+  // illegal.
+  delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
+  brx(Assembler::notZero, false, Assembler::pn, try_rebias);
+
+  // The epoch of the current bias is still valid but we know nothing
+  // about the owner; it might be set or it might be clear. Try to
+  // acquire the bias of the object using an atomic operation. If this
+  // fails we will go in to the runtime to revoke the object's bias.
+  // Note that we first construct the presumed unbiased header so we
+  // don't accidentally blow away another thread's valid bias.
+  delayed()->and3(mark_reg,
+                  markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
+                  mark_reg);
+  or3(G2_thread, mark_reg, temp_reg);
+  casn(mark_addr.base(), mark_reg, temp_reg);
+  // If the biasing toward our thread failed, this means that
+  // another thread succeeded in biasing it toward itself and we
+  // need to revoke that bias. The revocation will occur in the
+  // interpreter runtime in the slow case.
+  cmp(mark_reg, temp_reg);
+  if (counters != NULL) {
+    cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
+  }
+  if (slow_case != NULL) {
+    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
+    delayed()->nop();
+  }
+  ba_short(done);
+
+  bind(try_rebias);
+  // At this point we know the epoch has expired, meaning that the
+  // current "bias owner", if any, is actually invalid. Under these
+  // circumstances _only_, we are allowed to use the current header's
+  // value as the comparison value when doing the cas to acquire the
+  // bias in the current epoch. In other words, we allow transfer of
+  // the bias from one thread to another directly in this situation.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  load_klass(obj_reg, temp_reg);
+  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
+  or3(G2_thread, temp_reg, temp_reg);
+  casn(mark_addr.base(), mark_reg, temp_reg);
+  // If the biasing toward our thread failed, this means that
+  // another thread succeeded in biasing it toward itself and we
+  // need to revoke that bias. The revocation will occur in the
+  // interpreter runtime in the slow case.
+  cmp(mark_reg, temp_reg);
+  if (counters != NULL) {
+    cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
+  }
+  if (slow_case != NULL) {
+    brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
+    delayed()->nop();
+  }
+  ba_short(done);
+
+  bind(try_revoke_bias);
+  // The prototype mark in the klass doesn't have the bias bit set any
+  // more, indicating that objects of this data type are not supposed
+  // to be biased any more. We are going to try to reset the mark of
+  // this object to the prototype value and fall through to the
+  // CAS-based locking scheme. Note that if our CAS fails, it means
+  // that another thread raced us for the privilege of revoking the
+  // bias of this particular object, so it's okay to continue in the
+  // normal locking code.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  load_klass(obj_reg, temp_reg);
+  ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
+  casn(mark_addr.base(), mark_reg, temp_reg);
+  // Fall through to the normal CAS-based lock, because no matter what
+  // the result of the above CAS, some thread must have succeeded in
+  // removing the bias bit from the object's header.
+  if (counters != NULL) {
+    cmp(mark_reg, temp_reg);
+    cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
+  }
+
+  bind(cas_label);
+}
+
+void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
+                                          bool allow_delay_slot_filling) {
+  // Check for biased locking unlock case, which is a no-op
+  // Note: we do not have to check the thread ID for two reasons.
+  // First, the interpreter checks for IllegalMonitorStateException at
+  // a higher level. Second, if the bias was revoked while we held the
+  // lock, the object could not be rebiased toward another thread, so
+  // the bias bit would be clear.
+  ld_ptr(mark_addr, temp_reg);
+  and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
+  cmp(temp_reg, markOopDesc::biased_lock_pattern);
+  brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
+  delayed();
+  if (!allow_delay_slot_filling) {
+    nop();
+  }
+}
+
+
+// CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
+// Solaris/SPARC's "as".  Another apt name would be cas_ptr()
+
+void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
+  casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
+}
+
+
+
+// compiler_lock_object() and compiler_unlock_object() are direct transliterations
+// of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
+// The code could be tightened up considerably.
+//
+// box->dhw disposition - post-conditions at DONE_LABEL.
+// -   Successful inflated lock:  box->dhw != 0.
+//     Any non-zero value suffices.
+//     Consider G2_thread, rsp, boxReg, or unused_mark()
+// -   Successful Stack-lock: box->dhw == mark.
+//     box->dhw must contain the displaced mark word value
+// -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
+//     The slow-path fast_enter() and slow_enter() operators
+//     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
+// -   Biased: box->dhw is undefined
+//
+// SPARC refworkload performance - specifically jetstream and scimark - are
+// extremely sensitive to the size of the code emitted by compiler_lock_object
+// and compiler_unlock_object.  Critically, the key factor is code size, not path
+// length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
+// effect).
+
+
+void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
+                                          Register Rbox, Register Rscratch,
+                                          BiasedLockingCounters* counters,
+                                          bool try_bias) {
+   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
+
+   verify_oop(Roop);
+   Label done ;
+
+   if (counters != NULL) {
+     inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
+   }
+
+   if (EmitSync & 1) {
+     mov(3, Rscratch);
+     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
+     cmp(SP, G0);
+     return ;
+   }
+
+   if (EmitSync & 2) {
+
+     // Fetch object's markword
+     ld_ptr(mark_addr, Rmark);
+
+     if (try_bias) {
+        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
+     }
+
+     // Save Rbox in Rscratch to be used for the cas operation
+     mov(Rbox, Rscratch);
+
+     // set Rmark to markOop | markOopDesc::unlocked_value
+     or3(Rmark, markOopDesc::unlocked_value, Rmark);
+
+     // Initialize the box.  (Must happen before we update the object mark!)
+     st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
+
+     // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
+     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
+     casx_under_lock(mark_addr.base(), Rmark, Rscratch,
+        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
+
+     // if compare/exchange succeeded we found an unlocked object and we now have locked it
+     // hence we are done
+     cmp(Rmark, Rscratch);
+#ifdef _LP64
+     sub(Rscratch, STACK_BIAS, Rscratch);
+#endif
+     brx(Assembler::equal, false, Assembler::pt, done);
+     delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
+
+     // we did not find an unlocked object so see if this is a recursive case
+     // sub(Rscratch, SP, Rscratch);
+     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
+     andcc(Rscratch, 0xfffff003, Rscratch);
+     st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
+     bind (done);
+     return ;
+   }
+
+   Label Egress ;
+
+   if (EmitSync & 256) {
+      Label IsInflated ;
+
+      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
+      // Triage: biased, stack-locked, neutral, inflated
+      if (try_bias) {
+        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
+        // Invariant: if control reaches this point in the emitted stream
+        // then Rmark has not been modified.
+      }
+
+      // Store mark into displaced mark field in the on-stack basic-lock "box"
+      // Critically, this must happen before the CAS
+      // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
+      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
+      andcc(Rmark, 2, G0);
+      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
+      delayed()->
+
+      // Try stack-lock acquisition.
+      // Beware: the 1st instruction is in a delay slot
+      mov(Rbox,  Rscratch);
+      or3(Rmark, markOopDesc::unlocked_value, Rmark);
+      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
+      casn(mark_addr.base(), Rmark, Rscratch);
+      cmp(Rmark, Rscratch);
+      brx(Assembler::equal, false, Assembler::pt, done);
+      delayed()->sub(Rscratch, SP, Rscratch);
+
+      // Stack-lock attempt failed - check for recursive stack-lock.
+      // See the comments below about how we might remove this case.
+#ifdef _LP64
+      sub(Rscratch, STACK_BIAS, Rscratch);
+#endif
+      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
+      andcc(Rscratch, 0xfffff003, Rscratch);
+      br(Assembler::always, false, Assembler::pt, done);
+      delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
+
+      bind(IsInflated);
+      if (EmitSync & 64) {
+         // If m->owner != null goto IsLocked
+         // Pessimistic form: Test-and-CAS vs CAS
+         // The optimistic form avoids RTS->RTO cache line upgrades.
+         ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
+         andcc(Rscratch, Rscratch, G0);
+         brx(Assembler::notZero, false, Assembler::pn, done);
+         delayed()->nop();
+         // m->owner == null : it's unlocked.
+      }
+
+      // Try to CAS m->owner from null to Self
+      // Invariant: if we acquire the lock then _recursions should be 0.
+      add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
+      mov(G2_thread, Rscratch);
+      casn(Rmark, G0, Rscratch);
+      cmp(Rscratch, G0);
+      // Intentional fall-through into done
+   } else {
+      // Aggressively avoid the Store-before-CAS penalty
+      // Defer the store into box->dhw until after the CAS
+      Label IsInflated, Recursive ;
+
+// Anticipate CAS -- Avoid RTS->RTO upgrade
+// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
+
+      ld_ptr(mark_addr, Rmark);           // fetch obj->mark
+      // Triage: biased, stack-locked, neutral, inflated
+
+      if (try_bias) {
+        biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
+        // Invariant: if control reaches this point in the emitted stream
+        // then Rmark has not been modified.
+      }
+      andcc(Rmark, 2, G0);
+      brx(Assembler::notZero, false, Assembler::pn, IsInflated);
+      delayed()->                         // Beware - dangling delay-slot
+
+      // Try stack-lock acquisition.
+      // Transiently install BUSY (0) encoding in the mark word.
+      // if the CAS of 0 into the mark was successful then we execute:
+      //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
+      //   ST obj->mark = box    -- overwrite transient 0 value
+      // This presumes TSO, of course.
+
+      mov(0, Rscratch);
+      or3(Rmark, markOopDesc::unlocked_value, Rmark);
+      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
+      casn(mark_addr.base(), Rmark, Rscratch);
+// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
+      cmp(Rscratch, Rmark);
+      brx(Assembler::notZero, false, Assembler::pn, Recursive);
+      delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
+      if (counters != NULL) {
+        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
+      }
+      ba(done);
+      delayed()->st_ptr(Rbox, mark_addr);
+
+      bind(Recursive);
+      // Stack-lock attempt failed - check for recursive stack-lock.
+      // Tests show that we can remove the recursive case with no impact
+      // on refworkload 0.83.  If we need to reduce the size of the code
+      // emitted by compiler_lock_object() the recursive case is perfect
+      // candidate.
+      //
+      // A more extreme idea is to always inflate on stack-lock recursion.
+      // This lets us eliminate the recursive checks in compiler_lock_object
+      // and compiler_unlock_object and the (box->dhw == 0) encoding.
+      // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
+      // and showed a performance *increase*.  In the same experiment I eliminated
+      // the fast-path stack-lock code from the interpreter and always passed
+      // control to the "slow" operators in synchronizer.cpp.
+
+      // RScratch contains the fetched obj->mark value from the failed CASN.
+#ifdef _LP64
+      sub(Rscratch, STACK_BIAS, Rscratch);
+#endif
+      sub(Rscratch, SP, Rscratch);
+      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
+      andcc(Rscratch, 0xfffff003, Rscratch);
+      if (counters != NULL) {
+        // Accounting needs the Rscratch register
+        st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
+        cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
+        ba_short(done);
+      } else {
+        ba(done);
+        delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
+      }
+
+      bind   (IsInflated);
+      if (EmitSync & 64) {
+         // If m->owner != null goto IsLocked
+         // Test-and-CAS vs CAS
+         // Pessimistic form avoids futile (doomed) CAS attempts
+         // The optimistic form avoids RTS->RTO cache line upgrades.
+         ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
+         andcc(Rscratch, Rscratch, G0);
+         brx(Assembler::notZero, false, Assembler::pn, done);
+         delayed()->nop();
+         // m->owner == null : it's unlocked.
+      }
+
+      // Try to CAS m->owner from null to Self
+      // Invariant: if we acquire the lock then _recursions should be 0.
+      add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
+      mov(G2_thread, Rscratch);
+      casn(Rmark, G0, Rscratch);
+      cmp(Rscratch, G0);
+      // ST box->displaced_header = NonZero.
+      // Any non-zero value suffices:
+      //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
+      st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
+      // Intentional fall-through into done
+   }
+
+   bind   (done);
+}
+
+void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
+                                            Register Rbox, Register Rscratch,
+                                            bool try_bias) {
+   Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
+
+   Label done ;
+
+   if (EmitSync & 4) {
+     cmp(SP, G0);
+     return ;
+   }
+
+   if (EmitSync & 8) {
+     if (try_bias) {
+        biased_locking_exit(mark_addr, Rscratch, done);
+     }
+
+     // Test first if it is a fast recursive unlock
+     ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
+     br_null_short(Rmark, Assembler::pt, done);
+
+     // Check if it is still a light weight lock, this is is true if we see
+     // the stack address of the basicLock in the markOop of the object
+     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
+     casx_under_lock(mark_addr.base(), Rbox, Rmark,
+       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
+     ba(done);
+     delayed()->cmp(Rbox, Rmark);
+     bind(done);
+     return ;
+   }
+
+   // Beware ... If the aggregate size of the code emitted by CLO and CUO is
+   // is too large performance rolls abruptly off a cliff.
+   // This could be related to inlining policies, code cache management, or
+   // I$ effects.
+   Label LStacked ;
+
+   if (try_bias) {
+      // TODO: eliminate redundant LDs of obj->mark
+      biased_locking_exit(mark_addr, Rscratch, done);
+   }
+
+   ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
+   ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
+   andcc(Rscratch, Rscratch, G0);
+   brx(Assembler::zero, false, Assembler::pn, done);
+   delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
+   andcc(Rmark, 2, G0);
+   brx(Assembler::zero, false, Assembler::pt, LStacked);
+   delayed()->nop();
+
+   // It's inflated
+   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
+   // the ST of 0 into _owner which releases the lock.  This prevents loads
+   // and stores within the critical section from reordering (floating)
+   // past the store that releases the lock.  But TSO is a strong memory model
+   // and that particular flavor of barrier is a noop, so we can safely elide it.
+   // Note that we use 1-0 locking by default for the inflated case.  We
+   // close the resultant (and rare) race by having contented threads in
+   // monitorenter periodically poll _owner.
+   ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
+   ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
+   xor3(Rscratch, G2_thread, Rscratch);
+   orcc(Rbox, Rscratch, Rbox);
+   brx(Assembler::notZero, false, Assembler::pn, done);
+   delayed()->
+   ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
+   ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
+   orcc(Rbox, Rscratch, G0);
+   if (EmitSync & 65536) {
+      Label LSucc ;
+      brx(Assembler::notZero, false, Assembler::pn, LSucc);
+      delayed()->nop();
+      ba(done);
+      delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
+
+      bind(LSucc);
+      st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
+      if (os::is_MP()) { membar (StoreLoad); }
+      ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
+      andcc(Rscratch, Rscratch, G0);
+      brx(Assembler::notZero, false, Assembler::pt, done);
+      delayed()->andcc(G0, G0, G0);
+      add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
+      mov(G2_thread, Rscratch);
+      casn(Rmark, G0, Rscratch);
+      // invert icc.zf and goto done
+      br_notnull(Rscratch, false, Assembler::pt, done);
+      delayed()->cmp(G0, G0);
+      ba(done);
+      delayed()->cmp(G0, 1);
+   } else {
+      brx(Assembler::notZero, false, Assembler::pn, done);
+      delayed()->nop();
+      ba(done);
+      delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
+   }
+
+   bind   (LStacked);
+   // Consider: we could replace the expensive CAS in the exit
+   // path with a simple ST of the displaced mark value fetched from
+   // the on-stack basiclock box.  That admits a race where a thread T2
+   // in the slow lock path -- inflating with monitor M -- could race a
+   // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
+   // More precisely T1 in the stack-lock unlock path could "stomp" the
+   // inflated mark value M installed by T2, resulting in an orphan
+   // object monitor M and T2 becoming stranded.  We can remedy that situation
+   // by having T2 periodically poll the object's mark word using timed wait
+   // operations.  If T2 discovers that a stomp has occurred it vacates
+   // the monitor M and wakes any other threads stranded on the now-orphan M.
+   // In addition the monitor scavenger, which performs deflation,
+   // would also need to check for orpan monitors and stranded threads.
+   //
+   // Finally, inflation is also used when T2 needs to assign a hashCode
+   // to O and O is stack-locked by T1.  The "stomp" race could cause
+   // an assigned hashCode value to be lost.  We can avoid that condition
+   // and provide the necessary hashCode stability invariants by ensuring
+   // that hashCode generation is idempotent between copying GCs.
+   // For example we could compute the hashCode of an object O as
+   // O's heap address XOR some high quality RNG value that is refreshed
+   // at GC-time.  The monitor scavenger would install the hashCode
+   // found in any orphan monitors.  Again, the mechanism admits a
+   // lost-update "stomp" WAW race but detects and recovers as needed.
+   //
+   // A prototype implementation showed excellent results, although
+   // the scavenger and timeout code was rather involved.
+
+   casn(mark_addr.base(), Rbox, Rscratch);
+   cmp(Rbox, Rscratch);
+   // Intentional fall through into done ...
+
+   bind(done);
+}
+
+
+
+void MacroAssembler::print_CPU_state() {
+  // %%%%% need to implement this
+}
+
+void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
+  // %%%%% need to implement this
+}
+
+void MacroAssembler::push_IU_state() {
+  // %%%%% need to implement this
+}
+
+
+void MacroAssembler::pop_IU_state() {
+  // %%%%% need to implement this
+}
+
+
+void MacroAssembler::push_FPU_state() {
+  // %%%%% need to implement this
+}
+
+
+void MacroAssembler::pop_FPU_state() {
+  // %%%%% need to implement this
+}
+
+
+void MacroAssembler::push_CPU_state() {
+  // %%%%% need to implement this
+}
+
+
+void MacroAssembler::pop_CPU_state() {
+  // %%%%% need to implement this
+}
+
+
+
+void MacroAssembler::verify_tlab() {
+#ifdef ASSERT
+  if (UseTLAB && VerifyOops) {
+    Label next, next2, ok;
+    Register t1 = L0;
+    Register t2 = L1;
+    Register t3 = L2;
+
+    save_frame(0);
+    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
+    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
+    or3(t1, t2, t3);
+    cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
+    STOP("assert(top >= start)");
+    should_not_reach_here();
+
+    bind(next);
+    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
+    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
+    or3(t3, t2, t3);
+    cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
+    STOP("assert(top <= end)");
+    should_not_reach_here();
+
+    bind(next2);
+    and3(t3, MinObjAlignmentInBytesMask, t3);
+    cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
+    STOP("assert(aligned)");
+    should_not_reach_here();
+
+    bind(ok);
+    restore();
+  }
+#endif
+}
+
+
+void MacroAssembler::eden_allocate(
+  Register obj,                        // result: pointer to object after successful allocation
+  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
+  int      con_size_in_bytes,          // object size in bytes if   known at compile time
+  Register t1,                         // temp register
+  Register t2,                         // temp register
+  Label&   slow_case                   // continuation point if fast allocation fails
+){
+  // make sure arguments make sense
+  assert_different_registers(obj, var_size_in_bytes, t1, t2);
+  assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
+  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
+
+  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
+    // No allocation in the shared eden.
+    ba_short(slow_case);
+  } else {
+    // get eden boundaries
+    // note: we need both top & top_addr!
+    const Register top_addr = t1;
+    const Register end      = t2;
+
+    CollectedHeap* ch = Universe::heap();
+    set((intx)ch->top_addr(), top_addr);
+    intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
+    ld_ptr(top_addr, delta, end);
+    ld_ptr(top_addr, 0, obj);
+
+    // try to allocate
+    Label retry;
+    bind(retry);
+#ifdef ASSERT
+    // make sure eden top is properly aligned
+    {
+      Label L;
+      btst(MinObjAlignmentInBytesMask, obj);
+      br(Assembler::zero, false, Assembler::pt, L);
+      delayed()->nop();
+      STOP("eden top is not properly aligned");
+      bind(L);
+    }
+#endif // ASSERT
+    const Register free = end;
+    sub(end, obj, free);                                   // compute amount of free space
+    if (var_size_in_bytes->is_valid()) {
+      // size is unknown at compile time
+      cmp(free, var_size_in_bytes);
+      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
+      delayed()->add(obj, var_size_in_bytes, end);
+    } else {
+      // size is known at compile time
+      cmp(free, con_size_in_bytes);
+      br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
+      delayed()->add(obj, con_size_in_bytes, end);
+    }
+    // Compare obj with the value at top_addr; if still equal, swap the value of
+    // end with the value at top_addr. If not equal, read the value at top_addr
+    // into end.
+    casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
+    // if someone beat us on the allocation, try again, otherwise continue
+    cmp(obj, end);
+    brx(Assembler::notEqual, false, Assembler::pn, retry);
+    delayed()->mov(end, obj);                              // nop if successfull since obj == end
+
+#ifdef ASSERT
+    // make sure eden top is properly aligned
+    {
+      Label L;
+      const Register top_addr = t1;
+
+      set((intx)ch->top_addr(), top_addr);
+      ld_ptr(top_addr, 0, top_addr);
+      btst(MinObjAlignmentInBytesMask, top_addr);
+      br(Assembler::zero, false, Assembler::pt, L);
+      delayed()->nop();
+      STOP("eden top is not properly aligned");
+      bind(L);
+    }
+#endif // ASSERT
+  }
+}
+
+
+void MacroAssembler::tlab_allocate(
+  Register obj,                        // result: pointer to object after successful allocation
+  Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
+  int      con_size_in_bytes,          // object size in bytes if   known at compile time
+  Register t1,                         // temp register
+  Label&   slow_case                   // continuation point if fast allocation fails
+){
+  // make sure arguments make sense
+  assert_different_registers(obj, var_size_in_bytes, t1);
+  assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
+  assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
+
+  const Register free  = t1;
+
+  verify_tlab();
+
+  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
+
+  // calculate amount of free space
+  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
+  sub(free, obj, free);
+
+  Label done;
+  if (var_size_in_bytes == noreg) {
+    cmp(free, con_size_in_bytes);
+  } else {
+    cmp(free, var_size_in_bytes);
+  }
+  br(Assembler::less, false, Assembler::pn, slow_case);
+  // calculate the new top pointer
+  if (var_size_in_bytes == noreg) {
+    delayed()->add(obj, con_size_in_bytes, free);
+  } else {
+    delayed()->add(obj, var_size_in_bytes, free);
+  }
+
+  bind(done);
+
+#ifdef ASSERT
+  // make sure new free pointer is properly aligned
+  {
+    Label L;
+    btst(MinObjAlignmentInBytesMask, free);
+    br(Assembler::zero, false, Assembler::pt, L);
+    delayed()->nop();
+    STOP("updated TLAB free is not properly aligned");
+    bind(L);
+  }
+#endif // ASSERT
+
+  // update the tlab top pointer
+  st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
+  verify_tlab();
+}
+
+
+void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
+  Register top = O0;
+  Register t1 = G1;
+  Register t2 = G3;
+  Register t3 = O1;
+  assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
+  Label do_refill, discard_tlab;
+
+  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
+    // No allocation in the shared eden.
+    ba_short(slow_case);
+  }
+
+  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
+  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
+  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
+
+  // calculate amount of free space
+  sub(t1, top, t1);
+  srl_ptr(t1, LogHeapWordSize, t1);
+
+  // Retain tlab and allocate object in shared space if
+  // the amount free in the tlab is too large to discard.
+  cmp(t1, t2);
+  brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
+
+  // increment waste limit to prevent getting stuck on this slow path
+  delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
+  st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
+  if (TLABStats) {
+    // increment number of slow_allocations
+    ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
+    add(t2, 1, t2);
+    stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
+  }
+  ba_short(try_eden);
+
+  bind(discard_tlab);
+  if (TLABStats) {
+    // increment number of refills
+    ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
+    add(t2, 1, t2);
+    stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
+    // accumulate wastage
+    ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
+    add(t2, t1, t2);
+    stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
+  }
+
+  // if tlab is currently allocated (top or end != null) then
+  // fill [top, end + alignment_reserve) with array object
+  br_null_short(top, Assembler::pn, do_refill);
+
+  set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
+  st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
+  // set klass to intArrayKlass
+  sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
+  add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
+  sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
+  st(t1, top, arrayOopDesc::length_offset_in_bytes());
+  set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
+  ld_ptr(t2, 0, t2);
+  // store klass last.  concurrent gcs assumes klass length is valid if
+  // klass field is not null.
+  store_klass(t2, top);
+  verify_oop(top);
+
+  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
+  sub(top, t1, t1); // size of tlab's allocated portion
+  incr_allocated_bytes(t1, t2, t3);
+
+  // refill the tlab with an eden allocation
+  bind(do_refill);
+  ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
+  sll_ptr(t1, LogHeapWordSize, t1);
+  // allocate new tlab, address returned in top
+  eden_allocate(top, t1, 0, t2, t3, slow_case);
+
+  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
+  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
+#ifdef ASSERT
+  // check that tlab_size (t1) is still valid
+  {
+    Label ok;
+    ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
+    sll_ptr(t2, LogHeapWordSize, t2);
+    cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
+    STOP("assert(t1 == tlab_size)");
+    should_not_reach_here();
+
+    bind(ok);
+  }
+#endif // ASSERT
+  add(top, t1, top); // t1 is tlab_size
+  sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
+  st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
+  verify_tlab();
+  ba_short(retry);
+}
+
+void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
+                                          Register t1, Register t2) {
+  // Bump total bytes allocated by this thread
+  assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
+  assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
+  // v8 support has gone the way of the dodo
+  ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
+  add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
+  stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
+}
+
+Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
+  switch (cond) {
+    // Note some conditions are synonyms for others
+    case Assembler::never:                return Assembler::always;
+    case Assembler::zero:                 return Assembler::notZero;
+    case Assembler::lessEqual:            return Assembler::greater;
+    case Assembler::less:                 return Assembler::greaterEqual;
+    case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
+    case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
+    case Assembler::negative:             return Assembler::positive;
+    case Assembler::overflowSet:          return Assembler::overflowClear;
+    case Assembler::always:               return Assembler::never;
+    case Assembler::notZero:              return Assembler::zero;
+    case Assembler::greater:              return Assembler::lessEqual;
+    case Assembler::greaterEqual:         return Assembler::less;
+    case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
+    case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
+    case Assembler::positive:             return Assembler::negative;
+    case Assembler::overflowClear:        return Assembler::overflowSet;
+  }
+
+  ShouldNotReachHere(); return Assembler::overflowClear;
+}
+
+void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
+                              Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
+  Condition negated_cond = negate_condition(cond);
+  Label L;
+  brx(negated_cond, false, Assembler::pt, L);
+  delayed()->nop();
+  inc_counter(counter_ptr, Rtmp1, Rtmp2);
+  bind(L);
+}
+
+void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
+  AddressLiteral addrlit(counter_addr);
+  sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
+  Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
+  ld(addr, Rtmp2);
+  inc(Rtmp2);
+  st(Rtmp2, addr);
+}
+
+void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
+  inc_counter((address) counter_addr, Rtmp1, Rtmp2);
+}
+
+SkipIfEqual::SkipIfEqual(
+    MacroAssembler* masm, Register temp, const bool* flag_addr,
+    Assembler::Condition condition) {
+  _masm = masm;
+  AddressLiteral flag(flag_addr);
+  _masm->sethi(flag, temp);
+  _masm->ldub(temp, flag.low10(), temp);
+  _masm->tst(temp);
+  _masm->br(condition, false, Assembler::pt, _label);
+  _masm->delayed()->nop();
+}
+
+SkipIfEqual::~SkipIfEqual() {
+  _masm->bind(_label);
+}
+
+
+// Writes to stack successive pages until offset reached to check for
+// stack overflow + shadow pages.  This clobbers tsp and scratch.
+void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
+                                     Register Rscratch) {
+  // Use stack pointer in temp stack pointer
+  mov(SP, Rtsp);
+
+  // Bang stack for total size given plus stack shadow page size.
+  // Bang one page at a time because a large size can overflow yellow and
+  // red zones (the bang will fail but stack overflow handling can't tell that
+  // it was a stack overflow bang vs a regular segv).
+  int offset = os::vm_page_size();
+  Register Roffset = Rscratch;
+
+  Label loop;
+  bind(loop);
+  set((-offset)+STACK_BIAS, Rscratch);
+  st(G0, Rtsp, Rscratch);
+  set(offset, Roffset);
+  sub(Rsize, Roffset, Rsize);
+  cmp(Rsize, G0);
+  br(Assembler::greater, false, Assembler::pn, loop);
+  delayed()->sub(Rtsp, Roffset, Rtsp);
+
+  // Bang down shadow pages too.
+  // The -1 because we already subtracted 1 page.
+  for (int i = 0; i< StackShadowPages-1; i++) {
+    set((-i*offset)+STACK_BIAS, Rscratch);
+    st(G0, Rtsp, Rscratch);
+  }
+}
+
+///////////////////////////////////////////////////////////////////////////////////
+#ifndef SERIALGC
+
+static address satb_log_enqueue_with_frame = NULL;
+static u_char* satb_log_enqueue_with_frame_end = NULL;
+
+static address satb_log_enqueue_frameless = NULL;
+static u_char* satb_log_enqueue_frameless_end = NULL;
+
+static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
+
+static void generate_satb_log_enqueue(bool with_frame) {
+  BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
+  CodeBuffer buf(bb);
+  MacroAssembler masm(&buf);
+
+#define __ masm.
+
+  address start = __ pc();
+  Register pre_val;
+
+  Label refill, restart;
+  if (with_frame) {
+    __ save_frame(0);
+    pre_val = I0;  // Was O0 before the save.
+  } else {
+    pre_val = O0;
+  }
+
+  int satb_q_index_byte_offset =
+    in_bytes(JavaThread::satb_mark_queue_offset() +
+             PtrQueue::byte_offset_of_index());
+
+  int satb_q_buf_byte_offset =
+    in_bytes(JavaThread::satb_mark_queue_offset() +
+             PtrQueue::byte_offset_of_buf());
+
+  assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
+         in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
+         "check sizes in assembly below");
+
+  __ bind(restart);
+
+  // Load the index into the SATB buffer. PtrQueue::_index is a size_t
+  // so ld_ptr is appropriate.
+  __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
+
+  // index == 0?
+  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
+
+  __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
+  __ sub(L0, oopSize, L0);
+
+  __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
+  if (!with_frame) {
+    // Use return-from-leaf
+    __ retl();
+    __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
+  } else {
+    // Not delayed.
+    __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
+  }
+  if (with_frame) {
+    __ ret();
+    __ delayed()->restore();
+  }
+  __ bind(refill);
+
+  address handle_zero =
+    CAST_FROM_FN_PTR(address,
+                     &SATBMarkQueueSet::handle_zero_index_for_thread);
+  // This should be rare enough that we can afford to save all the
+  // scratch registers that the calling context might be using.
+  __ mov(G1_scratch, L0);
+  __ mov(G3_scratch, L1);
+  __ mov(G4, L2);
+  // We need the value of O0 above (for the write into the buffer), so we
+  // save and restore it.
+  __ mov(O0, L3);
+  // Since the call will overwrite O7, we save and restore that, as well.
+  __ mov(O7, L4);
+  __ call_VM_leaf(L5, handle_zero, G2_thread);
+  __ mov(L0, G1_scratch);
+  __ mov(L1, G3_scratch);
+  __ mov(L2, G4);
+  __ mov(L3, O0);
+  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
+  __ delayed()->mov(L4, O7);
+
+  if (with_frame) {
+    satb_log_enqueue_with_frame = start;
+    satb_log_enqueue_with_frame_end = __ pc();
+  } else {
+    satb_log_enqueue_frameless = start;
+    satb_log_enqueue_frameless_end = __ pc();
+  }
+
+#undef __
+}
+
+static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
+  if (with_frame) {
+    if (satb_log_enqueue_with_frame == 0) {
+      generate_satb_log_enqueue(with_frame);
+      assert(satb_log_enqueue_with_frame != 0, "postcondition.");
+      if (G1SATBPrintStubs) {
+        tty->print_cr("Generated with-frame satb enqueue:");
+        Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
+                             satb_log_enqueue_with_frame_end,
+                             tty);
+      }
+    }
+  } else {
+    if (satb_log_enqueue_frameless == 0) {
+      generate_satb_log_enqueue(with_frame);
+      assert(satb_log_enqueue_frameless != 0, "postcondition.");
+      if (G1SATBPrintStubs) {
+        tty->print_cr("Generated frameless satb enqueue:");
+        Disassembler::decode((u_char*)satb_log_enqueue_frameless,
+                             satb_log_enqueue_frameless_end,
+                             tty);
+      }
+    }
+  }
+}
+
+void MacroAssembler::g1_write_barrier_pre(Register obj,
+                                          Register index,
+                                          int offset,
+                                          Register pre_val,
+                                          Register tmp,
+                                          bool preserve_o_regs) {
+  Label filtered;
+
+  if (obj == noreg) {
+    // We are not loading the previous value so make
+    // sure that we don't trash the value in pre_val
+    // with the code below.
+    assert_different_registers(pre_val, tmp);
+  } else {
+    // We will be loading the previous value
+    // in this code so...
+    assert(offset == 0 || index == noreg, "choose one");
+    assert(pre_val == noreg, "check this code");
+  }
+
+  // Is marking active?
+  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
+    ld(G2,
+       in_bytes(JavaThread::satb_mark_queue_offset() +
+                PtrQueue::byte_offset_of_active()),
+       tmp);
+  } else {
+    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
+              "Assumption");
+    ldsb(G2,
+         in_bytes(JavaThread::satb_mark_queue_offset() +
+                  PtrQueue::byte_offset_of_active()),
+         tmp);
+  }
+
+  // Is marking active?
+  cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
+
+  // Do we need to load the previous value?
+  if (obj != noreg) {
+    // Load the previous value...
+    if (index == noreg) {
+      if (Assembler::is_simm13(offset)) {
+        load_heap_oop(obj, offset, tmp);
+      } else {
+        set(offset, tmp);
+        load_heap_oop(obj, tmp, tmp);
+      }
+    } else {
+      load_heap_oop(obj, index, tmp);
+    }
+    // Previous value has been loaded into tmp
+    pre_val = tmp;
+  }
+
+  assert(pre_val != noreg, "must have a real register");
+
+  // Is the previous value null?
+  cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
+
+  // OK, it's not filtered, so we'll need to call enqueue.  In the normal
+  // case, pre_val will be a scratch G-reg, but there are some cases in
+  // which it's an O-reg.  In the first case, do a normal call.  In the
+  // latter, do a save here and call the frameless version.
+
+  guarantee(pre_val->is_global() || pre_val->is_out(),
+            "Or we need to think harder.");
+
+  if (pre_val->is_global() && !preserve_o_regs) {
+    generate_satb_log_enqueue_if_necessary(true); // with frame
+
+    call(satb_log_enqueue_with_frame);
+    delayed()->mov(pre_val, O0);
+  } else {
+    generate_satb_log_enqueue_if_necessary(false); // frameless
+
+    save_frame(0);
+    call(satb_log_enqueue_frameless);
+    delayed()->mov(pre_val->after_save(), O0);
+    restore();
+  }
+
+  bind(filtered);
+}
+
+static address dirty_card_log_enqueue = 0;
+static u_char* dirty_card_log_enqueue_end = 0;
+
+// This gets to assume that o0 contains the object address.
+static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
+  BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
+  CodeBuffer buf(bb);
+  MacroAssembler masm(&buf);
+#define __ masm.
+  address start = __ pc();
+
+  Label not_already_dirty, restart, refill;
+
+#ifdef _LP64
+  __ srlx(O0, CardTableModRefBS::card_shift, O0);
+#else
+  __ srl(O0, CardTableModRefBS::card_shift, O0);
+#endif
+  AddressLiteral addrlit(byte_map_base);
+  __ set(addrlit, O1); // O1 := <card table base>
+  __ ldub(O0, O1, O2); // O2 := [O0 + O1]
+
+  assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
+  __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
+
+  // We didn't take the branch, so we're already dirty: return.
+  // Use return-from-leaf
+  __ retl();
+  __ delayed()->nop();
+
+  // Not dirty.
+  __ bind(not_already_dirty);
+
+  // Get O0 + O1 into a reg by itself
+  __ add(O0, O1, O3);
+
+  // First, dirty it.
+  __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
+
+  int dirty_card_q_index_byte_offset =
+    in_bytes(JavaThread::dirty_card_queue_offset() +
+             PtrQueue::byte_offset_of_index());
+  int dirty_card_q_buf_byte_offset =
+    in_bytes(JavaThread::dirty_card_queue_offset() +
+             PtrQueue::byte_offset_of_buf());
+  __ bind(restart);
+
+  // Load the index into the update buffer. PtrQueue::_index is
+  // a size_t so ld_ptr is appropriate here.
+  __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
+
+  // index == 0?
+  __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
+
+  __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
+  __ sub(L0, oopSize, L0);
+
+  __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
+  // Use return-from-leaf
+  __ retl();
+  __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
+
+  __ bind(refill);
+  address handle_zero =
+    CAST_FROM_FN_PTR(address,
+                     &DirtyCardQueueSet::handle_zero_index_for_thread);
+  // This should be rare enough that we can afford to save all the
+  // scratch registers that the calling context might be using.
+  __ mov(G1_scratch, L3);
+  __ mov(G3_scratch, L5);
+  // We need the value of O3 above (for the write into the buffer), so we
+  // save and restore it.
+  __ mov(O3, L6);
+  // Since the call will overwrite O7, we save and restore that, as well.
+  __ mov(O7, L4);
+
+  __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
+  __ mov(L3, G1_scratch);
+  __ mov(L5, G3_scratch);
+  __ mov(L6, O3);
+  __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
+  __ delayed()->mov(L4, O7);
+
+  dirty_card_log_enqueue = start;
+  dirty_card_log_enqueue_end = __ pc();
+  // XXX Should have a guarantee here about not going off the end!
+  // Does it already do so?  Do an experiment...
+
+#undef __
+
+}
+
+static inline void
+generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
+  if (dirty_card_log_enqueue == 0) {
+    generate_dirty_card_log_enqueue(byte_map_base);
+    assert(dirty_card_log_enqueue != 0, "postcondition.");
+    if (G1SATBPrintStubs) {
+      tty->print_cr("Generated dirty_card enqueue:");
+      Disassembler::decode((u_char*)dirty_card_log_enqueue,
+                           dirty_card_log_enqueue_end,
+                           tty);
+    }
+  }
+}
+
+
+void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
+
+  Label filtered;
+  MacroAssembler* post_filter_masm = this;
+
+  if (new_val == G0) return;
+
+  G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::G1SATBCT ||
+         bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
+
+  if (G1RSBarrierRegionFilter) {
+    xor3(store_addr, new_val, tmp);
+#ifdef _LP64
+    srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
+#else
+    srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
+#endif
+
+    // XXX Should I predict this taken or not?  Does it matter?
+    cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
+  }
+
+  // If the "store_addr" register is an "in" or "local" register, move it to
+  // a scratch reg so we can pass it as an argument.
+  bool use_scr = !(store_addr->is_global() || store_addr->is_out());
+  // Pick a scratch register different from "tmp".
+  Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
+  // Make sure we use up the delay slot!
+  if (use_scr) {
+    post_filter_masm->mov(store_addr, scr);
+  } else {
+    post_filter_masm->nop();
+  }
+  generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
+  save_frame(0);
+  call(dirty_card_log_enqueue);
+  if (use_scr) {
+    delayed()->mov(scr, O0);
+  } else {
+    delayed()->mov(store_addr->after_save(), O0);
+  }
+  restore();
+
+  bind(filtered);
+}
+
+#endif  // SERIALGC
+///////////////////////////////////////////////////////////////////////////////////
+
+void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
+  // If we're writing constant NULL, we can skip the write barrier.
+  if (new_val == G0) return;
+  CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::CardTableModRef ||
+         bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
+  card_table_write(bs->byte_map_base, tmp, store_addr);
+}
+
+void MacroAssembler::load_klass(Register src_oop, Register klass) {
+  // The number of bytes in this code is used by
+  // MachCallDynamicJavaNode::ret_addr_offset()
+  // if this changes, change that.
+  if (UseCompressedKlassPointers) {
+    lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
+    decode_klass_not_null(klass);
+  } else {
+    ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
+  }
+}
+
+void MacroAssembler::store_klass(Register klass, Register dst_oop) {
+  if (UseCompressedKlassPointers) {
+    assert(dst_oop != klass, "not enough registers");
+    encode_klass_not_null(klass);
+    st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
+  } else {
+    st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
+  }
+}
+
+void MacroAssembler::store_klass_gap(Register s, Register d) {
+  if (UseCompressedKlassPointers) {
+    assert(s != d, "not enough registers");
+    st(s, d, oopDesc::klass_gap_offset_in_bytes());
+  }
+}
+
+void MacroAssembler::load_heap_oop(const Address& s, Register d) {
+  if (UseCompressedOops) {
+    lduw(s, d);
+    decode_heap_oop(d);
+  } else {
+    ld_ptr(s, d);
+  }
+}
+
+void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
+   if (UseCompressedOops) {
+    lduw(s1, s2, d);
+    decode_heap_oop(d, d);
+  } else {
+    ld_ptr(s1, s2, d);
+  }
+}
+
+void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
+   if (UseCompressedOops) {
+    lduw(s1, simm13a, d);
+    decode_heap_oop(d, d);
+  } else {
+    ld_ptr(s1, simm13a, d);
+  }
+}
+
+void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
+  if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
+  else                   load_heap_oop(s1, s2.as_register(), d);
+}
+
+void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
+  if (UseCompressedOops) {
+    assert(s1 != d && s2 != d, "not enough registers");
+    encode_heap_oop(d);
+    st(d, s1, s2);
+  } else {
+    st_ptr(d, s1, s2);
+  }
+}
+
+void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
+  if (UseCompressedOops) {
+    assert(s1 != d, "not enough registers");
+    encode_heap_oop(d);
+    st(d, s1, simm13a);
+  } else {
+    st_ptr(d, s1, simm13a);
+  }
+}
+
+void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
+  if (UseCompressedOops) {
+    assert(a.base() != d, "not enough registers");
+    encode_heap_oop(d);
+    st(d, a, offset);
+  } else {
+    st_ptr(d, a, offset);
+  }
+}
+
+
+void MacroAssembler::encode_heap_oop(Register src, Register dst) {
+  assert (UseCompressedOops, "must be compressed");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+  verify_oop(src);
+  if (Universe::narrow_oop_base() == NULL) {
+    srlx(src, LogMinObjAlignmentInBytes, dst);
+    return;
+  }
+  Label done;
+  if (src == dst) {
+    // optimize for frequent case src == dst
+    bpr(rc_nz, true, Assembler::pt, src, done);
+    delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
+    bind(done);
+    srlx(src, LogMinObjAlignmentInBytes, dst);
+  } else {
+    bpr(rc_z, false, Assembler::pn, src, done);
+    delayed() -> mov(G0, dst);
+    // could be moved before branch, and annulate delay,
+    // but may add some unneeded work decoding null
+    sub(src, G6_heapbase, dst);
+    srlx(dst, LogMinObjAlignmentInBytes, dst);
+    bind(done);
+  }
+}
+
+
+void MacroAssembler::encode_heap_oop_not_null(Register r) {
+  assert (UseCompressedOops, "must be compressed");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+  verify_oop(r);
+  if (Universe::narrow_oop_base() != NULL)
+    sub(r, G6_heapbase, r);
+  srlx(r, LogMinObjAlignmentInBytes, r);
+}
+
+void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
+  assert (UseCompressedOops, "must be compressed");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+  verify_oop(src);
+  if (Universe::narrow_oop_base() == NULL) {
+    srlx(src, LogMinObjAlignmentInBytes, dst);
+  } else {
+    sub(src, G6_heapbase, dst);
+    srlx(dst, LogMinObjAlignmentInBytes, dst);
+  }
+}
+
+// Same algorithm as oops.inline.hpp decode_heap_oop.
+void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
+  assert (UseCompressedOops, "must be compressed");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+  sllx(src, LogMinObjAlignmentInBytes, dst);
+  if (Universe::narrow_oop_base() != NULL) {
+    Label done;
+    bpr(rc_nz, true, Assembler::pt, dst, done);
+    delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
+    bind(done);
+  }
+  verify_oop(dst);
+}
+
+void  MacroAssembler::decode_heap_oop_not_null(Register r) {
+  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
+  // pd_code_size_limit.
+  // Also do not verify_oop as this is called by verify_oop.
+  assert (UseCompressedOops, "must be compressed");
+  assert (Universe::heap() != NULL, "java heap should be initialized");
+  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+  sllx(r, LogMinObjAlignmentInBytes, r);
+  if (Universe::narrow_oop_base() != NULL)
+    add(r, G6_heapbase, r);
+}
+
+void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
+  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
+  // pd_code_size_limit.
+  // Also do not verify_oop as this is called by verify_oop.
+  assert (UseCompressedOops, "must be compressed");
+  assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
+  sllx(src, LogMinObjAlignmentInBytes, dst);
+  if (Universe::narrow_oop_base() != NULL)
+    add(dst, G6_heapbase, dst);
+}
+
+void MacroAssembler::encode_klass_not_null(Register r) {
+  assert(Metaspace::is_initialized(), "metaspace should be initialized");
+  assert (UseCompressedKlassPointers, "must be compressed");
+  assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+  if (Universe::narrow_klass_base() != NULL)
+    sub(r, G6_heapbase, r);
+  srlx(r, LogKlassAlignmentInBytes, r);
+}
+
+void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
+  assert(Metaspace::is_initialized(), "metaspace should be initialized");
+  assert (UseCompressedKlassPointers, "must be compressed");
+  assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+  if (Universe::narrow_klass_base() == NULL) {
+    srlx(src, LogKlassAlignmentInBytes, dst);
+  } else {
+    sub(src, G6_heapbase, dst);
+    srlx(dst, LogKlassAlignmentInBytes, dst);
+  }
+}
+
+void  MacroAssembler::decode_klass_not_null(Register r) {
+  assert(Metaspace::is_initialized(), "metaspace should be initialized");
+  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
+  // pd_code_size_limit.
+  assert (UseCompressedKlassPointers, "must be compressed");
+  assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+  sllx(r, LogKlassAlignmentInBytes, r);
+  if (Universe::narrow_klass_base() != NULL)
+    add(r, G6_heapbase, r);
+}
+
+void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
+  assert(Metaspace::is_initialized(), "metaspace should be initialized");
+  // Do not add assert code to this unless you change vtableStubs_sparc.cpp
+  // pd_code_size_limit.
+  assert (UseCompressedKlassPointers, "must be compressed");
+  assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
+  sllx(src, LogKlassAlignmentInBytes, dst);
+  if (Universe::narrow_klass_base() != NULL)
+    add(dst, G6_heapbase, dst);
+}
+
+void MacroAssembler::reinit_heapbase() {
+  if (UseCompressedOops || UseCompressedKlassPointers) {
+    AddressLiteral base(Universe::narrow_ptrs_base_addr());
+    load_ptr_contents(base, G6_heapbase);
+  }
+}
+
+// Compare char[] arrays aligned to 4 bytes.
+void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
+                                        Register limit, Register result,
+                                        Register chr1, Register chr2, Label& Ldone) {
+  Label Lvector, Lloop;
+  assert(chr1 == result, "should be the same");
+
+  // Note: limit contains number of bytes (2*char_elements) != 0.
+  andcc(limit, 0x2, chr1); // trailing character ?
+  br(Assembler::zero, false, Assembler::pt, Lvector);
+  delayed()->nop();
+
+  // compare the trailing char
+  sub(limit, sizeof(jchar), limit);
+  lduh(ary1, limit, chr1);
+  lduh(ary2, limit, chr2);
+  cmp(chr1, chr2);
+  br(Assembler::notEqual, true, Assembler::pt, Ldone);
+  delayed()->mov(G0, result);     // not equal
+
+  // only one char ?
+  cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
+  delayed()->add(G0, 1, result); // zero-length arrays are equal
+
+  // word by word compare, dont't need alignment check
+  bind(Lvector);
+  // Shift ary1 and ary2 to the end of the arrays, negate limit
+  add(ary1, limit, ary1);
+  add(ary2, limit, ary2);
+  neg(limit, limit);
+
+  lduw(ary1, limit, chr1);
+  bind(Lloop);
+  lduw(ary2, limit, chr2);
+  cmp(chr1, chr2);
+  br(Assembler::notEqual, true, Assembler::pt, Ldone);
+  delayed()->mov(G0, result);     // not equal
+  inccc(limit, 2*sizeof(jchar));
+  // annul LDUW if branch is not taken to prevent access past end of array
+  br(Assembler::notZero, true, Assembler::pt, Lloop);
+  delayed()->lduw(ary1, limit, chr1); // hoisted
+
+  // Caller should set it:
+  // add(G0, 1, result); // equals
+}
+
+// Use BIS for zeroing (count is in bytes).
+void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
+  assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
+  Register end = count;
+  int cache_line_size = VM_Version::prefetch_data_size();
+  // Minimum count when BIS zeroing can be used since
+  // it needs membar which is expensive.
+  int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
+
+  Label small_loop;
+  // Check if count is negative (dead code) or zero.
+  // Note, count uses 64bit in 64 bit VM.
+  cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
+
+  // Use BIS zeroing only for big arrays since it requires membar.
+  if (Assembler::is_simm13(block_zero_size)) { // < 4096
+    cmp(count, block_zero_size);
+  } else {
+    set(block_zero_size, temp);
+    cmp(count, temp);
+  }
+  br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
+  delayed()->add(to, count, end);
+
+  // Note: size is >= three (32 bytes) cache lines.
+
+  // Clean the beginning of space up to next cache line.
+  for (int offs = 0; offs < cache_line_size; offs += 8) {
+    stx(G0, to, offs);
+  }
+
+  // align to next cache line
+  add(to, cache_line_size, to);
+  and3(to, -cache_line_size, to);
+
+  // Note: size left >= two (32 bytes) cache lines.
+
+  // BIS should not be used to zero tail (64 bytes)
+  // to avoid zeroing a header of the following object.
+  sub(end, (cache_line_size*2)-8, end);
+
+  Label bis_loop;
+  bind(bis_loop);
+  stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
+  add(to, cache_line_size, to);
+  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
+
+  // BIS needs membar.
+  membar(Assembler::StoreLoad);
+
+  add(end, (cache_line_size*2)-8, end); // restore end
+  cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
+
+  // Clean the tail.
+  bind(small_loop);
+  stx(G0, to, 0);
+  add(to, 8, to);
+  cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
+  nop(); // Separate short branches
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/sparc/vm/macroAssembler_sparc.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -0,0 +1,1504 @@
+/*
+ * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
+#define CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
+
+#include "asm/assembler.hpp"
+
+// <sys/trap.h> promises that the system will not use traps 16-31
+#define ST_RESERVED_FOR_USER_0 0x10
+
+class BiasedLockingCounters;
+
+
+// Register aliases for parts of the system:
+
+// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
+// across context switches in V8+ ABI.  Of course, there are no 64 bit regs
+// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
+
+// g2-g4 are scratch registers called "application globals".  Their
+// meaning is reserved to the "compilation system"--which means us!
+// They are are not supposed to be touched by ordinary C code, although
+// highly-optimized C code might steal them for temps.  They are safe
+// across thread switches, and the ABI requires that they be safe
+// across function calls.
+//
+// g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
+// across func calls, and V8+ also allows g5 to be clobbered across
+// func calls.  Also, g1 and g5 can get touched while doing shared
+// library loading.
+//
+// We must not touch g7 (it is the thread-self register) and g6 is
+// reserved for certain tools.  g0, of course, is always zero.
+//
+// (Sources:  SunSoft Compilers Group, thread library engineers.)
+
+// %%%% The interpreter should be revisited to reduce global scratch regs.
+
+// This global always holds the current JavaThread pointer:
+
+REGISTER_DECLARATION(Register, G2_thread , G2);
+REGISTER_DECLARATION(Register, G6_heapbase , G6);
+
+// The following globals are part of the Java calling convention:
+
+REGISTER_DECLARATION(Register, G5_method             , G5);
+REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
+REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
+
+// The following globals are used for the new C1 & interpreter calling convention:
+REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
+
+// This local is used to preserve G2_thread in the interpreter and in stubs:
+REGISTER_DECLARATION(Register, L7_thread_cache , L7);
+
+// These globals are used as scratch registers in the interpreter:
+
+REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
+REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
+REGISTER_DECLARATION(Register, G3_scratch    , G3);
+REGISTER_DECLARATION(Register, G4_scratch    , G4);
+
+// These globals are used as short-lived scratch registers in the compiler:
+
+REGISTER_DECLARATION(Register, Gtemp  , G5);
+
+// JSR 292 fixed register usages:
+REGISTER_DECLARATION(Register, G5_method_type        , G5);
+REGISTER_DECLARATION(Register, G3_method_handle      , G3);
+REGISTER_DECLARATION(Register, L7_mh_SP_save         , L7);
+
+// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
+// because a single patchable "set" instruction (NativeMovConstReg,
+// or NativeMovConstPatching for compiler1) instruction
+// serves to set up either quantity, depending on whether the compiled
+// call site is an inline cache or is megamorphic.  See the function
+// CompiledIC::set_to_megamorphic.
+//
+// If a inline cache targets an interpreted method, then the
+// G5 register will be used twice during the call.  First,
+// the call site will be patched to load a compiledICHolder
+// into G5. (This is an ordered pair of ic_klass, method.)
+// The c2i adapter will first check the ic_klass, then load
+// G5_method with the method part of the pair just before
+// jumping into the interpreter.
+//
+// Note that G5_method is only the method-self for the interpreter,
+// and is logically unrelated to G5_megamorphic_method.
+//
+// Invariants on G2_thread (the JavaThread pointer):
+//  - it should not be used for any other purpose anywhere
+//  - it must be re-initialized by StubRoutines::call_stub()
+//  - it must be preserved around every use of call_VM
+
+// We can consider using g2/g3/g4 to cache more values than the
+// JavaThread, such as the card-marking base or perhaps pointers into
+// Eden.  It's something of a waste to use them as scratch temporaries,
+// since they are not supposed to be volatile.  (Of course, if we find
+// that Java doesn't benefit from application globals, then we can just
+// use them as ordinary temporaries.)
+//
+// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
+// it makes sense to use them routinely for procedure linkage,
+// whenever the On registers are not applicable.  Examples:  G5_method,
+// G5_inline_cache_klass, and a double handful of miscellaneous compiler
+// stubs.  This means that compiler stubs, etc., should be kept to a
+// maximum of two or three G-register arguments.
+
+
+// stub frames
+
+REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
+
+// Interpreter frames
+
+#ifdef CC_INTERP
+REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
+REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
+REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
+REGISTER_DECLARATION(Register, L2_scratch       , L2);
+REGISTER_DECLARATION(Register, L3_scratch       , L3);
+REGISTER_DECLARATION(Register, L4_scratch       , L4);
+REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
+REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
+REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
+REGISTER_DECLARATION(Register, O5_savedSP       , O5);
+REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
+                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
+                                                       // is added and removed as needed in the frame code.
+// Interface to signature handler
+REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
+REGISTER_DECLARATION(Register, Lmethod          , L6); // Method* when calling signature handler
+
+#else
+REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
+REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
+REGISTER_DECLARATION(Register, Lmethod          , L2);
+REGISTER_DECLARATION(Register, Llocals          , L3);
+REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
+                                                       // must match Llocals in asm interpreter
+REGISTER_DECLARATION(Register, Lmonitors        , L4);
+REGISTER_DECLARATION(Register, Lbyte_code       , L5);
+// When calling out from the interpreter we record SP so that we can remove any extra stack
+// space allocated during adapter transitions. This register is only live from the point
+// of the call until we return.
+REGISTER_DECLARATION(Register, Llast_SP         , L5);
+REGISTER_DECLARATION(Register, Lscratch         , L5);
+REGISTER_DECLARATION(Register, Lscratch2        , L6);
+REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
+
+REGISTER_DECLARATION(Register, O5_savedSP       , O5);
+REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
+                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
+                                                       // is added and removed as needed in the frame code.
+REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
+REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
+REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
+#endif /* CC_INTERP */
+
+// NOTE: Lscratch2 and LcpoolCache point to the same registers in
+//       the interpreter code. If Lscratch2 needs to be used for some
+//       purpose than LcpoolCache should be restore after that for
+//       the interpreter to work right
+// (These assignments must be compatible with L7_thread_cache; see above.)
+
+// Since Lbcp points into the middle of the method object,
+// it is temporarily converted into a "bcx" during GC.
+
+// Exception processing
+// These registers are passed into exception handlers.
+// All exception handlers require the exception object being thrown.
+// In addition, an nmethod's exception handler must be passed
+// the address of the call site within the nmethod, to allow
+// proper selection of the applicable catch block.
+// (Interpreter frames use their own bcp() for this purpose.)
+//
+// The Oissuing_pc value is not always needed.  When jumping to a
+// handler that is known to be interpreted, the Oissuing_pc value can be
+// omitted.  An actual catch block in compiled code receives (from its
+// nmethod's exception handler) the thrown exception in the Oexception,
+// but it doesn't need the Oissuing_pc.
+//
+// If an exception handler (either interpreted or compiled)
+// discovers there is no applicable catch block, it updates
+// the Oissuing_pc to the continuation PC of its own caller,
+// pops back to that caller's stack frame, and executes that
+// caller's exception handler.  Obviously, this process will
+// iterate until the control stack is popped back to a method
+// containing an applicable catch block.  A key invariant is
+// that the Oissuing_pc value is always a value local to
+// the method whose exception handler is currently executing.
+//
+// Note:  The issuing PC value is __not__ a raw return address (I7 value).
+// It is a "return pc", the address __following__ the call.
+// Raw return addresses are converted to issuing PCs by frame::pc(),
+// or by stubs.  Issuing PCs can be used directly with PC range tables.
+//
+REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
+REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
+
+
+// These must occur after the declarations above
+#ifndef DONT_USE_REGISTER_DEFINES
+
+#define Gthread             AS_REGISTER(Register, Gthread)
+#define Gmethod             AS_REGISTER(Register, Gmethod)
+#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
+#define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
+#define Gargs               AS_REGISTER(Register, Gargs)
+#define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
+#define Gframe_size         AS_REGISTER(Register, Gframe_size)
+#define Gtemp               AS_REGISTER(Register, Gtemp)
+
+#ifdef CC_INTERP
+#define Lstate              AS_REGISTER(Register, Lstate)
+#define Lesp                AS_REGISTER(Register, Lesp)
+#define L1_scratch          AS_REGISTER(Register, L1_scratch)
+#define Lmirror             AS_REGISTER(Register, Lmirror)
+#define L2_scratch          AS_REGISTER(Register, L2_scratch)
+#define L3_scratch          AS_REGISTER(Register, L3_scratch)
+#define L4_scratch          AS_REGISTER(Register, L4_scratch)
+#define Lscratch            AS_REGISTER(Register, Lscratch)
+#define Lscratch2           AS_REGISTER(Register, Lscratch2)
+#define L7_scratch          AS_REGISTER(Register, L7_scratch)
+#define Ostate              AS_REGISTER(Register, Ostate)
+#else
+#define Lesp                AS_REGISTER(Register, Lesp)
+#define Lbcp                AS_REGISTER(Register, Lbcp)
+#define Lmethod             AS_REGISTER(Register, Lmethod)
+#define Llocals             AS_REGISTER(Register, Llocals)
+#define Lmonitors           AS_REGISTER(Register, Lmonitors)
+#define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
+#define Lscratch            AS_REGISTER(Register, Lscratch)
+#define Lscratch2           AS_REGISTER(Register, Lscratch2)
+#define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
+#endif /* ! CC_INTERP */
+
+#define Lentry_args         AS_REGISTER(Register, Lentry_args)
+#define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
+#define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
+#define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
+#define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
+#define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
+
+#define Oexception          AS_REGISTER(Register, Oexception)
+#define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
+
+#endif
+
+
+// Address is an abstraction used to represent a memory location.
+//
+// Note: A register location is represented via a Register, not
+//       via an address for efficiency & simplicity reasons.
+
+class Address VALUE_OBJ_CLASS_SPEC {
+ private:
+  Register           _base;           // Base register.
+  RegisterOrConstant _index_or_disp;  // Index register or constant displacement.
+  RelocationHolder   _rspec;
+
+ public:
+  Address() : _base(noreg), _index_or_disp(noreg) {}
+
+  Address(Register base, RegisterOrConstant index_or_disp)
+    : _base(base),
+      _index_or_disp(index_or_disp) {
+  }
+
+  Address(Register base, Register index)
+    : _base(base),
+      _index_or_disp(index) {
+  }
+
+  Address(Register base, int disp)
+    : _base(base),
+      _index_or_disp(disp) {
+  }
+
+#ifdef ASSERT
+  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
+  Address(Register base, ByteSize disp)
+    : _base(base),
+      _index_or_disp(in_bytes(disp)) {
+  }
+#endif
+
+  // accessors
+  Register base()             const { return _base; }
+  Register index()            const { return _index_or_disp.as_register(); }
+  int      disp()             const { return _index_or_disp.as_constant(); }
+
+  bool     has_index()        const { return _index_or_disp.is_register(); }
+  bool     has_disp()         const { return _index_or_disp.is_constant(); }
+
+  bool     uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
+
+  const relocInfo::relocType rtype() { return _rspec.type(); }
+  const RelocationHolder&    rspec() { return _rspec; }
+
+  RelocationHolder rspec(int offset) const {
+    return offset == 0 ? _rspec : _rspec.plus(offset);
+  }
+
+  inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
+
+  Address plus_disp(int plusdisp) const {     // bump disp by a small amount
+    assert(_index_or_disp.is_constant(), "must have a displacement");
+    Address a(base(), disp() + plusdisp);
+    return a;
+  }
+  bool is_same_address(Address a) const {
+    // disregard _rspec
+    return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
+  }
+
+  Address after_save() const {
+    Address a = (*this);
+    a._base = a._base->after_save();
+    return a;
+  }
+
+  Address after_restore() const {
+    Address a = (*this);
+    a._base = a._base->after_restore();
+    return a;
+  }
+
+  // Convert the raw encoding form into the form expected by the
+  // constructor for Address.
+  static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
+
+  friend class Assembler;
+};
+
+
+class AddressLiteral VALUE_OBJ_CLASS_SPEC {
+ private:
+  address          _address;
+  RelocationHolder _rspec;
+
+  RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
+    switch (rtype) {
+    case relocInfo::external_word_type:
+      return external_word_Relocation::spec(addr);
+    case relocInfo::internal_word_type:
+      return internal_word_Relocation::spec(addr);
+#ifdef _LP64
+    case relocInfo::opt_virtual_call_type:
+      return opt_virtual_call_Relocation::spec();
+    case relocInfo::static_call_type:
+      return static_call_Relocation::spec();
+    case relocInfo::runtime_call_type:
+      return runtime_call_Relocation::spec();
+#endif
+    case relocInfo::none:
+      return RelocationHolder();
+    default:
+      ShouldNotReachHere();
+      return RelocationHolder();
+    }
+  }
+
+ protected:
+  // creation
+  AddressLiteral() : _address(NULL), _rspec(NULL) {}
+
+ public:
+  AddressLiteral(address addr, RelocationHolder const& rspec)
+    : _address(addr),
+      _rspec(rspec) {}
+
+  // Some constructors to avoid casting at the call site.
+  AddressLiteral(jobject obj, RelocationHolder const& rspec)
+    : _address((address) obj),
+      _rspec(rspec) {}
+
+  AddressLiteral(intptr_t value, RelocationHolder const& rspec)
+    : _address((address) value),
+      _rspec(rspec) {}
+
+  AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+  // Some constructors to avoid casting at the call site.
+  AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+    _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+  AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+  AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+  AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+  AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+  AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+#ifdef _LP64
+  // 32-bit complains about a multiple declaration for int*.
+  AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+#endif
+
+  AddressLiteral(Metadata* addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+  AddressLiteral(Metadata** addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+  AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+  AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
+    : _address((address) addr),
+      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+  intptr_t value() const { return (intptr_t) _address; }
+  int      low10() const;
+
+  const relocInfo::relocType rtype() const { return _rspec.type(); }
+  const RelocationHolder&    rspec() const { return _rspec; }
+
+  RelocationHolder rspec(int offset) const {
+    return offset == 0 ? _rspec : _rspec.plus(offset);
+  }
+};
+
+// Convenience classes
+class ExternalAddress: public AddressLiteral {
+ private:
+  static relocInfo::relocType reloc_for_target(address target) {
+    // Sometimes ExternalAddress is used for values which aren't
+    // exactly addresses, like the card table base.
+    // external_word_type can't be used for values in the first page
+    // so just skip the reloc in that case.
+    return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
+  }
+
+ public:
+  ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(          target)) {}
+  ExternalAddress(Metadata** target) : AddressLiteral(target, reloc_for_target((address) target)) {}
+};
+
+inline Address RegisterImpl::address_in_saved_window() const {
+   return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
+}
+
+
+
+// Argument is an abstraction used to represent an outgoing
+// actual argument or an incoming formal parameter, whether
+// it resides in memory or in a register, in a manner consistent
+// with the SPARC Application Binary Interface, or ABI.  This is
+// often referred to as the native or C calling convention.
+
+class Argument VALUE_OBJ_CLASS_SPEC {
+ private:
+  int _number;
+  bool _is_in;
+
+ public:
+#ifdef _LP64
+  enum {
+    n_register_parameters = 6,          // only 6 registers may contain integer parameters
+    n_float_register_parameters = 16    // Can have up to 16 floating registers
+  };
+#else
+  enum {
+    n_register_parameters = 6           // only 6 registers may contain integer parameters
+  };
+#endif
+
+  // creation
+  Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
+
+  int  number() const  { return _number;  }
+  bool is_in()  const  { return _is_in;   }
+  bool is_out() const  { return !is_in(); }
+
+  Argument successor() const  { return Argument(number() + 1, is_in()); }
+  Argument as_in()     const  { return Argument(number(), true ); }
+  Argument as_out()    const  { return Argument(number(), false); }
+
+  // locating register-based arguments:
+  bool is_register() const { return _number < n_register_parameters; }
+
+#ifdef _LP64
+  // locating Floating Point register-based arguments:
+  bool is_float_register() const { return _number < n_float_register_parameters; }
+
+  FloatRegister as_float_register() const {
+    assert(is_float_register(), "must be a register argument");
+    return as_FloatRegister(( number() *2 ) + 1);
+  }
+  FloatRegister as_double_register() const {
+    assert(is_float_register(), "must be a register argument");
+    return as_FloatRegister(( number() *2 ));
+  }
+#endif
+
+  Register as_register() const {
+    assert(is_register(), "must be a register argument");
+    return is_in() ? as_iRegister(number()) : as_oRegister(number());
+  }
+
+  // locating memory-based arguments
+  Address as_address() const {
+    assert(!is_register(), "must be a memory argument");
+    return address_in_frame();
+  }
+
+  // When applied to a register-based argument, give the corresponding address
+  // into the 6-word area "into which callee may store register arguments"
+  // (This is a different place than the corresponding register-save area location.)
+  Address address_in_frame() const;
+
+  // debugging
+  const char* name() const;
+
+  friend class Assembler;
+};
+
+
+class RegistersForDebugging : public StackObj {
+ public:
+  intptr_t i[8], l[8], o[8], g[8];
+  float    f[32];
+  double   d[32];
+
+  void print(outputStream* s);
+
+  static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
+  static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
+  static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
+  static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
+  static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
+  static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
+
+  // gen asm code to save regs
+  static void save_registers(MacroAssembler* a);
+
+  // restore global registers in case C code disturbed them
+  static void restore_registers(MacroAssembler* a, Register r);
+};
+
+
+// MacroAssembler extends Assembler by a few frequently used macros.
+//
+// Most of the standard SPARC synthetic ops are defined here.
+// Instructions for which a 'better' code sequence exists depending
+// on arguments should also go in here.
+
+#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
+#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
+#define JUMP(a, temp, off)     jump(a, temp, off, __FILE__, __LINE__)
+#define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
+
+
+class MacroAssembler : public Assembler {
+  // code patchers need various routines like inv_wdisp()
+  friend class NativeInstruction;
+  friend class NativeGeneralJump;
+  friend class Relocation;
+  friend class Label;
+
+ protected:
+  static void print_instruction(int inst);
+  static int  patched_branch(int dest_pos, int inst, int inst_pos);
+  static int  branch_destination(int inst, int pos);
+
+  // Support for VM calls
+  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
+  // may customize this version by overriding it for its purposes (e.g., to save/restore
+  // additional registers when doing a VM call).
+#ifdef CC_INTERP
+  #define VIRTUAL
+#else
+  #define VIRTUAL virtual
+#endif
+
+  VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
+
+  //
+  // It is imperative that all calls into the VM are handled via the call_VM macros.
+  // They make sure that the stack linkage is setup correctly. call_VM's correspond
+  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
+  //
+  // This is the base routine called by the different versions of call_VM. The interpreter
+  // may customize this version by overriding it for its purposes (e.g., to save/restore
+  // additional registers when doing a VM call).
+  //
+  // A non-volatile java_thread_cache register should be specified so
+  // that the G2_thread value can be preserved across the call.
+  // (If java_thread_cache is noreg, then a slow get_thread call
+  // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
+  // thread.
+  //
+  // If no last_java_sp is specified (noreg) than SP will be used instead.
+
+  virtual void call_VM_base(
+    Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
+    Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
+    Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
+    address         entry_point,            // the entry point
+    int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
+    bool            check_exception=true    // flag which indicates if exception should be checked
+  );
+
+  // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
+  // The implementation is only non-empty for the InterpreterMacroAssembler,
+  // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
+  virtual void check_and_handle_popframe(Register scratch_reg);
+  virtual void check_and_handle_earlyret(Register scratch_reg);
+
+ public:
+  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
+
+  // Support for NULL-checks
+  //
+  // Generates code that causes a NULL OS exception if the content of reg is NULL.
+  // If the accessed location is M[reg + offset] and the offset is known, provide the
+  // offset.  No explicit code generation is needed if the offset is within a certain
+  // range (0 <= offset <= page_size).
+  //
+  // %%%%%% Currently not done for SPARC
+
+  void null_check(Register reg, int offset = -1);
+  static bool needs_explicit_null_check(intptr_t offset);
+
+  // support for delayed instructions
+  MacroAssembler* delayed() { Assembler::delayed();  return this; }
+
+  // branches that use right instruction for v8 vs. v9
+  inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void br( Condition c, bool a, Predict p, Label& L );
+
+  inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void fb( Condition c, bool a, Predict p, Label& L );
+
+  // compares register with zero (32 bit) and branches (V9 and V8 instructions)
+  void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn );
+  // Compares a pointer register with zero and branches on (not)null.
+  // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
+  void br_null   ( Register s1, bool a, Predict p, Label& L );
+  void br_notnull( Register s1, bool a, Predict p, Label& L );
+
+  //
+  // Compare registers and branch with nop in delay slot or cbcond without delay slot.
+  //
+  // ATTENTION: use these instructions with caution because cbcond instruction
+  //            has very short distance: 512 instructions (2Kbyte).
+
+  // Compare integer (32 bit) values (icc only).
+  void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L);
+  void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
+  // Platform depending version for pointer compare (icc on !LP64 and xcc on LP64).
+  void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L);
+  void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
+
+  // Short branch version for compares a pointer pwith zero.
+  void br_null_short   ( Register s1, Predict p, Label& L );
+  void br_notnull_short( Register s1, Predict p, Label& L );
+
+  // unconditional short branch
+  void ba_short(Label& L);
+
+  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
+
+  // Branch that tests xcc in LP64 and icc in !LP64
+  inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void brx( Condition c, bool a, Predict p, Label& L );
+
+  // unconditional branch
+  inline void ba( Label& L );
+
+  // Branch that tests fp condition codes
+  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
+
+  // get PC the best way
+  inline int get_pc( Register d );
+
+  // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
+  inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
+  inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
+
+  inline void jmp( Register s1, Register s2 );
+  inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
+
+  // Check if the call target is out of wdisp30 range (relative to the code cache)
+  static inline bool is_far_target(address d);
+  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
+  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
+  inline void callr( Register s1, Register s2 );
+  inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
+
+  // Emits nothing on V8
+  inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
+  inline void iprefetch( Label& L);
+
+  inline void tst( Register s ) { orcc( G0, s, G0 ); }
+
+#ifdef PRODUCT
+  inline void ret(  bool trace = TraceJumps )   { if (trace) {
+                                                    mov(I7, O7); // traceable register
+                                                    JMP(O7, 2 * BytesPerInstWord);
+                                                  } else {
+                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
+                                                  }
+                                                }
+
+  inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
+                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
+#else
+  void ret(  bool trace = TraceJumps );
+  void retl( bool trace = TraceJumps );
+#endif /* PRODUCT */
+
+  // Required platform-specific helpers for Label::patch_instructions.
+  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
+  void pd_patch_instruction(address branch, address target);
+#ifndef PRODUCT
+  static void pd_print_patched_instruction(address branch);
+#endif
+
+  // sethi Macro handles optimizations and relocations
+private:
+  void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
+public:
+  void sethi(const AddressLiteral& addrlit, Register d);
+  void patchable_sethi(const AddressLiteral& addrlit, Register d);
+
+  // compute the number of instructions for a sethi/set
+  static int  insts_for_sethi( address a, bool worst_case = false );
+  static int  worst_case_insts_for_set();
+
+  // set may be either setsw or setuw (high 32 bits may be zero or sign)
+private:
+  void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
+  static int insts_for_internal_set(intptr_t value);
+public:
+  void set(const AddressLiteral& addrlit, Register d);
+  void set(intptr_t value, Register d);
+  void set(address addr, Register d, RelocationHolder const& rspec);
+  static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
+
+  void patchable_set(const AddressLiteral& addrlit, Register d);
+  void patchable_set(intptr_t value, Register d);
+  void set64(jlong value, Register d, Register tmp);
+  static int insts_for_set64(jlong value);
+
+  // sign-extend 32 to 64
+  inline void signx( Register s, Register d ) { sra( s, G0, d); }
+  inline void signx( Register d )             { sra( d, G0, d); }
+
+  inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
+  inline void not1( Register d )             { xnor( d, G0, d ); }
+
+  inline void neg( Register s, Register d ) { sub( G0, s, d ); }
+  inline void neg( Register d )             { sub( G0, d, d ); }
+
+  inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
+  inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
+  // Functions for isolating 64 bit atomic swaps for LP64
+  // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
+  inline void cas_ptr(  Register s1, Register s2, Register d) {
+#ifdef _LP64
+    casx( s1, s2, d );
+#else
+    cas( s1, s2, d );
+#endif
+  }
+
+  // Functions for isolating 64 bit shifts for LP64
+  inline void sll_ptr( Register s1, Register s2, Register d );
+  inline void sll_ptr( Register s1, int imm6a,   Register d );
+  inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
+  inline void srl_ptr( Register s1, Register s2, Register d );
+  inline void srl_ptr( Register s1, int imm6a,   Register d );
+
+  // little-endian
+  inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
+  inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
+
+  inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
+  inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
+
+  inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
+  inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
+
+  using Assembler::add;
+  inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype);
+  inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
+  inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
+  inline void add(const Address& a, Register d, int offset = 0);
+
+  using Assembler::andn;
+  inline void andn(  Register s1, RegisterOrConstant s2, Register d);
+
+  inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
+  inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
+
+  inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
+  inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
+
+  inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
+  inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
+
+  inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
+  inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
+
+  inline void clr( Register d ) { or3( G0, G0, d ); }
+
+  inline void clrb( Register s1, Register s2);
+  inline void clrh( Register s1, Register s2);
+  inline void clr(  Register s1, Register s2);
+  inline void clrx( Register s1, Register s2);
+
+  inline void clrb( Register s1, int simm13a);
+  inline void clrh( Register s1, int simm13a);
+  inline void clr(  Register s1, int simm13a);
+  inline void clrx( Register s1, int simm13a);
+
+  // copy & clear upper word
+  inline void clruw( Register s, Register d ) { srl( s, G0, d); }
+  // clear upper word
+  inline void clruwu( Register d ) { srl( d, G0, d); }
+
+  using Assembler::ldsb;
+  using Assembler::ldsh;
+  using Assembler::ldsw;
+  using Assembler::ldub;
+  using Assembler::lduh;
+  using Assembler::lduw;
+  using Assembler::ldx;
+  using Assembler::ldd;
+
+#ifdef ASSERT
+  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
+  inline void ld(Register s1, ByteSize simm13a, Register d);
+#endif
+
+  inline void ld(Register s1, Register s2, Register d);
+  inline void ld(Register s1, int simm13a, Register d);
+
+  inline void ldsb(const Address& a, Register d, int offset = 0);
+  inline void ldsh(const Address& a, Register d, int offset = 0);
+  inline void ldsw(const Address& a, Register d, int offset = 0);
+  inline void ldub(const Address& a, Register d, int offset = 0);
+  inline void lduh(const Address& a, Register d, int offset = 0);
+  inline void lduw(const Address& a, Register d, int offset = 0);
+  inline void ldx( const Address& a, Register d, int offset = 0);
+  inline void ld(  const Address& a, Register d, int offset = 0);
+  inline void ldd( const Address& a, Register d, int offset = 0);
+
+  inline void ldub(Register s1, RegisterOrConstant s2, Register d );
+  inline void ldsb(Register s1, RegisterOrConstant s2, Register d );
+  inline void lduh(Register s1, RegisterOrConstant s2, Register d );
+  inline void ldsh(Register s1, RegisterOrConstant s2, Register d );
+  inline void lduw(Register s1, RegisterOrConstant s2, Register d );
+  inline void ldsw(Register s1, RegisterOrConstant s2, Register d );
+  inline void ldx( Register s1, RegisterOrConstant s2, Register d );
+  inline void ld(  Register s1, RegisterOrConstant s2, Register d );
+  inline void ldd( Register s1, RegisterOrConstant s2, Register d );
+
+  using Assembler::ldf;
+  inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
+  inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
+
+  // membar psuedo instruction.  takes into account target memory model.
+  inline void membar( Assembler::Membar_mask_bits const7a );
+
+  // returns if membar generates anything.
+  inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
+
+  // mov pseudo instructions
+  inline void mov( Register s,  Register d) {
+    if ( s != d )    or3( G0, s, d);
+    else             assert_not_delayed();  // Put something useful in the delay slot!
+  }
+
+  inline void mov_or_nop( Register s,  Register d) {
+    if ( s != d )    or3( G0, s, d);
+    else             nop();
+  }
+
+  inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
+
+  using Assembler::prefetch;
+  inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
+
+  using Assembler::stb;
+  using Assembler::sth;
+  using Assembler::stw;
+  using Assembler::stx;
+  using Assembler::std;
+
+#ifdef ASSERT
+  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
+  inline void st(Register d, Register s1, ByteSize simm13a);
+#endif
+
+  inline void st(Register d, Register s1, Register s2);
+  inline void st(Register d, Register s1, int simm13a);
+
+  inline void stb(Register d, const Address& a, int offset = 0 );
+  inline void sth(Register d, const Address& a, int offset = 0 );
+  inline void stw(Register d, const Address& a, int offset = 0 );
+  inline void stx(Register d, const Address& a, int offset = 0 );
+  inline void st( Register d, const Address& a, int offset = 0 );
+  inline void std(Register d, const Address& a, int offset = 0 );
+
+  inline void stb(Register d, Register s1, RegisterOrConstant s2 );
+  inline void sth(Register d, Register s1, RegisterOrConstant s2 );
+  inline void stw(Register d, Register s1, RegisterOrConstant s2 );
+  inline void stx(Register d, Register s1, RegisterOrConstant s2 );
+  inline void std(Register d, Register s1, RegisterOrConstant s2 );
+  inline void st( Register d, Register s1, RegisterOrConstant s2 );
+
+  using Assembler::stf;
+  inline void stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
+  inline void stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
+
+  // Note: offset is added to s2.
+  using Assembler::sub;
+  inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
+
+  using Assembler::swap;
+  inline void swap(Address& a, Register d, int offset = 0);
+
+  // address pseudos: make these names unlike instruction names to avoid confusion
+  inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
+  inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
+  inline void load_bool_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
+  inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
+  inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
+  inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
+  inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
+  inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
+  inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
+
+  // ring buffer traceable jumps
+
+  void jmp2( Register r1, Register r2, const char* file, int line );
+  void jmp ( Register r1, int offset,  const char* file, int line );
+
+  void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
+  void jump (const AddressLiteral& addrlit, Register temp,             int offset, const char* file, int line);
+
+
+  // argument pseudos:
+
+  inline void load_argument( Argument& a, Register  d );
+  inline void store_argument( Register s, Argument& a );
+  inline void store_ptr_argument( Register s, Argument& a );
+  inline void store_float_argument( FloatRegister s, Argument& a );
+  inline void store_double_argument( FloatRegister s, Argument& a );
+  inline void store_long_argument( Register s, Argument& a );
+
+  // handy macros:
+
+  inline void round_to( Register r, int modulus ) {
+    assert_not_delayed();
+    inc( r, modulus - 1 );
+    and3( r, -modulus, r );
+  }
+
+  // --------------------------------------------------
+
+  // Functions for isolating 64 bit loads for LP64
+  // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
+  // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
+  inline void ld_ptr(Register s1, Register s2, Register d);
+  inline void ld_ptr(Register s1, int simm13a, Register d);
+  inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
+  inline void ld_ptr(const Address& a, Register d, int offset = 0);
+  inline void st_ptr(Register d, Register s1, Register s2);
+  inline void st_ptr(Register d, Register s1, int simm13a);
+  inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
+  inline void st_ptr(Register d, const Address& a, int offset = 0);
+
+#ifdef ASSERT
+  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
+  inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
+  inline void st_ptr(Register d, Register s1, ByteSize simm13a);
+#endif
+
+  // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
+  // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
+  inline void ld_long(Register s1, Register s2, Register d);
+  inline void ld_long(Register s1, int simm13a, Register d);
+  inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
+  inline void ld_long(const Address& a, Register d, int offset = 0);
+  inline void st_long(Register d, Register s1, Register s2);
+  inline void st_long(Register d, Register s1, int simm13a);
+  inline void st_long(Register d, Register s1, RegisterOrConstant s2);
+  inline void st_long(Register d, const Address& a, int offset = 0);
+
+  // Helpers for address formation.
+  // - They emit only a move if s2 is a constant zero.
+  // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
+  // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
+  RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
+  RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
+  RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
+
+  RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
+    if (is_simm13(src.constant_or_zero()))
+      return src;               // register or short constant
+    guarantee(temp != noreg, "constant offset overflow");
+    set(src.as_constant(), temp);
+    return temp;
+  }
+
+  // --------------------------------------------------
+
+ public:
+  // traps as per trap.h (SPARC ABI?)
+
+  void breakpoint_trap();
+  void breakpoint_trap(Condition c, CC cc);
+  void flush_windows_trap();
+  void clean_windows_trap();
+  void get_psr_trap();
+  void set_psr_trap();
+
+  // V8/V9 flush_windows
+  void flush_windows();
+
+  // Support for serializing memory accesses between threads
+  void serialize_memory(Register thread, Register tmp1, Register tmp2);
+
+  // Stack frame creation/removal
+  void enter();
+  void leave();
+
+  // V8/V9 integer multiply
+  void mult(Register s1, Register s2, Register d);
+  void mult(Register s1, int simm13a, Register d);
+
+  // V8/V9 read and write of condition codes.
+  void read_ccr(Register d);
+  void write_ccr(Register s);
+
+  // Manipulation of C++ bools
+  // These are idioms to flag the need for care with accessing bools but on
+  // this platform we assume byte size
+
+  inline void stbool(Register d, const Address& a) { stb(d, a); }
+  inline void ldbool(const Address& a, Register d) { ldub(a, d); }
+  inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
+
+  // klass oop manipulations if compressed
+  void load_klass(Register src_oop, Register klass);
+  void store_klass(Register klass, Register dst_oop);
+  void store_klass_gap(Register s, Register dst_oop);
+
+   // oop manipulations
+  void load_heap_oop(const Address& s, Register d);
+  void load_heap_oop(Register s1, Register s2, Register d);
+  void load_heap_oop(Register s1, int simm13a, Register d);
+  void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
+  void store_heap_oop(Register d, Register s1, Register s2);
+  void store_heap_oop(Register d, Register s1, int simm13a);
+  void store_heap_oop(Register d, const Address& a, int offset = 0);
+
+  void encode_heap_oop(Register src, Register dst);
+  void encode_heap_oop(Register r) {
+    encode_heap_oop(r, r);
+  }
+  void decode_heap_oop(Register src, Register dst);
+  void decode_heap_oop(Register r) {
+    decode_heap_oop(r, r);
+  }
+  void encode_heap_oop_not_null(Register r);
+  void decode_heap_oop_not_null(Register r);
+  void encode_heap_oop_not_null(Register src, Register dst);
+  void decode_heap_oop_not_null(Register src, Register dst);
+
+  void encode_klass_not_null(Register r);
+  void decode_klass_not_null(Register r);
+  void encode_klass_not_null(Register src, Register dst);
+  void decode_klass_not_null(Register src, Register dst);
+
+  // Support for managing the JavaThread pointer (i.e.; the reference to
+  // thread-local information).
+  void get_thread();                                // load G2_thread
+  void verify_thread();                             // verify G2_thread contents
+  void save_thread   (const Register threache); // save to cache
+  void restore_thread(const Register thread_cache); // restore from cache
+
+  // Support for last Java frame (but use call_VM instead where possible)
+  void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
+  void reset_last_Java_frame(void);
+
+  // Call into the VM.
+  // Passes the thread pointer (in O0) as a prepended argument.
+  // Makes sure oop return values are visible to the GC.
+  void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
+  void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
+  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
+  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
+
+  // these overloadings are not presently used on SPARC:
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
+
+  void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
+  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
+  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
+  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
+
+  void get_vm_result  (Register oop_result);
+  void get_vm_result_2(Register metadata_result);
+
+  // vm result is currently getting hijacked to for oop preservation
+  void set_vm_result(Register oop_result);
+
+  // Emit the CompiledIC call idiom
+  void ic_call(address entry, bool emit_delay = true);
+
+  // if call_VM_base was called with check_exceptions=false, then call
+  // check_and_forward_exception to handle exceptions when it is safe
+  void check_and_forward_exception(Register scratch_reg);
+
+ private:
+  // For V8
+  void read_ccr_trap(Register ccr_save);
+  void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
+
+#ifdef ASSERT
+  // For V8 debugging.  Uses V8 instruction sequence and checks
+  // result with V9 insturctions rdccr and wrccr.
+  // Uses Gscatch and Gscatch2
+  void read_ccr_v8_assert(Register ccr_save);
+  void write_ccr_v8_assert(Register ccr_save);
+#endif // ASSERT
+
+ public:
+
+  // Write to card table for - register is destroyed afterwards.
+  void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
+
+  void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
+
+#ifndef SERIALGC
+  // General G1 pre-barrier generator.
+  void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
+
+  // General G1 post-barrier generator
+  void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
+#endif // SERIALGC
+
+  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
+  void push_fTOS();
+
+  // pops double TOS element from CPU stack and pushes on FPU stack
+  void pop_fTOS();
+
+  void empty_FPU_stack();
+
+  void push_IU_state();
+  void pop_IU_state();
+
+  void push_FPU_state();
+  void pop_FPU_state();
+
+  void push_CPU_state();
+  void pop_CPU_state();
+
+  // if heap base register is used - reinit it with the correct value
+  void reinit_heapbase();
+
+  // Debugging
+  void _verify_oop(Register reg, const char * msg, const char * file, int line);
+  void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
+
+  // TODO: verify_method and klass metadata (compare against vptr?)
+  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
+  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
+
+#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
+#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
+#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
+#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
+
+        // only if +VerifyOops
+  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
+        // only if +VerifyFPU
+  void stop(const char* msg);                          // prints msg, dumps registers and stops execution
+  void warn(const char* msg);                          // prints msg, but don't stop
+  void untested(const char* what = "");
+  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
+  void should_not_reach_here()                   { stop("should not reach here"); }
+  void print_CPU_state();
+
+  // oops in code
+  AddressLiteral allocate_oop_address(jobject obj);                          // allocate_index
+  AddressLiteral constant_oop_address(jobject obj);                          // find_index
+  inline void    set_oop             (jobject obj, Register d);              // uses allocate_oop_address
+  inline void    set_oop_constant    (jobject obj, Register d);              // uses constant_oop_address
+  inline void    set_oop             (const AddressLiteral& obj_addr, Register d); // same as load_address
+
+  // metadata in code that we have to keep track of
+  AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
+  AddressLiteral constant_metadata_address(Metadata* obj); // find_index
+  inline void    set_metadata             (Metadata* obj, Register d);              // uses allocate_metadata_address
+  inline void    set_metadata_constant    (Metadata* obj, Register d);              // uses constant_metadata_address
+  inline void    set_metadata             (const AddressLiteral& obj_addr, Register d); // same as load_address
+
+  void set_narrow_oop( jobject obj, Register d );
+  void set_narrow_klass( Klass* k, Register d );
+
+  // nop padding
+  void align(int modulus);
+
+  // declare a safepoint
+  void safepoint();
+
+  // factor out part of stop into subroutine to save space
+  void stop_subroutine();
+  // factor out part of verify_oop into subroutine to save space
+  void verify_oop_subroutine();
+
+  // side-door communication with signalHandler in os_solaris.cpp
+  static address _verify_oop_implicit_branch[3];
+
+  int total_frame_size_in_bytes(int extraWords);
+
+  // used when extraWords known statically
+  void save_frame(int extraWords = 0);
+  void save_frame_c1(int size_in_bytes);
+  // make a frame, and simultaneously pass up one or two register value
+  // into the new register window
+  void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
+
+  // give no. (outgoing) params, calc # of words will need on frame
+  void calc_mem_param_words(Register Rparam_words, Register Rresult);
+
+  // used to calculate frame size dynamically
+  // result is in bytes and must be negated for save inst
+  void calc_frame_size(Register extraWords, Register resultReg);
+
+  // calc and also save
+  void calc_frame_size_and_save(Register extraWords, Register resultReg);
+
+  static void debug(char* msg, RegistersForDebugging* outWindow);
+
+  // implementations of bytecodes used by both interpreter and compiler
+
+  void lcmp( Register Ra_hi, Register Ra_low,
+             Register Rb_hi, Register Rb_low,
+             Register Rresult);
+
+  void lneg( Register Rhi, Register Rlow );
+
+  void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
+              Register Rout_high, Register Rout_low, Register Rtemp );
+
+  void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
+              Register Rout_high, Register Rout_low, Register Rtemp );
+
+  void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
+              Register Rout_high, Register Rout_low, Register Rtemp );
+
+#ifdef _LP64
+  void lcmp( Register Ra, Register Rb, Register Rresult);
+#endif
+
+  // Load and store values by size and signed-ness
+  void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
+  void store_sized_value(Register src, Address dst, size_t size_in_bytes);
+
+  void float_cmp( bool is_float, int unordered_result,
+                  FloatRegister Fa, FloatRegister Fb,
+                  Register Rresult);
+
+  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
+  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
+  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
+  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
+
+  void save_all_globals_into_locals();
+  void restore_globals_from_locals();
+
+  void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
+    address lock_addr=0, bool use_call_vm=false);
+  void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
+    address lock_addr=0, bool use_call_vm=false);
+  void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
+
+  // These set the icc condition code to equal if the lock succeeded
+  // and notEqual if it failed and requires a slow case
+  void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
+                            Register Rscratch,
+                            BiasedLockingCounters* counters = NULL,
+                            bool try_bias = UseBiasedLocking);
+  void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
+                              Register Rscratch,
+                              bool try_bias = UseBiasedLocking);
+
+  // Biased locking support
+  // Upon entry, lock_reg must point to the lock record on the stack,
+  // obj_reg must contain the target object, and mark_reg must contain
+  // the target object's header.
+  // Destroys mark_reg if an attempt is made to bias an anonymously
+  // biased lock. In this case a failure will go either to the slow
+  // case or fall through with the notEqual condition code set with
+  // the expectation that the slow case in the runtime will be called.
+  // In the fall-through case where the CAS-based lock is done,
+  // mark_reg is not destroyed.
+  void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
+                            Label& done, Label* slow_case = NULL,
+                            BiasedLockingCounters* counters = NULL);
+  // Upon entry, the base register of mark_addr must contain the oop.
+  // Destroys temp_reg.
+
+  // If allow_delay_slot_filling is set to true, the next instruction
+  // emitted after this one will go in an annulled delay slot if the
+  // biased locking exit case failed.
+  void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
+
+  // allocation
+  void eden_allocate(
+    Register obj,                      // result: pointer to object after successful allocation
+    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
+    int      con_size_in_bytes,        // object size in bytes if   known at compile time
+    Register t1,                       // temp register
+    Register t2,                       // temp register
+    Label&   slow_case                 // continuation point if fast allocation fails
+  );
+  void tlab_allocate(
+    Register obj,                      // result: pointer to object after successful allocation
+    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
+    int      con_size_in_bytes,        // object size in bytes if   known at compile time
+    Register t1,                       // temp register
+    Label&   slow_case                 // continuation point if fast allocation fails
+  );
+  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
+  void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
+                            Register t1, Register t2);
+
+  // interface method calling
+  void lookup_interface_method(Register recv_klass,
+                               Register intf_klass,
+                               RegisterOrConstant itable_index,
+                               Register method_result,
+                               Register temp_reg, Register temp2_reg,
+                               Label& no_such_interface);
+
+  // virtual method calling
+  void lookup_virtual_method(Register recv_klass,
+                             RegisterOrConstant vtable_index,
+                             Register method_result);
+
+  // Test sub_klass against super_klass, with fast and slow paths.
+
+  // The fast path produces a tri-state answer: yes / no / maybe-slow.
+  // One of the three labels can be NULL, meaning take the fall-through.
+  // If super_check_offset is -1, the value is loaded up from super_klass.
+  // No registers are killed, except temp_reg and temp2_reg.
+  // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
+  void check_klass_subtype_fast_path(Register sub_klass,
+                                     Register super_klass,
+                                     Register temp_reg,
+                                     Register temp2_reg,
+                                     Label* L_success,
+                                     Label* L_failure,
+                                     Label* L_slow_path,
+                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
+
+  // The rest of the type check; must be wired to a corresponding fast path.
+  // It does not repeat the fast path logic, so don't use it standalone.
+  // The temp_reg can be noreg, if no temps are available.
+  // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
+  // Updates the sub's secondary super cache as necessary.
+  void check_klass_subtype_slow_path(Register sub_klass,
+                                     Register super_klass,
+                                     Register temp_reg,
+                                     Register temp2_reg,
+                                     Register temp3_reg,
+                                     Register temp4_reg,
+                                     Label* L_success,
+                                     Label* L_failure);
+
+  // Simplified, combined version, good for typical uses.
+  // Falls through on failure.
+  void check_klass_subtype(Register sub_klass,
+                           Register super_klass,
+                           Register temp_reg,
+                           Register temp2_reg,
+                           Label& L_success);
+
+  // method handles (JSR 292)
+  // offset relative to Gargs of argument at tos[arg_slot].
+  // (arg_slot == 0 means the last argument, not the first).
+  RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
+                                     Register temp_reg,
+                                     int extra_slot_offset = 0);
+  // Address of Gargs and argument_offset.
+  Address            argument_address(RegisterOrConstant arg_slot,
+                                      Register temp_reg = noreg,
+                                      int extra_slot_offset = 0);
+
+  // Stack overflow checking
+
+  // Note: this clobbers G3_scratch
+  void bang_stack_with_offset(int offset) {
+    // stack grows down, caller passes positive offset
+    assert(offset > 0, "must bang with negative offset");
+    set((-offset)+STACK_BIAS, G3_scratch);
+    st(G0, SP, G3_scratch);
+  }
+
+  // Writes to stack successive pages until offset reached to check for
+  // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
+  void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
+
+  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
+
+  void verify_tlab();
+
+  Condition negate_condition(Condition cond);
+
+  // Helper functions for statistics gathering.
+  // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
+  void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
+  // Unconditional increment.
+  void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
+  void inc_counter(int*    counter_addr, Register Rtmp1, Register Rtmp2);
+
+  // Compare char[] arrays aligned to 4 bytes.
+  void char_arrays_equals(Register ary1, Register ary2,
+                          Register limit, Register result,
+                          Register chr1, Register chr2, Label& Ldone);
+  // Use BIS for zeroing
+  void bis_zeroing(Register to, Register count, Register temp, Label& Ldone);
+
+#undef VIRTUAL
+};
+
+/**
+ * class SkipIfEqual:
+ *
+ * Instantiating this class will result in assembly code being output that will
+ * jump around any code emitted between the creation of the instance and it's
+ * automatic destruction at the end of a scope block, depending on the value of
+ * the flag passed to the constructor, which will be checked at run-time.
+ */
+class SkipIfEqual : public StackObj {
+ private:
+  MacroAssembler* _masm;
+  Label _label;
+
+ public:
+   // 'temp' is a temp register that this object can use (and trash)
+   SkipIfEqual(MacroAssembler*, Register temp,
+               const bool* flag_addr, Assembler::Condition condition);
+   ~SkipIfEqual();
+};
+
+#endif // CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/sparc/vm/macroAssembler_sparc.inline.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -0,0 +1,765 @@
+/*
+ * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP
+#define CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP
+
+#include "asm/assembler.inline.hpp"
+#include "asm/macroAssembler.hpp"
+#include "asm/codeBuffer.hpp"
+#include "code/codeCache.hpp"
+
+inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
+
+
+inline int AddressLiteral::low10() const {
+  return Assembler::low10(value());
+}
+
+
+inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
+  jint& stub_inst = *(jint*) branch;
+  stub_inst = patched_branch(target - branch, stub_inst, 0);
+}
+
+#ifndef PRODUCT
+inline void MacroAssembler::pd_print_patched_instruction(address branch) {
+  jint stub_inst = *(jint*) branch;
+  print_instruction(stub_inst);
+  ::tty->print("%s", " (unresolved)");
+}
+#endif // PRODUCT
+
+// Use the right loads/stores for the platform
+inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
+#ifdef _LP64
+  Assembler::ldx(s1, s2, d);
+#else
+             ld( s1, s2, d);
+#endif
+}
+
+inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
+#ifdef _LP64
+  Assembler::ldx(s1, simm13a, d);
+#else
+             ld( s1, simm13a, d);
+#endif
+}
+
+#ifdef ASSERT
+// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
+inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
+  ld_ptr(s1, in_bytes(simm13a), d);
+}
+#endif
+
+inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
+#ifdef _LP64
+  ldx(s1, s2, d);
+#else
+  ld( s1, s2, d);
+#endif
+}
+
+inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
+#ifdef _LP64
+  ldx(a, d, offset);
+#else
+  ld( a, d, offset);
+#endif
+}
+
+inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
+#ifdef _LP64
+  Assembler::stx(d, s1, s2);
+#else
+             st( d, s1, s2);
+#endif
+}
+
+inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
+#ifdef _LP64
+  Assembler::stx(d, s1, simm13a);
+#else
+             st( d, s1, simm13a);
+#endif
+}
+
+#ifdef ASSERT
+// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
+inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
+  st_ptr(d, s1, in_bytes(simm13a));
+}
+#endif
+
+inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
+#ifdef _LP64
+  stx(d, s1, s2);
+#else
+  st( d, s1, s2);
+#endif
+}
+
+inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
+#ifdef _LP64
+  stx(d, a, offset);
+#else
+  st( d, a, offset);
+#endif
+}
+
+// Use the right loads/stores for the platform
+inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
+#ifdef _LP64
+  Assembler::ldx(s1, s2, d);
+#else
+  Assembler::ldd(s1, s2, d);
+#endif
+}
+
+inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
+#ifdef _LP64
+  Assembler::ldx(s1, simm13a, d);
+#else
+  Assembler::ldd(s1, simm13a, d);
+#endif
+}
+
+inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
+#ifdef _LP64
+  ldx(s1, s2, d);
+#else
+  ldd(s1, s2, d);
+#endif
+}
+
+inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
+#ifdef _LP64
+  ldx(a, d, offset);
+#else
+  ldd(a, d, offset);
+#endif
+}
+
+inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
+#ifdef _LP64
+  Assembler::stx(d, s1, s2);
+#else
+  Assembler::std(d, s1, s2);
+#endif
+}
+
+inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
+#ifdef _LP64
+  Assembler::stx(d, s1, simm13a);
+#else
+  Assembler::std(d, s1, simm13a);
+#endif
+}
+
+inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
+#ifdef _LP64
+  stx(d, s1, s2);
+#else
+  std(d, s1, s2);
+#endif
+}
+
+inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
+#ifdef _LP64
+  stx(d, a, offset);
+#else
+  std(d, a, offset);
+#endif
+}
+
+// Functions for isolating 64 bit shifts for LP64
+
+inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
+#ifdef _LP64
+  Assembler::sllx(s1, s2, d);
+#else
+  Assembler::sll( s1, s2, d);
+#endif
+}
+
+inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
+#ifdef _LP64
+  Assembler::sllx(s1, imm6a, d);
+#else
+  Assembler::sll( s1, imm6a, d);
+#endif
+}
+
+inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
+#ifdef _LP64
+  Assembler::srlx(s1, s2, d);
+#else
+  Assembler::srl( s1, s2, d);
+#endif
+}
+
+inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
+#ifdef _LP64
+  Assembler::srlx(s1, imm6a, d);
+#else
+  Assembler::srl( s1, imm6a, d);
+#endif
+}
+
+inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
+  if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
+  else                   sll_ptr(s1, s2.as_constant(), d);
+}
+
+// Use the right branch for the platform
+
+inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
+  if (VM_Version::v9_instructions_work())
+    Assembler::bp(c, a, icc, p, d, rt);
+  else
+    Assembler::br(c, a, d, rt);
+}
+
+inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
+  br(c, a, p, target(L));
+}
+
+
+// Branch that tests either xcc or icc depending on the
+// architecture compiled (LP64 or not)
+inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
+#ifdef _LP64
+    Assembler::bp(c, a, xcc, p, d, rt);
+#else
+    MacroAssembler::br(c, a, p, d, rt);
+#endif
+}
+
+inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
+  brx(c, a, p, target(L));
+}
+
+inline void MacroAssembler::ba( Label& L ) {
+  br(always, false, pt, L);
+}
+
+// Warning: V9 only functions
+inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
+  Assembler::bp(c, a, cc, p, d, rt);
+}
+
+inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
+  Assembler::bp(c, a, cc, p, L);
+}
+
+inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
+  if (VM_Version::v9_instructions_work())
+    fbp(c, a, fcc0, p, d, rt);
+  else
+    Assembler::fb(c, a, d, rt);
+}
+
+inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
+  fb(c, a, p, target(L));
+}
+
+inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
+  Assembler::fbp(c, a, cc, p, d, rt);
+}
+
+inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
+  Assembler::fbp(c, a, cc, p, L);
+}
+
+inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
+inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
+
+inline bool MacroAssembler::is_far_target(address d) {
+  if (ForceUnreachable) {
+    // References outside the code cache should be treated as far
+    return d < CodeCache::low_bound() || d > CodeCache::high_bound();
+  }
+  return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
+}
+
+// Call with a check to see if we need to deal with the added
+// expense of relocation and if we overflow the displacement
+// of the quick call instruction.
+inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
+#ifdef _LP64
+  intptr_t disp;
+  // NULL is ok because it will be relocated later.
+  // Must change NULL to a reachable address in order to
+  // pass asserts here and in wdisp.
+  if ( d == NULL )
+    d = pc();
+
+  // Is this address within range of the call instruction?
+  // If not, use the expensive instruction sequence
+  if (is_far_target(d)) {
+    relocate(rt);
+    AddressLiteral dest(d);
+    jumpl_to(dest, O7, O7);
+  } else {
+    Assembler::call(d, rt);
+  }
+#else
+  Assembler::call( d, rt );
+#endif
+}
+
+inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
+  MacroAssembler::call( target(L), rt);
+}
+
+
+
+inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
+inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
+
+// prefetch instruction
+inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
+  if (VM_Version::v9_instructions_work())
+    Assembler::bp( never, true, xcc, pt, d, rt );
+}
+inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
+
+
+// clobbers o7 on V8!!
+// returns delta from gotten pc to addr after
+inline int MacroAssembler::get_pc( Register d ) {
+  int x = offset();
+  if (VM_Version::v9_instructions_work())
+    rdpc(d);
+  else {
+    Label lbl;
+    Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
+    if (d == O7)  delayed()->nop();
+    else          delayed()->mov(O7, d);
+    bind(lbl);
+  }
+  return offset() - x;
+}
+
+
+// Note:  All MacroAssembler::set_foo functions are defined out-of-line.
+
+
+// Loads the current PC of the following instruction as an immediate value in
+// 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
+inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
+  intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
+#ifdef _LP64
+  Unimplemented();
+#else
+  Assembler::sethi(   thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
+             add(reg, thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
+#endif
+  return thepc;
+}
+
+
+inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
+  assert_not_delayed();
+  if (ForceUnreachable) {
+    patchable_sethi(addrlit, d);
+  } else {
+    sethi(addrlit, d);
+  }
+  ld(d, addrlit.low10() + offset, d);
+}
+
+
+inline void MacroAssembler::load_bool_contents(const AddressLiteral& addrlit, Register d, int offset) {
+  assert_not_delayed();
+  if (ForceUnreachable) {
+    patchable_sethi(addrlit, d);
+  } else {
+    sethi(addrlit, d);
+  }
+  ldub(d, addrlit.low10() + offset, d);
+}
+
+
+inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
+  assert_not_delayed();
+  if (ForceUnreachable) {
+    patchable_sethi(addrlit, d);
+  } else {
+    sethi(addrlit, d);
+  }
+  ld_ptr(d, addrlit.low10() + offset, d);
+}
+
+
+inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
+  assert_not_delayed();
+  if (ForceUnreachable) {
+    patchable_sethi(addrlit, temp);
+  } else {
+    sethi(addrlit, temp);
+  }
+  st(s, temp, addrlit.low10() + offset);
+}
+
+
+inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
+  assert_not_delayed();
+  if (ForceUnreachable) {
+    patchable_sethi(addrlit, temp);
+  } else {
+    sethi(addrlit, temp);
+  }
+  st_ptr(s, temp, addrlit.low10() + offset);
+}
+
+
+// This code sequence is relocatable to any address, even on LP64.
+inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
+  assert_not_delayed();
+  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
+  // variable length instruction streams.
+  patchable_sethi(addrlit, temp);
+  jmpl(temp, addrlit.low10() + offset, d);
+}
+
+
+inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
+  jumpl_to(addrlit, temp, G0, offset);
+}
+
+
+inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
+                                             int ld_offset, int jmp_offset) {
+  assert_not_delayed();
+  //sethi(al);                   // sethi is caller responsibility for this one
+  ld_ptr(a, temp, ld_offset);
+  jmp(temp, jmp_offset);
+}
+
+
+inline void MacroAssembler::set_metadata(Metadata* obj, Register d) {
+  set_metadata(allocate_metadata_address(obj), d);
+}
+
+inline void MacroAssembler::set_metadata_constant(Metadata* obj, Register d) {
+  set_metadata(constant_metadata_address(obj), d);
+}
+
+inline void MacroAssembler::set_metadata(const AddressLiteral& obj_addr, Register d) {
+  assert(obj_addr.rspec().type() == relocInfo::metadata_type, "must be a metadata reloc");
+  set(obj_addr, d);
+}
+
+inline void MacroAssembler::set_oop(jobject obj, Register d) {
+  set_oop(allocate_oop_address(obj), d);
+}
+
+
+inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
+  set_oop(constant_oop_address(obj), d);
+}
+
+
+inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
+  assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
+  set(obj_addr, d);
+}
+
+
+inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
+  if (a.is_register())
+    mov(a.as_register(), d);
+  else
+    ld (a.as_address(),  d);
+}
+
+inline void MacroAssembler::store_argument( Register s, Argument& a ) {
+  if (a.is_register())
+    mov(s, a.as_register());
+  else
+    st_ptr (s, a.as_address());         // ABI says everything is right justified.
+}
+
+inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
+  if (a.is_register())
+    mov(s, a.as_register());
+  else
+    st_ptr (s, a.as_address());
+}
+
+
+#ifdef _LP64
+inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
+  if (a.is_float_register())
+// V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
+    fmov(FloatRegisterImpl::S, s, a.as_float_register() );
+  else
+    // Floats are stored in the high half of the stack entry
+    // The low half is undefined per the ABI.
+    stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
+}
+
+inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
+  if (a.is_float_register())
+// V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
+    fmov(FloatRegisterImpl::D, s, a.as_double_register() );
+  else
+    stf(FloatRegisterImpl::D, s, a.as_address());
+}
+
+inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
+  if (a.is_register())
+    mov(s, a.as_register());
+  else
+    stx(s, a.as_address());
+}
+#endif
+
+inline void MacroAssembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype) {
+  relocate(rtype);
+  add(s1, simm13a, d);
+}
+inline void MacroAssembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec) {
+  relocate(rspec);
+  add(s1, simm13a, d);
+}
+
+// form effective addresses this way:
+inline void MacroAssembler::add(const Address& a, Register d, int offset) {
+  if (a.has_index())   add(a.base(), a.index(),         d);
+  else               { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
+  if (offset != 0)     add(d,        offset,            d);
+}
+inline void MacroAssembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
+  if (s2.is_register())  add(s1, s2.as_register(),          d);
+  else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
+  if (offset != 0)       add(d,  offset,                    d);
+}
+
+inline void MacroAssembler::andn(Register s1, RegisterOrConstant s2, Register d) {
+  if (s2.is_register())  andn(s1, s2.as_register(), d);
+  else                   andn(s1, s2.as_constant(), d);
+}
+
+inline void MacroAssembler::clrb( Register s1, Register s2) { stb( G0, s1, s2 ); }
+inline void MacroAssembler::clrh( Register s1, Register s2) { sth( G0, s1, s2 ); }
+inline void MacroAssembler::clr(  Register s1, Register s2) { stw( G0, s1, s2 ); }
+inline void MacroAssembler::clrx( Register s1, Register s2) { stx( G0, s1, s2 ); }
+
+inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
+inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
+inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
+inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
+
+#ifdef _LP64
+// Make all 32 bit loads signed so 64 bit registers maintain proper sign
+inline void MacroAssembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
+inline void MacroAssembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
+#else
+inline void MacroAssembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
+inline void MacroAssembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
+#endif
+
+#ifdef ASSERT
+  // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
+# ifdef _LP64
+inline void MacroAssembler::ld(Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
+# else
+inline void MacroAssembler::ld(Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
+# endif
+#endif
+
+inline void MacroAssembler::ld(  const Address& a, Register d, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
+  else               {                          ld(  a.base(), a.disp() + offset, d); }
+}
+
+inline void MacroAssembler::ldsb(const Address& a, Register d, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
+  else               {                          ldsb(a.base(), a.disp() + offset, d); }
+}
+inline void MacroAssembler::ldsh(const Address& a, Register d, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
+  else               {                          ldsh(a.base(), a.disp() + offset, d); }
+}
+inline void MacroAssembler::ldsw(const Address& a, Register d, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
+  else               {                          ldsw(a.base(), a.disp() + offset, d); }
+}
+inline void MacroAssembler::ldub(const Address& a, Register d, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
+  else               {                          ldub(a.base(), a.disp() + offset, d); }
+}
+inline void MacroAssembler::lduh(const Address& a, Register d, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
+  else               {                          lduh(a.base(), a.disp() + offset, d); }
+}
+inline void MacroAssembler::lduw(const Address& a, Register d, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
+  else               {                          lduw(a.base(), a.disp() + offset, d); }
+}
+inline void MacroAssembler::ldd( const Address& a, Register d, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
+  else               {                          ldd( a.base(), a.disp() + offset, d); }
+}
+inline void MacroAssembler::ldx( const Address& a, Register d, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
+  else               {                          ldx( a.base(), a.disp() + offset, d); }
+}
+
+inline void MacroAssembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
+inline void MacroAssembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
+inline void MacroAssembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
+inline void MacroAssembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
+inline void MacroAssembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
+inline void MacroAssembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
+inline void MacroAssembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
+inline void MacroAssembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
+inline void MacroAssembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
+
+inline void MacroAssembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
+  if (s2.is_register())  ldf(w, s1, s2.as_register(), d);
+  else                   ldf(w, s1, s2.as_constant(), d);
+}
+
+inline void MacroAssembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) {
+  relocate(a.rspec(offset));
+  ldf(w, a.base(), a.disp() + offset, d);
+}
+
+// returns if membar generates anything, obviously this code should mirror
+// membar below.
+inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
+  if( !os::is_MP() ) return false;  // Not needed on single CPU
+  if( VM_Version::v9_instructions_work() ) {
+    const Membar_mask_bits effective_mask =
+        Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
+    return (effective_mask != 0);
+  } else {
+    return true;
+  }
+}
+
+inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
+  // Uniprocessors do not need memory barriers
+  if (!os::is_MP()) return;
+  // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
+  // 8.4.4.3, a.31 and a.50.
+  if( VM_Version::v9_instructions_work() ) {
+    // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
+    // of the mmask subfield of const7a that does anything that isn't done
+    // implicitly is StoreLoad.
+    const Membar_mask_bits effective_mask =
+        Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
+    if ( effective_mask != 0 ) {
+      Assembler::membar( effective_mask );
+    }
+  } else {
+    // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
+    // do not issue the stbar because to my knowledge all v8 machines implement TSO,
+    // which guarantees that all stores behave as if an stbar were issued just after
+    // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
+    // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
+    // it can't be specified by stbar, nor have I come up with a way to simulate it.
+    //
+    // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
+    // space.  Put one here to be on the safe side.
+    Assembler::ldstub(SP, 0, G0);
+  }
+}
+
+inline void MacroAssembler::prefetch(const Address& a, PrefetchFcn f, int offset) {
+  relocate(a.rspec(offset));
+  assert(!a.has_index(), "");
+  prefetch(a.base(), a.disp() + offset, f);
+}
+
+inline void MacroAssembler::st(Register d, Register s1, Register s2)      { stw(d, s1, s2); }
+inline void MacroAssembler::st(Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
+
+#ifdef ASSERT
+// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
+inline void MacroAssembler::st(Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
+#endif
+
+inline void MacroAssembler::st(Register d, const Address& a, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
+  else               {                          st( d, a.base(), a.disp() + offset); }
+}
+
+inline void MacroAssembler::stb(Register d, const Address& a, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
+  else               {                          stb(d, a.base(), a.disp() + offset); }
+}
+inline void MacroAssembler::sth(Register d, const Address& a, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
+  else               {                          sth(d, a.base(), a.disp() + offset); }
+}
+inline void MacroAssembler::stw(Register d, const Address& a, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
+  else               {                          stw(d, a.base(), a.disp() + offset); }
+}
+inline void MacroAssembler::std(Register d, const Address& a, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
+  else               {                          std(d, a.base(), a.disp() + offset); }
+}
+inline void MacroAssembler::stx(Register d, const Address& a, int offset) {
+  if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
+  else               {                          stx(d, a.base(), a.disp() + offset); }
+}
+
+inline void MacroAssembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
+inline void MacroAssembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
+inline void MacroAssembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
+inline void MacroAssembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
+inline void MacroAssembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
+inline void MacroAssembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
+
+inline void MacroAssembler::stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
+  if (s2.is_register())  stf(w, d, s1, s2.as_register());
+  else                   stf(w, d, s1, s2.as_constant());
+}
+
+inline void MacroAssembler::stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) {
+  relocate(a.rspec(offset));
+  if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index()        ); }
+  else               {                          stf(w, d, a.base(), a.disp() + offset); }
+}
+
+inline void MacroAssembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) {
+  if (s2.is_register())  sub(s1, s2.as_register(),          d);
+  else                 { sub(s1, s2.as_constant() + offset, d); offset = 0; }
+  if (offset != 0)       sub(d,  offset,                    d);
+}
+
+inline void MacroAssembler::swap(Address& a, Register d, int offset) {
+  relocate(a.rspec(offset));
+  if (a.has_index()) { assert(offset == 0, ""); swap(a.base(), a.index(), d        ); }
+  else               {                          swap(a.base(), a.disp() + offset, d); }
+}
+
+#endif // CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP
--- a/hotspot/src/cpu/sparc/vm/metaspaceShared_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/metaspaceShared_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,7 +23,8 @@
  */
 
 #include "precompiled.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
+#include "asm/codeBuffer.hpp"
 #include "memory/metaspaceShared.hpp"
 
 // Generate the self-patching vtable method:
--- a/hotspot/src/cpu/sparc/vm/methodHandles_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/methodHandles_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,6 +23,7 @@
  */
 
 #include "precompiled.hpp"
+#include "asm/macroAssembler.hpp"
 #include "interpreter/interpreter.hpp"
 #include "memory/allocation.inline.hpp"
 #include "prims/methodHandles.hpp"
--- a/hotspot/src/cpu/sparc/vm/nativeInst_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/nativeInst_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,7 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.hpp"
 #include "memory/resourceArea.hpp"
 #include "nativeInst_sparc.hpp"
 #include "oops/oop.inline.hpp"
--- a/hotspot/src/cpu/sparc/vm/nativeInst_sparc.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/nativeInst_sparc.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -25,7 +25,7 @@
 #ifndef CPU_SPARC_VM_NATIVEINST_SPARC_HPP
 #define CPU_SPARC_VM_NATIVEINST_SPARC_HPP
 
-#include "asm/assembler.hpp"
+#include "asm/macroAssembler.hpp"
 #include "memory/allocation.hpp"
 #include "runtime/icache.hpp"
 #include "runtime/os.hpp"
@@ -194,11 +194,10 @@
   static int inv_simm(    int x, int nbits ) { return Assembler::inv_simm(x, nbits); }
   static intptr_t inv_wdisp(   int x, int nbits ) { return Assembler::inv_wdisp(  x, 0, nbits); }
   static intptr_t inv_wdisp16( int x )            { return Assembler::inv_wdisp16(x, 0); }
-  static int branch_destination_offset(int x) { return Assembler::branch_destination(x, 0); }
+  static int branch_destination_offset(int x) { return MacroAssembler::branch_destination(x, 0); }
   static int patch_branch_destination_offset(int dest_offset, int x) {
-    return Assembler::patched_branch(dest_offset, x, 0);
+    return MacroAssembler::patched_branch(dest_offset, x, 0);
   }
-  void set_annul_bit() { set_long_at(0, long_at(0) | Assembler::annul(true)); }
 
   // utility for checking if x is either of 2 small constants
   static bool is_either(int x, int k1, int k2) {
@@ -889,7 +888,6 @@
     int patched_instr = patch_branch_destination_offset(dest - addr_at(0), long_at(0));
     set_long_at(0, patched_instr);
   }
-  void set_annul() { set_annul_bit(); }
   NativeInstruction *delay_slot_instr() { return nativeInstruction_at(addr_at(4));}
   void fill_delay_slot(int instr) { set_long_at(4, instr);}
   Assembler::Condition condition() {
--- a/hotspot/src/cpu/sparc/vm/relocInfo_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/relocInfo_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,8 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "asm/assembler.inline.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/assembler.hpp"
 #include "code/relocInfo.hpp"
 #include "nativeInst_sparc.hpp"
 #include "oops/oop.inline.hpp"
--- a/hotspot/src/cpu/sparc/vm/runtime_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/runtime_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -24,8 +24,7 @@
 
 #include "precompiled.hpp"
 #ifdef COMPILER2
-#include "asm/assembler.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
 #include "classfile/systemDictionary.hpp"
 #include "code/vmreg.hpp"
 #include "interpreter/interpreter.hpp"
--- a/hotspot/src/cpu/sparc/vm/sharedRuntime_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/sharedRuntime_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,8 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "asm/assembler.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
 #include "code/debugInfoRec.hpp"
 #include "code/icBuffer.hpp"
 #include "code/vtableStubs.hpp"
--- a/hotspot/src/cpu/sparc/vm/stubGenerator_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/stubGenerator_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,8 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "asm/assembler.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
 #include "interpreter/interpreter.hpp"
 #include "nativeInst_sparc.hpp"
 #include "oops/instanceOop.hpp"
--- a/hotspot/src/cpu/sparc/vm/templateInterpreter_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/templateInterpreter_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,7 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "asm/assembler.hpp"
+#include "asm/macroAssembler.hpp"
 #include "interpreter/bytecodeHistogram.hpp"
 #include "interpreter/interpreter.hpp"
 #include "interpreter/interpreterGenerator.hpp"
--- a/hotspot/src/cpu/sparc/vm/vm_version_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/vm_version_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,7 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
 #include "memory/resourceArea.hpp"
 #include "runtime/java.hpp"
 #include "runtime/stubCodeGenerator.hpp"
--- a/hotspot/src/cpu/sparc/vm/vmreg_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/vmreg_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,7 +23,6 @@
  */
 
 #include "precompiled.hpp"
-#include "asm/assembler.hpp"
 #include "code/vmreg.hpp"
 
 
--- a/hotspot/src/cpu/sparc/vm/vtableStubs_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/sparc/vm/vtableStubs_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,8 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "asm/assembler.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
 #include "code/vtableStubs.hpp"
 #include "interp_masm_sparc.hpp"
 #include "memory/resourceArea.hpp"
--- a/hotspot/src/cpu/x86/vm/assembler_x86.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/x86/vm/assembler_x86.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -437,10 +437,6 @@
 
 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
 
-#ifdef ASSERT
-inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
-#endif
-
 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 // is what you get. The Assembler is generating code into a CodeBuffer.
--- a/hotspot/src/cpu/x86/vm/macroAssembler_x86.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/x86/vm/macroAssembler_x86.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -54,6 +54,10 @@
 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
 
 
+#ifdef ASSERT
+bool AbstractAssembler::pd_check_instruction_mark() { return true; }
+#endif
+
 static Assembler::Condition reverse[] = {
     Assembler::noOverflow     /* overflow      = 0x0 */ ,
     Assembler::overflow       /* noOverflow    = 0x1 */ ,
--- a/hotspot/src/cpu/zero/vm/assembler_zero.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/zero/vm/assembler_zero.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -46,6 +46,12 @@
   return 0;
 }
 
+#ifdef ASSERT
+bool AbstractAssembler::pd_check_instruction_mark() {
+  ShouldNotCallThis();
+}
+#endif
+
 void Assembler::pd_patch_instruction(address branch, address target) {
   ShouldNotCallThis();
 }
--- a/hotspot/src/cpu/zero/vm/assembler_zero.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/cpu/zero/vm/assembler_zero.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -58,12 +58,6 @@
   void store_Metadata(Metadata* obj);
 };
 
-#ifdef ASSERT
-inline bool AbstractAssembler::pd_check_instruction_mark() {
-  ShouldNotCallThis();
-}
-#endif
-
 address ShouldNotCallThisStub();
 address ShouldNotCallThisEntry();
 
--- a/hotspot/src/os_cpu/linux_sparc/vm/assembler_linux_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/os_cpu/linux_sparc/vm/assembler_linux_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,8 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "asm/assembler.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.hpp"
 #include "runtime/os.hpp"
 #include "runtime/threadLocalStorage.hpp"
 
--- a/hotspot/src/os_cpu/linux_sparc/vm/os_linux_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/os_cpu/linux_sparc/vm/os_linux_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,7 +23,7 @@
  */
 
 // no precompiled headers
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.hpp"
 #include "classfile/classLoader.hpp"
 #include "classfile/systemDictionary.hpp"
 #include "classfile/vmSymbols.hpp"
--- a/hotspot/src/os_cpu/solaris_sparc/vm/assembler_solaris_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/os_cpu/solaris_sparc/vm/assembler_solaris_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,8 +23,7 @@
  */
 
 #include "precompiled.hpp"
-#include "asm/assembler.hpp"
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.inline.hpp"
 #include "runtime/os.hpp"
 #include "runtime/threadLocalStorage.hpp"
 
--- a/hotspot/src/os_cpu/solaris_sparc/vm/os_solaris_sparc.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/os_cpu/solaris_sparc/vm/os_solaris_sparc.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -23,7 +23,7 @@
  */
 
 // no precompiled headers
-#include "assembler_sparc.inline.hpp"
+#include "asm/macroAssembler.hpp"
 #include "classfile/classLoader.hpp"
 #include "classfile/systemDictionary.hpp"
 #include "classfile/vmSymbols.hpp"
--- a/hotspot/src/share/vm/adlc/main.cpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/share/vm/adlc/main.cpp	Thu Dec 06 09:57:41 2012 -0800
@@ -212,7 +212,7 @@
   AD.addInclude(AD._CPP_file, "adfiles", get_basename(AD._VM_file._name));
   AD.addInclude(AD._CPP_file, "adfiles", get_basename(AD._HPP_file._name));
   AD.addInclude(AD._CPP_file, "memory/allocation.inline.hpp");
-  AD.addInclude(AD._CPP_file, "asm/assembler.hpp");
+  AD.addInclude(AD._CPP_file, "asm/macroAssembler.inline.hpp");
   AD.addInclude(AD._CPP_file, "code/vmreg.hpp");
   AD.addInclude(AD._CPP_file, "gc_interface/collectedHeap.inline.hpp");
   AD.addInclude(AD._CPP_file, "oops/compiledICHolder.hpp");
@@ -231,17 +231,14 @@
   AD.addInclude(AD._CPP_file, "runtime/stubRoutines.hpp");
   AD.addInclude(AD._CPP_file, "utilities/growableArray.hpp");
 #ifdef TARGET_ARCH_x86
-  AD.addInclude(AD._CPP_file, "assembler_x86.inline.hpp");
   AD.addInclude(AD._CPP_file, "nativeInst_x86.hpp");
   AD.addInclude(AD._CPP_file, "vmreg_x86.inline.hpp");
 #endif
 #ifdef TARGET_ARCH_sparc
-  AD.addInclude(AD._CPP_file, "assembler_sparc.inline.hpp");
   AD.addInclude(AD._CPP_file, "nativeInst_sparc.hpp");
   AD.addInclude(AD._CPP_file, "vmreg_sparc.inline.hpp");
 #endif
 #ifdef TARGET_ARCH_arm
-  AD.addInclude(AD._CPP_file, "assembler_arm.inline.hpp");
   AD.addInclude(AD._CPP_file, "nativeInst_arm.hpp");
   AD.addInclude(AD._CPP_file, "vmreg_arm.inline.hpp");
 #endif
--- a/hotspot/src/share/vm/asm/assembler.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/share/vm/asm/assembler.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -247,7 +247,7 @@
 #ifdef ASSERT
   // Make it return true on platforms which need to verify
   // instruction boundaries for some operations.
-  inline static bool pd_check_instruction_mark();
+  static bool pd_check_instruction_mark();
 
   // Add delta to short branch distance to verify that it still fit into imm8.
   int _short_branch_delta;
--- a/hotspot/src/share/vm/asm/macroAssembler.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/share/vm/asm/macroAssembler.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -31,7 +31,7 @@
 # include "macroAssembler_x86.hpp"
 #endif
 #ifdef TARGET_ARCH_sparc
-# include "assembler_sparc.hpp"
+# include "macroAssembler_sparc.hpp"
 #endif
 #ifdef TARGET_ARCH_zero
 # include "assembler_zero.hpp"
--- a/hotspot/src/share/vm/asm/macroAssembler.inline.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/share/vm/asm/macroAssembler.inline.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -25,11 +25,13 @@
 #ifndef SHARE_VM_ASM_MACROASSEMBLER_INLINE_HPP
 #define SHARE_VM_ASM_MACROASSEMBLER_INLINE_HPP
 
+#include "asm/macroAssembler.hpp"
+
 #ifdef TARGET_ARCH_x86
 // no macroAssembler_x86.inline.hpp
 #endif
 #ifdef TARGET_ARCH_sparc
-# include "assembler_sparc.inline.hpp"
+# include "macroAssembler_sparc.inline.hpp"
 #endif
 #ifdef TARGET_ARCH_zero
 # include "assembler_zero.inline.hpp"
--- a/hotspot/src/share/vm/asm/register.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/share/vm/asm/register.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -93,6 +93,21 @@
 #define REGISTER_DEFINITION(type, name) \
 const type name = ((type)name##_##type##EnumValue)
 
+#ifdef TARGET_ARCH_x86
+# include "register_x86.hpp"
+#endif
+#ifdef TARGET_ARCH_sparc
+# include "register_sparc.hpp"
+#endif
+#ifdef TARGET_ARCH_zero
+# include "register_zero.hpp"
+#endif
+#ifdef TARGET_ARCH_arm
+# include "register_arm.hpp"
+#endif
+#ifdef TARGET_ARCH_ppc
+# include "register_ppc.hpp"
+#endif
 
 
 // Debugging support
--- a/hotspot/src/share/vm/code/vmreg.hpp	Mon Nov 26 15:11:55 2012 +0100
+++ b/hotspot/src/share/vm/code/vmreg.hpp	Thu Dec 06 09:57:41 2012 -0800
@@ -27,21 +27,8 @@
 
 #include "memory/allocation.hpp"
 #include "utilities/globalDefinitions.hpp"
-#ifdef TARGET_ARCH_x86
-# include "register_x86.hpp"
-#endif
-#ifdef TARGET_ARCH_sparc
-# include "register_sparc.hpp"
-#endif
-#ifdef TARGET_ARCH_zero
-# include "register_zero.hpp"
-#endif
-#ifdef TARGET_ARCH_arm
-# include "register_arm.hpp"
-#endif
-#ifdef TARGET_ARCH_ppc
-# include "register_ppc.hpp"
-#endif
+#include "asm/register.hpp"
+
 #ifdef COMPILER2
 #include "opto/adlcVMDeps.hpp"
 #include "utilities/ostream.hpp"