--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/ArrayCache.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,216 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.Arrays;
+import static sun.java2d.marlin.MarlinUtils.logInfo;
+
+public final class ArrayCache implements MarlinConst {
+
+ static final int BUCKETS = 4;
+ static final int MIN_ARRAY_SIZE = 4096;
+ static final int MAX_ARRAY_SIZE;
+ static final int MASK_CLR_1 = ~1;
+ // threshold to grow arrays only by (3/2) instead of 2
+ static final int THRESHOLD_ARRAY_SIZE;
+ static final int[] ARRAY_SIZES = new int[BUCKETS];
+ // dirty byte array sizes
+ static final int MIN_DIRTY_BYTE_ARRAY_SIZE = 32 * 2048; // 32px x 2048px
+ static final int MAX_DIRTY_BYTE_ARRAY_SIZE;
+ static final int[] DIRTY_BYTE_ARRAY_SIZES = new int[BUCKETS];
+ // large array thresholds:
+ static final long THRESHOLD_LARGE_ARRAY_SIZE;
+ static final long THRESHOLD_HUGE_ARRAY_SIZE;
+ // stats
+ private static int resizeInt = 0;
+ private static int resizeDirtyInt = 0;
+ private static int resizeDirtyFloat = 0;
+ private static int resizeDirtyByte = 0;
+ private static int oversize = 0;
+
+ static {
+ // initialize buckets for int/float arrays
+ int arraySize = MIN_ARRAY_SIZE;
+
+ for (int i = 0; i < BUCKETS; i++, arraySize <<= 2) {
+ ARRAY_SIZES[i] = arraySize;
+
+ if (doTrace) {
+ logInfo("arraySize[" + i + "]: " + arraySize);
+ }
+ }
+ MAX_ARRAY_SIZE = arraySize >> 2;
+
+ /* initialize buckets for dirty byte arrays
+ (large AA chunk = 32 x 2048 pixels) */
+ arraySize = MIN_DIRTY_BYTE_ARRAY_SIZE;
+
+ for (int i = 0; i < BUCKETS; i++, arraySize <<= 1) {
+ DIRTY_BYTE_ARRAY_SIZES[i] = arraySize;
+
+ if (doTrace) {
+ logInfo("dirty arraySize[" + i + "]: " + arraySize);
+ }
+ }
+ MAX_DIRTY_BYTE_ARRAY_SIZE = arraySize >> 1;
+
+ // threshold to grow arrays only by (3/2) instead of 2
+ THRESHOLD_ARRAY_SIZE = Math.max(2 * 1024 * 1024, MAX_ARRAY_SIZE); // 2M
+
+ THRESHOLD_LARGE_ARRAY_SIZE = 8L * THRESHOLD_ARRAY_SIZE; // 16M
+ THRESHOLD_HUGE_ARRAY_SIZE = 8L * THRESHOLD_LARGE_ARRAY_SIZE; // 128M
+
+ if (doStats || doMonitors) {
+ logInfo("ArrayCache.BUCKETS = " + BUCKETS);
+ logInfo("ArrayCache.MIN_ARRAY_SIZE = " + MIN_ARRAY_SIZE);
+ logInfo("ArrayCache.MAX_ARRAY_SIZE = " + MAX_ARRAY_SIZE);
+ logInfo("ArrayCache.ARRAY_SIZES = "
+ + Arrays.toString(ARRAY_SIZES));
+ logInfo("ArrayCache.MIN_DIRTY_BYTE_ARRAY_SIZE = "
+ + MIN_DIRTY_BYTE_ARRAY_SIZE);
+ logInfo("ArrayCache.MAX_DIRTY_BYTE_ARRAY_SIZE = "
+ + MAX_DIRTY_BYTE_ARRAY_SIZE);
+ logInfo("ArrayCache.ARRAY_SIZES = "
+ + Arrays.toString(DIRTY_BYTE_ARRAY_SIZES));
+ logInfo("ArrayCache.THRESHOLD_ARRAY_SIZE = "
+ + THRESHOLD_ARRAY_SIZE);
+ logInfo("ArrayCache.THRESHOLD_LARGE_ARRAY_SIZE = "
+ + THRESHOLD_LARGE_ARRAY_SIZE);
+ logInfo("ArrayCache.THRESHOLD_HUGE_ARRAY_SIZE = "
+ + THRESHOLD_HUGE_ARRAY_SIZE);
+ }
+ }
+
+ private ArrayCache() {
+ // Utility class
+ }
+
+ static synchronized void incResizeInt() {
+ resizeInt++;
+ }
+
+ static synchronized void incResizeDirtyInt() {
+ resizeDirtyInt++;
+ }
+
+ static synchronized void incResizeDirtyFloat() {
+ resizeDirtyFloat++;
+ }
+
+ static synchronized void incResizeDirtyByte() {
+ resizeDirtyByte++;
+ }
+
+ static synchronized void incOversize() {
+ oversize++;
+ }
+
+ static void dumpStats() {
+ if (resizeInt != 0 || resizeDirtyInt != 0 || resizeDirtyFloat != 0
+ || resizeDirtyByte != 0 || oversize != 0) {
+ logInfo("ArrayCache: int resize: " + resizeInt
+ + " - dirty int resize: " + resizeDirtyInt
+ + " - dirty float resize: " + resizeDirtyFloat
+ + " - dirty byte resize: " + resizeDirtyByte
+ + " - oversize: " + oversize);
+ }
+ }
+
+ // small methods used a lot (to be inlined / optimized by hotspot)
+
+ static int getBucket(final int length) {
+ for (int i = 0; i < ARRAY_SIZES.length; i++) {
+ if (length <= ARRAY_SIZES[i]) {
+ return i;
+ }
+ }
+ return -1;
+ }
+
+ static int getBucketDirtyBytes(final int length) {
+ for (int i = 0; i < DIRTY_BYTE_ARRAY_SIZES.length; i++) {
+ if (length <= DIRTY_BYTE_ARRAY_SIZES[i]) {
+ return i;
+ }
+ }
+ return -1;
+ }
+
+ /**
+ * Return the new array size (~ x2)
+ * @param curSize current used size
+ * @param needSize needed size
+ * @return new array size
+ */
+ public static int getNewSize(final int curSize, final int needSize) {
+ final int initial = (curSize & MASK_CLR_1);
+ int size;
+ if (initial > THRESHOLD_ARRAY_SIZE) {
+ size = initial + (initial >> 1); // x(3/2)
+ } else {
+ size = (initial) << 1; // x2
+ }
+ // ensure the new size is >= needed size:
+ if (size < needSize) {
+ // align to 4096:
+ size = ((needSize >> 12) + 1) << 12;
+ }
+ return size;
+ }
+
+ /**
+ * Return the new array size (~ x2)
+ * @param curSize current used size
+ * @param needSize needed size
+ * @return new array size
+ */
+ public static long getNewLargeSize(final long curSize, final long needSize) {
+ long size;
+ if (curSize > THRESHOLD_HUGE_ARRAY_SIZE) {
+ size = curSize + (curSize >> 2L); // x(5/4)
+ } else if (curSize > THRESHOLD_LARGE_ARRAY_SIZE) {
+ size = curSize + (curSize >> 1L); // x(3/2)
+ } else {
+ size = curSize << 1L; // x2
+ }
+ // ensure the new size is >= needed size:
+ if (size < needSize) {
+ // align to 4096:
+ size = ((needSize >> 12) + 1) << 12;
+ }
+ if (size >= Integer.MAX_VALUE) {
+ if (curSize >= Integer.MAX_VALUE) {
+ // hard overflow failure - we can't even accommodate
+ // new items without overflowing
+ throw new ArrayIndexOutOfBoundsException(
+ "array exceeds maximum capacity !");
+ }
+ // resize to maximum capacity:
+ size = Integer.MAX_VALUE;
+ }
+ return size;
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/ByteArrayCache.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,151 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.ArrayDeque;
+import java.util.Arrays;
+import static sun.java2d.marlin.MarlinUtils.logException;
+import static sun.java2d.marlin.MarlinUtils.logInfo;
+
+final class ByteArrayCache implements MarlinConst {
+
+ private final int arraySize;
+ private final ArrayDeque<byte[]> byteArrays;
+ // stats
+ private int getOp = 0;
+ private int createOp = 0;
+ private int returnOp = 0;
+
+ void dumpStats() {
+ if (getOp > 0) {
+ logInfo("ByteArrayCache[" + arraySize + "]: get: " + getOp
+ + " created: " + createOp + " - returned: " + returnOp
+ + " :: cache size: " + byteArrays.size());
+ }
+ }
+
+ ByteArrayCache(final int arraySize) {
+ this.arraySize = arraySize;
+ // small but enough: almost 1 cache line
+ this.byteArrays = new ArrayDeque<byte[]>(6);
+ }
+
+ byte[] getArray() {
+ if (doStats) {
+ getOp++;
+ }
+
+ // use cache:
+ final byte[] array = byteArrays.pollLast();
+ if (array != null) {
+ return array;
+ }
+
+ if (doStats) {
+ createOp++;
+ }
+
+ return new byte[arraySize];
+ }
+
+ void putDirtyArray(final byte[] array, final int length) {
+ if (length != arraySize) {
+ if (doChecks) {
+ System.out.println("ArrayCache: bad length = " + length);
+ }
+ return;
+ }
+ if (doStats) {
+ returnOp++;
+ }
+
+ // NO clean-up of array data = DIRTY ARRAY
+
+ if (doCleanDirty) {
+ // Force zero-fill dirty arrays:
+ Arrays.fill(array, 0, array.length, BYTE_0);
+ }
+
+ // fill cache:
+ byteArrays.addLast(array);
+ }
+
+ void putArray(final byte[] array, final int length,
+ final int fromIndex, final int toIndex)
+ {
+ if (length != arraySize) {
+ if (doChecks) {
+ System.out.println("ArrayCache: bad length = " + length);
+ }
+ return;
+ }
+ if (doStats) {
+ returnOp++;
+ }
+
+ // clean-up array of dirty part[fromIndex; toIndex[
+ fill(array, fromIndex, toIndex, BYTE_0);
+
+ // fill cache:
+ byteArrays.addLast(array);
+ }
+
+ static void fill(final byte[] array, final int fromIndex,
+ final int toIndex, final byte value)
+ {
+ // clear array data:
+ /*
+ * Arrays.fill is faster than System.arraycopy(empty array)
+ * or Unsafe.setMemory(byte 0)
+ */
+ if (toIndex != 0) {
+ Arrays.fill(array, fromIndex, toIndex, value);
+ }
+
+ if (doChecks) {
+ check(array, 0, array.length, value);
+ }
+ }
+
+ static void check(final byte[] array, final int fromIndex,
+ final int toIndex, final byte value)
+ {
+ if (doChecks) {
+ // check zero on full array:
+ for (int i = fromIndex; i < toIndex; i++) {
+ if (array[i] != value) {
+ logException("Invalid array value at " + i + "\n"
+ + Arrays.toString(array), new Throwable());
+
+ // ensure array is correctly filled:
+ Arrays.fill(array, value);
+
+ return;
+ }
+ }
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/CollinearSimplifier.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,155 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import sun.awt.geom.PathConsumer2D;
+
+final class CollinearSimplifier implements PathConsumer2D {
+
+ enum SimplifierState {
+
+ Empty, PreviousPoint, PreviousLine
+ };
+ // slope precision threshold
+ static final float EPS = 1e-4f; // aaime proposed 1e-3f
+
+ PathConsumer2D delegate;
+ SimplifierState state;
+ float px1, py1, px2, py2;
+ float pslope;
+
+ CollinearSimplifier() {
+ }
+
+ public CollinearSimplifier init(PathConsumer2D delegate) {
+ this.delegate = delegate;
+ this.state = SimplifierState.Empty;
+
+ return this; // fluent API
+ }
+
+ @Override
+ public void pathDone() {
+ emitStashedLine();
+ state = SimplifierState.Empty;
+ delegate.pathDone();
+ }
+
+ @Override
+ public void closePath() {
+ emitStashedLine();
+ state = SimplifierState.Empty;
+ delegate.closePath();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ return 0;
+ }
+
+ @Override
+ public void quadTo(float x1, float y1, float x2, float y2) {
+ emitStashedLine();
+ delegate.quadTo(x1, y1, x2, y2);
+ // final end point:
+ state = SimplifierState.PreviousPoint;
+ px1 = x2;
+ py1 = y2;
+ }
+
+ @Override
+ public void curveTo(float x1, float y1, float x2, float y2,
+ float x3, float y3) {
+ emitStashedLine();
+ delegate.curveTo(x1, y1, x2, y2, x3, y3);
+ // final end point:
+ state = SimplifierState.PreviousPoint;
+ px1 = x3;
+ py1 = y3;
+ }
+
+ @Override
+ public void moveTo(float x, float y) {
+ emitStashedLine();
+ delegate.moveTo(x, y);
+ state = SimplifierState.PreviousPoint;
+ px1 = x;
+ py1 = y;
+ }
+
+ @Override
+ public void lineTo(final float x, final float y) {
+ switch (state) {
+ case Empty:
+ delegate.lineTo(x, y);
+ state = SimplifierState.PreviousPoint;
+ px1 = x;
+ py1 = y;
+ return;
+
+ case PreviousPoint:
+ state = SimplifierState.PreviousLine;
+ px2 = x;
+ py2 = y;
+ pslope = getSlope(px1, py1, x, y);
+ return;
+
+ case PreviousLine:
+ final float slope = getSlope(px2, py2, x, y);
+ // test for collinearity
+ if ((slope == pslope) || (Math.abs(pslope - slope) < EPS)) {
+ // merge segments
+ px2 = x;
+ py2 = y;
+ return;
+ }
+ // emit previous segment
+ delegate.lineTo(px2, py2);
+ px1 = px2;
+ py1 = py2;
+ px2 = x;
+ py2 = y;
+ pslope = slope;
+ return;
+ default:
+ }
+ }
+
+ private void emitStashedLine() {
+ if (state == SimplifierState.PreviousLine) {
+ delegate.lineTo(px2, py2);
+ }
+ }
+
+ private static float getSlope(float x1, float y1, float x2, float y2) {
+ float dy = y2 - y1;
+ if (dy == 0f) {
+ return (x2 > x1) ? Float.POSITIVE_INFINITY
+ : Float.NEGATIVE_INFINITY;
+ }
+ return (x2 - x1) / dy;
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Curve.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,306 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.Iterator;
+
+final class Curve {
+
+ float ax, ay, bx, by, cx, cy, dx, dy;
+ float dax, day, dbx, dby;
+ // shared iterator instance
+ private final BreakPtrIterator iterator = new BreakPtrIterator();
+
+ Curve() {
+ }
+
+ void set(float[] points, int type) {
+ switch(type) {
+ case 8:
+ set(points[0], points[1],
+ points[2], points[3],
+ points[4], points[5],
+ points[6], points[7]);
+ return;
+ case 6:
+ set(points[0], points[1],
+ points[2], points[3],
+ points[4], points[5]);
+ return;
+ default:
+ throw new InternalError("Curves can only be cubic or quadratic");
+ }
+ }
+
+ void set(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3,
+ float x4, float y4)
+ {
+ ax = 3f * (x2 - x3) + x4 - x1;
+ ay = 3f * (y2 - y3) + y4 - y1;
+ bx = 3f * (x1 - 2f * x2 + x3);
+ by = 3f * (y1 - 2f * y2 + y3);
+ cx = 3f * (x2 - x1);
+ cy = 3f * (y2 - y1);
+ dx = x1;
+ dy = y1;
+ dax = 3f * ax; day = 3f * ay;
+ dbx = 2f * bx; dby = 2f * by;
+ }
+
+ void set(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3)
+ {
+ ax = 0f; ay = 0f;
+ bx = x1 - 2f * x2 + x3;
+ by = y1 - 2f * y2 + y3;
+ cx = 2f * (x2 - x1);
+ cy = 2f * (y2 - y1);
+ dx = x1;
+ dy = y1;
+ dax = 0f; day = 0f;
+ dbx = 2f * bx; dby = 2f * by;
+ }
+
+ float xat(float t) {
+ return t * (t * (t * ax + bx) + cx) + dx;
+ }
+ float yat(float t) {
+ return t * (t * (t * ay + by) + cy) + dy;
+ }
+
+ float dxat(float t) {
+ return t * (t * dax + dbx) + cx;
+ }
+
+ float dyat(float t) {
+ return t * (t * day + dby) + cy;
+ }
+
+ int dxRoots(float[] roots, int off) {
+ return Helpers.quadraticRoots(dax, dbx, cx, roots, off);
+ }
+
+ int dyRoots(float[] roots, int off) {
+ return Helpers.quadraticRoots(day, dby, cy, roots, off);
+ }
+
+ int infPoints(float[] pts, int off) {
+ // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0
+ // Fortunately, this turns out to be quadratic, so there are at
+ // most 2 inflection points.
+ final float a = dax * dby - dbx * day;
+ final float b = 2f * (cy * dax - day * cx);
+ final float c = cy * dbx - cx * dby;
+
+ return Helpers.quadraticRoots(a, b, c, pts, off);
+ }
+
+ // finds points where the first and second derivative are
+ // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
+ // * is a dot product). Unfortunately, we have to solve a cubic.
+ private int perpendiculardfddf(float[] pts, int off) {
+ assert pts.length >= off + 4;
+
+ // these are the coefficients of some multiple of g(t) (not g(t),
+ // because the roots of a polynomial are not changed after multiplication
+ // by a constant, and this way we save a few multiplications).
+ final float a = 2f * (dax*dax + day*day);
+ final float b = 3f * (dax*dbx + day*dby);
+ final float c = 2f * (dax*cx + day*cy) + dbx*dbx + dby*dby;
+ final float d = dbx*cx + dby*cy;
+ return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0f, 1f);
+ }
+
+ // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
+ // a variant of the false position algorithm to find the roots. False
+ // position requires that 2 initial values x0,x1 be given, and that the
+ // function must have opposite signs at those values. To find such
+ // values, we need the local extrema of the ROC function, for which we
+ // need the roots of its derivative; however, it's harder to find the
+ // roots of the derivative in this case than it is to find the roots
+ // of the original function. So, we find all points where this curve's
+ // first and second derivative are perpendicular, and we pretend these
+ // are our local extrema. There are at most 3 of these, so we will check
+ // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection
+ // points, so roc-w can have at least 6 roots. This shouldn't be a
+ // problem for what we're trying to do (draw a nice looking curve).
+ int rootsOfROCMinusW(float[] roots, int off, final float w, final float err) {
+ // no OOB exception, because by now off<=6, and roots.length >= 10
+ assert off <= 6 && roots.length >= 10;
+ int ret = off;
+ int numPerpdfddf = perpendiculardfddf(roots, off);
+ float t0 = 0, ft0 = ROCsq(t0) - w*w;
+ roots[off + numPerpdfddf] = 1f; // always check interval end points
+ numPerpdfddf++;
+ for (int i = off; i < off + numPerpdfddf; i++) {
+ float t1 = roots[i], ft1 = ROCsq(t1) - w*w;
+ if (ft0 == 0f) {
+ roots[ret++] = t0;
+ } else if (ft1 * ft0 < 0f) { // have opposite signs
+ // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
+ // ROC(t) >= 0 for all t.
+ roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err);
+ }
+ t0 = t1;
+ ft0 = ft1;
+ }
+
+ return ret - off;
+ }
+
+ private static float eliminateInf(float x) {
+ return (x == Float.POSITIVE_INFINITY ? Float.MAX_VALUE :
+ (x == Float.NEGATIVE_INFINITY ? Float.MIN_VALUE : x));
+ }
+
+ // A slight modification of the false position algorithm on wikipedia.
+ // This only works for the ROCsq-x functions. It might be nice to have
+ // the function as an argument, but that would be awkward in java6.
+ // TODO: It is something to consider for java8 (or whenever lambda
+ // expressions make it into the language), depending on how closures
+ // and turn out. Same goes for the newton's method
+ // algorithm in Helpers.java
+ private float falsePositionROCsqMinusX(float x0, float x1,
+ final float x, final float err)
+ {
+ final int iterLimit = 100;
+ int side = 0;
+ float t = x1, ft = eliminateInf(ROCsq(t) - x);
+ float s = x0, fs = eliminateInf(ROCsq(s) - x);
+ float r = s, fr;
+ for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
+ r = (fs * t - ft * s) / (fs - ft);
+ fr = ROCsq(r) - x;
+ if (sameSign(fr, ft)) {
+ ft = fr; t = r;
+ if (side < 0) {
+ fs /= (1 << (-side));
+ side--;
+ } else {
+ side = -1;
+ }
+ } else if (fr * fs > 0) {
+ fs = fr; s = r;
+ if (side > 0) {
+ ft /= (1 << side);
+ side++;
+ } else {
+ side = 1;
+ }
+ } else {
+ break;
+ }
+ }
+ return r;
+ }
+
+ private static boolean sameSign(float x, float y) {
+ // another way is to test if x*y > 0. This is bad for small x, y.
+ return (x < 0f && y < 0f) || (x > 0f && y > 0f);
+ }
+
+ // returns the radius of curvature squared at t of this curve
+ // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
+ private float ROCsq(final float t) {
+ // dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency
+ final float dx = t * (t * dax + dbx) + cx;
+ final float dy = t * (t * day + dby) + cy;
+ final float ddx = 2f * dax * t + dbx;
+ final float ddy = 2f * day * t + dby;
+ final float dx2dy2 = dx*dx + dy*dy;
+ final float ddx2ddy2 = ddx*ddx + ddy*ddy;
+ final float ddxdxddydy = ddx*dx + ddy*dy;
+ return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy));
+ }
+
+ // curve to be broken should be in pts
+ // this will change the contents of pts but not Ts
+ // TODO: There's no reason for Ts to be an array. All we need is a sequence
+ // of t values at which to subdivide. An array statisfies this condition,
+ // but is unnecessarily restrictive. Ts should be an Iterator<Float> instead.
+ // Doing this will also make dashing easier, since we could easily make
+ // LengthIterator an Iterator<Float> and feed it to this function to simplify
+ // the loop in Dasher.somethingTo.
+ BreakPtrIterator breakPtsAtTs(final float[] pts, final int type,
+ final float[] Ts, final int numTs)
+ {
+ assert pts.length >= 2*type && numTs <= Ts.length;
+
+ // initialize shared iterator:
+ iterator.init(pts, type, Ts, numTs);
+
+ return iterator;
+ }
+
+ static final class BreakPtrIterator {
+ private int nextCurveIdx;
+ private int curCurveOff;
+ private float prevT;
+ private float[] pts;
+ private int type;
+ private float[] ts;
+ private int numTs;
+
+ void init(final float[] pts, final int type,
+ final float[] ts, final int numTs) {
+ this.pts = pts;
+ this.type = type;
+ this.ts = ts;
+ this.numTs = numTs;
+
+ nextCurveIdx = 0;
+ curCurveOff = 0;
+ prevT = 0f;
+ }
+
+ public boolean hasNext() {
+ return nextCurveIdx <= numTs;
+ }
+
+ public int next() {
+ int ret;
+ if (nextCurveIdx < numTs) {
+ float curT = ts[nextCurveIdx];
+ float splitT = (curT - prevT) / (1f - prevT);
+ Helpers.subdivideAt(splitT,
+ pts, curCurveOff,
+ pts, 0,
+ pts, type, type);
+ prevT = curT;
+ ret = 0;
+ curCurveOff = type;
+ } else {
+ ret = curCurveOff;
+ }
+ nextCurveIdx++;
+ return ret;
+ }
+ }
+}
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Dasher.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,702 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.Arrays;
+import sun.awt.geom.PathConsumer2D;
+
+/**
+ * The <code>Dasher</code> class takes a series of linear commands
+ * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
+ * <code>end</code>) and breaks them into smaller segments according to a
+ * dash pattern array and a starting dash phase.
+ *
+ * <p> Issues: in J2Se, a zero length dash segment as drawn as a very
+ * short dash, whereas Pisces does not draw anything. The PostScript
+ * semantics are unclear.
+ *
+ */
+final class Dasher implements sun.awt.geom.PathConsumer2D, MarlinConst {
+
+ static final int recLimit = 4;
+ static final float ERR = 0.01f;
+ static final float minTincrement = 1f / (1 << recLimit);
+
+ private PathConsumer2D out;
+ private float[] dash;
+ private int dashLen;
+ private float startPhase;
+ private boolean startDashOn;
+ private int startIdx;
+
+ private boolean starting;
+ private boolean needsMoveTo;
+
+ private int idx;
+ private boolean dashOn;
+ private float phase;
+
+ private float sx, sy;
+ private float x0, y0;
+
+ // temporary storage for the current curve
+ private final float[] curCurvepts;
+
+ // per-thread renderer context
+ final RendererContext rdrCtx;
+
+ // dashes array (dirty)
+ final float[] dashes_initial = new float[INITIAL_ARRAY];
+
+ // flag to recycle dash array copy
+ boolean recycleDashes;
+
+ // per-thread initial arrays (large enough to satisfy most usages
+ // +1 to avoid recycling in Helpers.widenArray()
+ private final float[] firstSegmentsBuffer_initial = new float[INITIAL_ARRAY + 1];
+
+ /**
+ * Constructs a <code>Dasher</code>.
+ * @param rdrCtx per-thread renderer context
+ */
+ Dasher(final RendererContext rdrCtx) {
+ this.rdrCtx = rdrCtx;
+
+ firstSegmentsBuffer = firstSegmentsBuffer_initial;
+
+ // we need curCurvepts to be able to contain 2 curves because when
+ // dashing curves, we need to subdivide it
+ curCurvepts = new float[8 * 2];
+ }
+
+ /**
+ * Initialize the <code>Dasher</code>.
+ *
+ * @param out an output <code>PathConsumer2D</code>.
+ * @param dash an array of <code>float</code>s containing the dash pattern
+ * @param dashLen length of the given dash array
+ * @param phase a <code>float</code> containing the dash phase
+ * @param recycleDashes true to indicate to recycle the given dash array
+ * @return this instance
+ */
+ Dasher init(final PathConsumer2D out, float[] dash, int dashLen,
+ float phase, boolean recycleDashes)
+ {
+ if (phase < 0f) {
+ throw new IllegalArgumentException("phase < 0 !");
+ }
+ this.out = out;
+
+ // Normalize so 0 <= phase < dash[0]
+ int idx = 0;
+ dashOn = true;
+ float d;
+ while (phase >= (d = dash[idx])) {
+ phase -= d;
+ idx = (idx + 1) % dashLen;
+ dashOn = !dashOn;
+ }
+
+ this.dash = dash;
+ this.dashLen = dashLen;
+ this.startPhase = this.phase = phase;
+ this.startDashOn = dashOn;
+ this.startIdx = idx;
+ this.starting = true;
+ needsMoveTo = false;
+ firstSegidx = 0;
+
+ this.recycleDashes = recycleDashes;
+
+ return this; // fluent API
+ }
+
+ /**
+ * Disposes this dasher:
+ * clean up before reusing this instance
+ */
+ void dispose() {
+ if (doCleanDirty) {
+ // Force zero-fill dirty arrays:
+ Arrays.fill(curCurvepts, 0f);
+ Arrays.fill(firstSegmentsBuffer, 0f);
+ }
+ // Return arrays:
+ if (recycleDashes && dash != dashes_initial) {
+ rdrCtx.putDirtyFloatArray(dash);
+ dash = null;
+ }
+
+ if (firstSegmentsBuffer != firstSegmentsBuffer_initial) {
+ rdrCtx.putDirtyFloatArray(firstSegmentsBuffer);
+ firstSegmentsBuffer = firstSegmentsBuffer_initial;
+ }
+ }
+
+ @Override
+ public void moveTo(float x0, float y0) {
+ if (firstSegidx > 0) {
+ out.moveTo(sx, sy);
+ emitFirstSegments();
+ }
+ needsMoveTo = true;
+ this.idx = startIdx;
+ this.dashOn = this.startDashOn;
+ this.phase = this.startPhase;
+ this.sx = this.x0 = x0;
+ this.sy = this.y0 = y0;
+ this.starting = true;
+ }
+
+ private void emitSeg(float[] buf, int off, int type) {
+ switch (type) {
+ case 8:
+ out.curveTo(buf[off+0], buf[off+1],
+ buf[off+2], buf[off+3],
+ buf[off+4], buf[off+5]);
+ return;
+ case 6:
+ out.quadTo(buf[off+0], buf[off+1],
+ buf[off+2], buf[off+3]);
+ return;
+ case 4:
+ out.lineTo(buf[off], buf[off+1]);
+ return;
+ default:
+ }
+ }
+
+ private void emitFirstSegments() {
+ final float[] fSegBuf = firstSegmentsBuffer;
+
+ for (int i = 0; i < firstSegidx; ) {
+ int type = (int)fSegBuf[i];
+ emitSeg(fSegBuf, i + 1, type);
+ i += (type - 1);
+ }
+ firstSegidx = 0;
+ }
+ // We don't emit the first dash right away. If we did, caps would be
+ // drawn on it, but we need joins to be drawn if there's a closePath()
+ // So, we store the path elements that make up the first dash in the
+ // buffer below.
+ private float[] firstSegmentsBuffer; // dynamic array
+ private int firstSegidx;
+
+ // precondition: pts must be in relative coordinates (relative to x0,y0)
+ // fullCurve is true iff the curve in pts has not been split.
+ private void goTo(float[] pts, int off, final int type) {
+ float x = pts[off + type - 4];
+ float y = pts[off + type - 3];
+ if (dashOn) {
+ if (starting) {
+ int len = type - 2 + 1;
+ int segIdx = firstSegidx;
+ float[] buf = firstSegmentsBuffer;
+ if (segIdx + len > buf.length) {
+ if (doStats) {
+ RendererContext.stats.stat_array_dasher_firstSegmentsBuffer
+ .add(segIdx + len);
+ }
+ firstSegmentsBuffer = buf
+ = rdrCtx.widenDirtyFloatArray(buf, segIdx, segIdx + len);
+ }
+ buf[segIdx++] = type;
+ len--;
+ // small arraycopy (2, 4 or 6) but with offset:
+ System.arraycopy(pts, off, buf, segIdx, len);
+ segIdx += len;
+ firstSegidx = segIdx;
+ } else {
+ if (needsMoveTo) {
+ out.moveTo(x0, y0);
+ needsMoveTo = false;
+ }
+ emitSeg(pts, off, type);
+ }
+ } else {
+ starting = false;
+ needsMoveTo = true;
+ }
+ this.x0 = x;
+ this.y0 = y;
+ }
+
+ @Override
+ public void lineTo(float x1, float y1) {
+ float dx = x1 - x0;
+ float dy = y1 - y0;
+
+ float len = dx*dx + dy*dy;
+ if (len == 0f) {
+ return;
+ }
+ len = (float) Math.sqrt(len);
+
+ // The scaling factors needed to get the dx and dy of the
+ // transformed dash segments.
+ final float cx = dx / len;
+ final float cy = dy / len;
+
+ final float[] _curCurvepts = curCurvepts;
+ final float[] _dash = dash;
+
+ float leftInThisDashSegment;
+ float dashdx, dashdy, p;
+
+ while (true) {
+ leftInThisDashSegment = _dash[idx] - phase;
+
+ if (len <= leftInThisDashSegment) {
+ _curCurvepts[0] = x1;
+ _curCurvepts[1] = y1;
+ goTo(_curCurvepts, 0, 4);
+
+ // Advance phase within current dash segment
+ phase += len;
+ // TODO: compare float values using epsilon:
+ if (len == leftInThisDashSegment) {
+ phase = 0f;
+ idx = (idx + 1) % dashLen;
+ dashOn = !dashOn;
+ }
+ return;
+ }
+
+ dashdx = _dash[idx] * cx;
+ dashdy = _dash[idx] * cy;
+
+ if (phase == 0f) {
+ _curCurvepts[0] = x0 + dashdx;
+ _curCurvepts[1] = y0 + dashdy;
+ } else {
+ p = leftInThisDashSegment / _dash[idx];
+ _curCurvepts[0] = x0 + p * dashdx;
+ _curCurvepts[1] = y0 + p * dashdy;
+ }
+
+ goTo(_curCurvepts, 0, 4);
+
+ len -= leftInThisDashSegment;
+ // Advance to next dash segment
+ idx = (idx + 1) % dashLen;
+ dashOn = !dashOn;
+ phase = 0f;
+ }
+ }
+
+ // shared instance in Dasher
+ private final LengthIterator li = new LengthIterator();
+
+ // preconditions: curCurvepts must be an array of length at least 2 * type,
+ // that contains the curve we want to dash in the first type elements
+ private void somethingTo(int type) {
+ if (pointCurve(curCurvepts, type)) {
+ return;
+ }
+ li.initializeIterationOnCurve(curCurvepts, type);
+
+ // initially the current curve is at curCurvepts[0...type]
+ int curCurveoff = 0;
+ float lastSplitT = 0f;
+ float t;
+ float leftInThisDashSegment = dash[idx] - phase;
+
+ while ((t = li.next(leftInThisDashSegment)) < 1f) {
+ if (t != 0f) {
+ Helpers.subdivideAt((t - lastSplitT) / (1f - lastSplitT),
+ curCurvepts, curCurveoff,
+ curCurvepts, 0,
+ curCurvepts, type, type);
+ lastSplitT = t;
+ goTo(curCurvepts, 2, type);
+ curCurveoff = type;
+ }
+ // Advance to next dash segment
+ idx = (idx + 1) % dashLen;
+ dashOn = !dashOn;
+ phase = 0f;
+ leftInThisDashSegment = dash[idx];
+ }
+ goTo(curCurvepts, curCurveoff+2, type);
+ phase += li.lastSegLen();
+ if (phase >= dash[idx]) {
+ phase = 0f;
+ idx = (idx + 1) % dashLen;
+ dashOn = !dashOn;
+ }
+ // reset LengthIterator:
+ li.reset();
+ }
+
+ private static boolean pointCurve(float[] curve, int type) {
+ for (int i = 2; i < type; i++) {
+ if (curve[i] != curve[i-2]) {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // Objects of this class are used to iterate through curves. They return
+ // t values where the left side of the curve has a specified length.
+ // It does this by subdividing the input curve until a certain error
+ // condition has been met. A recursive subdivision procedure would
+ // return as many as 1<<limit curves, but this is an iterator and we
+ // don't need all the curves all at once, so what we carry out a
+ // lazy inorder traversal of the recursion tree (meaning we only move
+ // through the tree when we need the next subdivided curve). This saves
+ // us a lot of memory because at any one time we only need to store
+ // limit+1 curves - one for each level of the tree + 1.
+ // NOTE: the way we do things here is not enough to traverse a general
+ // tree; however, the trees we are interested in have the property that
+ // every non leaf node has exactly 2 children
+ static final class LengthIterator {
+ private enum Side {LEFT, RIGHT};
+ // Holds the curves at various levels of the recursion. The root
+ // (i.e. the original curve) is at recCurveStack[0] (but then it
+ // gets subdivided, the left half is put at 1, so most of the time
+ // only the right half of the original curve is at 0)
+ private final float[][] recCurveStack; // dirty
+ // sides[i] indicates whether the node at level i+1 in the path from
+ // the root to the current leaf is a left or right child of its parent.
+ private final Side[] sides; // dirty
+ private int curveType;
+ // lastT and nextT delimit the current leaf.
+ private float nextT;
+ private float lenAtNextT;
+ private float lastT;
+ private float lenAtLastT;
+ private float lenAtLastSplit;
+ private float lastSegLen;
+ // the current level in the recursion tree. 0 is the root. limit
+ // is the deepest possible leaf.
+ private int recLevel;
+ private boolean done;
+
+ // the lengths of the lines of the control polygon. Only its first
+ // curveType/2 - 1 elements are valid. This is an optimization. See
+ // next(float) for more detail.
+ private final float[] curLeafCtrlPolyLengths = new float[3];
+
+ LengthIterator() {
+ this.recCurveStack = new float[recLimit + 1][8];
+ this.sides = new Side[recLimit];
+ // if any methods are called without first initializing this object
+ // on a curve, we want it to fail ASAP.
+ this.nextT = Float.MAX_VALUE;
+ this.lenAtNextT = Float.MAX_VALUE;
+ this.lenAtLastSplit = Float.MIN_VALUE;
+ this.recLevel = Integer.MIN_VALUE;
+ this.lastSegLen = Float.MAX_VALUE;
+ this.done = true;
+ }
+
+ /**
+ * Reset this LengthIterator.
+ */
+ void reset() {
+ // keep data dirty
+ // as it appears not useful to reset data:
+ if (doCleanDirty) {
+ final int recLimit = recCurveStack.length - 1;
+ for (int i = recLimit; i >= 0; i--) {
+ Arrays.fill(recCurveStack[i], 0f);
+ }
+ Arrays.fill(sides, Side.LEFT);
+ Arrays.fill(curLeafCtrlPolyLengths, 0f);
+ Arrays.fill(nextRoots, 0f);
+ Arrays.fill(flatLeafCoefCache, 0f);
+ flatLeafCoefCache[2] = -1f;
+ }
+ }
+
+ void initializeIterationOnCurve(float[] pts, int type) {
+ // optimize arraycopy (8 values faster than 6 = type):
+ System.arraycopy(pts, 0, recCurveStack[0], 0, 8);
+ this.curveType = type;
+ this.recLevel = 0;
+ this.lastT = 0f;
+ this.lenAtLastT = 0f;
+ this.nextT = 0f;
+ this.lenAtNextT = 0f;
+ goLeft(); // initializes nextT and lenAtNextT properly
+ this.lenAtLastSplit = 0f;
+ if (recLevel > 0) {
+ this.sides[0] = Side.LEFT;
+ this.done = false;
+ } else {
+ // the root of the tree is a leaf so we're done.
+ this.sides[0] = Side.RIGHT;
+ this.done = true;
+ }
+ this.lastSegLen = 0f;
+ }
+
+ // 0 == false, 1 == true, -1 == invalid cached value.
+ private int cachedHaveLowAcceleration = -1;
+
+ private boolean haveLowAcceleration(float err) {
+ if (cachedHaveLowAcceleration == -1) {
+ final float len1 = curLeafCtrlPolyLengths[0];
+ final float len2 = curLeafCtrlPolyLengths[1];
+ // the test below is equivalent to !within(len1/len2, 1, err).
+ // It is using a multiplication instead of a division, so it
+ // should be a bit faster.
+ if (!Helpers.within(len1, len2, err*len2)) {
+ cachedHaveLowAcceleration = 0;
+ return false;
+ }
+ if (curveType == 8) {
+ final float len3 = curLeafCtrlPolyLengths[2];
+ // if len1 is close to 2 and 2 is close to 3, that probably
+ // means 1 is close to 3 so the second part of this test might
+ // not be needed, but it doesn't hurt to include it.
+ final float errLen3 = err * len3;
+ if (!(Helpers.within(len2, len3, errLen3) &&
+ Helpers.within(len1, len3, errLen3))) {
+ cachedHaveLowAcceleration = 0;
+ return false;
+ }
+ }
+ cachedHaveLowAcceleration = 1;
+ return true;
+ }
+
+ return (cachedHaveLowAcceleration == 1);
+ }
+
+ // we want to avoid allocations/gc so we keep this array so we
+ // can put roots in it,
+ private final float[] nextRoots = new float[4];
+
+ // caches the coefficients of the current leaf in its flattened
+ // form (see inside next() for what that means). The cache is
+ // invalid when it's third element is negative, since in any
+ // valid flattened curve, this would be >= 0.
+ private final float[] flatLeafCoefCache = new float[]{0f, 0f, -1f, 0f};
+
+ // returns the t value where the remaining curve should be split in
+ // order for the left subdivided curve to have length len. If len
+ // is >= than the length of the uniterated curve, it returns 1.
+ float next(final float len) {
+ final float targetLength = lenAtLastSplit + len;
+ while (lenAtNextT < targetLength) {
+ if (done) {
+ lastSegLen = lenAtNextT - lenAtLastSplit;
+ return 1f;
+ }
+ goToNextLeaf();
+ }
+ lenAtLastSplit = targetLength;
+ final float leaflen = lenAtNextT - lenAtLastT;
+ float t = (targetLength - lenAtLastT) / leaflen;
+
+ // cubicRootsInAB is a fairly expensive call, so we just don't do it
+ // if the acceleration in this section of the curve is small enough.
+ if (!haveLowAcceleration(0.05f)) {
+ // We flatten the current leaf along the x axis, so that we're
+ // left with a, b, c which define a 1D Bezier curve. We then
+ // solve this to get the parameter of the original leaf that
+ // gives us the desired length.
+ final float[] _flatLeafCoefCache = flatLeafCoefCache;
+
+ if (_flatLeafCoefCache[2] < 0) {
+ float x = 0f + curLeafCtrlPolyLengths[0],
+ y = x + curLeafCtrlPolyLengths[1];
+ if (curveType == 8) {
+ float z = y + curLeafCtrlPolyLengths[2];
+ _flatLeafCoefCache[0] = 3f * (x - y) + z;
+ _flatLeafCoefCache[1] = 3f * (y - 2f * x);
+ _flatLeafCoefCache[2] = 3f * x;
+ _flatLeafCoefCache[3] = -z;
+ } else if (curveType == 6) {
+ _flatLeafCoefCache[0] = 0f;
+ _flatLeafCoefCache[1] = y - 2f * x;
+ _flatLeafCoefCache[2] = 2f * x;
+ _flatLeafCoefCache[3] = -y;
+ }
+ }
+ float a = _flatLeafCoefCache[0];
+ float b = _flatLeafCoefCache[1];
+ float c = _flatLeafCoefCache[2];
+ float d = t * _flatLeafCoefCache[3];
+
+ // we use cubicRootsInAB here, because we want only roots in 0, 1,
+ // and our quadratic root finder doesn't filter, so it's just a
+ // matter of convenience.
+ int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0, 1);
+ if (n == 1 && !Float.isNaN(nextRoots[0])) {
+ t = nextRoots[0];
+ }
+ }
+ // t is relative to the current leaf, so we must make it a valid parameter
+ // of the original curve.
+ t = t * (nextT - lastT) + lastT;
+ if (t >= 1f) {
+ t = 1f;
+ done = true;
+ }
+ // even if done = true, if we're here, that means targetLength
+ // is equal to, or very, very close to the total length of the
+ // curve, so lastSegLen won't be too high. In cases where len
+ // overshoots the curve, this method will exit in the while
+ // loop, and lastSegLen will still be set to the right value.
+ lastSegLen = len;
+ return t;
+ }
+
+ float lastSegLen() {
+ return lastSegLen;
+ }
+
+ // go to the next leaf (in an inorder traversal) in the recursion tree
+ // preconditions: must be on a leaf, and that leaf must not be the root.
+ private void goToNextLeaf() {
+ // We must go to the first ancestor node that has an unvisited
+ // right child.
+ int _recLevel = recLevel;
+ final Side[] _sides = sides;
+
+ _recLevel--;
+ while(_sides[_recLevel] == Side.RIGHT) {
+ if (_recLevel == 0) {
+ recLevel = 0;
+ done = true;
+ return;
+ }
+ _recLevel--;
+ }
+
+ _sides[_recLevel] = Side.RIGHT;
+ // optimize arraycopy (8 values faster than 6 = type):
+ System.arraycopy(recCurveStack[_recLevel], 0,
+ recCurveStack[_recLevel+1], 0, 8);
+ _recLevel++;
+
+ recLevel = _recLevel;
+ goLeft();
+ }
+
+ // go to the leftmost node from the current node. Return its length.
+ private void goLeft() {
+ float len = onLeaf();
+ if (len >= 0f) {
+ lastT = nextT;
+ lenAtLastT = lenAtNextT;
+ nextT += (1 << (recLimit - recLevel)) * minTincrement;
+ lenAtNextT += len;
+ // invalidate caches
+ flatLeafCoefCache[2] = -1f;
+ cachedHaveLowAcceleration = -1;
+ } else {
+ Helpers.subdivide(recCurveStack[recLevel], 0,
+ recCurveStack[recLevel+1], 0,
+ recCurveStack[recLevel], 0, curveType);
+ sides[recLevel] = Side.LEFT;
+ recLevel++;
+ goLeft();
+ }
+ }
+
+ // this is a bit of a hack. It returns -1 if we're not on a leaf, and
+ // the length of the leaf if we are on a leaf.
+ private float onLeaf() {
+ float[] curve = recCurveStack[recLevel];
+ float polyLen = 0f;
+
+ float x0 = curve[0], y0 = curve[1];
+ for (int i = 2; i < curveType; i += 2) {
+ final float x1 = curve[i], y1 = curve[i+1];
+ final float len = Helpers.linelen(x0, y0, x1, y1);
+ polyLen += len;
+ curLeafCtrlPolyLengths[i/2 - 1] = len;
+ x0 = x1;
+ y0 = y1;
+ }
+
+ final float lineLen = Helpers.linelen(curve[0], curve[1],
+ curve[curveType-2],
+ curve[curveType-1]);
+ if ((polyLen - lineLen) < ERR || recLevel == recLimit) {
+ return (polyLen + lineLen) / 2f;
+ }
+ return -1f;
+ }
+ }
+
+ @Override
+ public void curveTo(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3)
+ {
+ final float[] _curCurvepts = curCurvepts;
+ _curCurvepts[0] = x0; _curCurvepts[1] = y0;
+ _curCurvepts[2] = x1; _curCurvepts[3] = y1;
+ _curCurvepts[4] = x2; _curCurvepts[5] = y2;
+ _curCurvepts[6] = x3; _curCurvepts[7] = y3;
+ somethingTo(8);
+ }
+
+ @Override
+ public void quadTo(float x1, float y1, float x2, float y2) {
+ final float[] _curCurvepts = curCurvepts;
+ _curCurvepts[0] = x0; _curCurvepts[1] = y0;
+ _curCurvepts[2] = x1; _curCurvepts[3] = y1;
+ _curCurvepts[4] = x2; _curCurvepts[5] = y2;
+ somethingTo(6);
+ }
+
+ @Override
+ public void closePath() {
+ lineTo(sx, sy);
+ if (firstSegidx > 0) {
+ if (!dashOn || needsMoveTo) {
+ out.moveTo(sx, sy);
+ }
+ emitFirstSegments();
+ }
+ moveTo(sx, sy);
+ }
+
+ @Override
+ public void pathDone() {
+ if (firstSegidx > 0) {
+ out.moveTo(sx, sy);
+ emitFirstSegments();
+ }
+ out.pathDone();
+
+ // Dispose this instance:
+ dispose();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ throw new InternalError("Dasher does not use a native consumer");
+ }
+}
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/FloatArrayCache.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,152 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.ArrayDeque;
+import java.util.Arrays;
+import static sun.java2d.marlin.MarlinUtils.logException;
+import static sun.java2d.marlin.MarlinUtils.logInfo;
+
+final class FloatArrayCache implements MarlinConst {
+
+ private final int arraySize;
+ private final ArrayDeque<float[]> floatArrays;
+ // stats
+ private int getOp = 0;
+ private int createOp = 0;
+ private int returnOp = 0;
+
+ void dumpStats() {
+ if (getOp > 0) {
+ logInfo("FloatArrayCache[" + arraySize + "]: get: " + getOp
+ + " created: " + createOp + " - returned: " + returnOp
+ + " :: cache size: " + floatArrays.size());
+ }
+ }
+
+ FloatArrayCache(final int arraySize) {
+ this.arraySize = arraySize;
+ // small but enough: almost 1 cache line
+ this.floatArrays = new ArrayDeque<float[]>(6);
+ }
+
+ float[] getArray() {
+ if (doStats) {
+ getOp++;
+ }
+
+ // use cache
+ final float[] array = floatArrays.pollLast();
+
+ if (array != null) {
+ return array;
+ }
+
+ if (doStats) {
+ createOp++;
+ }
+
+ return new float[arraySize];
+ }
+
+ void putDirtyArray(final float[] array, final int length) {
+ if (length != arraySize) {
+ if (doChecks) {
+ System.out.println("ArrayCache: bad length = " + length);
+ }
+ return;
+ }
+ if (doStats) {
+ returnOp++;
+ }
+
+ // NO clean-up of array data = DIRTY ARRAY
+
+ if (doCleanDirty) {
+ // Force zero-fill dirty arrays:
+ Arrays.fill(array, 0, array.length, 0f);
+ }
+
+ // fill cache:
+ floatArrays.addLast(array);
+ }
+
+ void putArray(final float[] array, final int length,
+ final int fromIndex, final int toIndex)
+ {
+ if (length != arraySize) {
+ if (doChecks) {
+ System.out.println("ArrayCache: bad length = " + length);
+ }
+ return;
+ }
+ if (doStats) {
+ returnOp++;
+ }
+
+ // clean-up array of dirty part[fromIndex; toIndex[
+ fill(array, fromIndex, toIndex, 0f);
+
+ // fill cache:
+ floatArrays.addLast(array);
+ }
+
+ static void fill(final float[] array, final int fromIndex,
+ final int toIndex, final float value)
+ {
+ // clear array data:
+ /*
+ * Arrays.fill is faster than System.arraycopy(empty array)
+ * or Unsafe.setMemory(byte 0)
+ */
+ if (toIndex != 0) {
+ Arrays.fill(array, fromIndex, toIndex, value);
+ }
+
+ if (doChecks) {
+ check(array, 0, array.length, value);
+ }
+ }
+
+ static void check(final float[] array, final int fromIndex,
+ final int toIndex, final float value)
+ {
+ if (doChecks) {
+ // check zero on full array:
+ for (int i = fromIndex; i < toIndex; i++) {
+ if (array[i] != value) {
+ logException("Invalid array value at " + i + "\n"
+ + Arrays.toString(array), new Throwable());
+
+ // ensure array is correctly filled:
+ Arrays.fill(array, value);
+
+ return;
+ }
+ }
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/FloatMath.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,223 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package sun.java2d.marlin;
+
+import sun.misc.DoubleConsts;
+import sun.misc.FloatConsts;
+
+/**
+ * Faster Math ceil / floor routines derived from StrictMath
+ */
+public final class FloatMath implements MarlinConst {
+
+ // overflow / NaN handling enabled:
+ static final boolean CHECK_OVERFLOW = true;
+ static final boolean CHECK_NAN = true;
+
+ private FloatMath() {
+ // utility class
+ }
+
+ // faster inlined min/max functions in the branch prediction is high
+ static float max(final float a, final float b) {
+ // no NaN handling
+ return (a >= b) ? a : b;
+ }
+
+ static int max(final int a, final int b) {
+ return (a >= b) ? a : b;
+ }
+
+ static int min(final int a, final int b) {
+ return (a <= b) ? a : b;
+ }
+
+ /**
+ * Returns the smallest (closest to negative infinity) {@code float} value
+ * that is greater than or equal to the argument and is equal to a
+ * mathematical integer. Special cases:
+ * <ul><li>If the argument value is already equal to a mathematical integer,
+ * then the result is the same as the argument. <li>If the argument is NaN
+ * or an infinity or positive zero or negative zero, then the result is the
+ * same as the argument. <li>If the argument value is less than zero but
+ * greater than -1.0, then the result is negative zero.</ul> Note that the
+ * value of {@code StrictMath.ceil(x)} is exactly the value of
+ * {@code -StrictMath.floor(-x)}.
+ *
+ * @param a a value.
+ * @return the smallest (closest to negative infinity) floating-point value
+ * that is greater than or equal to the argument and is equal to a
+ * mathematical integer.
+ */
+ public static float ceil_f(final float a) {
+ // Derived from StrictMath.ceil(double):
+
+ // Inline call to Math.getExponent(a) to
+ // compute only once Float.floatToRawIntBits(a)
+ final int doppel = Float.floatToRawIntBits(a);
+
+ final int exponent = ((doppel & FloatConsts.EXP_BIT_MASK)
+ >> (FloatConsts.SIGNIFICAND_WIDTH - 1))
+ - FloatConsts.EXP_BIAS;
+
+ if (exponent < 0) {
+ /*
+ * Absolute value of argument is less than 1.
+ * floorOrceil(-0.0) => -0.0
+ * floorOrceil(+0.0) => +0.0
+ */
+ return ((a == 0) ? a :
+ ( (a < 0f) ? -0f : 1f) );
+ }
+ if (CHECK_OVERFLOW && (exponent >= 23)) { // 52 for double
+ /*
+ * Infinity, NaN, or a value so large it must be integral.
+ */
+ return a;
+ }
+ // Else the argument is either an integral value already XOR it
+ // has to be rounded to one.
+ assert exponent >= 0 && exponent <= 22; // 51 for double
+
+ final int intpart = doppel
+ & (~(FloatConsts.SIGNIF_BIT_MASK >> exponent));
+
+ if (intpart == doppel) {
+ return a; // integral value (including 0)
+ }
+
+ // 0 handled above as an integer
+ // sign: 1 for negative, 0 for positive numbers
+ // add : 0 for negative and 1 for positive numbers
+ return Float.intBitsToFloat(intpart) + ((~intpart) >>> 31);
+ }
+
+ /**
+ * Returns the largest (closest to positive infinity) {@code float} value
+ * that is less than or equal to the argument and is equal to a mathematical
+ * integer. Special cases:
+ * <ul><li>If the argument value is already equal to a mathematical integer,
+ * then the result is the same as the argument. <li>If the argument is NaN
+ * or an infinity or positive zero or negative zero, then the result is the
+ * same as the argument.</ul>
+ *
+ * @param a a value.
+ * @return the largest (closest to positive infinity) floating-point value
+ * that less than or equal to the argument and is equal to a mathematical
+ * integer.
+ */
+ public static float floor_f(final float a) {
+ // Derived from StrictMath.floor(double):
+
+ // Inline call to Math.getExponent(a) to
+ // compute only once Float.floatToRawIntBits(a)
+ final int doppel = Float.floatToRawIntBits(a);
+
+ final int exponent = ((doppel & FloatConsts.EXP_BIT_MASK)
+ >> (FloatConsts.SIGNIFICAND_WIDTH - 1))
+ - FloatConsts.EXP_BIAS;
+
+ if (exponent < 0) {
+ /*
+ * Absolute value of argument is less than 1.
+ * floorOrceil(-0.0) => -0.0
+ * floorOrceil(+0.0) => +0.0
+ */
+ return ((a == 0) ? a :
+ ( (a < 0f) ? -1f : 0f) );
+ }
+ if (CHECK_OVERFLOW && (exponent >= 23)) { // 52 for double
+ /*
+ * Infinity, NaN, or a value so large it must be integral.
+ */
+ return a;
+ }
+ // Else the argument is either an integral value already XOR it
+ // has to be rounded to one.
+ assert exponent >= 0 && exponent <= 22; // 51 for double
+
+ final int intpart = doppel
+ & (~(FloatConsts.SIGNIF_BIT_MASK >> exponent));
+
+ if (intpart == doppel) {
+ return a; // integral value (including 0)
+ }
+
+ // 0 handled above as an integer
+ // sign: 1 for negative, 0 for positive numbers
+ // add : -1 for negative and 0 for positive numbers
+ return Float.intBitsToFloat(intpart) + (intpart >> 31);
+ }
+
+ /**
+ * Faster alternative to ceil(float) optimized for the integer domain
+ * and supporting NaN and +/-Infinity.
+ *
+ * @param a a value.
+ * @return the largest (closest to positive infinity) integer value
+ * that less than or equal to the argument and is equal to a mathematical
+ * integer.
+ */
+ public static int ceil_int(final float a) {
+ final int intpart = (int) a;
+
+ if (a <= intpart
+ || (CHECK_OVERFLOW && intpart == Integer.MAX_VALUE)
+ || CHECK_NAN && Float.isNaN(a)) {
+ return intpart;
+ }
+ return intpart + 1;
+ }
+
+ /**
+ * Faster alternative to floor(float) optimized for the integer domain
+ * and supporting NaN and +/-Infinity.
+ *
+ * @param a a value.
+ * @return the largest (closest to positive infinity) floating-point value
+ * that less than or equal to the argument and is equal to a mathematical
+ * integer.
+ */
+ public static int floor_int(final float a) {
+ final int intpart = (int) a;
+
+ if (a >= intpart
+ || (CHECK_OVERFLOW && intpart == Integer.MIN_VALUE)
+ || CHECK_NAN && Float.isNaN(a)) {
+ return intpart;
+ }
+ return intpart - 1;
+ }
+
+ /**
+ * Returns a floating-point power of two in the normal range.
+ */
+ static double powerOfTwoD(int n) {
+ assert (n >= DoubleConsts.MIN_EXPONENT && n <= DoubleConsts.MAX_EXPONENT);
+ return Double.longBitsToDouble((((long) n + (long) DoubleConsts.EXP_BIAS)
+ << (DoubleConsts.SIGNIFICAND_WIDTH - 1))
+ & DoubleConsts.EXP_BIT_MASK);
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Helpers.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,441 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import static java.lang.Math.PI;
+import static java.lang.Math.cos;
+import static java.lang.Math.sqrt;
+import static java.lang.Math.cbrt;
+import static java.lang.Math.acos;
+
+final class Helpers implements MarlinConst {
+
+ private Helpers() {
+ throw new Error("This is a non instantiable class");
+ }
+
+ static boolean within(final float x, final float y, final float err) {
+ final float d = y - x;
+ return (d <= err && d >= -err);
+ }
+
+ static boolean within(final double x, final double y, final double err) {
+ final double d = y - x;
+ return (d <= err && d >= -err);
+ }
+
+ static int quadraticRoots(final float a, final float b,
+ final float c, float[] zeroes, final int off)
+ {
+ int ret = off;
+ float t;
+ if (a != 0f) {
+ final float dis = b*b - 4*a*c;
+ if (dis > 0f) {
+ final float sqrtDis = (float)Math.sqrt(dis);
+ // depending on the sign of b we use a slightly different
+ // algorithm than the traditional one to find one of the roots
+ // so we can avoid adding numbers of different signs (which
+ // might result in loss of precision).
+ if (b >= 0f) {
+ zeroes[ret++] = (2f * c) / (-b - sqrtDis);
+ zeroes[ret++] = (-b - sqrtDis) / (2f * a);
+ } else {
+ zeroes[ret++] = (-b + sqrtDis) / (2f * a);
+ zeroes[ret++] = (2f * c) / (-b + sqrtDis);
+ }
+ } else if (dis == 0f) {
+ t = (-b) / (2f * a);
+ zeroes[ret++] = t;
+ }
+ } else {
+ if (b != 0f) {
+ t = (-c) / b;
+ zeroes[ret++] = t;
+ }
+ }
+ return ret - off;
+ }
+
+ // find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B)
+ static int cubicRootsInAB(float d, float a, float b, float c,
+ float[] pts, final int off,
+ final float A, final float B)
+ {
+ if (d == 0f) {
+ int num = quadraticRoots(a, b, c, pts, off);
+ return filterOutNotInAB(pts, off, num, A, B) - off;
+ }
+ // From Graphics Gems:
+ // http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
+ // (also from awt.geom.CubicCurve2D. But here we don't need as
+ // much accuracy and we don't want to create arrays so we use
+ // our own customized version).
+
+ // normal form: x^3 + ax^2 + bx + c = 0
+ a /= d;
+ b /= d;
+ c /= d;
+
+ // substitute x = y - A/3 to eliminate quadratic term:
+ // x^3 +Px + Q = 0
+ //
+ // Since we actually need P/3 and Q/2 for all of the
+ // calculations that follow, we will calculate
+ // p = P/3
+ // q = Q/2
+ // instead and use those values for simplicity of the code.
+ double sq_A = a * a;
+ double p = (1.0/3.0) * ((-1.0/3.0) * sq_A + b);
+ double q = (1.0/2.0) * ((2.0/27.0) * a * sq_A - (1.0/3.0) * a * b + c);
+
+ // use Cardano's formula
+
+ double cb_p = p * p * p;
+ double D = q * q + cb_p;
+
+ int num;
+ if (D < 0.0) {
+ // see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
+ final double phi = (1.0/3.0) * acos(-q / sqrt(-cb_p));
+ final double t = 2.0 * sqrt(-p);
+
+ pts[ off+0 ] = (float)( t * cos(phi));
+ pts[ off+1 ] = (float)(-t * cos(phi + (PI / 3.0)));
+ pts[ off+2 ] = (float)(-t * cos(phi - (PI / 3.0)));
+ num = 3;
+ } else {
+ final double sqrt_D = sqrt(D);
+ final double u = cbrt(sqrt_D - q);
+ final double v = - cbrt(sqrt_D + q);
+
+ pts[ off ] = (float)(u + v);
+ num = 1;
+
+ if (within(D, 0.0, 1e-8)) {
+ pts[off+1] = -(pts[off] / 2f);
+ num = 2;
+ }
+ }
+
+ final float sub = (1f/3f) * a;
+
+ for (int i = 0; i < num; ++i) {
+ pts[ off+i ] -= sub;
+ }
+
+ return filterOutNotInAB(pts, off, num, A, B) - off;
+ }
+
+ static float evalCubic(final float a, final float b,
+ final float c, final float d,
+ final float t)
+ {
+ return t * (t * (t * a + b) + c) + d;
+ }
+
+ static float evalQuad(final float a, final float b,
+ final float c, final float t)
+ {
+ return t * (t * a + b) + c;
+ }
+
+ // returns the index 1 past the last valid element remaining after filtering
+ static int filterOutNotInAB(float[] nums, final int off, final int len,
+ final float a, final float b)
+ {
+ int ret = off;
+ for (int i = off, end = off + len; i < end; i++) {
+ if (nums[i] >= a && nums[i] < b) {
+ nums[ret++] = nums[i];
+ }
+ }
+ return ret;
+ }
+
+ static float polyLineLength(float[] poly, final int off, final int nCoords) {
+ assert nCoords % 2 == 0 && poly.length >= off + nCoords : "";
+ float acc = 0;
+ for (int i = off + 2; i < off + nCoords; i += 2) {
+ acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]);
+ }
+ return acc;
+ }
+
+ static float linelen(float x1, float y1, float x2, float y2) {
+ final float dx = x2 - x1;
+ final float dy = y2 - y1;
+ return (float)Math.sqrt(dx*dx + dy*dy);
+ }
+
+ static void subdivide(float[] src, int srcoff, float[] left, int leftoff,
+ float[] right, int rightoff, int type)
+ {
+ switch(type) {
+ case 6:
+ Helpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff);
+ return;
+ case 8:
+ Helpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff);
+ return;
+ default:
+ throw new InternalError("Unsupported curve type");
+ }
+ }
+
+ static void isort(float[] a, int off, int len) {
+ for (int i = off + 1, end = off + len; i < end; i++) {
+ float ai = a[i];
+ int j = i - 1;
+ for (; j >= off && a[j] > ai; j--) {
+ a[j+1] = a[j];
+ }
+ a[j+1] = ai;
+ }
+ }
+
+ // Most of these are copied from classes in java.awt.geom because we need
+ // float versions of these functions, and Line2D, CubicCurve2D,
+ // QuadCurve2D don't provide them.
+ /**
+ * Subdivides the cubic curve specified by the coordinates
+ * stored in the <code>src</code> array at indices <code>srcoff</code>
+ * through (<code>srcoff</code> + 7) and stores the
+ * resulting two subdivided curves into the two result arrays at the
+ * corresponding indices.
+ * Either or both of the <code>left</code> and <code>right</code>
+ * arrays may be <code>null</code> or a reference to the same array
+ * as the <code>src</code> array.
+ * Note that the last point in the first subdivided curve is the
+ * same as the first point in the second subdivided curve. Thus,
+ * it is possible to pass the same array for <code>left</code>
+ * and <code>right</code> and to use offsets, such as <code>rightoff</code>
+ * equals (<code>leftoff</code> + 6), in order
+ * to avoid allocating extra storage for this common point.
+ * @param src the array holding the coordinates for the source curve
+ * @param srcoff the offset into the array of the beginning of the
+ * the 6 source coordinates
+ * @param left the array for storing the coordinates for the first
+ * half of the subdivided curve
+ * @param leftoff the offset into the array of the beginning of the
+ * the 6 left coordinates
+ * @param right the array for storing the coordinates for the second
+ * half of the subdivided curve
+ * @param rightoff the offset into the array of the beginning of the
+ * the 6 right coordinates
+ * @since 1.7
+ */
+ static void subdivideCubic(float src[], int srcoff,
+ float left[], int leftoff,
+ float right[], int rightoff)
+ {
+ float x1 = src[srcoff + 0];
+ float y1 = src[srcoff + 1];
+ float ctrlx1 = src[srcoff + 2];
+ float ctrly1 = src[srcoff + 3];
+ float ctrlx2 = src[srcoff + 4];
+ float ctrly2 = src[srcoff + 5];
+ float x2 = src[srcoff + 6];
+ float y2 = src[srcoff + 7];
+ if (left != null) {
+ left[leftoff + 0] = x1;
+ left[leftoff + 1] = y1;
+ }
+ if (right != null) {
+ right[rightoff + 6] = x2;
+ right[rightoff + 7] = y2;
+ }
+ x1 = (x1 + ctrlx1) / 2f;
+ y1 = (y1 + ctrly1) / 2f;
+ x2 = (x2 + ctrlx2) / 2f;
+ y2 = (y2 + ctrly2) / 2f;
+ float centerx = (ctrlx1 + ctrlx2) / 2f;
+ float centery = (ctrly1 + ctrly2) / 2f;
+ ctrlx1 = (x1 + centerx) / 2f;
+ ctrly1 = (y1 + centery) / 2f;
+ ctrlx2 = (x2 + centerx) / 2f;
+ ctrly2 = (y2 + centery) / 2f;
+ centerx = (ctrlx1 + ctrlx2) / 2f;
+ centery = (ctrly1 + ctrly2) / 2f;
+ if (left != null) {
+ left[leftoff + 2] = x1;
+ left[leftoff + 3] = y1;
+ left[leftoff + 4] = ctrlx1;
+ left[leftoff + 5] = ctrly1;
+ left[leftoff + 6] = centerx;
+ left[leftoff + 7] = centery;
+ }
+ if (right != null) {
+ right[rightoff + 0] = centerx;
+ right[rightoff + 1] = centery;
+ right[rightoff + 2] = ctrlx2;
+ right[rightoff + 3] = ctrly2;
+ right[rightoff + 4] = x2;
+ right[rightoff + 5] = y2;
+ }
+ }
+
+
+ static void subdivideCubicAt(float t, float src[], int srcoff,
+ float left[], int leftoff,
+ float right[], int rightoff)
+ {
+ float x1 = src[srcoff + 0];
+ float y1 = src[srcoff + 1];
+ float ctrlx1 = src[srcoff + 2];
+ float ctrly1 = src[srcoff + 3];
+ float ctrlx2 = src[srcoff + 4];
+ float ctrly2 = src[srcoff + 5];
+ float x2 = src[srcoff + 6];
+ float y2 = src[srcoff + 7];
+ if (left != null) {
+ left[leftoff + 0] = x1;
+ left[leftoff + 1] = y1;
+ }
+ if (right != null) {
+ right[rightoff + 6] = x2;
+ right[rightoff + 7] = y2;
+ }
+ x1 = x1 + t * (ctrlx1 - x1);
+ y1 = y1 + t * (ctrly1 - y1);
+ x2 = ctrlx2 + t * (x2 - ctrlx2);
+ y2 = ctrly2 + t * (y2 - ctrly2);
+ float centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
+ float centery = ctrly1 + t * (ctrly2 - ctrly1);
+ ctrlx1 = x1 + t * (centerx - x1);
+ ctrly1 = y1 + t * (centery - y1);
+ ctrlx2 = centerx + t * (x2 - centerx);
+ ctrly2 = centery + t * (y2 - centery);
+ centerx = ctrlx1 + t * (ctrlx2 - ctrlx1);
+ centery = ctrly1 + t * (ctrly2 - ctrly1);
+ if (left != null) {
+ left[leftoff + 2] = x1;
+ left[leftoff + 3] = y1;
+ left[leftoff + 4] = ctrlx1;
+ left[leftoff + 5] = ctrly1;
+ left[leftoff + 6] = centerx;
+ left[leftoff + 7] = centery;
+ }
+ if (right != null) {
+ right[rightoff + 0] = centerx;
+ right[rightoff + 1] = centery;
+ right[rightoff + 2] = ctrlx2;
+ right[rightoff + 3] = ctrly2;
+ right[rightoff + 4] = x2;
+ right[rightoff + 5] = y2;
+ }
+ }
+
+ static void subdivideQuad(float src[], int srcoff,
+ float left[], int leftoff,
+ float right[], int rightoff)
+ {
+ float x1 = src[srcoff + 0];
+ float y1 = src[srcoff + 1];
+ float ctrlx = src[srcoff + 2];
+ float ctrly = src[srcoff + 3];
+ float x2 = src[srcoff + 4];
+ float y2 = src[srcoff + 5];
+ if (left != null) {
+ left[leftoff + 0] = x1;
+ left[leftoff + 1] = y1;
+ }
+ if (right != null) {
+ right[rightoff + 4] = x2;
+ right[rightoff + 5] = y2;
+ }
+ x1 = (x1 + ctrlx) / 2f;
+ y1 = (y1 + ctrly) / 2f;
+ x2 = (x2 + ctrlx) / 2f;
+ y2 = (y2 + ctrly) / 2f;
+ ctrlx = (x1 + x2) / 2f;
+ ctrly = (y1 + y2) / 2f;
+ if (left != null) {
+ left[leftoff + 2] = x1;
+ left[leftoff + 3] = y1;
+ left[leftoff + 4] = ctrlx;
+ left[leftoff + 5] = ctrly;
+ }
+ if (right != null) {
+ right[rightoff + 0] = ctrlx;
+ right[rightoff + 1] = ctrly;
+ right[rightoff + 2] = x2;
+ right[rightoff + 3] = y2;
+ }
+ }
+
+ static void subdivideQuadAt(float t, float src[], int srcoff,
+ float left[], int leftoff,
+ float right[], int rightoff)
+ {
+ float x1 = src[srcoff + 0];
+ float y1 = src[srcoff + 1];
+ float ctrlx = src[srcoff + 2];
+ float ctrly = src[srcoff + 3];
+ float x2 = src[srcoff + 4];
+ float y2 = src[srcoff + 5];
+ if (left != null) {
+ left[leftoff + 0] = x1;
+ left[leftoff + 1] = y1;
+ }
+ if (right != null) {
+ right[rightoff + 4] = x2;
+ right[rightoff + 5] = y2;
+ }
+ x1 = x1 + t * (ctrlx - x1);
+ y1 = y1 + t * (ctrly - y1);
+ x2 = ctrlx + t * (x2 - ctrlx);
+ y2 = ctrly + t * (y2 - ctrly);
+ ctrlx = x1 + t * (x2 - x1);
+ ctrly = y1 + t * (y2 - y1);
+ if (left != null) {
+ left[leftoff + 2] = x1;
+ left[leftoff + 3] = y1;
+ left[leftoff + 4] = ctrlx;
+ left[leftoff + 5] = ctrly;
+ }
+ if (right != null) {
+ right[rightoff + 0] = ctrlx;
+ right[rightoff + 1] = ctrly;
+ right[rightoff + 2] = x2;
+ right[rightoff + 3] = y2;
+ }
+ }
+
+ static void subdivideAt(float t, float src[], int srcoff,
+ float left[], int leftoff,
+ float right[], int rightoff, int size)
+ {
+ switch(size) {
+ case 8:
+ subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff);
+ return;
+ case 6:
+ subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff);
+ return;
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/IntArrayCache.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,151 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.ArrayDeque;
+import java.util.Arrays;
+import static sun.java2d.marlin.MarlinUtils.logException;
+import static sun.java2d.marlin.MarlinUtils.logInfo;
+
+final class IntArrayCache implements MarlinConst {
+
+ private final int arraySize;
+ private final ArrayDeque<int[]> intArrays;
+ // stats
+ private int getOp = 0;
+ private int createOp = 0;
+ private int returnOp = 0;
+
+ void dumpStats() {
+ if (getOp > 0) {
+ logInfo("IntArrayCache[" + arraySize + "]: get: " + getOp
+ + " created: " + createOp + " - returned: " + returnOp
+ + " :: cache size: " + intArrays.size());
+ }
+ }
+
+ IntArrayCache(final int arraySize) {
+ this.arraySize = arraySize;
+ // small but enough: almost 1 cache line
+ this.intArrays = new ArrayDeque<int[]>(6);
+ }
+
+ int[] getArray() {
+ if (doStats) {
+ getOp++;
+ }
+
+ // use cache:
+ final int[] array = intArrays.pollLast();
+ if (array != null) {
+ return array;
+ }
+
+ if (doStats) {
+ createOp++;
+ }
+
+ return new int[arraySize];
+ }
+
+ void putDirtyArray(final int[] array, final int length) {
+ if (length != arraySize) {
+ if (doChecks) {
+ System.out.println("ArrayCache: bad length = " + length);
+ }
+ return;
+ }
+ if (doStats) {
+ returnOp++;
+ }
+
+ // NO clean-up of array data = DIRTY ARRAY
+
+ if (doCleanDirty) {
+ // Force zero-fill dirty arrays:
+ Arrays.fill(array, 0, array.length, 0);
+ }
+
+ // fill cache:
+ intArrays.addLast(array);
+ }
+
+ void putArray(final int[] array, final int length,
+ final int fromIndex, final int toIndex)
+ {
+ if (length != arraySize) {
+ if (doChecks) {
+ System.out.println("ArrayCache: bad length = " + length);
+ }
+ return;
+ }
+ if (doStats) {
+ returnOp++;
+ }
+
+ // clean-up array of dirty part[fromIndex; toIndex[
+ fill(array, fromIndex, toIndex, 0);
+
+ // fill cache:
+ intArrays.addLast(array);
+ }
+
+ static void fill(final int[] array, final int fromIndex,
+ final int toIndex, final int value)
+ {
+ // clear array data:
+ /*
+ * Arrays.fill is faster than System.arraycopy(empty array)
+ * or Unsafe.setMemory(byte 0)
+ */
+ if (toIndex != 0) {
+ Arrays.fill(array, fromIndex, toIndex, value);
+ }
+
+ if (doChecks) {
+ check(array, 0, array.length, value);
+ }
+ }
+
+ static void check(final int[] array, final int fromIndex,
+ final int toIndex, final int value)
+ {
+ if (doChecks) {
+ // check zero on full array:
+ for (int i = fromIndex; i < toIndex; i++) {
+ if (array[i] != value) {
+ logException("Invalid array value at " + i + "\n"
+ + Arrays.toString(array), new Throwable());
+
+ // ensure array is correctly filled:
+ Arrays.fill(array, value);
+
+ return;
+ }
+ }
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinCache.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,676 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import jdk.internal.misc.Unsafe;
+
+/**
+ * An object used to cache pre-rendered complex paths.
+ *
+ * @see Renderer
+ */
+public final class MarlinCache implements MarlinConst {
+
+ static final boolean FORCE_RLE = MarlinProperties.isForceRLE();
+ static final boolean FORCE_NO_RLE = MarlinProperties.isForceNoRLE();
+ // minimum width to try using RLE encoding:
+ static final int RLE_MIN_WIDTH
+ = Math.max(BLOCK_SIZE, MarlinProperties.getRLEMinWidth());
+ // maximum width for RLE encoding:
+ // values are stored as int [x|alpha] where alpha is 8 bits
+ static final int RLE_MAX_WIDTH = 1 << (24 - 1);
+
+ // 2048 (pixelSize) alpha values (width) x 32 rows (tile) = 64K bytes
+ // x1 instead of 4 bytes (RLE) ie 1/4 capacity or average good RLE compression
+ static final long INITIAL_CHUNK_ARRAY = TILE_SIZE * INITIAL_PIXEL_DIM; // 64K
+
+ // The alpha map used by this object (taken out of our map cache) to convert
+ // pixel coverage counts gotten from MarlinCache (which are in the range
+ // [0, maxalpha]) into alpha values, which are in [0,256).
+ static final byte[] ALPHA_MAP;
+
+ static final OffHeapArray ALPHA_MAP_UNSAFE;
+
+ static {
+ final byte[] _ALPHA_MAP = buildAlphaMap(MAX_AA_ALPHA);
+
+ ALPHA_MAP_UNSAFE = new OffHeapArray(_ALPHA_MAP, _ALPHA_MAP.length); // 1K
+ ALPHA_MAP =_ALPHA_MAP;
+
+ final Unsafe _unsafe = OffHeapArray.unsafe;
+ final long addr = ALPHA_MAP_UNSAFE.address;
+
+ for (int i = 0; i < _ALPHA_MAP.length; i++) {
+ _unsafe.putByte(addr + i, _ALPHA_MAP[i]);
+ }
+ }
+
+ int bboxX0, bboxY0, bboxX1, bboxY1;
+
+ // 1D dirty arrays
+ // row index in rowAAChunk[]
+ final long[] rowAAChunkIndex = new long[TILE_SIZE];
+ // first pixel (inclusive) for each row
+ final int[] rowAAx0 = new int[TILE_SIZE];
+ // last pixel (exclusive) for each row
+ final int[] rowAAx1 = new int[TILE_SIZE];
+ // encoding mode (0=raw, 1=RLE encoding) for each row
+ final int[] rowAAEnc = new int[TILE_SIZE];
+ // coded length (RLE encoding) for each row
+ final long[] rowAALen = new long[TILE_SIZE];
+ // last position in RLE decoding for each row (getAlpha):
+ final long[] rowAAPos = new long[TILE_SIZE];
+
+ // dirty off-heap array containing pixel coverages for (32) rows (packed)
+ // if encoding=raw, it contains alpha coverage values (val) as integer
+ // if encoding=RLE, it contains tuples (val, last x-coordinate exclusive)
+ // use rowAAx0/rowAAx1 to get row indices within this chunk
+ final OffHeapArray rowAAChunk;
+
+ // current position in rowAAChunk array
+ long rowAAChunkPos;
+
+ // touchedTile[i] is the sum of all the alphas in the tile with
+ // x=j*TILE_SIZE+bboxX0.
+ int[] touchedTile;
+
+ // per-thread renderer context
+ final RendererContext rdrCtx;
+
+ // large cached touchedTile (dirty)
+ final int[] touchedTile_initial = new int[INITIAL_ARRAY]; // 1 tile line
+
+ int tileMin, tileMax;
+
+ boolean useRLE = false;
+
+ MarlinCache(final RendererContext rdrCtx) {
+ this.rdrCtx = rdrCtx;
+
+ rowAAChunk = new OffHeapArray(rdrCtx, INITIAL_CHUNK_ARRAY);
+
+ touchedTile = touchedTile_initial;
+
+ // tile used marks:
+ tileMin = Integer.MAX_VALUE;
+ tileMax = Integer.MIN_VALUE;
+ }
+
+ void init(int minx, int miny, int maxx, int maxy, int edgeSumDeltaY)
+ {
+ // assert maxy >= miny && maxx >= minx;
+ bboxX0 = minx;
+ bboxY0 = miny;
+ bboxX1 = maxx;
+ bboxY1 = maxy;
+
+ final int width = (maxx - minx);
+
+ if (FORCE_NO_RLE) {
+ useRLE = false;
+ } else if (FORCE_RLE) {
+ useRLE = true;
+ } else {
+ // heuristics: use both bbox area and complexity
+ // ie number of primitives:
+
+ // fast check min and max width (maxx < 23bits):
+ if (width <= RLE_MIN_WIDTH || width >= RLE_MAX_WIDTH) {
+ useRLE = false;
+ } else {
+ // perimeter approach: how fit the total length into given height:
+
+ // if stroking: meanCrossings /= 2 => divide edgeSumDeltaY by 2
+ final int heightSubPixel
+ = (((maxy - miny) << SUBPIXEL_LG_POSITIONS_Y) << rdrCtx.stroking);
+
+ // check meanDist > block size:
+ // check width / (meanCrossings - 1) >= RLE_THRESHOLD
+
+ // fast case: (meanCrossingPerPixel <= 2) means 1 span only
+ useRLE = (edgeSumDeltaY <= (heightSubPixel << 1))
+ // note: already checked (meanCrossingPerPixel <= 2)
+ // rewritten to avoid division:
+ || (width * heightSubPixel) >
+ ((edgeSumDeltaY - heightSubPixel) << BLOCK_SIZE_LG);
+// ((edgeSumDeltaY - heightSubPixel) * RLE_THRESHOLD);
+// ((edgeSumDeltaY - heightSubPixel) << BLOCK_TH_LG);
+
+ if (doTrace && !useRLE) {
+ final float meanCrossings
+ = ((float) edgeSumDeltaY) / heightSubPixel;
+ final float meanDist = width / (meanCrossings - 1);
+
+ System.out.println("High complexity: "
+ + " for bbox[width = " + width
+ + " height = " + (maxy - miny)
+ + "] edgeSumDeltaY = " + edgeSumDeltaY
+ + " heightSubPixel = " + heightSubPixel
+ + " meanCrossings = "+ meanCrossings
+ + " meanDist = " + meanDist
+ + " width = " + (width * heightSubPixel)
+ + " <= criteria: " + ((edgeSumDeltaY - heightSubPixel) << BLOCK_SIZE_LG)
+ );
+ }
+ }
+ }
+
+ // the ceiling of (maxy - miny + 1) / TILE_SIZE;
+ final int nxTiles = (width + TILE_SIZE) >> TILE_SIZE_LG;
+
+ if (nxTiles > INITIAL_ARRAY) {
+ if (doStats) {
+ RendererContext.stats.stat_array_marlincache_touchedTile
+ .add(nxTiles);
+ }
+ touchedTile = rdrCtx.getIntArray(nxTiles);
+ }
+ }
+
+ /**
+ * Disposes this cache:
+ * clean up before reusing this instance
+ */
+ void dispose() {
+ // Reset touchedTile if needed:
+ resetTileLine(0);
+
+ // Return arrays:
+ if (touchedTile != touchedTile_initial) {
+ rdrCtx.putIntArray(touchedTile, 0, 0); // already zero filled
+ touchedTile = touchedTile_initial;
+ }
+ // At last: resize back off-heap rowAA to initial size
+ if (rowAAChunk.length != INITIAL_CHUNK_ARRAY) {
+ // note: may throw OOME:
+ rowAAChunk.resize(INITIAL_CHUNK_ARRAY);
+ }
+ if (doCleanDirty) {
+ // Force zero-fill dirty arrays:
+ rowAAChunk.fill(BYTE_0);
+ }
+ }
+
+ void resetTileLine(final int pminY) {
+ // update bboxY0 to process a complete tile line [0 - 32]
+ bboxY0 = pminY;
+
+ // reset current pos
+ if (doStats) {
+ RendererContext.stats.stat_cache_rowAAChunk.add(rowAAChunkPos);
+ }
+ rowAAChunkPos = 0L;
+
+ // Reset touchedTile:
+ if (tileMin != Integer.MAX_VALUE) {
+ if (doStats) {
+ RendererContext.stats.stat_cache_tiles.add(tileMax - tileMin);
+ }
+ // clean only dirty touchedTile:
+ if (tileMax == 1) {
+ touchedTile[0] = 0;
+ } else {
+ IntArrayCache.fill(touchedTile, tileMin, tileMax, 0);
+ }
+ // reset tile used marks:
+ tileMin = Integer.MAX_VALUE;
+ tileMax = Integer.MIN_VALUE;
+ }
+
+ if (doCleanDirty) {
+ // Force zero-fill dirty arrays:
+ rowAAChunk.fill(BYTE_0);
+ }
+ }
+
+ void clearAARow(final int y) {
+ // process tile line [0 - 32]
+ final int row = y - bboxY0;
+
+ // update pixel range:
+ rowAAx0[row] = 0; // first pixel inclusive
+ rowAAx1[row] = 0; // last pixel exclusive
+ rowAAEnc[row] = 0; // raw encoding
+
+ // note: leave rowAAChunkIndex[row] undefined
+ // and rowAALen[row] & rowAAPos[row] (RLE)
+ }
+
+ /**
+ * Copy the given alpha data into the rowAA cache
+ * @param alphaRow alpha data to copy from
+ * @param y y pixel coordinate
+ * @param px0 first pixel inclusive x0
+ * @param px1 last pixel exclusive x1
+ */
+ void copyAARowNoRLE(final int[] alphaRow, final int y,
+ final int px0, final int px1)
+ {
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_copyAARow.start();
+ }
+
+ // skip useless pixels above boundary
+ final int px_bbox1 = FloatMath.min(px1, bboxX1);
+
+ if (doLogBounds) {
+ MarlinUtils.logInfo("row = [" + px0 + " ... " + px_bbox1
+ + " (" + px1 + ") [ for y=" + y);
+ }
+
+ final int row = y - bboxY0;
+
+ // update pixel range:
+ rowAAx0[row] = px0; // first pixel inclusive
+ rowAAx1[row] = px_bbox1; // last pixel exclusive
+ rowAAEnc[row] = 0; // raw encoding
+
+ // get current position (bytes):
+ final long pos = rowAAChunkPos;
+ // update row index to current position:
+ rowAAChunkIndex[row] = pos;
+
+ // determine need array size (may overflow):
+ final long needSize = pos + (px_bbox1 - px0);
+
+ // update next position (bytes):
+ rowAAChunkPos = needSize;
+
+ // update row data:
+ final OffHeapArray _rowAAChunk = rowAAChunk;
+ // ensure rowAAChunk capacity:
+ if (_rowAAChunk.length < needSize) {
+ expandRowAAChunk(needSize);
+ }
+ if (doStats) {
+ RendererContext.stats.stat_cache_rowAA.add(px_bbox1 - px0);
+ }
+
+ // rowAA contains only alpha values for range[x0; x1[
+ final int[] _touchedTile = touchedTile;
+ final int _TILE_SIZE_LG = TILE_SIZE_LG;
+
+ final int from = px0 - bboxX0; // first pixel inclusive
+ final int to = px_bbox1 - bboxX0; // last pixel exclusive
+
+ final Unsafe _unsafe = OffHeapArray.unsafe;
+ final long SIZE_BYTE = 1L;
+ final long addr_alpha = ALPHA_MAP_UNSAFE.address;
+ long addr_off = _rowAAChunk.address + pos;
+
+ // compute alpha sum into rowAA:
+ for (int x = from, val = 0; x < to; x++) {
+ // alphaRow is in [0; MAX_COVERAGE]
+ val += alphaRow[x]; // [from; to[
+
+ // ensure values are in [0; MAX_AA_ALPHA] range
+ if (DO_AA_RANGE_CHECK) {
+ if (val < 0) {
+ System.out.println("Invalid coverage = " + val);
+ val = 0;
+ }
+ if (val > MAX_AA_ALPHA) {
+ System.out.println("Invalid coverage = " + val);
+ val = MAX_AA_ALPHA;
+ }
+ }
+
+ // store alpha sum (as byte):
+ if (val == 0) {
+ _unsafe.putByte(addr_off, (byte)0); // [0..255]
+ } else {
+ _unsafe.putByte(addr_off, _unsafe.getByte(addr_alpha + val)); // [0..255]
+
+ // update touchedTile
+ _touchedTile[x >> _TILE_SIZE_LG] += val;
+ }
+ addr_off += SIZE_BYTE;
+ }
+
+ // update tile used marks:
+ int tx = from >> _TILE_SIZE_LG; // inclusive
+ if (tx < tileMin) {
+ tileMin = tx;
+ }
+
+ tx = ((to - 1) >> _TILE_SIZE_LG) + 1; // exclusive (+1 to be sure)
+ if (tx > tileMax) {
+ tileMax = tx;
+ }
+
+ if (doLogBounds) {
+ MarlinUtils.logInfo("clear = [" + from + " ... " + to + "[");
+ }
+
+ // Clear alpha row for reuse:
+ IntArrayCache.fill(alphaRow, from, px1 - bboxX0, 0);
+
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_copyAARow.stop();
+ }
+ }
+
+ void copyAARowRLE_WithBlockFlags(final int[] blkFlags, final int[] alphaRow,
+ final int y, final int px0, final int px1)
+ {
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_copyAARow.start();
+ }
+
+ // Copy rowAA data into the piscesCache if one is present
+ final int _bboxX0 = bboxX0;
+
+ // process tile line [0 - 32]
+ final int row = y - bboxY0;
+ final int from = px0 - _bboxX0; // first pixel inclusive
+
+ // skip useless pixels above boundary
+ final int px_bbox1 = FloatMath.min(px1, bboxX1);
+ final int to = px_bbox1 - _bboxX0; // last pixel exclusive
+
+ if (doLogBounds) {
+ MarlinUtils.logInfo("row = [" + px0 + " ... " + px_bbox1
+ + " (" + px1 + ") [ for y=" + y);
+ }
+
+ // get current position:
+ final long initialPos = startRLERow(row, px0, px_bbox1);
+
+ // determine need array size:
+ // pessimistic: max needed size = deltaX x 4 (1 int)
+ final int maxLen = (to - from);
+ final long needSize = initialPos + (maxLen << 2);
+
+ // update row data:
+ OffHeapArray _rowAAChunk = rowAAChunk;
+ // ensure rowAAChunk capacity:
+ if (_rowAAChunk.length < needSize) {
+ expandRowAAChunk(needSize);
+ }
+
+ final Unsafe _unsafe = OffHeapArray.unsafe;
+ final long SIZE_INT = 4L;
+ final long addr_alpha = ALPHA_MAP_UNSAFE.address;
+ long addr_off = _rowAAChunk.address + initialPos;
+
+ final int[] _touchedTile = touchedTile;
+ final int _TILE_SIZE_LG = TILE_SIZE_LG;
+ final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
+
+ // traverse flagged blocks:
+ final int blkW = (from >> _BLK_SIZE_LG);
+ final int blkE = (to >> _BLK_SIZE_LG) + 1;
+
+ // Perform run-length encoding and store results in the piscesCache
+ int val = 0;
+ int cx0 = from;
+ int runLen;
+
+ final int _MAX_VALUE = Integer.MAX_VALUE;
+ int last_t0 = _MAX_VALUE;
+
+ int skip = 0;
+
+ for (int t = blkW, blk_x0, blk_x1, cx, delta; t <= blkE; t++) {
+ if (blkFlags[t] != 0) {
+ blkFlags[t] = 0;
+
+ if (last_t0 == _MAX_VALUE) {
+ last_t0 = t;
+ }
+ continue;
+ }
+ if (last_t0 != _MAX_VALUE) {
+ // emit blocks:
+ blk_x0 = FloatMath.max(last_t0 << _BLK_SIZE_LG, from);
+ last_t0 = _MAX_VALUE;
+
+ // (last block pixel+1) inclusive => +1
+ blk_x1 = FloatMath.min((t << _BLK_SIZE_LG) + 1, to);
+
+ for (cx = blk_x0; cx < blk_x1; cx++) {
+ if ((delta = alphaRow[cx]) != 0) {
+ alphaRow[cx] = 0;
+
+ // not first rle entry:
+ if (cx != cx0) {
+ runLen = cx - cx0;
+
+ // store alpha coverage (ensure within bounds):
+ // as [absX|val] where:
+ // absX is the absolute x-coordinate:
+ // note: last pixel exclusive (>= 0)
+ // note: it should check X is smaller than 23bits (overflow)!
+
+ // special case to encode entries into a single int:
+ if (val == 0) {
+ _unsafe.putInt(addr_off,
+ ((_bboxX0 + cx) << 8)
+ );
+ } else {
+ _unsafe.putInt(addr_off,
+ ((_bboxX0 + cx) << 8)
+ | (((int) _unsafe.getByte(addr_alpha + val)) & 0xFF) // [0..255]
+ );
+
+ if (runLen == 1) {
+ _touchedTile[cx0 >> _TILE_SIZE_LG] += val;
+ } else {
+ touchTile(cx0, val, cx, runLen, _touchedTile);
+ }
+ }
+ addr_off += SIZE_INT;
+
+ if (doStats) {
+ RendererContext.stats.hist_tile_generator_encoding_runLen
+ .add(runLen);
+ }
+ cx0 = cx;
+ }
+
+ // alpha value = running sum of coverage delta:
+ val += delta;
+
+ // ensure values are in [0; MAX_AA_ALPHA] range
+ if (DO_AA_RANGE_CHECK) {
+ if (val < 0) {
+ System.out.println("Invalid coverage = " + val);
+ val = 0;
+ }
+ if (val > MAX_AA_ALPHA) {
+ System.out.println("Invalid coverage = " + val);
+ val = MAX_AA_ALPHA;
+ }
+ }
+ }
+ }
+ } else if (doStats) {
+ skip++;
+ }
+ }
+
+ // Process remaining RLE run:
+ runLen = to - cx0;
+
+ // store alpha coverage (ensure within bounds):
+ // as (int)[absX|val] where:
+ // absX is the absolute x-coordinate in bits 31 to 8 and val in bits 0..7
+ // note: last pixel exclusive (>= 0)
+ // note: it should check X is smaller than 23bits (overflow)!
+
+ // special case to encode entries into a single int:
+ if (val == 0) {
+ _unsafe.putInt(addr_off,
+ ((_bboxX0 + to) << 8)
+ );
+ } else {
+ _unsafe.putInt(addr_off,
+ ((_bboxX0 + to) << 8)
+ | (((int) _unsafe.getByte(addr_alpha + val)) & 0xFF) // [0..255]
+ );
+
+ if (runLen == 1) {
+ _touchedTile[cx0 >> _TILE_SIZE_LG] += val;
+ } else {
+ touchTile(cx0, val, to, runLen, _touchedTile);
+ }
+ }
+ addr_off += SIZE_INT;
+
+ if (doStats) {
+ RendererContext.stats.hist_tile_generator_encoding_runLen
+ .add(runLen);
+ }
+
+ long len = (addr_off - _rowAAChunk.address);
+
+ // update coded length as bytes:
+ rowAALen[row] = (len - initialPos);
+
+ // update current position:
+ rowAAChunkPos = len;
+
+ if (doStats) {
+ RendererContext.stats.stat_cache_rowAA.add(rowAALen[row]);
+ RendererContext.stats.hist_tile_generator_encoding_ratio.add(
+ (100 * skip) / (blkE - blkW)
+ );
+ }
+
+ // update tile used marks:
+ int tx = from >> _TILE_SIZE_LG; // inclusive
+ if (tx < tileMin) {
+ tileMin = tx;
+ }
+
+ tx = ((to - 1) >> _TILE_SIZE_LG) + 1; // exclusive (+1 to be sure)
+ if (tx > tileMax) {
+ tileMax = tx;
+ }
+
+ // Clear alpha row for reuse:
+ if (px1 > bboxX1) {
+ alphaRow[to ] = 0;
+ alphaRow[to + 1] = 0;
+ }
+ if (doChecks) {
+ IntArrayCache.check(blkFlags, 0, blkFlags.length, 0);
+ IntArrayCache.check(alphaRow, 0, alphaRow.length, 0);
+ }
+
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_copyAARow.stop();
+ }
+ }
+
+ long startRLERow(final int row, final int x0, final int x1) {
+ // rows are supposed to be added by increasing y.
+ rowAAx0[row] = x0; // first pixel inclusive
+ rowAAx1[row] = x1; // last pixel exclusive
+ rowAAEnc[row] = 1; // RLE encoding
+ rowAAPos[row] = 0L; // position = 0
+
+ // update row index to current position:
+ return (rowAAChunkIndex[row] = rowAAChunkPos);
+ }
+
+ private void expandRowAAChunk(final long needSize) {
+ if (doStats) {
+ RendererContext.stats.stat_array_marlincache_rowAAChunk
+ .add(needSize);
+ }
+
+ // note: throw IOOB if neededSize > 2Gb:
+ final long newSize = ArrayCache.getNewLargeSize(rowAAChunk.length, needSize);
+
+ rowAAChunk.resize(newSize);
+ }
+
+ private void touchTile(final int x0, final int val, final int x1,
+ final int runLen,
+ final int[] _touchedTile)
+ {
+ // the x and y of the current row, minus bboxX0, bboxY0
+ // process tile line [0 - 32]
+ final int _TILE_SIZE_LG = TILE_SIZE_LG;
+
+ // update touchedTile
+ int tx = (x0 >> _TILE_SIZE_LG);
+
+ // handle trivial case: same tile (x0, x0+runLen)
+ if (tx == (x1 >> _TILE_SIZE_LG)) {
+ // same tile:
+ _touchedTile[tx] += val * runLen;
+ return;
+ }
+
+ final int tx1 = (x1 - 1) >> _TILE_SIZE_LG;
+
+ if (tx <= tx1) {
+ final int nextTileXCoord = (tx + 1) << _TILE_SIZE_LG;
+ _touchedTile[tx++] += val * (nextTileXCoord - x0);
+ }
+ if (tx < tx1) {
+ // don't go all the way to tx1 - we need to handle the last
+ // tile as a special case (just like we did with the first
+ final int tileVal = (val << _TILE_SIZE_LG);
+ for (; tx < tx1; tx++) {
+ _touchedTile[tx] += tileVal;
+ }
+ }
+ // they will be equal unless x0 >> TILE_SIZE_LG == tx1
+ if (tx == tx1) {
+ final int txXCoord = tx << _TILE_SIZE_LG;
+ final int nextTileXCoord = (tx + 1) << _TILE_SIZE_LG;
+
+ final int lastXCoord = (nextTileXCoord <= x1) ? nextTileXCoord : x1;
+ _touchedTile[tx] += val * (lastXCoord - txXCoord);
+ }
+ }
+
+ int alphaSumInTile(final int x) {
+ return touchedTile[(x - bboxX0) >> TILE_SIZE_LG];
+ }
+
+ @Override
+ public String toString() {
+ return "bbox = ["
+ + bboxX0 + ", " + bboxY0 + " => "
+ + bboxX1 + ", " + bboxY1 + "]\n";
+ }
+
+ private static byte[] buildAlphaMap(final int maxalpha) {
+ // double size !
+ final byte[] alMap = new byte[maxalpha << 1];
+ final int halfmaxalpha = maxalpha >> 2;
+ for (int i = 0; i <= maxalpha; i++) {
+ alMap[i] = (byte) ((i * 255 + halfmaxalpha) / maxalpha);
+// System.out.println("alphaMap[" + i + "] = "
+// + Byte.toUnsignedInt(alMap[i]));
+ }
+ return alMap;
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinConst.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,121 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+/**
+ * Marlin constant holder using System properties
+ */
+interface MarlinConst {
+ // enable Logs (logger or stdout)
+ static final boolean enableLogs = false;
+ // enable Logger
+ static final boolean useLogger = enableLogs && MarlinProperties.isUseLogger();
+
+ // log new RendererContext
+ static final boolean logCreateContext = enableLogs
+ && MarlinProperties.isLogCreateContext();
+ // log misc.Unsafe alloc/realloc/free
+ static final boolean logUnsafeMalloc = enableLogs
+ && MarlinProperties.isLogUnsafeMalloc();
+
+ // do statistics
+ static final boolean doStats = enableLogs && MarlinProperties.isDoStats();
+ // do monitors
+ // disabled to reduce byte-code size a bit...
+ static final boolean doMonitors = enableLogs && false; // MarlinProperties.isDoMonitors();
+ // do checks
+ static final boolean doChecks = false; // MarlinProperties.isDoChecks();
+
+ // do AA range checks: disable when algorithm / code is stable
+ static final boolean DO_AA_RANGE_CHECK = false;
+
+ // enable logs
+ static final boolean doLogWidenArray = enableLogs && false;
+ // enable oversize logs
+ static final boolean doLogOverSize = enableLogs && false;
+ // enable traces
+ static final boolean doTrace = enableLogs && false;
+ // do flush monitors
+ static final boolean doFlushMonitors = true;
+ // use one polling thread to dump statistics/monitors
+ static final boolean useDumpThread = false;
+ // thread dump interval (ms)
+ static final long statDump = 5000L;
+
+ // do clean dirty array
+ static final boolean doCleanDirty = false;
+
+ // flag to use line simplifier
+ static final boolean useSimplifier = MarlinProperties.isUseSimplifier();
+
+ // flag to enable logs related bounds checks
+ static final boolean doLogBounds = enableLogs && false;
+
+ // Initial Array sizing (initial context capacity) ~ 512K
+
+ // 2048 pixel (width x height) for initial capacity
+ static final int INITIAL_PIXEL_DIM
+ = MarlinProperties.getInitialImageSize();
+
+ // typical array sizes: only odd numbers allowed below
+ static final int INITIAL_ARRAY = 256;
+ static final int INITIAL_SMALL_ARRAY = 1024;
+ static final int INITIAL_MEDIUM_ARRAY = 4096;
+ static final int INITIAL_LARGE_ARRAY = 8192;
+ static final int INITIAL_ARRAY_16K = 16384;
+ static final int INITIAL_ARRAY_32K = 32768;
+ // alpha row dimension
+ static final int INITIAL_AA_ARRAY = INITIAL_PIXEL_DIM;
+
+ // initial edges (24 bytes) = 24K [ints] = 96K
+ static final int INITIAL_EDGES_CAPACITY = 4096 * 24; // 6 ints per edges
+
+ // zero value as byte
+ static final byte BYTE_0 = (byte) 0;
+
+ // subpixels expressed as log2
+ public static final int SUBPIXEL_LG_POSITIONS_X
+ = MarlinProperties.getSubPixel_Log2_X();
+ public static final int SUBPIXEL_LG_POSITIONS_Y
+ = MarlinProperties.getSubPixel_Log2_Y();
+
+ // number of subpixels
+ public static final int SUBPIXEL_POSITIONS_X = 1 << (SUBPIXEL_LG_POSITIONS_X);
+ public static final int SUBPIXEL_POSITIONS_Y = 1 << (SUBPIXEL_LG_POSITIONS_Y);
+
+ public static final float NORM_SUBPIXELS
+ = (float)Math.sqrt(( SUBPIXEL_POSITIONS_X * SUBPIXEL_POSITIONS_X
+ + SUBPIXEL_POSITIONS_Y * SUBPIXEL_POSITIONS_Y)/2.0);
+
+ public static final int MAX_AA_ALPHA
+ = SUBPIXEL_POSITIONS_X * SUBPIXEL_POSITIONS_Y;
+
+ public static final int TILE_SIZE_LG = MarlinProperties.getTileSize_Log2();
+ public static final int TILE_SIZE = 1 << TILE_SIZE_LG; // 32 by default
+
+ public static final int BLOCK_SIZE_LG = MarlinProperties.getBlockSize_Log2();
+ public static final int BLOCK_SIZE = 1 << BLOCK_SIZE_LG;
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinProperties.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,181 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.security.AccessController;
+import static sun.java2d.marlin.MarlinUtils.logInfo;
+import sun.security.action.GetPropertyAction;
+
+public final class MarlinProperties {
+
+ private MarlinProperties() {
+ // no-op
+ }
+
+ // marlin system properties
+
+ public static boolean isUseThreadLocal() {
+ return getBoolean("sun.java2d.renderer.useThreadLocal", "true");
+ }
+
+ /**
+ * Return the initial pixel size used to define initial arrays
+ * (tile AA chunk, alpha line, buckets)
+ *
+ * @return 64 < initial pixel size < 32768 (2048 by default)
+ */
+ public static int getInitialImageSize() {
+ return getInteger("sun.java2d.renderer.pixelsize", 2048, 64, 32 * 1024);
+ }
+
+ /**
+ * Return the log(2) corresponding to subpixel on x-axis (
+ *
+ * @return 1 (2 subpixels) < initial pixel size < 4 (256 subpixels)
+ * (3 by default ie 8 subpixels)
+ */
+ public static int getSubPixel_Log2_X() {
+ return getInteger("sun.java2d.renderer.subPixel_log2_X", 3, 1, 8);
+ }
+
+ /**
+ * Return the log(2) corresponding to subpixel on y-axis (
+ *
+ * @return 1 (2 subpixels) < initial pixel size < 8 (256 subpixels)
+ * (3 by default ie 8 subpixels)
+ */
+ public static int getSubPixel_Log2_Y() {
+ return getInteger("sun.java2d.renderer.subPixel_log2_Y", 3, 1, 8);
+ }
+
+ /**
+ * Return the log(2) corresponding to the square tile size in pixels
+ *
+ * @return 3 (8x8 pixels) < tile size < 8 (256x256 pixels)
+ * (5 by default ie 32x32 pixels)
+ */
+ public static int getTileSize_Log2() {
+ return getInteger("sun.java2d.renderer.tileSize_log2", 5, 3, 8);
+ }
+
+ /**
+ * Return the log(2) corresponding to the block size in pixels
+ *
+ * @return 3 (8 pixels) < block size < 8 (256 pixels)
+ * (5 by default ie 32 pixels)
+ */
+ public static int getBlockSize_Log2() {
+ return getInteger("sun.java2d.renderer.blockSize_log2", 5, 3, 8);
+ }
+
+ // RLE / blockFlags settings
+
+ public static boolean isForceRLE() {
+ return getBoolean("sun.java2d.renderer.forceRLE", "false");
+ }
+
+ public static boolean isForceNoRLE() {
+ return getBoolean("sun.java2d.renderer.forceNoRLE", "false");
+ }
+
+ public static boolean isUseTileFlags() {
+ return getBoolean("sun.java2d.renderer.useTileFlags", "true");
+ }
+
+ public static boolean isUseTileFlagsWithHeuristics() {
+ return isUseTileFlags()
+ && getBoolean("sun.java2d.renderer.useTileFlags.useHeuristics", "true");
+ }
+
+ public static int getRLEMinWidth() {
+ return getInteger("sun.java2d.renderer.rleMinWidth", 64, 0, Integer.MAX_VALUE);
+ }
+
+ // optimisation parameters
+
+ public static boolean isUseSimplifier() {
+ return getBoolean("sun.java2d.renderer.useSimplifier", "false");
+ }
+
+ // debugging parameters
+
+ public static boolean isDoStats() {
+ return getBoolean("sun.java2d.renderer.doStats", "false");
+ }
+
+ public static boolean isDoMonitors() {
+ return getBoolean("sun.java2d.renderer.doMonitors", "false");
+ }
+
+ public static boolean isDoChecks() {
+ return getBoolean("sun.java2d.renderer.doChecks", "false");
+ }
+
+ // logging parameters
+
+ public static boolean isUseLogger() {
+ return getBoolean("sun.java2d.renderer.useLogger", "false");
+ }
+
+ public static boolean isLogCreateContext() {
+ return getBoolean("sun.java2d.renderer.logCreateContext", "false");
+ }
+
+ public static boolean isLogUnsafeMalloc() {
+ return getBoolean("sun.java2d.renderer.logUnsafeMalloc", "false");
+ }
+
+ // system property utilities
+ static boolean getBoolean(final String key, final String def) {
+ return Boolean.valueOf(AccessController.doPrivileged(
+ new GetPropertyAction(key, def)));
+ }
+
+ static int getInteger(final String key, final int def,
+ final int min, final int max)
+ {
+ final String property = AccessController.doPrivileged(
+ new GetPropertyAction(key));
+
+ int value = def;
+ if (property != null) {
+ try {
+ value = Integer.decode(property);
+ } catch (NumberFormatException e) {
+ logInfo("Invalid integer value for " + key + " = " + property);
+ }
+ }
+
+ // check for invalid values
+ if ((value < min) || (value > max)) {
+ logInfo("Invalid value for " + key + " = " + value
+ + "; expected value in range[" + min + ", " + max + "] !");
+ value = def;
+ }
+ return value;
+ }
+
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinRenderingEngine.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,1064 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.awt.BasicStroke;
+import java.awt.Shape;
+import java.awt.geom.AffineTransform;
+import java.awt.geom.Path2D;
+import java.awt.geom.PathIterator;
+import java.lang.ref.Reference;
+import java.security.AccessController;
+import java.util.concurrent.ConcurrentLinkedQueue;
+import static sun.java2d.marlin.MarlinUtils.logInfo;
+import sun.awt.geom.PathConsumer2D;
+import sun.java2d.pipe.AATileGenerator;
+import sun.java2d.pipe.Region;
+import sun.java2d.pipe.RenderingEngine;
+import sun.security.action.GetPropertyAction;
+
+/**
+ * Marlin RendererEngine implementation (derived from Pisces)
+ */
+public class MarlinRenderingEngine extends RenderingEngine
+ implements MarlinConst
+{
+ private static enum NormMode {ON_WITH_AA, ON_NO_AA, OFF}
+
+ private static final float MIN_PEN_SIZE = 1f / NORM_SUBPIXELS;
+
+ /**
+ * Public constructor
+ */
+ public MarlinRenderingEngine() {
+ super();
+ logSettings(MarlinRenderingEngine.class.getName());
+ }
+
+ /**
+ * Create a widened path as specified by the parameters.
+ * <p>
+ * The specified {@code src} {@link Shape} is widened according
+ * to the specified attribute parameters as per the
+ * {@link BasicStroke} specification.
+ *
+ * @param src the source path to be widened
+ * @param width the width of the widened path as per {@code BasicStroke}
+ * @param caps the end cap decorations as per {@code BasicStroke}
+ * @param join the segment join decorations as per {@code BasicStroke}
+ * @param miterlimit the miter limit as per {@code BasicStroke}
+ * @param dashes the dash length array as per {@code BasicStroke}
+ * @param dashphase the initial dash phase as per {@code BasicStroke}
+ * @return the widened path stored in a new {@code Shape} object
+ * @since 1.7
+ */
+ @Override
+ public Shape createStrokedShape(Shape src,
+ float width,
+ int caps,
+ int join,
+ float miterlimit,
+ float dashes[],
+ float dashphase)
+ {
+ final RendererContext rdrCtx = getRendererContext();
+ try {
+ // initialize a large copyable Path2D to avoid a lot of array growing:
+ final Path2D.Float p2d =
+ (rdrCtx.p2d == null) ?
+ (rdrCtx.p2d = new Path2D.Float(Path2D.WIND_NON_ZERO,
+ INITIAL_MEDIUM_ARRAY))
+ : rdrCtx.p2d;
+ // reset
+ p2d.reset();
+
+ strokeTo(rdrCtx,
+ src,
+ null,
+ width,
+ NormMode.OFF,
+ caps,
+ join,
+ miterlimit,
+ dashes,
+ dashphase,
+ rdrCtx.transformerPC2D.wrapPath2d(p2d)
+ );
+
+ // Use Path2D copy constructor (trim)
+ return new Path2D.Float(p2d);
+
+ } finally {
+ // recycle the RendererContext instance
+ returnRendererContext(rdrCtx);
+ }
+ }
+
+ /**
+ * Sends the geometry for a widened path as specified by the parameters
+ * to the specified consumer.
+ * <p>
+ * The specified {@code src} {@link Shape} is widened according
+ * to the parameters specified by the {@link BasicStroke} object.
+ * Adjustments are made to the path as appropriate for the
+ * {@link VALUE_STROKE_NORMALIZE} hint if the {@code normalize}
+ * boolean parameter is true.
+ * Adjustments are made to the path as appropriate for the
+ * {@link VALUE_ANTIALIAS_ON} hint if the {@code antialias}
+ * boolean parameter is true.
+ * <p>
+ * The geometry of the widened path is forwarded to the indicated
+ * {@link PathConsumer2D} object as it is calculated.
+ *
+ * @param src the source path to be widened
+ * @param bs the {@code BasicSroke} object specifying the
+ * decorations to be applied to the widened path
+ * @param normalize indicates whether stroke normalization should
+ * be applied
+ * @param antialias indicates whether or not adjustments appropriate
+ * to antialiased rendering should be applied
+ * @param consumer the {@code PathConsumer2D} instance to forward
+ * the widened geometry to
+ * @since 1.7
+ */
+ @Override
+ public void strokeTo(Shape src,
+ AffineTransform at,
+ BasicStroke bs,
+ boolean thin,
+ boolean normalize,
+ boolean antialias,
+ final PathConsumer2D consumer)
+ {
+ final NormMode norm = (normalize) ?
+ ((antialias) ? NormMode.ON_WITH_AA : NormMode.ON_NO_AA)
+ : NormMode.OFF;
+
+ final RendererContext rdrCtx = getRendererContext();
+ try {
+ strokeTo(rdrCtx, src, at, bs, thin, norm, antialias, consumer);
+ } finally {
+ // recycle the RendererContext instance
+ returnRendererContext(rdrCtx);
+ }
+ }
+
+ final void strokeTo(final RendererContext rdrCtx,
+ Shape src,
+ AffineTransform at,
+ BasicStroke bs,
+ boolean thin,
+ NormMode normalize,
+ boolean antialias,
+ PathConsumer2D pc2d)
+ {
+ float lw;
+ if (thin) {
+ if (antialias) {
+ lw = userSpaceLineWidth(at, MIN_PEN_SIZE);
+ } else {
+ lw = userSpaceLineWidth(at, 1.0f);
+ }
+ } else {
+ lw = bs.getLineWidth();
+ }
+ strokeTo(rdrCtx,
+ src,
+ at,
+ lw,
+ normalize,
+ bs.getEndCap(),
+ bs.getLineJoin(),
+ bs.getMiterLimit(),
+ bs.getDashArray(),
+ bs.getDashPhase(),
+ pc2d);
+ }
+
+ private final float userSpaceLineWidth(AffineTransform at, float lw) {
+
+ float widthScale;
+
+ if (at == null) {
+ widthScale = 1.0f;
+ } else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM |
+ AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
+ widthScale = (float)Math.sqrt(at.getDeterminant());
+ } else {
+ // First calculate the "maximum scale" of this transform.
+ double A = at.getScaleX(); // m00
+ double C = at.getShearX(); // m01
+ double B = at.getShearY(); // m10
+ double D = at.getScaleY(); // m11
+
+ /*
+ * Given a 2 x 2 affine matrix [ A B ] such that
+ * [ C D ]
+ * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
+ * find the maximum magnitude (norm) of the vector v'
+ * with the constraint (x^2 + y^2 = 1).
+ * The equation to maximize is
+ * |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
+ * or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
+ * Since sqrt is monotonic we can maximize |v'|^2
+ * instead and plug in the substitution y = sqrt(1 - x^2).
+ * Trigonometric equalities can then be used to get
+ * rid of most of the sqrt terms.
+ */
+
+ double EA = A*A + B*B; // x^2 coefficient
+ double EB = 2.0*(A*C + B*D); // xy coefficient
+ double EC = C*C + D*D; // y^2 coefficient
+
+ /*
+ * There is a lot of calculus omitted here.
+ *
+ * Conceptually, in the interests of understanding the
+ * terms that the calculus produced we can consider
+ * that EA and EC end up providing the lengths along
+ * the major axes and the hypot term ends up being an
+ * adjustment for the additional length along the off-axis
+ * angle of rotated or sheared ellipses as well as an
+ * adjustment for the fact that the equation below
+ * averages the two major axis lengths. (Notice that
+ * the hypot term contains a part which resolves to the
+ * difference of these two axis lengths in the absence
+ * of rotation.)
+ *
+ * In the calculus, the ratio of the EB and (EA-EC) terms
+ * ends up being the tangent of 2*theta where theta is
+ * the angle that the long axis of the ellipse makes
+ * with the horizontal axis. Thus, this equation is
+ * calculating the length of the hypotenuse of a triangle
+ * along that axis.
+ */
+
+ double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
+ // sqrt omitted, compare to squared limits below.
+ double widthsquared = ((EA + EC + hypot)/2.0);
+
+ widthScale = (float)Math.sqrt(widthsquared);
+ }
+
+ return (lw / widthScale);
+ }
+
+ final void strokeTo(final RendererContext rdrCtx,
+ Shape src,
+ AffineTransform at,
+ float width,
+ NormMode normalize,
+ int caps,
+ int join,
+ float miterlimit,
+ float dashes[],
+ float dashphase,
+ PathConsumer2D pc2d)
+ {
+ // We use strokerat and outat so that in Stroker and Dasher we can work only
+ // with the pre-transformation coordinates. This will repeat a lot of
+ // computations done in the path iterator, but the alternative is to
+ // work with transformed paths and compute untransformed coordinates
+ // as needed. This would be faster but I do not think the complexity
+ // of working with both untransformed and transformed coordinates in
+ // the same code is worth it.
+ // However, if a path's width is constant after a transformation,
+ // we can skip all this untransforming.
+
+ // If normalization is off we save some transformations by not
+ // transforming the input to pisces. Instead, we apply the
+ // transformation after the path processing has been done.
+ // We can't do this if normalization is on, because it isn't a good
+ // idea to normalize before the transformation is applied.
+ AffineTransform strokerat = null;
+ AffineTransform outat = null;
+
+ PathIterator pi;
+ int dashLen = -1;
+ boolean recycleDashes = false;
+
+ if (at != null && !at.isIdentity()) {
+ final double a = at.getScaleX();
+ final double b = at.getShearX();
+ final double c = at.getShearY();
+ final double d = at.getScaleY();
+ final double det = a * d - c * b;
+
+ if (Math.abs(det) <= (2f * Float.MIN_VALUE)) {
+ // this rendering engine takes one dimensional curves and turns
+ // them into 2D shapes by giving them width.
+ // However, if everything is to be passed through a singular
+ // transformation, these 2D shapes will be squashed down to 1D
+ // again so, nothing can be drawn.
+
+ // Every path needs an initial moveTo and a pathDone. If these
+ // are not there this causes a SIGSEGV in libawt.so (at the time
+ // of writing of this comment (September 16, 2010)). Actually,
+ // I am not sure if the moveTo is necessary to avoid the SIGSEGV
+ // but the pathDone is definitely needed.
+ pc2d.moveTo(0f, 0f);
+ pc2d.pathDone();
+ return;
+ }
+
+ // If the transform is a constant multiple of an orthogonal transformation
+ // then every length is just multiplied by a constant, so we just
+ // need to transform input paths to stroker and tell stroker
+ // the scaled width. This condition is satisfied if
+ // a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we
+ // leave a bit of room for error.
+ if (nearZero(a*b + c*d) && nearZero(a*a + c*c - (b*b + d*d))) {
+ final float scale = (float) Math.sqrt(a*a + c*c);
+ if (dashes != null) {
+ recycleDashes = true;
+ dashLen = dashes.length;
+ final float[] newDashes;
+ if (dashLen <= INITIAL_ARRAY) {
+ newDashes = rdrCtx.dasher.dashes_initial;
+ } else {
+ if (doStats) {
+ RendererContext.stats.stat_array_dasher_dasher
+ .add(dashLen);
+ }
+ newDashes = rdrCtx.getDirtyFloatArray(dashLen);
+ }
+ System.arraycopy(dashes, 0, newDashes, 0, dashLen);
+ dashes = newDashes;
+ for (int i = 0; i < dashLen; i++) {
+ dashes[i] = scale * dashes[i];
+ }
+ dashphase = scale * dashphase;
+ }
+ width = scale * width;
+ pi = getNormalizingPathIterator(rdrCtx, normalize,
+ src.getPathIterator(at));
+
+ // by now strokerat == null && outat == null. Input paths to
+ // stroker (and maybe dasher) will have the full transform at
+ // applied to them and nothing will happen to the output paths.
+ } else {
+ if (normalize != NormMode.OFF) {
+ strokerat = at;
+ pi = getNormalizingPathIterator(rdrCtx, normalize,
+ src.getPathIterator(at));
+
+ // by now strokerat == at && outat == null. Input paths to
+ // stroker (and maybe dasher) will have the full transform at
+ // applied to them, then they will be normalized, and then
+ // the inverse of *only the non translation part of at* will
+ // be applied to the normalized paths. This won't cause problems
+ // in stroker, because, suppose at = T*A, where T is just the
+ // translation part of at, and A is the rest. T*A has already
+ // been applied to Stroker/Dasher's input. Then Ainv will be
+ // applied. Ainv*T*A is not equal to T, but it is a translation,
+ // which means that none of stroker's assumptions about its
+ // input will be violated. After all this, A will be applied
+ // to stroker's output.
+ } else {
+ outat = at;
+ pi = src.getPathIterator(null);
+ // outat == at && strokerat == null. This is because if no
+ // normalization is done, we can just apply all our
+ // transformations to stroker's output.
+ }
+ }
+ } else {
+ // either at is null or it's the identity. In either case
+ // we don't transform the path.
+ pi = getNormalizingPathIterator(rdrCtx, normalize,
+ src.getPathIterator(null));
+ }
+
+ if (useSimplifier) {
+ // Use simplifier after stroker before Renderer
+ // to remove collinear segments (notably due to cap square)
+ pc2d = rdrCtx.simplifier.init(pc2d);
+ }
+
+ // by now, at least one of outat and strokerat will be null. Unless at is not
+ // a constant multiple of an orthogonal transformation, they will both be
+ // null. In other cases, outat == at if normalization is off, and if
+ // normalization is on, strokerat == at.
+ final TransformingPathConsumer2D transformerPC2D = rdrCtx.transformerPC2D;
+ pc2d = transformerPC2D.transformConsumer(pc2d, outat);
+ pc2d = transformerPC2D.deltaTransformConsumer(pc2d, strokerat);
+
+ pc2d = rdrCtx.stroker.init(pc2d, width, caps, join, miterlimit);
+
+ if (dashes != null) {
+ if (!recycleDashes) {
+ dashLen = dashes.length;
+ }
+ pc2d = rdrCtx.dasher.init(pc2d, dashes, dashLen, dashphase,
+ recycleDashes);
+ }
+ pc2d = transformerPC2D.inverseDeltaTransformConsumer(pc2d, strokerat);
+ pathTo(rdrCtx, pi, pc2d);
+
+ /*
+ * Pipeline seems to be:
+ * shape.getPathIterator
+ * -> NormalizingPathIterator
+ * -> inverseDeltaTransformConsumer
+ * -> Dasher
+ * -> Stroker
+ * -> deltaTransformConsumer OR transformConsumer
+ *
+ * -> CollinearSimplifier to remove redundant segments
+ *
+ * -> pc2d = Renderer (bounding box)
+ */
+ }
+
+ private static boolean nearZero(final double num) {
+ return Math.abs(num) < 2.0 * Math.ulp(num);
+ }
+
+ PathIterator getNormalizingPathIterator(final RendererContext rdrCtx,
+ final NormMode mode,
+ final PathIterator src)
+ {
+ switch (mode) {
+ case ON_WITH_AA:
+ // NormalizingPathIterator NearestPixelCenter:
+ return rdrCtx.nPCPathIterator.init(src);
+ case ON_NO_AA:
+ // NearestPixel NormalizingPathIterator:
+ return rdrCtx.nPQPathIterator.init(src);
+ case OFF:
+ // return original path iterator if normalization is disabled:
+ return src;
+ default:
+ throw new InternalError("Unrecognized normalization mode");
+ }
+ }
+
+ abstract static class NormalizingPathIterator implements PathIterator {
+
+ private PathIterator src;
+
+ // the adjustment applied to the current position.
+ private float curx_adjust, cury_adjust;
+ // the adjustment applied to the last moveTo position.
+ private float movx_adjust, movy_adjust;
+
+ private final float[] tmp;
+
+ NormalizingPathIterator(final float[] tmp) {
+ this.tmp = tmp;
+ }
+
+ final NormalizingPathIterator init(final PathIterator src) {
+ this.src = src;
+ return this; // fluent API
+ }
+
+ /**
+ * Disposes this path iterator:
+ * clean up before reusing this instance
+ */
+ final void dispose() {
+ // free source PathIterator:
+ this.src = null;
+ }
+
+ @Override
+ public final int currentSegment(final float[] coords) {
+ if (doMonitors) {
+ RendererContext.stats.mon_npi_currentSegment.start();
+ }
+ int lastCoord;
+ final int type = src.currentSegment(coords);
+
+ switch(type) {
+ case PathIterator.SEG_MOVETO:
+ case PathIterator.SEG_LINETO:
+ lastCoord = 0;
+ break;
+ case PathIterator.SEG_QUADTO:
+ lastCoord = 2;
+ break;
+ case PathIterator.SEG_CUBICTO:
+ lastCoord = 4;
+ break;
+ case PathIterator.SEG_CLOSE:
+ // we don't want to deal with this case later. We just exit now
+ curx_adjust = movx_adjust;
+ cury_adjust = movy_adjust;
+
+ if (doMonitors) {
+ RendererContext.stats.mon_npi_currentSegment.stop();
+ }
+ return type;
+ default:
+ throw new InternalError("Unrecognized curve type");
+ }
+
+ // TODO: handle NaN, Inf and overflow
+
+ // normalize endpoint
+ float coord, x_adjust, y_adjust;
+
+ coord = coords[lastCoord];
+ x_adjust = normCoord(coord); // new coord
+ coords[lastCoord] = x_adjust;
+ x_adjust -= coord;
+
+ coord = coords[lastCoord + 1];
+ y_adjust = normCoord(coord); // new coord
+ coords[lastCoord + 1] = y_adjust;
+ y_adjust -= coord;
+
+ // now that the end points are done, normalize the control points
+ switch(type) {
+ case PathIterator.SEG_MOVETO:
+ movx_adjust = x_adjust;
+ movy_adjust = y_adjust;
+ break;
+ case PathIterator.SEG_LINETO:
+ break;
+ case PathIterator.SEG_QUADTO:
+ coords[0] += (curx_adjust + x_adjust) / 2f;
+ coords[1] += (cury_adjust + y_adjust) / 2f;
+ break;
+ case PathIterator.SEG_CUBICTO:
+ coords[0] += curx_adjust;
+ coords[1] += cury_adjust;
+ coords[2] += x_adjust;
+ coords[3] += y_adjust;
+ break;
+ case PathIterator.SEG_CLOSE:
+ // handled earlier
+ default:
+ }
+ curx_adjust = x_adjust;
+ cury_adjust = y_adjust;
+
+ if (doMonitors) {
+ RendererContext.stats.mon_npi_currentSegment.stop();
+ }
+ return type;
+ }
+
+ abstract float normCoord(final float coord);
+
+ @Override
+ public final int currentSegment(final double[] coords) {
+ final float[] _tmp = tmp; // dirty
+ int type = this.currentSegment(_tmp);
+ for (int i = 0; i < 6; i++) {
+ coords[i] = _tmp[i];
+ }
+ return type;
+ }
+
+ @Override
+ public final int getWindingRule() {
+ return src.getWindingRule();
+ }
+
+ @Override
+ public final boolean isDone() {
+ if (src.isDone()) {
+ // Dispose this instance:
+ dispose();
+ return true;
+ }
+ return false;
+ }
+
+ @Override
+ public final void next() {
+ src.next();
+ }
+
+ static final class NearestPixelCenter
+ extends NormalizingPathIterator
+ {
+ NearestPixelCenter(final float[] tmp) {
+ super(tmp);
+ }
+
+ @Override
+ float normCoord(final float coord) {
+ // round to nearest pixel center
+ return FloatMath.floor_f(coord) + 0.5f;
+ }
+ }
+
+ static final class NearestPixelQuarter
+ extends NormalizingPathIterator
+ {
+ NearestPixelQuarter(final float[] tmp) {
+ super(tmp);
+ }
+
+ @Override
+ float normCoord(final float coord) {
+ // round to nearest (0.25, 0.25) pixel quarter
+ return FloatMath.floor_f(coord + 0.25f) + 0.25f;
+ }
+ }
+ }
+
+ private static void pathTo(final RendererContext rdrCtx, final PathIterator pi,
+ final PathConsumer2D pc2d)
+ {
+ // mark context as DIRTY:
+ rdrCtx.dirty = true;
+
+ final float[] coords = rdrCtx.float6;
+
+ pathToLoop(coords, pi, pc2d);
+
+ // mark context as CLEAN:
+ rdrCtx.dirty = false;
+ }
+
+ private static void pathToLoop(final float[] coords, final PathIterator pi,
+ final PathConsumer2D pc2d)
+ {
+ for (; !pi.isDone(); pi.next()) {
+ switch (pi.currentSegment(coords)) {
+ case PathIterator.SEG_MOVETO:
+ pc2d.moveTo(coords[0], coords[1]);
+ continue;
+ case PathIterator.SEG_LINETO:
+ pc2d.lineTo(coords[0], coords[1]);
+ continue;
+ case PathIterator.SEG_QUADTO:
+ pc2d.quadTo(coords[0], coords[1],
+ coords[2], coords[3]);
+ continue;
+ case PathIterator.SEG_CUBICTO:
+ pc2d.curveTo(coords[0], coords[1],
+ coords[2], coords[3],
+ coords[4], coords[5]);
+ continue;
+ case PathIterator.SEG_CLOSE:
+ pc2d.closePath();
+ continue;
+ default:
+ }
+ }
+ pc2d.pathDone();
+ }
+
+ /**
+ * Construct an antialiased tile generator for the given shape with
+ * the given rendering attributes and store the bounds of the tile
+ * iteration in the bbox parameter.
+ * The {@code at} parameter specifies a transform that should affect
+ * both the shape and the {@code BasicStroke} attributes.
+ * The {@code clip} parameter specifies the current clip in effect
+ * in device coordinates and can be used to prune the data for the
+ * operation, but the renderer is not required to perform any
+ * clipping.
+ * If the {@code BasicStroke} parameter is null then the shape
+ * should be filled as is, otherwise the attributes of the
+ * {@code BasicStroke} should be used to specify a draw operation.
+ * The {@code thin} parameter indicates whether or not the
+ * transformed {@code BasicStroke} represents coordinates smaller
+ * than the minimum resolution of the antialiasing rasterizer as
+ * specified by the {@code getMinimumAAPenWidth()} method.
+ * <p>
+ * Upon returning, this method will fill the {@code bbox} parameter
+ * with 4 values indicating the bounds of the iteration of the
+ * tile generator.
+ * The iteration order of the tiles will be as specified by the
+ * pseudo-code:
+ * <pre>
+ * for (y = bbox[1]; y < bbox[3]; y += tileheight) {
+ * for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
+ * }
+ * }
+ * </pre>
+ * If there is no output to be rendered, this method may return
+ * null.
+ *
+ * @param s the shape to be rendered (fill or draw)
+ * @param at the transform to be applied to the shape and the
+ * stroke attributes
+ * @param clip the current clip in effect in device coordinates
+ * @param bs if non-null, a {@code BasicStroke} whose attributes
+ * should be applied to this operation
+ * @param thin true if the transformed stroke attributes are smaller
+ * than the minimum dropout pen width
+ * @param normalize true if the {@code VALUE_STROKE_NORMALIZE}
+ * {@code RenderingHint} is in effect
+ * @param bbox returns the bounds of the iteration
+ * @return the {@code AATileGenerator} instance to be consulted
+ * for tile coverages, or null if there is no output to render
+ * @since 1.7
+ */
+ @Override
+ public AATileGenerator getAATileGenerator(Shape s,
+ AffineTransform at,
+ Region clip,
+ BasicStroke bs,
+ boolean thin,
+ boolean normalize,
+ int bbox[])
+ {
+ MarlinTileGenerator ptg = null;
+ Renderer r = null;
+
+ final RendererContext rdrCtx = getRendererContext();
+ try {
+ // Test if at is identity:
+ final AffineTransform _at = (at != null && !at.isIdentity()) ? at
+ : null;
+
+ final NormMode norm = (normalize) ? NormMode.ON_WITH_AA : NormMode.OFF;
+
+ if (bs == null) {
+ // fill shape:
+ final PathIterator pi = getNormalizingPathIterator(rdrCtx, norm,
+ s.getPathIterator(_at));
+
+ r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
+ clip.getWidth(), clip.getHeight(),
+ pi.getWindingRule());
+
+ // TODO: subdivide quad/cubic curves into monotonic curves ?
+ pathTo(rdrCtx, pi, r);
+ } else {
+ // draw shape with given stroke:
+ r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
+ clip.getWidth(), clip.getHeight(),
+ PathIterator.WIND_NON_ZERO);
+
+ strokeTo(rdrCtx, s, _at, bs, thin, norm, true, r);
+ }
+ if (r.endRendering()) {
+ ptg = rdrCtx.ptg.init();
+ ptg.getBbox(bbox);
+ // note: do not returnRendererContext(rdrCtx)
+ // as it will be called later by MarlinTileGenerator.dispose()
+ r = null;
+ }
+ } finally {
+ if (r != null) {
+ // dispose renderer:
+ r.dispose();
+ // recycle the RendererContext instance
+ MarlinRenderingEngine.returnRendererContext(rdrCtx);
+ }
+ }
+
+ // Return null to cancel AA tile generation (nothing to render)
+ return ptg;
+ }
+
+ @Override
+ public final AATileGenerator getAATileGenerator(double x, double y,
+ double dx1, double dy1,
+ double dx2, double dy2,
+ double lw1, double lw2,
+ Region clip,
+ int bbox[])
+ {
+ // REMIND: Deal with large coordinates!
+ double ldx1, ldy1, ldx2, ldy2;
+ boolean innerpgram = (lw1 > 0.0 && lw2 > 0.0);
+
+ if (innerpgram) {
+ ldx1 = dx1 * lw1;
+ ldy1 = dy1 * lw1;
+ ldx2 = dx2 * lw2;
+ ldy2 = dy2 * lw2;
+ x -= (ldx1 + ldx2) / 2.0;
+ y -= (ldy1 + ldy2) / 2.0;
+ dx1 += ldx1;
+ dy1 += ldy1;
+ dx2 += ldx2;
+ dy2 += ldy2;
+ if (lw1 > 1.0 && lw2 > 1.0) {
+ // Inner parallelogram was entirely consumed by stroke...
+ innerpgram = false;
+ }
+ } else {
+ ldx1 = ldy1 = ldx2 = ldy2 = 0.0;
+ }
+
+ MarlinTileGenerator ptg = null;
+ Renderer r = null;
+
+ final RendererContext rdrCtx = getRendererContext();
+ try {
+ r = rdrCtx.renderer.init(clip.getLoX(), clip.getLoY(),
+ clip.getWidth(), clip.getHeight(),
+ Renderer.WIND_EVEN_ODD);
+
+ r.moveTo((float) x, (float) y);
+ r.lineTo((float) (x+dx1), (float) (y+dy1));
+ r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
+ r.lineTo((float) (x+dx2), (float) (y+dy2));
+ r.closePath();
+
+ if (innerpgram) {
+ x += ldx1 + ldx2;
+ y += ldy1 + ldy2;
+ dx1 -= 2.0 * ldx1;
+ dy1 -= 2.0 * ldy1;
+ dx2 -= 2.0 * ldx2;
+ dy2 -= 2.0 * ldy2;
+ r.moveTo((float) x, (float) y);
+ r.lineTo((float) (x+dx1), (float) (y+dy1));
+ r.lineTo((float) (x+dx1+dx2), (float) (y+dy1+dy2));
+ r.lineTo((float) (x+dx2), (float) (y+dy2));
+ r.closePath();
+ }
+ r.pathDone();
+
+ if (r.endRendering()) {
+ ptg = rdrCtx.ptg.init();
+ ptg.getBbox(bbox);
+ // note: do not returnRendererContext(rdrCtx)
+ // as it will be called later by MarlinTileGenerator.dispose()
+ r = null;
+ }
+ } finally {
+ if (r != null) {
+ // dispose renderer:
+ r.dispose();
+ // recycle the RendererContext instance
+ MarlinRenderingEngine.returnRendererContext(rdrCtx);
+ }
+ }
+
+ // Return null to cancel AA tile generation (nothing to render)
+ return ptg;
+ }
+
+ /**
+ * Returns the minimum pen width that the antialiasing rasterizer
+ * can represent without dropouts occuring.
+ * @since 1.7
+ */
+ @Override
+ public float getMinimumAAPenSize() {
+ return MIN_PEN_SIZE;
+ }
+
+ static {
+ if (PathIterator.WIND_NON_ZERO != Renderer.WIND_NON_ZERO ||
+ PathIterator.WIND_EVEN_ODD != Renderer.WIND_EVEN_ODD ||
+ BasicStroke.JOIN_MITER != Stroker.JOIN_MITER ||
+ BasicStroke.JOIN_ROUND != Stroker.JOIN_ROUND ||
+ BasicStroke.JOIN_BEVEL != Stroker.JOIN_BEVEL ||
+ BasicStroke.CAP_BUTT != Stroker.CAP_BUTT ||
+ BasicStroke.CAP_ROUND != Stroker.CAP_ROUND ||
+ BasicStroke.CAP_SQUARE != Stroker.CAP_SQUARE)
+ {
+ throw new InternalError("mismatched renderer constants");
+ }
+ }
+
+ // --- RendererContext handling ---
+ // use ThreadLocal or ConcurrentLinkedQueue to get one RendererContext
+ private static final boolean useThreadLocal;
+
+ // hard reference
+ static final int REF_HARD = 0;
+ // soft reference
+ static final int REF_SOFT = 1;
+ // weak reference
+ static final int REF_WEAK = 2;
+
+ // reference type stored in either TL or CLQ
+ static final int REF_TYPE;
+
+ // Per-thread RendererContext
+ private static final ThreadLocal<Object> rdrCtxThreadLocal;
+ // RendererContext queue when ThreadLocal is disabled
+ private static final ConcurrentLinkedQueue<Object> rdrCtxQueue;
+
+ // Static initializer to use TL or CLQ mode
+ static {
+ // CLQ mode by default:
+ useThreadLocal = MarlinProperties.isUseThreadLocal();
+ rdrCtxThreadLocal = (useThreadLocal) ? new ThreadLocal<Object>()
+ : null;
+ rdrCtxQueue = (!useThreadLocal) ? new ConcurrentLinkedQueue<Object>()
+ : null;
+
+ // Soft reference by default:
+ String refType = AccessController.doPrivileged(
+ new GetPropertyAction("sun.java2d.renderer.useRef",
+ "soft"));
+ switch (refType) {
+ default:
+ case "soft":
+ REF_TYPE = REF_SOFT;
+ break;
+ case "weak":
+ REF_TYPE = REF_WEAK;
+ break;
+ case "hard":
+ REF_TYPE = REF_HARD;
+ break;
+ }
+ }
+
+ private static boolean settingsLogged = !enableLogs;
+
+ private static void logSettings(final String reClass) {
+ // log information at startup
+ if (settingsLogged) {
+ return;
+ }
+ settingsLogged = true;
+
+ String refType;
+ switch (REF_TYPE) {
+ default:
+ case REF_HARD:
+ refType = "hard";
+ break;
+ case REF_SOFT:
+ refType = "soft";
+ break;
+ case REF_WEAK:
+ refType = "weak";
+ break;
+ }
+
+ logInfo("=========================================================="
+ + "=====================");
+
+ logInfo("Marlin software rasterizer = ENABLED");
+ logInfo("Version = ["
+ + Version.getVersion() + "]");
+ logInfo("sun.java2d.renderer = "
+ + reClass);
+ logInfo("sun.java2d.renderer.useThreadLocal = "
+ + useThreadLocal);
+ logInfo("sun.java2d.renderer.useRef = "
+ + refType);
+
+ logInfo("sun.java2d.renderer.pixelsize = "
+ + MarlinConst.INITIAL_PIXEL_DIM);
+ logInfo("sun.java2d.renderer.subPixel_log2_X = "
+ + MarlinConst.SUBPIXEL_LG_POSITIONS_X);
+ logInfo("sun.java2d.renderer.subPixel_log2_Y = "
+ + MarlinConst.SUBPIXEL_LG_POSITIONS_Y);
+ logInfo("sun.java2d.renderer.tileSize_log2 = "
+ + MarlinConst.TILE_SIZE_LG);
+
+ logInfo("sun.java2d.renderer.blockSize_log2 = "
+ + MarlinConst.BLOCK_SIZE_LG);
+
+ logInfo("sun.java2d.renderer.blockSize_log2 = "
+ + MarlinConst.BLOCK_SIZE_LG);
+
+ // RLE / blockFlags settings
+
+ logInfo("sun.java2d.renderer.forceRLE = "
+ + MarlinProperties.isForceRLE());
+ logInfo("sun.java2d.renderer.forceNoRLE = "
+ + MarlinProperties.isForceNoRLE());
+ logInfo("sun.java2d.renderer.useTileFlags = "
+ + MarlinProperties.isUseTileFlags());
+ logInfo("sun.java2d.renderer.useTileFlags.useHeuristics = "
+ + MarlinProperties.isUseTileFlagsWithHeuristics());
+ logInfo("sun.java2d.renderer.rleMinWidth = "
+ + MarlinCache.RLE_MIN_WIDTH);
+
+ // optimisation parameters
+ logInfo("sun.java2d.renderer.useSimplifier = "
+ + MarlinConst.useSimplifier);
+
+ // debugging parameters
+ logInfo("sun.java2d.renderer.doStats = "
+ + MarlinConst.doStats);
+ logInfo("sun.java2d.renderer.doMonitors = "
+ + MarlinConst.doMonitors);
+ logInfo("sun.java2d.renderer.doChecks = "
+ + MarlinConst.doChecks);
+
+ // logging parameters
+ logInfo("sun.java2d.renderer.useLogger = "
+ + MarlinConst.useLogger);
+ logInfo("sun.java2d.renderer.logCreateContext = "
+ + MarlinConst.logCreateContext);
+ logInfo("sun.java2d.renderer.logUnsafeMalloc = "
+ + MarlinConst.logUnsafeMalloc);
+
+ // quality settings
+ logInfo("Renderer settings:");
+ logInfo("CUB_COUNT_LG = " + Renderer.CUB_COUNT_LG);
+ logInfo("CUB_DEC_BND = " + Renderer.CUB_DEC_BND);
+ logInfo("CUB_INC_BND = " + Renderer.CUB_INC_BND);
+ logInfo("QUAD_DEC_BND = " + Renderer.QUAD_DEC_BND);
+
+ logInfo("=========================================================="
+ + "=====================");
+ }
+
+ /**
+ * Get the RendererContext instance dedicated to the current thread
+ * @return RendererContext instance
+ */
+ @SuppressWarnings({"unchecked"})
+ static RendererContext getRendererContext() {
+ RendererContext rdrCtx = null;
+ final Object ref = (useThreadLocal) ? rdrCtxThreadLocal.get()
+ : rdrCtxQueue.poll();
+ if (ref != null) {
+ // resolve reference:
+ rdrCtx = (REF_TYPE == REF_HARD) ? ((RendererContext) ref)
+ : ((Reference<RendererContext>) ref).get();
+ }
+ // create a new RendererContext if none is available
+ if (rdrCtx == null) {
+ rdrCtx = RendererContext.createContext();
+ if (useThreadLocal) {
+ // update thread local reference:
+ rdrCtxThreadLocal.set(rdrCtx.reference);
+ }
+ }
+ if (doMonitors) {
+ RendererContext.stats.mon_pre_getAATileGenerator.start();
+ }
+ return rdrCtx;
+ }
+
+ /**
+ * Reset and return the given RendererContext instance for reuse
+ * @param rdrCtx RendererContext instance
+ */
+ static void returnRendererContext(final RendererContext rdrCtx) {
+ rdrCtx.dispose();
+
+ if (doMonitors) {
+ RendererContext.stats.mon_pre_getAATileGenerator.stop();
+ }
+ if (!useThreadLocal) {
+ rdrCtxQueue.offer(rdrCtx.reference);
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinTileGenerator.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,465 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import sun.java2d.pipe.AATileGenerator;
+import jdk.internal.misc.Unsafe;
+
+final class MarlinTileGenerator implements AATileGenerator, MarlinConst {
+
+ private static final int MAX_TILE_ALPHA_SUM = TILE_SIZE * TILE_SIZE
+ * MAX_AA_ALPHA;
+
+ private final Renderer rdr;
+ private final MarlinCache cache;
+ private int x, y;
+
+ MarlinTileGenerator(Renderer r) {
+ this.rdr = r;
+ this.cache = r.cache;
+ }
+
+ MarlinTileGenerator init() {
+ this.x = cache.bboxX0;
+ this.y = cache.bboxY0;
+
+ return this; // fluent API
+ }
+
+ /**
+ * Disposes this tile generator:
+ * clean up before reusing this instance
+ */
+ @Override
+ public void dispose() {
+ if (doMonitors) {
+ // called from AAShapePipe.renderTiles() (render tiles end):
+ RendererContext.stats.mon_pipe_renderTiles.stop();
+ }
+ // dispose cache:
+ cache.dispose();
+ // dispose renderer:
+ rdr.dispose();
+ // recycle the RendererContext instance
+ MarlinRenderingEngine.returnRendererContext(rdr.rdrCtx);
+ }
+
+ void getBbox(int bbox[]) {
+ bbox[0] = cache.bboxX0;
+ bbox[1] = cache.bboxY0;
+ bbox[2] = cache.bboxX1;
+ bbox[3] = cache.bboxY1;
+ }
+
+ /**
+ * Gets the width of the tiles that the generator batches output into.
+ * @return the width of the standard alpha tile
+ */
+ @Override
+ public int getTileWidth() {
+ if (doMonitors) {
+ // called from AAShapePipe.renderTiles() (render tiles start):
+ RendererContext.stats.mon_pipe_renderTiles.start();
+ }
+ return TILE_SIZE;
+ }
+
+ /**
+ * Gets the height of the tiles that the generator batches output into.
+ * @return the height of the standard alpha tile
+ */
+ @Override
+ public int getTileHeight() {
+ return TILE_SIZE;
+ }
+
+ /**
+ * Gets the typical alpha value that will characterize the current
+ * tile.
+ * The answer may be 0x00 to indicate that the current tile has
+ * no coverage in any of its pixels, or it may be 0xff to indicate
+ * that the current tile is completely covered by the path, or any
+ * other value to indicate non-trivial coverage cases.
+ * @return 0x00 for no coverage, 0xff for total coverage, or any other
+ * value for partial coverage of the tile
+ */
+ @Override
+ public int getTypicalAlpha() {
+ int al = cache.alphaSumInTile(x);
+ // Note: if we have a filled rectangle that doesn't end on a tile
+ // border, we could still return 0xff, even though al!=maxTileAlphaSum
+ // This is because if we return 0xff, our users will fill a rectangle
+ // starting at x,y that has width = Math.min(TILE_SIZE, bboxX1-x),
+ // and height min(TILE_SIZE,bboxY1-y), which is what should happen.
+ // However, to support this, we would have to use 2 Math.min's
+ // and 2 multiplications per tile, instead of just 2 multiplications
+ // to compute maxTileAlphaSum. The savings offered would probably
+ // not be worth it, considering how rare this case is.
+ // Note: I have not tested this, so in the future if it is determined
+ // that it is worth it, it should be implemented. Perhaps this method's
+ // interface should be changed to take arguments the width and height
+ // of the current tile. This would eliminate the 2 Math.min calls that
+ // would be needed here, since our caller needs to compute these 2
+ // values anyway.
+ final int alpha = (al == 0x00 ? 0x00
+ : (al == MAX_TILE_ALPHA_SUM ? 0xff : 0x80));
+ if (doStats) {
+ RendererContext.stats.hist_tile_generator_alpha.add(alpha);
+ }
+ return alpha;
+ }
+
+ /**
+ * Skips the current tile and moves on to the next tile.
+ * Either this method, or the getAlpha() method should be called
+ * once per tile, but not both.
+ */
+ @Override
+ public void nextTile() {
+ if ((x += TILE_SIZE) >= cache.bboxX1) {
+ x = cache.bboxX0;
+ y += TILE_SIZE;
+
+ if (y < cache.bboxY1) {
+ // compute for the tile line
+ // [ y; max(y + TILE_SIZE, bboxY1) ]
+ this.rdr.endRendering(y);
+ }
+ }
+ }
+
+ /**
+ * Gets the alpha coverage values for the current tile.
+ * Either this method, or the nextTile() method should be called
+ * once per tile, but not both.
+ */
+ @Override
+ public void getAlpha(final byte tile[], final int offset,
+ final int rowstride)
+ {
+ if (cache.useRLE) {
+ getAlphaRLE(tile, offset, rowstride);
+ } else {
+ getAlphaNoRLE(tile, offset, rowstride);
+ }
+ }
+
+ /**
+ * Gets the alpha coverage values for the current tile.
+ * Either this method, or the nextTile() method should be called
+ * once per tile, but not both.
+ */
+ private void getAlphaNoRLE(final byte tile[], final int offset,
+ final int rowstride)
+ {
+ if (doMonitors) {
+ RendererContext.stats.mon_ptg_getAlpha.start();
+ }
+
+ // local vars for performance:
+ final MarlinCache _cache = this.cache;
+ final long[] rowAAChunkIndex = _cache.rowAAChunkIndex;
+ final int[] rowAAx0 = _cache.rowAAx0;
+ final int[] rowAAx1 = _cache.rowAAx1;
+
+ final int x0 = this.x;
+ final int x1 = FloatMath.min(x0 + TILE_SIZE, _cache.bboxX1);
+
+ // note: process tile line [0 - 32[
+ final int y0 = 0;
+ final int y1 = FloatMath.min(this.y + TILE_SIZE, _cache.bboxY1) - this.y;
+
+ if (doLogBounds) {
+ MarlinUtils.logInfo("getAlpha = [" + x0 + " ... " + x1
+ + "[ [" + y0 + " ... " + y1 + "[");
+ }
+
+ final Unsafe _unsafe = OffHeapArray.unsafe;
+ final long SIZE = 1L;
+ final long addr_rowAA = _cache.rowAAChunk.address;
+ long addr;
+
+ final int skipRowPixels = (rowstride - (x1 - x0));
+
+ int aax0, aax1, end;
+ int idx = offset;
+
+ for (int cy = y0, cx; cy < y1; cy++) {
+ // empty line (default)
+ cx = x0;
+
+ aax1 = rowAAx1[cy]; // exclusive
+
+ // quick check if there is AA data
+ // corresponding to this tile [x0; x1[
+ if (aax1 > x0) {
+ aax0 = rowAAx0[cy]; // inclusive
+
+ if (aax0 < x1) {
+ // note: cx is the cursor pointer in the tile array
+ // (left to right)
+ cx = aax0;
+
+ // ensure cx >= x0
+ if (cx <= x0) {
+ cx = x0;
+ } else {
+ // fill line start until first AA pixel rowAA exclusive:
+ for (end = x0; end < cx; end++) {
+ tile[idx++] = 0;
+ }
+ }
+
+ // now: cx >= x0 but cx < aax0 (x1 < aax0)
+
+ // Copy AA data (sum alpha data):
+ addr = addr_rowAA + rowAAChunkIndex[cy] + (cx - aax0);
+
+ for (end = (aax1 <= x1) ? aax1 : x1; cx < end; cx++) {
+ // cx inside tile[x0; x1[ :
+ tile[idx++] = _unsafe.getByte(addr); // [0..255]
+ addr += SIZE;
+ }
+ }
+ }
+
+ // fill line end
+ while (cx < x1) {
+ tile[idx++] = 0;
+ cx++;
+ }
+
+ if (doTrace) {
+ for (int i = idx - (x1 - x0); i < idx; i++) {
+ System.out.print(hex(tile[i], 2));
+ }
+ System.out.println();
+ }
+
+ idx += skipRowPixels;
+ }
+
+ nextTile();
+
+ if (doMonitors) {
+ RendererContext.stats.mon_ptg_getAlpha.stop();
+ }
+ }
+
+ /**
+ * Gets the alpha coverage values for the current tile.
+ * Either this method, or the nextTile() method should be called
+ * once per tile, but not both.
+ */
+ private void getAlphaRLE(final byte tile[], final int offset,
+ final int rowstride)
+ {
+ if (doMonitors) {
+ RendererContext.stats.mon_ptg_getAlpha.start();
+ }
+
+ // Decode run-length encoded alpha mask data
+ // The data for row j begins at cache.rowOffsetsRLE[j]
+ // and is encoded as a set of 2-byte pairs (val, runLen)
+ // terminated by a (0, 0) pair.
+
+ // local vars for performance:
+ final MarlinCache _cache = this.cache;
+ final long[] rowAAChunkIndex = _cache.rowAAChunkIndex;
+ final int[] rowAAx0 = _cache.rowAAx0;
+ final int[] rowAAx1 = _cache.rowAAx1;
+ final int[] rowAAEnc = _cache.rowAAEnc;
+ final long[] rowAALen = _cache.rowAALen;
+ final long[] rowAAPos = _cache.rowAAPos;
+
+ final int x0 = this.x;
+ final int x1 = FloatMath.min(x0 + TILE_SIZE, _cache.bboxX1);
+
+ // note: process tile line [0 - 32[
+ final int y0 = 0;
+ final int y1 = FloatMath.min(this.y + TILE_SIZE, _cache.bboxY1) - this.y;
+
+ if (doLogBounds) {
+ MarlinUtils.logInfo("getAlpha = [" + x0 + " ... " + x1
+ + "[ [" + y0 + " ... " + y1 + "[");
+ }
+
+ final Unsafe _unsafe = OffHeapArray.unsafe;
+ final long SIZE_BYTE = 1L;
+ final long SIZE_INT = 4L;
+ final long addr_rowAA = _cache.rowAAChunk.address;
+ long addr, addr_row, last_addr, addr_end;
+
+ final int skipRowPixels = (rowstride - (x1 - x0));
+
+ int cx, cy, cx1;
+ int rx0, rx1, runLen, end;
+ int packed;
+ byte val;
+ int idx = offset;
+
+ for (cy = y0; cy < y1; cy++) {
+ // empty line (default)
+ cx = x0;
+
+ if (rowAAEnc[cy] == 0) {
+ // Raw encoding:
+
+ final int aax1 = rowAAx1[cy]; // exclusive
+
+ // quick check if there is AA data
+ // corresponding to this tile [x0; x1[
+ if (aax1 > x0) {
+ final int aax0 = rowAAx0[cy]; // inclusive
+
+ if (aax0 < x1) {
+ // note: cx is the cursor pointer in the tile array
+ // (left to right)
+ cx = aax0;
+
+ // ensure cx >= x0
+ if (cx <= x0) {
+ cx = x0;
+ } else {
+ // fill line start until first AA pixel rowAA exclusive:
+ for (end = x0; end < cx; end++) {
+ tile[idx++] = 0;
+ }
+ }
+
+ // now: cx >= x0 but cx < aax0 (x1 < aax0)
+
+ // Copy AA data (sum alpha data):
+ addr = addr_rowAA + rowAAChunkIndex[cy] + (cx - aax0);
+
+ for (end = (aax1 <= x1) ? aax1 : x1; cx < end; cx++) {
+ tile[idx++] = _unsafe.getByte(addr); // [0..255]
+ addr += SIZE_BYTE;
+ }
+ }
+ }
+ } else {
+ // RLE encoding:
+
+ // quick check if there is AA data
+ // corresponding to this tile [x0; x1[
+ if (rowAAx1[cy] > x0) { // last pixel exclusive
+
+ cx = rowAAx0[cy]; // inclusive
+ if (cx > x1) {
+ cx = x1;
+ }
+
+ // fill line start until first AA pixel rowAA exclusive:
+ for (int i = x0; i < cx; i++) {
+ tile[idx++] = 0;
+ }
+
+ // get row address:
+ addr_row = addr_rowAA + rowAAChunkIndex[cy];
+ // get row end address:
+ addr_end = addr_row + rowAALen[cy]; // coded length
+
+ // reuse previous iteration position:
+ addr = addr_row + rowAAPos[cy];
+
+ last_addr = 0L;
+
+ while ((cx < x1) && (addr < addr_end)) {
+ // keep current position:
+ last_addr = addr;
+
+ // packed value:
+ packed = _unsafe.getInt(addr);
+
+ // last exclusive pixel x-coordinate:
+ cx1 = (packed >> 8);
+ // as bytes:
+ addr += SIZE_INT;
+
+ rx0 = cx;
+ if (rx0 < x0) {
+ rx0 = x0;
+ }
+ rx1 = cx = cx1;
+ if (rx1 > x1) {
+ rx1 = x1;
+ cx = x1; // fix last x
+ }
+ // adjust runLen:
+ runLen = rx1 - rx0;
+
+ // ensure rx1 > rx0:
+ if (runLen > 0) {
+ val = (byte)(packed & 0xFF); // [0..255]
+
+ do {
+ tile[idx++] = val;
+ } while (--runLen > 0);
+ }
+ }
+
+ // Update last position in RLE entries:
+ if (last_addr != 0L) {
+ // Fix x0:
+ rowAAx0[cy] = cx; // inclusive
+ // Fix position:
+ rowAAPos[cy] = (last_addr - addr_row);
+ }
+ }
+ }
+
+ // fill line end
+ while (cx < x1) {
+ tile[idx++] = 0;
+ cx++;
+ }
+
+ if (doTrace) {
+ for (int i = idx - (x1 - x0); i < idx; i++) {
+ System.out.print(hex(tile[i], 2));
+ }
+ System.out.println();
+ }
+
+ idx += skipRowPixels;
+ }
+
+ nextTile();
+
+ if (doMonitors) {
+ RendererContext.stats.mon_ptg_getAlpha.stop();
+ }
+ }
+
+ static String hex(int v, int d) {
+ String s = Integer.toHexString(v);
+ while (s.length() < d) {
+ s = "0" + s;
+ }
+ return s.substring(0, d);
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MarlinUtils.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,104 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import jdk.internal.misc.JavaLangAccess;
+import jdk.internal.misc.SharedSecrets;
+
+public final class MarlinUtils {
+ // TODO: use sun.util.logging.PlatformLogger once in JDK9
+ private static final java.util.logging.Logger log;
+
+ static {
+ if (MarlinConst.useLogger) {
+ log = java.util.logging.Logger.getLogger("sun.java2d.marlin");
+ } else {
+ log = null;
+ }
+ }
+
+ private MarlinUtils() {
+ // no-op
+ }
+
+ public static void logInfo(final String msg) {
+ if (MarlinConst.useLogger) {
+ log.info(msg);
+ } else if (MarlinConst.enableLogs) {
+ System.out.print("INFO: ");
+ System.out.println(msg);
+ }
+ }
+
+ public static void logException(final String msg, final Throwable th) {
+ if (MarlinConst.useLogger) {
+// log.warning(msg, th);
+ log.log(java.util.logging.Level.WARNING, msg, th);
+ } else if (MarlinConst.enableLogs) {
+ System.out.print("WARNING: ");
+ System.out.println(msg);
+ th.printStackTrace(System.err);
+ }
+ }
+
+ // Returns the caller's class and method's name; best effort
+ // if cannot infer, return the logger's name.
+ static String getCallerInfo(String className) {
+ String sourceClassName = null;
+ String sourceMethodName = null;
+
+ JavaLangAccess access = SharedSecrets.getJavaLangAccess();
+ Throwable throwable = new Throwable();
+ int depth = access.getStackTraceDepth(throwable);
+
+ boolean lookingForClassName = true;
+ for (int ix = 0; ix < depth; ix++) {
+ // Calling getStackTraceElement directly prevents the VM
+ // from paying the cost of building the entire stack frame.
+ StackTraceElement frame = access.getStackTraceElement(throwable, ix);
+ String cname = frame.getClassName();
+ if (lookingForClassName) {
+ // Skip all frames until we have found the first frame having the class name.
+ if (cname.equals(className)) {
+ lookingForClassName = false;
+ }
+ } else {
+ if (!cname.equals(className)) {
+ // We've found the relevant frame.
+ sourceClassName = cname;
+ sourceMethodName = frame.getMethodName();
+ break;
+ }
+ }
+ }
+
+ if (sourceClassName != null) {
+ return sourceClassName + " " + sourceMethodName;
+ } else {
+ return "unknown";
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/MergeSort.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,177 @@
+/*
+ * Copyright (c) 2009, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+/**
+ * MergeSort adapted from (OpenJDK 8) java.util.Array.legacyMergeSort(Object[])
+ * to swap two arrays at the same time (x & y)
+ * and use external auxiliary storage for temporary arrays
+ */
+final class MergeSort {
+
+ // insertion sort threshold
+ public static final int INSERTION_SORT_THRESHOLD = 14;
+
+ /**
+ * Modified merge sort:
+ * Input arrays are in both auxX/auxY (sorted: 0 to insertionSortIndex)
+ * and x/y (unsorted: insertionSortIndex to toIndex)
+ * Outputs are stored in x/y arrays
+ */
+ static void mergeSortNoCopy(final int[] x, final int[] y,
+ final int[] auxX, final int[] auxY,
+ final int toIndex,
+ final int insertionSortIndex)
+ {
+ if ((toIndex > x.length) || (toIndex > y.length)
+ || (toIndex > auxX.length) || (toIndex > auxY.length)) {
+ // explicit check to avoid bound checks within hot loops (below):
+ throw new ArrayIndexOutOfBoundsException("bad arguments: toIndex="
+ + toIndex);
+ }
+
+ // sort second part only using merge / insertion sort
+ // in auxiliary storage (auxX/auxY)
+ mergeSort(x, y, x, auxX, y, auxY, insertionSortIndex, toIndex);
+
+ // final pass to merge both
+ // Merge sorted parts (auxX/auxY) into x/y arrays
+ if ((insertionSortIndex == 0)
+ || (auxX[insertionSortIndex - 1] <= auxX[insertionSortIndex])) {
+// System.out.println("mergeSortNoCopy: ordered");
+ // 34 occurences
+ // no initial left part or both sublists (auxX, auxY) are sorted:
+ // copy back data into (x, y):
+ System.arraycopy(auxX, 0, x, 0, toIndex);
+ System.arraycopy(auxY, 0, y, 0, toIndex);
+ return;
+ }
+
+ for (int i = 0, p = 0, q = insertionSortIndex; i < toIndex; i++) {
+ if ((q >= toIndex) || ((p < insertionSortIndex)
+ && (auxX[p] <= auxX[q]))) {
+ x[i] = auxX[p];
+ y[i] = auxY[p];
+ p++;
+ } else {
+ x[i] = auxX[q];
+ y[i] = auxY[q];
+ q++;
+ }
+ }
+ }
+
+ /**
+ * Src is the source array that starts at index 0
+ * Dest is the (possibly larger) array destination with a possible offset
+ * low is the index in dest to start sorting
+ * high is the end index in dest to end sorting
+ */
+ private static void mergeSort(final int[] refX, final int[] refY,
+ final int[] srcX, final int[] dstX,
+ final int[] srcY, final int[] dstY,
+ final int low, final int high)
+ {
+ final int length = high - low;
+
+ /*
+ * Tuning parameter: list size at or below which insertion sort
+ * will be used in preference to mergesort.
+ */
+ if (length <= INSERTION_SORT_THRESHOLD) {
+ // Insertion sort on smallest arrays
+ dstX[low] = refX[low];
+ dstY[low] = refY[low];
+
+ for (int i = low + 1, j = low, x, y; i < high; j = i++) {
+ x = refX[i];
+ y = refY[i];
+
+ while (dstX[j] > x) {
+ // swap element
+ dstX[j + 1] = dstX[j];
+ dstY[j + 1] = dstY[j];
+ if (j-- == low) {
+ break;
+ }
+ }
+ dstX[j + 1] = x;
+ dstY[j + 1] = y;
+ }
+ return;
+ }
+
+ // Recursively sort halves of dest into src
+
+ // note: use signed shift (not >>>) for performance
+ // as indices are small enough to exceed Integer.MAX_VALUE
+ final int mid = (low + high) >> 1;
+
+ mergeSort(refX, refY, dstX, srcX, dstY, srcY, low, mid);
+ mergeSort(refX, refY, dstX, srcX, dstY, srcY, mid, high);
+
+ // If arrays are inverted ie all(A) > all(B) do swap A and B to dst
+ if (srcX[high - 1] <= srcX[low]) {
+// System.out.println("mergeSort: inverse ordered");
+ // 1561 occurences
+ final int left = mid - low;
+ final int right = high - mid;
+ final int off = (left != right) ? 1 : 0;
+ // swap parts:
+ System.arraycopy(srcX, low, dstX, mid + off, left);
+ System.arraycopy(srcX, mid, dstX, low, right);
+ System.arraycopy(srcY, low, dstY, mid + off, left);
+ System.arraycopy(srcY, mid, dstY, low, right);
+ return;
+ }
+
+ // If arrays are already sorted, just copy from src to dest. This is an
+ // optimization that results in faster sorts for nearly ordered lists.
+ if (srcX[mid - 1] <= srcX[mid]) {
+// System.out.println("mergeSort: ordered");
+ // 14 occurences
+ System.arraycopy(srcX, low, dstX, low, length);
+ System.arraycopy(srcY, low, dstY, low, length);
+ return;
+ }
+
+ // Merge sorted halves (now in src) into dest
+ for (int i = low, p = low, q = mid; i < high; i++) {
+ if ((q >= high) || ((p < mid) && (srcX[p] <= srcX[q]))) {
+ dstX[i] = srcX[p];
+ dstY[i] = srcY[p];
+ p++;
+ } else {
+ dstX[i] = srcX[q];
+ dstY[i] = srcY[q];
+ q++;
+ }
+ }
+ }
+
+ private MergeSort() {
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/OffHeapArray.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,166 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.lang.ref.PhantomReference;
+import java.lang.ref.ReferenceQueue;
+import java.security.AccessController;
+import java.security.PrivilegedAction;
+import java.util.Vector;
+import static sun.java2d.marlin.MarlinConst.logUnsafeMalloc;
+import sun.awt.util.ThreadGroupUtils;
+import jdk.internal.misc.Unsafe;
+
+/**
+ *
+ * @author bourgesl
+ */
+final class OffHeapArray {
+
+ // unsafe reference
+ static final Unsafe unsafe;
+ // size of int / float
+ static final int SIZE_INT;
+
+ // RendererContext reference queue
+ private static final ReferenceQueue<Object> rdrQueue
+ = new ReferenceQueue<Object>();
+ // reference list
+ private static final Vector<OffHeapReference> refList
+ = new Vector<OffHeapReference>(32);
+
+ static {
+ unsafe = Unsafe.getUnsafe();
+ SIZE_INT = Unsafe.ARRAY_INT_INDEX_SCALE;
+
+ // Mimics Java2D Disposer:
+ AccessController.doPrivileged(
+ (PrivilegedAction<Void>) () -> {
+ /*
+ * The thread must be a member of a thread group
+ * which will not get GCed before VM exit.
+ * Make its parent the top-level thread group.
+ */
+ final ThreadGroup rootTG
+ = ThreadGroupUtils.getRootThreadGroup();
+ final Thread t = new Thread(rootTG, new OffHeapDisposer(),
+ "MarlinRenderer Disposer");
+ t.setContextClassLoader(null);
+ t.setDaemon(true);
+ t.setPriority(Thread.MAX_PRIORITY);
+ t.start();
+ return null;
+ }
+ );
+ }
+
+ /* members */
+ long address;
+ long length;
+ int used;
+
+ OffHeapArray(final Object parent, final long len) {
+ // note: may throw OOME:
+ this.address = unsafe.allocateMemory(len);
+ this.length = len;
+ this.used = 0;
+ if (logUnsafeMalloc) {
+ MarlinUtils.logInfo(System.currentTimeMillis()
+ + ": OffHeapArray.allocateMemory = "
+ + len + " to addr = " + this.address);
+ }
+
+ // Create the phantom reference to ensure freeing off-heap memory:
+ refList.add(new OffHeapReference(parent, this));
+ }
+
+ /*
+ * As realloc may change the address, updating address is MANDATORY
+ * @param len new array length
+ * @throws OutOfMemoryError if the allocation is refused by the system
+ */
+ void resize(final long len) {
+ // note: may throw OOME:
+ this.address = unsafe.reallocateMemory(address, len);
+ this.length = len;
+ if (logUnsafeMalloc) {
+ MarlinUtils.logInfo(System.currentTimeMillis()
+ + ": OffHeapArray.reallocateMemory = "
+ + len + " to addr = " + this.address);
+ }
+ }
+
+ void free() {
+ unsafe.freeMemory(this.address);
+ if (logUnsafeMalloc) {
+ MarlinUtils.logInfo(System.currentTimeMillis()
+ + ": OffHeapEdgeArray.free = "
+ + this.length
+ + " at addr = " + this.address);
+ }
+ }
+
+ void fill(final byte val) {
+ unsafe.setMemory(this.address, this.length, val);
+ }
+
+ static final class OffHeapReference extends PhantomReference<Object> {
+
+ private final OffHeapArray array;
+
+ OffHeapReference(final Object parent, final OffHeapArray edges) {
+ super(parent, rdrQueue);
+ this.array = edges;
+ }
+
+ void dispose() {
+ // free off-heap blocks
+ this.array.free();
+ }
+ }
+
+ static final class OffHeapDisposer implements Runnable {
+ @Override
+ public void run() {
+ final Thread currentThread = Thread.currentThread();
+ OffHeapReference ref;
+
+ // check interrupted:
+ for (; !currentThread.isInterrupted();) {
+ try {
+ ref = (OffHeapReference)rdrQueue.remove();
+ ref.dispose();
+
+ refList.remove(ref);
+
+ } catch (InterruptedException ie) {
+ MarlinUtils.logException("OffHeapDisposer interrupted:",
+ ie);
+ }
+ }
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Renderer.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,1546 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.Arrays;
+import sun.awt.geom.PathConsumer2D;
+import static sun.java2d.marlin.OffHeapArray.SIZE_INT;
+import jdk.internal.misc.Unsafe;
+
+final class Renderer implements PathConsumer2D, MarlinConst {
+
+ static final boolean DISABLE_RENDER = false;
+
+ static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags();
+ static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics();
+
+ private static final int ALL_BUT_LSB = 0xfffffffe;
+ private static final int ERR_STEP_MAX = 0x7fffffff; // = 2^31 - 1
+
+ private static final double POWER_2_TO_32 = FloatMath.powerOfTwoD(32);
+
+ // use float to make tosubpix methods faster (no int to float conversion)
+ public static final float f_SUBPIXEL_POSITIONS_X
+ = (float) SUBPIXEL_POSITIONS_X;
+ public static final float f_SUBPIXEL_POSITIONS_Y
+ = (float) SUBPIXEL_POSITIONS_Y;
+ public static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
+ public static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
+
+ // number of subpixels corresponding to a tile line
+ private static final int SUBPIXEL_TILE
+ = TILE_SIZE << SUBPIXEL_LG_POSITIONS_Y;
+
+ // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K
+ static final int INITIAL_BUCKET_ARRAY
+ = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y;
+
+ public static final int WIND_EVEN_ODD = 0;
+ public static final int WIND_NON_ZERO = 1;
+
+ // common to all types of input path segments.
+ // OFFSET as bytes
+ // only integer values:
+ public static final long OFF_CURX_OR = 0;
+ public static final long OFF_ERROR = OFF_CURX_OR + SIZE_INT;
+ public static final long OFF_BUMP_X = OFF_ERROR + SIZE_INT;
+ public static final long OFF_BUMP_ERR = OFF_BUMP_X + SIZE_INT;
+ public static final long OFF_NEXT = OFF_BUMP_ERR + SIZE_INT;
+ public static final long OFF_YMAX = OFF_NEXT + SIZE_INT;
+
+ // size of one edge in bytes
+ public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
+
+ // curve break into lines
+ // cubic error in subpixels to decrement step
+ private static final float CUB_DEC_ERR_SUBPIX
+ = 2.5f * (NORM_SUBPIXELS / 8f); // 2.5 subpixel for typical 8x8 subpixels
+ // cubic error in subpixels to increment step
+ private static final float CUB_INC_ERR_SUBPIX
+ = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels
+
+ // cubic bind length to decrement step = 8 * error in subpixels
+ // pisces: 20 / 8
+ // openjfx pisces: 8 / 3.2
+ // multiply by 8 = error scale factor:
+ public static final float CUB_DEC_BND
+ = 8f * CUB_DEC_ERR_SUBPIX; // 20f means 2.5 subpixel error
+ // cubic bind length to increment step = 8 * error in subpixels
+ public static final float CUB_INC_BND
+ = 8f * CUB_INC_ERR_SUBPIX; // 8f means 1 subpixel error
+
+ // cubic countlg
+ public static final int CUB_COUNT_LG = 2;
+ // cubic count = 2^countlg
+ private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
+ // cubic count^2 = 4^countlg
+ private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
+ // cubic count^3 = 8^countlg
+ private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
+ // cubic dt = 1 / count
+ private static final float CUB_INV_COUNT = 1f / CUB_COUNT;
+ // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
+ private static final float CUB_INV_COUNT_2 = 1f / CUB_COUNT_2;
+ // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
+ private static final float CUB_INV_COUNT_3 = 1f / CUB_COUNT_3;
+
+ // quad break into lines
+ // quadratic error in subpixels
+ private static final float QUAD_DEC_ERR_SUBPIX
+ = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels
+
+ // quadratic bind length to decrement step = 8 * error in subpixels
+ // pisces and openjfx pisces: 32
+ public static final float QUAD_DEC_BND
+ = 8f * QUAD_DEC_ERR_SUBPIX; // 8f means 1 subpixel error
+
+//////////////////////////////////////////////////////////////////////////////
+// SCAN LINE
+//////////////////////////////////////////////////////////////////////////////
+ // crossings ie subpixel edge x coordinates
+ private int[] crossings;
+ // auxiliary storage for crossings (merge sort)
+ private int[] aux_crossings;
+
+ // indices into the segment pointer lists. They indicate the "active"
+ // sublist in the segment lists (the portion of the list that contains
+ // all the segments that cross the next scan line).
+ private int edgeCount;
+ private int[] edgePtrs;
+ // auxiliary storage for edge pointers (merge sort)
+ private int[] aux_edgePtrs;
+
+ // max used for both edgePtrs and crossings (stats only)
+ private int activeEdgeMaxUsed;
+
+ // per-thread initial arrays (large enough to satisfy most usages) (1024)
+ private final int[] crossings_initial = new int[INITIAL_SMALL_ARRAY]; // 4K
+ // +1 to avoid recycling in Helpers.widenArray()
+ private final int[] edgePtrs_initial = new int[INITIAL_SMALL_ARRAY + 1]; // 4K
+ // merge sort initial arrays (large enough to satisfy most usages) (1024)
+ private final int[] aux_crossings_initial = new int[INITIAL_SMALL_ARRAY]; // 4K
+ // +1 to avoid recycling in Helpers.widenArray()
+ private final int[] aux_edgePtrs_initial = new int[INITIAL_SMALL_ARRAY + 1]; // 4K
+
+//////////////////////////////////////////////////////////////////////////////
+// EDGE LIST
+//////////////////////////////////////////////////////////////////////////////
+ private float edgeMinY = Float.POSITIVE_INFINITY;
+ private float edgeMaxY = Float.NEGATIVE_INFINITY;
+ private float edgeMinX = Float.POSITIVE_INFINITY;
+ private float edgeMaxX = Float.NEGATIVE_INFINITY;
+
+ // edges [floats|ints] stored in off-heap memory
+ private final OffHeapArray edges;
+
+ private int[] edgeBuckets;
+ private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
+ // used range for edgeBuckets / edgeBucketCounts
+ private int buckets_minY;
+ private int buckets_maxY;
+ // sum of each edge delta Y (subpixels)
+ private int edgeSumDeltaY;
+
+ // +1 to avoid recycling in Helpers.widenArray()
+ private final int[] edgeBuckets_initial
+ = new int[INITIAL_BUCKET_ARRAY + 1]; // 64K
+ private final int[] edgeBucketCounts_initial
+ = new int[INITIAL_BUCKET_ARRAY + 1]; // 64K
+
+ // Flattens using adaptive forward differencing. This only carries out
+ // one iteration of the AFD loop. All it does is update AFD variables (i.e.
+ // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
+ private void quadBreakIntoLinesAndAdd(float x0, float y0,
+ final Curve c,
+ final float x2, final float y2)
+ {
+ int count = 1; // dt = 1 / count
+
+ // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
+ float maxDD = FloatMath.max(Math.abs(c.dbx), Math.abs(c.dby));
+
+ final float _DEC_BND = QUAD_DEC_BND;
+
+ while (maxDD >= _DEC_BND) {
+ // divide step by half:
+ maxDD /= 4f; // error divided by 2^2 = 4
+
+ count <<= 1;
+ if (doStats) {
+ RendererContext.stats.stat_rdr_quadBreak_dec.add(count);
+ }
+ }
+
+ int nL = 0; // line count
+ if (count > 1) {
+ final float icount = 1f / count; // dt
+ final float icount2 = icount * icount; // dt^2
+
+ final float ddx = c.dbx * icount2;
+ final float ddy = c.dby * icount2;
+ float dx = c.bx * icount2 + c.cx * icount;
+ float dy = c.by * icount2 + c.cy * icount;
+
+ float x1, y1;
+
+ while (--count > 0) {
+ x1 = x0 + dx;
+ dx += ddx;
+ y1 = y0 + dy;
+ dy += ddy;
+
+ addLine(x0, y0, x1, y1);
+
+ if (doStats) { nL++; }
+ x0 = x1;
+ y0 = y1;
+ }
+ }
+ addLine(x0, y0, x2, y2);
+
+ if (doStats) {
+ RendererContext.stats.stat_rdr_quadBreak.add(nL + 1);
+ }
+ }
+
+ // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
+ // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
+ // numerical errors, and our callers already have the exact values.
+ // Another alternative would be to pass all the control points, and call
+ // c.set here, but then too many numbers are passed around.
+ private void curveBreakIntoLinesAndAdd(float x0, float y0,
+ final Curve c,
+ final float x3, final float y3)
+ {
+ int count = CUB_COUNT;
+ final float icount = CUB_INV_COUNT; // dt
+ final float icount2 = CUB_INV_COUNT_2; // dt^2
+ final float icount3 = CUB_INV_COUNT_3; // dt^3
+
+ // the dx and dy refer to forward differencing variables, not the last
+ // coefficients of the "points" polynomial
+ float dddx, dddy, ddx, ddy, dx, dy;
+ dddx = 2f * c.dax * icount3;
+ dddy = 2f * c.day * icount3;
+ ddx = dddx + c.dbx * icount2;
+ ddy = dddy + c.dby * icount2;
+ dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
+ dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
+
+ // we use x0, y0 to walk the line
+ float x1 = x0, y1 = y0;
+ int nL = 0; // line count
+
+ final float _DEC_BND = CUB_DEC_BND;
+ final float _INC_BND = CUB_INC_BND;
+
+ while (count > 0) {
+ // divide step by half:
+ while (Math.abs(ddx) >= _DEC_BND || Math.abs(ddy) >= _DEC_BND) {
+ dddx /= 8f;
+ dddy /= 8f;
+ ddx = ddx/4f - dddx;
+ ddy = ddy/4f - dddy;
+ dx = (dx - ddx) / 2f;
+ dy = (dy - ddy) / 2f;
+
+ count <<= 1;
+ if (doStats) {
+ RendererContext.stats.stat_rdr_curveBreak_dec.add(count);
+ }
+ }
+
+ // double step:
+ // TODO: why use first derivative dX|Y instead of second ddX|Y ?
+ // both scale changes should use speed or acceleration to have the same metric.
+
+ // can only do this on even "count" values, because we must divide count by 2
+ while (count % 2 == 0
+ && Math.abs(dx) <= _INC_BND && Math.abs(dy) <= _INC_BND)
+ {
+ dx = 2f * dx + ddx;
+ dy = 2f * dy + ddy;
+ ddx = 4f * (ddx + dddx);
+ ddy = 4f * (ddy + dddy);
+ dddx *= 8f;
+ dddy *= 8f;
+
+ count >>= 1;
+ if (doStats) {
+ RendererContext.stats.stat_rdr_curveBreak_inc.add(count);
+ }
+ }
+ if (--count > 0) {
+ x1 += dx;
+ dx += ddx;
+ ddx += dddx;
+ y1 += dy;
+ dy += ddy;
+ ddy += dddy;
+ } else {
+ x1 = x3;
+ y1 = y3;
+ }
+
+ addLine(x0, y0, x1, y1);
+
+ if (doStats) { nL++; }
+ x0 = x1;
+ y0 = y1;
+ }
+ if (doStats) {
+ RendererContext.stats.stat_rdr_curveBreak.add(nL);
+ }
+ }
+
+ private void addLine(float x1, float y1, float x2, float y2) {
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_addLine.start();
+ }
+ if (doStats) {
+ RendererContext.stats.stat_rdr_addLine.add(1);
+ }
+ int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
+ if (y2 < y1) {
+ or = 0;
+ float tmp = y2;
+ y2 = y1;
+ y1 = tmp;
+ tmp = x2;
+ x2 = x1;
+ x1 = tmp;
+ }
+
+ // convert subpixel coordinates (float) into pixel positions (int)
+
+ // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
+ // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
+ // ceil(y1) or ceil(y2)
+ // upper integer (inclusive)
+ final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
+
+ // note: use boundsMaxY (last Y exclusive) to compute correct coverage
+ // upper integer (exclusive)
+ final int lastCrossing = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
+
+ /* skip horizontal lines in pixel space and clip edges
+ out of y range [boundsMinY; boundsMaxY] */
+ if (firstCrossing >= lastCrossing) {
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_addLine.stop();
+ }
+ if (doStats) {
+ RendererContext.stats.stat_rdr_addLine_skip.add(1);
+ }
+ return;
+ }
+ // edge min/max X/Y are in subpixel space (inclusive)
+ if (y1 < edgeMinY) {
+ edgeMinY = y1;
+ }
+ if (y2 > edgeMaxY) {
+ edgeMaxY = y2;
+ }
+
+ // Use double-precision for improved accuracy:
+ final double x1d = x1;
+ final double y1d = y1;
+ final double slope = (x2 - x1d) / (y2 - y1d);
+
+ if (slope >= 0.0) { // <==> x1 < x2
+ if (x1 < edgeMinX) {
+ edgeMinX = x1;
+ }
+ if (x2 > edgeMaxX) {
+ edgeMaxX = x2;
+ }
+ } else {
+ if (x2 < edgeMinX) {
+ edgeMinX = x2;
+ }
+ if (x1 > edgeMaxX) {
+ edgeMaxX = x1;
+ }
+ }
+
+ // local variables for performance:
+ final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
+
+ final OffHeapArray _edges = edges;
+
+ // get free pointer (ie length in bytes)
+ final int edgePtr = _edges.used;
+
+ // use substraction to avoid integer overflow:
+ if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
+ // suppose _edges.length > _SIZEOF_EDGE_BYTES
+ // so doubling size is enough to add needed bytes
+ // note: throw IOOB if neededSize > 2Gb:
+ final long edgeNewSize = ArrayCache.getNewLargeSize(_edges.length,
+ edgePtr + _SIZEOF_EDGE_BYTES);
+
+ if (doStats) {
+ RendererContext.stats.stat_rdr_edges_resizes.add(edgeNewSize);
+ }
+ _edges.resize(edgeNewSize);
+ }
+
+
+ final Unsafe _unsafe = OffHeapArray.unsafe;
+ final long SIZE_INT = 4L;
+ long addr = _edges.address + edgePtr;
+
+ // The x value must be bumped up to its position at the next HPC we will evaluate.
+ // "firstcrossing" is the (sub)pixel number where the next crossing occurs
+ // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
+ // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
+ // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
+ // y1 = trueY - 0.5
+ // trueY = y1 + 0.5
+ // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
+ // = firstcrossing - y1
+ // The x coordinate at that HPC is then:
+ // x1_intercept = x1 + (firstcrossing - y1) * slope
+ // The next VPC is then given by:
+ // VPC index = ceil(x1_intercept - 0.5), or alternately
+ // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
+ // epsilon is hard to pin down in floating point, but easy in fixed point, so if
+ // we convert to fixed point then these operations get easier:
+ // long x1_fixed = x1_intercept * 2^32; (fixed point 32.32 format)
+ // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
+ // = fixed_floor(x1_fixed + 2^31 - 1)
+ // = fixed_floor(x1_fixed + 0x7fffffff)
+ // and error = fixed_fract(x1_fixed + 0x7fffffff)
+ final double x1_intercept = x1d + (firstCrossing - y1d) * slope;
+
+ // inlined scalb(x1_intercept, 32):
+ final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
+ + 0x7fffffffL;
+ // curx:
+ // last bit corresponds to the orientation
+ _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
+ addr += SIZE_INT;
+ _unsafe.putInt(addr, ((int) x1_fixed_biased) >>> 1);
+ addr += SIZE_INT;
+
+ // inlined scalb(slope, 32):
+ final long slope_fixed = (long) (POWER_2_TO_32 * slope);
+
+ // last bit set to 0 to keep orientation:
+ _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
+ addr += SIZE_INT;
+ _unsafe.putInt(addr, ((int) slope_fixed) >>> 1);
+ addr += SIZE_INT;
+
+ final int[] _edgeBuckets = edgeBuckets;
+ final int[] _edgeBucketCounts = edgeBucketCounts;
+
+ final int _boundsMinY = boundsMinY;
+
+ // each bucket is a linked list. this method adds ptr to the
+ // start of the "bucket"th linked list.
+ final int bucketIdx = firstCrossing - _boundsMinY;
+
+ // pointer from bucket
+ _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
+ addr += SIZE_INT;
+ // y max (inclusive)
+ _unsafe.putInt(addr, lastCrossing);
+
+ // Update buckets:
+ // directly the edge struct "pointer"
+ _edgeBuckets[bucketIdx] = edgePtr;
+ _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
+ // last bit means edge end
+ _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
+
+ // update sum of delta Y (subpixels):
+ edgeSumDeltaY += (lastCrossing - firstCrossing);
+
+ // update free pointer (ie length in bytes)
+ _edges.used += _SIZEOF_EDGE_BYTES;
+
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_addLine.stop();
+ }
+ }
+
+// END EDGE LIST
+//////////////////////////////////////////////////////////////////////////////
+
+ // Cache to store RLE-encoded coverage mask of the current primitive
+ final MarlinCache cache;
+
+ // Bounds of the drawing region, at subpixel precision.
+ private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
+
+ // Current winding rule
+ private int windingRule;
+
+ // Current drawing position, i.e., final point of last segment
+ private float x0, y0;
+
+ // Position of most recent 'moveTo' command
+ private float pix_sx0, pix_sy0;
+
+ // per-thread renderer context
+ final RendererContext rdrCtx;
+ // dirty curve
+ private final Curve curve;
+
+ Renderer(final RendererContext rdrCtx) {
+ this.rdrCtx = rdrCtx;
+
+ this.edges = new OffHeapArray(rdrCtx, INITIAL_EDGES_CAPACITY); // 96K
+
+ this.curve = rdrCtx.curve;
+
+ edgeBuckets = edgeBuckets_initial;
+ edgeBucketCounts = edgeBucketCounts_initial;
+
+ alphaLine = alphaLine_initial;
+
+ this.cache = rdrCtx.cache;
+
+ // ScanLine:
+ crossings = crossings_initial;
+ aux_crossings = aux_crossings_initial;
+ edgePtrs = edgePtrs_initial;
+ aux_edgePtrs = aux_edgePtrs_initial;
+
+ edgeCount = 0;
+ activeEdgeMaxUsed = 0;
+ }
+
+ Renderer init(final int pix_boundsX, final int pix_boundsY,
+ final int pix_boundsWidth, final int pix_boundsHeight,
+ final int windingRule) {
+
+ this.windingRule = windingRule;
+
+ // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
+ this.boundsMinX = pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
+ this.boundsMaxX =
+ (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
+ this.boundsMinY = pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
+ this.boundsMaxY =
+ (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
+
+ if (doLogBounds) {
+ MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
+ + boundsMaxX + "[ [" + boundsMinY + " ... "
+ + boundsMaxY + "[");
+ }
+
+ // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
+ // +1 for edgeBucketCounts
+ final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
+
+ if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
+ if (doStats) {
+ RendererContext.stats.stat_array_renderer_edgeBuckets
+ .add(edgeBucketsLength);
+ RendererContext.stats.stat_array_renderer_edgeBucketCounts
+ .add(edgeBucketsLength);
+ }
+ edgeBuckets = rdrCtx.getIntArray(edgeBucketsLength);
+ edgeBucketCounts = rdrCtx.getIntArray(edgeBucketsLength);
+ }
+
+ edgeMinY = Float.POSITIVE_INFINITY;
+ edgeMaxY = Float.NEGATIVE_INFINITY;
+ edgeMinX = Float.POSITIVE_INFINITY;
+ edgeMaxX = Float.NEGATIVE_INFINITY;
+
+ // reset used mark:
+ edgeCount = 0;
+ activeEdgeMaxUsed = 0;
+ edges.used = 0;
+
+ edgeSumDeltaY = 0;
+
+ return this; // fluent API
+ }
+
+ /**
+ * Disposes this renderer and recycle it clean up before reusing this instance
+ */
+ void dispose() {
+ if (doStats) {
+ RendererContext.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
+ RendererContext.stats.stat_rdr_edges.add(edges.used);
+ RendererContext.stats.stat_rdr_edges_count
+ .add(edges.used / SIZEOF_EDGE_BYTES);
+ }
+ if (doCleanDirty) {
+ // Force zero-fill dirty arrays:
+ Arrays.fill(crossings, 0);
+ Arrays.fill(aux_crossings, 0);
+ Arrays.fill(edgePtrs, 0);
+ Arrays.fill(aux_edgePtrs, 0);
+ }
+ // Return arrays:
+ if (crossings != crossings_initial) {
+ rdrCtx.putDirtyIntArray(crossings);
+ crossings = crossings_initial;
+ if (aux_crossings != aux_crossings_initial) {
+ rdrCtx.putDirtyIntArray(aux_crossings);
+ aux_crossings = aux_crossings_initial;
+ }
+ }
+ if (edgePtrs != edgePtrs_initial) {
+ rdrCtx.putDirtyIntArray(edgePtrs);
+ edgePtrs = edgePtrs_initial;
+ if (aux_edgePtrs != aux_edgePtrs_initial) {
+ rdrCtx.putDirtyIntArray(aux_edgePtrs);
+ aux_edgePtrs = aux_edgePtrs_initial;
+ }
+ }
+ if (alphaLine != alphaLine_initial) {
+ rdrCtx.putIntArray(alphaLine, 0, 0); // already zero filled
+ alphaLine = alphaLine_initial;
+ }
+ if (blkFlags != blkFlags_initial) {
+ rdrCtx.putIntArray(blkFlags, 0, 0); // already zero filled
+ blkFlags = blkFlags_initial;
+ }
+
+ if (edgeMinY != Float.POSITIVE_INFINITY) {
+ // clear used part
+ if (edgeBuckets == edgeBuckets_initial) {
+ // fill only used part
+ IntArrayCache.fill(edgeBuckets, buckets_minY,
+ buckets_maxY, 0);
+ IntArrayCache.fill(edgeBucketCounts, buckets_minY,
+ buckets_maxY + 1, 0);
+ } else {
+ // clear only used part
+ rdrCtx.putIntArray(edgeBuckets, buckets_minY,
+ buckets_maxY);
+ edgeBuckets = edgeBuckets_initial;
+
+ rdrCtx.putIntArray(edgeBucketCounts, buckets_minY,
+ buckets_maxY + 1);
+ edgeBucketCounts = edgeBucketCounts_initial;
+ }
+ } else if (edgeBuckets != edgeBuckets_initial) {
+ // unused arrays
+ rdrCtx.putIntArray(edgeBuckets, 0, 0);
+ edgeBuckets = edgeBuckets_initial;
+
+ rdrCtx.putIntArray(edgeBucketCounts, 0, 0);
+ edgeBucketCounts = edgeBucketCounts_initial;
+ }
+
+ // At last: resize back off-heap edges to initial size
+ if (edges.length != INITIAL_EDGES_CAPACITY) {
+ // note: may throw OOME:
+ edges.resize(INITIAL_EDGES_CAPACITY);
+ }
+ if (doCleanDirty) {
+ // Force zero-fill dirty arrays:
+ edges.fill(BYTE_0);
+ }
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_endRendering.stop();
+ }
+ }
+
+ private static float tosubpixx(final float pix_x) {
+ return f_SUBPIXEL_POSITIONS_X * pix_x;
+ }
+
+ private static float tosubpixy(final float pix_y) {
+ // shift y by -0.5 for fast ceil(y - 0.5):
+ return f_SUBPIXEL_POSITIONS_Y * pix_y - 0.5f;
+ }
+
+ @Override
+ public void moveTo(float pix_x0, float pix_y0) {
+ closePath();
+ this.pix_sx0 = pix_x0;
+ this.pix_sy0 = pix_y0;
+ this.y0 = tosubpixy(pix_y0);
+ this.x0 = tosubpixx(pix_x0);
+ }
+
+ @Override
+ public void lineTo(float pix_x1, float pix_y1) {
+ float x1 = tosubpixx(pix_x1);
+ float y1 = tosubpixy(pix_y1);
+ addLine(x0, y0, x1, y1);
+ x0 = x1;
+ y0 = y1;
+ }
+
+ @Override
+ public void curveTo(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3)
+ {
+ final float xe = tosubpixx(x3);
+ final float ye = tosubpixy(y3);
+ curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1),
+ tosubpixx(x2), tosubpixy(y2), xe, ye);
+ curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
+ x0 = xe;
+ y0 = ye;
+ }
+
+ @Override
+ public void quadTo(float x1, float y1, float x2, float y2) {
+ final float xe = tosubpixx(x2);
+ final float ye = tosubpixy(y2);
+ curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
+ quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
+ x0 = xe;
+ y0 = ye;
+ }
+
+ @Override
+ public void closePath() {
+ // lineTo expects its input in pixel coordinates.
+ lineTo(pix_sx0, pix_sy0);
+ }
+
+ @Override
+ public void pathDone() {
+ closePath();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ throw new InternalError("Renderer does not use a native consumer.");
+ }
+
+ // clean alpha array (zero filled)
+ private int[] alphaLine;
+ // 2048 (pixelsize) pixel large
+ private final int[] alphaLine_initial = new int[INITIAL_AA_ARRAY]; // 8K
+
+ private void _endRendering(final int ymin, final int ymax) {
+ if (DISABLE_RENDER) {
+ return;
+ }
+
+ // Get X bounds as true pixel boundaries to compute correct pixel coverage:
+ final int bboxx0 = bbox_spminX;
+ final int bboxx1 = bbox_spmaxX;
+
+ final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
+
+ // Useful when processing tile line by tile line
+ final int[] _alpha = alphaLine;
+
+ // local vars (performance):
+ final MarlinCache _cache = cache;
+ final OffHeapArray _edges = edges;
+ final int[] _edgeBuckets = edgeBuckets;
+ final int[] _edgeBucketCounts = edgeBucketCounts;
+
+ int[] _crossings = this.crossings;
+ int[] _edgePtrs = this.edgePtrs;
+
+ // merge sort auxiliary storage:
+ int[] _aux_crossings = this.aux_crossings;
+ int[] _aux_edgePtrs = this.aux_edgePtrs;
+
+ // copy constants:
+ final long _OFF_ERROR = OFF_ERROR;
+ final long _OFF_BUMP_X = OFF_BUMP_X;
+ final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
+
+ final long _OFF_NEXT = OFF_NEXT;
+ final long _OFF_YMAX = OFF_YMAX;
+
+ final int _ALL_BUT_LSB = ALL_BUT_LSB;
+ final int _ERR_STEP_MAX = ERR_STEP_MAX;
+
+ // unsafe I/O:
+ final Unsafe _unsafe = OffHeapArray.unsafe;
+ final long addr0 = _edges.address;
+ long addr;
+ final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
+ final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
+ final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
+ final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
+ final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
+
+ final int _MIN_VALUE = Integer.MIN_VALUE;
+ final int _MAX_VALUE = Integer.MAX_VALUE;
+
+ // Now we iterate through the scanlines. We must tell emitRow the coord
+ // of the first non-transparent pixel, so we must keep accumulators for
+ // the first and last pixels of the section of the current pixel row
+ // that we will emit.
+ // We also need to accumulate pix_bbox, but the iterator does it
+ // for us. We will just get the values from it once this loop is done
+ int minX = _MAX_VALUE;
+ int maxX = _MIN_VALUE;
+
+ int y = ymin;
+ int bucket = y - boundsMinY;
+
+ int numCrossings = this.edgeCount;
+ int edgePtrsLen = _edgePtrs.length;
+ int crossingsLen = _crossings.length;
+ int _arrayMaxUsed = activeEdgeMaxUsed;
+ int ptrLen = 0, newCount, ptrEnd;
+
+ int bucketcount, i, j, ecur;
+ int cross, lastCross;
+ int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
+ int pix_x, pix_xmaxm1, pix_xmax;
+
+ int low, high, mid, prevNumCrossings;
+ boolean useBinarySearch;
+
+ final int[] _blkFlags = blkFlags;
+ final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
+ final int _BLK_SIZE = BLOCK_SIZE;
+
+ final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
+
+ // Use block flags if large pixel span and few crossings:
+ // ie mean(distance between crossings) is high
+ boolean useBlkFlags = this.prevUseBlkFlags;
+
+ final int stroking = rdrCtx.stroking;
+
+ int lastY = -1; // last emited row
+
+
+ // Iteration on scanlines
+ for (; y < ymax; y++, bucket++) {
+ // --- from former ScanLineIterator.next()
+ bucketcount = _edgeBucketCounts[bucket];
+
+ // marker on previously sorted edges:
+ prevNumCrossings = numCrossings;
+
+ // bucketCount indicates new edge / edge end:
+ if (bucketcount != 0) {
+ if (doStats) {
+ RendererContext.stats.stat_rdr_activeEdges_updates
+ .add(numCrossings);
+ }
+
+ // last bit set to 1 means that edges ends
+ if ((bucketcount & 0x1) != 0) {
+ // eviction in active edge list
+ // cache edges[] address + offset
+ addr = addr0 + _OFF_YMAX;
+
+ for (i = 0, newCount = 0; i < numCrossings; i++) {
+ // get the pointer to the edge
+ ecur = _edgePtrs[i];
+ // random access so use unsafe:
+ if (_unsafe.getInt(addr + ecur) > y) {
+ _edgePtrs[newCount++] = ecur;
+ }
+ }
+ // update marker on sorted edges minus removed edges:
+ prevNumCrossings = numCrossings = newCount;
+ }
+
+ ptrLen = bucketcount >> 1; // number of new edge
+
+ if (ptrLen != 0) {
+ if (doStats) {
+ RendererContext.stats.stat_rdr_activeEdges_adds
+ .add(ptrLen);
+ if (ptrLen > 10) {
+ RendererContext.stats.stat_rdr_activeEdges_adds_high
+ .add(ptrLen);
+ }
+ }
+ ptrEnd = numCrossings + ptrLen;
+
+ if (edgePtrsLen < ptrEnd) {
+ if (doStats) {
+ RendererContext.stats.stat_array_renderer_edgePtrs
+ .add(ptrEnd);
+ }
+ this.edgePtrs = _edgePtrs
+ = rdrCtx.widenDirtyIntArray(_edgePtrs, numCrossings,
+ ptrEnd);
+
+ edgePtrsLen = _edgePtrs.length;
+ // Get larger auxiliary storage:
+ if (_aux_edgePtrs != aux_edgePtrs_initial) {
+ rdrCtx.putDirtyIntArray(_aux_edgePtrs);
+ }
+ // use ArrayCache.getNewSize() to use the same growing
+ // factor than widenDirtyIntArray():
+ if (doStats) {
+ RendererContext.stats.stat_array_renderer_aux_edgePtrs
+ .add(ptrEnd);
+ }
+ this.aux_edgePtrs = _aux_edgePtrs
+ = rdrCtx.getDirtyIntArray(
+ ArrayCache.getNewSize(numCrossings, ptrEnd)
+ );
+ }
+
+ // cache edges[] address + offset
+ addr = addr0 + _OFF_NEXT;
+
+ // add new edges to active edge list:
+ for (ecur = _edgeBuckets[bucket];
+ numCrossings < ptrEnd; numCrossings++)
+ {
+ // store the pointer to the edge
+ _edgePtrs[numCrossings] = ecur;
+ // random access so use unsafe:
+ ecur = _unsafe.getInt(addr + ecur);
+ }
+
+ if (crossingsLen < numCrossings) {
+ // Get larger array:
+ if (_crossings != crossings_initial) {
+ rdrCtx.putDirtyIntArray(_crossings);
+ }
+ if (doStats) {
+ RendererContext.stats.stat_array_renderer_crossings
+ .add(numCrossings);
+ }
+ this.crossings = _crossings
+ = rdrCtx.getDirtyIntArray(numCrossings);
+
+ // Get larger auxiliary storage:
+ if (_aux_crossings != aux_crossings_initial) {
+ rdrCtx.putDirtyIntArray(_aux_crossings);
+ }
+ if (doStats) {
+ RendererContext.stats.stat_array_renderer_aux_crossings
+ .add(numCrossings);
+ }
+ this.aux_crossings = _aux_crossings
+ = rdrCtx.getDirtyIntArray(numCrossings);
+
+ crossingsLen = _crossings.length;
+ }
+ if (doStats) {
+ // update max used mark
+ if (numCrossings > _arrayMaxUsed) {
+ _arrayMaxUsed = numCrossings;
+ }
+ }
+ } // ptrLen != 0
+ } // bucketCount != 0
+
+
+ if (numCrossings != 0) {
+ /*
+ * thresholds to switch to optimized merge sort
+ * for newly added edges + final merge pass.
+ */
+ if ((ptrLen < 10) || (numCrossings < 40)) {
+ if (doStats) {
+ RendererContext.stats.hist_rdr_crossings
+ .add(numCrossings);
+ RendererContext.stats.hist_rdr_crossings_adds
+ .add(ptrLen);
+ }
+
+ /*
+ * threshold to use binary insertion sort instead of
+ * straight insertion sort (to reduce minimize comparisons).
+ */
+ useBinarySearch = (numCrossings >= 20);
+
+ // if small enough:
+ lastCross = _MIN_VALUE;
+
+ for (i = 0; i < numCrossings; i++) {
+ // get the pointer to the edge
+ ecur = _edgePtrs[i];
+
+ /* convert subpixel coordinates (float) into pixel
+ positions (int) for coming scanline */
+ /* note: it is faster to always update edges even
+ if it is removed from AEL for coming or last scanline */
+
+ // random access so use unsafe:
+ addr = addr0 + ecur; // ecur + OFF_F_CURX
+
+ // get current crossing:
+ curx = _unsafe.getInt(addr);
+
+ // update crossing with orientation at last bit:
+ cross = curx;
+
+ // Increment x using DDA (fixed point):
+ curx += _unsafe.getInt(addr + _OFF_BUMP_X);
+
+ // Increment error:
+ err = _unsafe.getInt(addr + _OFF_ERROR)
+ + _unsafe.getInt(addr + _OFF_BUMP_ERR);
+
+ // Manual carry handling:
+ // keep sign and carry bit only and ignore last bit (preserve orientation):
+ _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB));
+ _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
+
+ if (doStats) {
+ RendererContext.stats.stat_rdr_crossings_updates
+ .add(numCrossings);
+ }
+
+ // insertion sort of crossings:
+ if (cross < lastCross) {
+ if (doStats) {
+ RendererContext.stats.stat_rdr_crossings_sorts
+ .add(i);
+ }
+
+ /* use binary search for newly added edges
+ in crossings if arrays are large enough */
+ if (useBinarySearch && (i >= prevNumCrossings)) {
+ if (doStats) {
+ RendererContext.stats.
+ stat_rdr_crossings_bsearch.add(i);
+ }
+ low = 0;
+ high = i - 1;
+
+ do {
+ // note: use signed shift (not >>>) for performance
+ // as indices are small enough to exceed Integer.MAX_VALUE
+ mid = (low + high) >> 1;
+
+ if (_crossings[mid] < cross) {
+ low = mid + 1;
+ } else {
+ high = mid - 1;
+ }
+ } while (low <= high);
+
+ for (j = i - 1; j >= low; j--) {
+ _crossings[j + 1] = _crossings[j];
+ _edgePtrs [j + 1] = _edgePtrs[j];
+ }
+ _crossings[low] = cross;
+ _edgePtrs [low] = ecur;
+
+ } else {
+ j = i - 1;
+ _crossings[i] = _crossings[j];
+ _edgePtrs[i] = _edgePtrs[j];
+
+ while ((--j >= 0) && (_crossings[j] > cross)) {
+ _crossings[j + 1] = _crossings[j];
+ _edgePtrs [j + 1] = _edgePtrs[j];
+ }
+ _crossings[j + 1] = cross;
+ _edgePtrs [j + 1] = ecur;
+ }
+
+ } else {
+ _crossings[i] = lastCross = cross;
+ }
+ }
+ } else {
+ if (doStats) {
+ RendererContext.stats.stat_rdr_crossings_msorts
+ .add(numCrossings);
+ RendererContext.stats.hist_rdr_crossings_ratio
+ .add((1000 * ptrLen) / numCrossings);
+ RendererContext.stats.hist_rdr_crossings_msorts
+ .add(numCrossings);
+ RendererContext.stats.hist_rdr_crossings_msorts_adds
+ .add(ptrLen);
+ }
+
+ // Copy sorted data in auxiliary arrays
+ // and perform insertion sort on almost sorted data
+ // (ie i < prevNumCrossings):
+
+ lastCross = _MIN_VALUE;
+
+ for (i = 0; i < numCrossings; i++) {
+ // get the pointer to the edge
+ ecur = _edgePtrs[i];
+
+ /* convert subpixel coordinates (float) into pixel
+ positions (int) for coming scanline */
+ /* note: it is faster to always update edges even
+ if it is removed from AEL for coming or last scanline */
+
+ // random access so use unsafe:
+ addr = addr0 + ecur; // ecur + OFF_F_CURX
+
+ // get current crossing:
+ curx = _unsafe.getInt(addr);
+
+ // update crossing with orientation at last bit:
+ cross = curx;
+
+ // Increment x using DDA (fixed point):
+ curx += _unsafe.getInt(addr + _OFF_BUMP_X);
+
+ // Increment error:
+ err = _unsafe.getInt(addr + _OFF_ERROR)
+ + _unsafe.getInt(addr + _OFF_BUMP_ERR);
+
+ // Manual carry handling:
+ // keep sign and carry bit only and ignore last bit (preserve orientation):
+ _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB));
+ _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
+
+ if (doStats) {
+ RendererContext.stats.stat_rdr_crossings_updates
+ .add(numCrossings);
+ }
+
+ if (i >= prevNumCrossings) {
+ // simply store crossing as edgePtrs is in-place:
+ // will be copied and sorted efficiently by mergesort later:
+ _crossings[i] = cross;
+
+ } else if (cross < lastCross) {
+ if (doStats) {
+ RendererContext.stats.stat_rdr_crossings_sorts
+ .add(i);
+ }
+
+ // (straight) insertion sort of crossings:
+ j = i - 1;
+ _aux_crossings[i] = _aux_crossings[j];
+ _aux_edgePtrs[i] = _aux_edgePtrs[j];
+
+ while ((--j >= 0) && (_aux_crossings[j] > cross)) {
+ _aux_crossings[j + 1] = _aux_crossings[j];
+ _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
+ }
+ _aux_crossings[j + 1] = cross;
+ _aux_edgePtrs [j + 1] = ecur;
+
+ } else {
+ // auxiliary storage:
+ _aux_crossings[i] = lastCross = cross;
+ _aux_edgePtrs [i] = ecur;
+ }
+ }
+
+ // use Mergesort using auxiliary arrays (sort only right part)
+ MergeSort.mergeSortNoCopy(_crossings, _edgePtrs,
+ _aux_crossings, _aux_edgePtrs,
+ numCrossings, prevNumCrossings);
+ }
+
+ // reset ptrLen
+ ptrLen = 0;
+ // --- from former ScanLineIterator.next()
+
+
+ /* note: bboxx0 and bboxx1 must be pixel boundaries
+ to have correct coverage computation */
+
+ // right shift on crossings to get the x-coordinate:
+ curxo = _crossings[0];
+ x0 = curxo >> 1;
+ if (x0 < minX) {
+ minX = x0; // subpixel coordinate
+ }
+
+ x1 = _crossings[numCrossings - 1] >> 1;
+ if (x1 > maxX) {
+ maxX = x1; // subpixel coordinate
+ }
+
+
+ // compute pixel coverages
+ prev = curx = x0;
+ // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
+ // last bit contains orientation (0 or 1)
+ crorientation = ((curxo & 0x1) << 1) - 1;
+
+ if (windingRuleEvenOdd) {
+ sum = crorientation;
+
+ // Even Odd winding rule: take care of mask ie sum(orientations)
+ for (i = 1; i < numCrossings; i++) {
+ curxo = _crossings[i];
+ curx = curxo >> 1;
+ // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
+ // last bit contains orientation (0 or 1)
+ crorientation = ((curxo & 0x1) << 1) - 1;
+
+ if ((sum & 0x1) != 0) {
+ // TODO: perform line clipping on left-right sides
+ // to avoid such bound checks:
+ x0 = (prev > bboxx0) ? prev : bboxx0;
+ x1 = (curx < bboxx1) ? curx : bboxx1;
+
+ if (x0 < x1) {
+ x0 -= bboxx0; // turn x0, x1 from coords to indices
+ x1 -= bboxx0; // in the alpha array.
+
+ pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X;
+ pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
+
+ if (pix_x == pix_xmaxm1) {
+ // Start and end in same pixel
+ tmp = (x1 - x0); // number of subpixels
+ _alpha[pix_x ] += tmp;
+ _alpha[pix_x + 1] -= tmp;
+
+ if (useBlkFlags) {
+ // flag used blocks:
+ _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
+ }
+ } else {
+ tmp = (x0 & _SUBPIXEL_MASK_X);
+ _alpha[pix_x ]
+ += (_SUBPIXEL_POSITIONS_X - tmp);
+ _alpha[pix_x + 1]
+ += tmp;
+
+ pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
+
+ tmp = (x1 & _SUBPIXEL_MASK_X);
+ _alpha[pix_xmax ]
+ -= (_SUBPIXEL_POSITIONS_X - tmp);
+ _alpha[pix_xmax + 1]
+ -= tmp;
+
+ if (useBlkFlags) {
+ // flag used blocks:
+ _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
+ _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
+ }
+ }
+ }
+ }
+
+ sum += crorientation;
+ prev = curx;
+ }
+ } else {
+ // Non-zero winding rule: optimize that case (default)
+ // and avoid processing intermediate crossings
+ for (i = 1, sum = 0;; i++) {
+ sum += crorientation;
+
+ if (sum != 0) {
+ // prev = min(curx)
+ if (prev > curx) {
+ prev = curx;
+ }
+ } else {
+ // TODO: perform line clipping on left-right sides
+ // to avoid such bound checks:
+ x0 = (prev > bboxx0) ? prev : bboxx0;
+ x1 = (curx < bboxx1) ? curx : bboxx1;
+
+ if (x0 < x1) {
+ x0 -= bboxx0; // turn x0, x1 from coords to indices
+ x1 -= bboxx0; // in the alpha array.
+
+ pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X;
+ pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
+
+ if (pix_x == pix_xmaxm1) {
+ // Start and end in same pixel
+ tmp = (x1 - x0); // number of subpixels
+ _alpha[pix_x ] += tmp;
+ _alpha[pix_x + 1] -= tmp;
+
+ if (useBlkFlags) {
+ // flag used blocks:
+ _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
+ }
+ } else {
+ tmp = (x0 & _SUBPIXEL_MASK_X);
+ _alpha[pix_x ]
+ += (_SUBPIXEL_POSITIONS_X - tmp);
+ _alpha[pix_x + 1]
+ += tmp;
+
+ pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
+
+ tmp = (x1 & _SUBPIXEL_MASK_X);
+ _alpha[pix_xmax ]
+ -= (_SUBPIXEL_POSITIONS_X - tmp);
+ _alpha[pix_xmax + 1]
+ -= tmp;
+
+ if (useBlkFlags) {
+ // flag used blocks:
+ _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
+ _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
+ }
+ }
+ }
+ prev = _MAX_VALUE;
+ }
+
+ if (i == numCrossings) {
+ break;
+ }
+
+ curxo = _crossings[i];
+ curx = curxo >> 1;
+ // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
+ // last bit contains orientation (0 or 1)
+ crorientation = ((curxo & 0x1) << 1) - 1;
+ }
+ }
+ } // numCrossings > 0
+
+ // even if this last row had no crossings, alpha will be zeroed
+ // from the last emitRow call. But this doesn't matter because
+ // maxX < minX, so no row will be emitted to the MarlinCache.
+ if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
+ lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
+
+ // convert subpixel to pixel coordinate within boundaries:
+ minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
+ maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
+
+ if (maxX >= minX) {
+ // note: alpha array will be zeroed by copyAARow()
+ // +2 because alpha [pix_minX; pix_maxX+1]
+ // fix range [x0; x1[
+ copyAARow(_alpha, lastY, minX, maxX + 2, useBlkFlags);
+
+ // speculative for next pixel row (scanline coherence):
+ if (_enableBlkFlagsHeuristics) {
+ // Use block flags if large pixel span and few crossings:
+ // ie mean(distance between crossings) is larger than
+ // 1 block size;
+
+ // fast check width:
+ maxX -= minX;
+
+ // if stroking: numCrossings /= 2
+ // => shift numCrossings by 1
+ // condition = (width / (numCrossings - 1)) > blockSize
+ useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
+ (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
+
+ if (doStats) {
+ tmp = FloatMath.max(1,
+ ((numCrossings >> stroking) - 1));
+ RendererContext.stats.hist_tile_generator_encoding_dist
+ .add(maxX / tmp);
+ }
+ }
+ } else {
+ _cache.clearAARow(lastY);
+ }
+ minX = _MAX_VALUE;
+ maxX = _MIN_VALUE;
+ }
+ } // scan line iterator
+
+ // Emit final row
+ y--;
+ y >>= _SUBPIXEL_LG_POSITIONS_Y;
+
+ // convert subpixel to pixel coordinate within boundaries:
+ minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
+ maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
+
+ if (maxX >= minX) {
+ // note: alpha array will be zeroed by copyAARow()
+ // +2 because alpha [pix_minX; pix_maxX+1]
+ // fix range [x0; x1[
+ copyAARow(_alpha, y, minX, maxX + 2, useBlkFlags);
+ } else if (y != lastY) {
+ _cache.clearAARow(y);
+ }
+
+ // update member:
+ edgeCount = numCrossings;
+ prevUseBlkFlags = useBlkFlags;
+
+ if (doStats) {
+ // update max used mark
+ activeEdgeMaxUsed = _arrayMaxUsed;
+ }
+ }
+
+ boolean endRendering() {
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_endRendering.start();
+ }
+ if (edgeMinY == Float.POSITIVE_INFINITY) {
+ return false; // undefined edges bounds
+ }
+
+ final int _boundsMinY = boundsMinY;
+ final int _boundsMaxY = boundsMaxY;
+
+ // bounds as inclusive intervals
+ final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX);
+ final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX - 1);
+
+ // y1 (and y2) are already biased by -0.5 in tosubpixy():
+ final int spminY = FloatMath.max(FloatMath.ceil_int(edgeMinY), _boundsMinY);
+ int maxY = FloatMath.ceil_int(edgeMaxY);
+
+ final int spmaxY;
+
+ if (maxY <= _boundsMaxY - 1) {
+ spmaxY = maxY;
+ } else {
+ spmaxY = _boundsMaxY - 1;
+ maxY = _boundsMaxY;
+ }
+ buckets_minY = spminY - _boundsMinY;
+ buckets_maxY = maxY - _boundsMinY;
+
+ if (doLogBounds) {
+ MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
+ + "][" + edgeMinY + " ... " + edgeMaxY + "]");
+ MarlinUtils.logInfo("spXY = [" + spminX + " ... " + spmaxX
+ + "][" + spminY + " ... " + spmaxY + "]");
+ }
+
+ // test clipping for shapes out of bounds
+ if ((spminX > spmaxX) || (spminY > spmaxY)) {
+ return false;
+ }
+
+ // half open intervals
+ // inclusive:
+ final int pminX = spminX >> SUBPIXEL_LG_POSITIONS_X;
+ // exclusive:
+ final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
+ // inclusive:
+ final int pminY = spminY >> SUBPIXEL_LG_POSITIONS_Y;
+ // exclusive:
+ final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
+
+ // store BBox to answer ptg.getBBox():
+ this.cache.init(pminX, pminY, pmaxX, pmaxY, edgeSumDeltaY);
+
+ // Heuristics for using block flags:
+ if (ENABLE_BLOCK_FLAGS) {
+ enableBlkFlags = this.cache.useRLE;
+ prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
+
+ if (enableBlkFlags) {
+ // ensure blockFlags array is large enough:
+ // note: +2 to ensure enough space left at end
+ final int nxTiles = ((pmaxX - pminX) >> TILE_SIZE_LG) + 2;
+ if (nxTiles > INITIAL_ARRAY) {
+ blkFlags = rdrCtx.getIntArray(nxTiles);
+ }
+ }
+ }
+
+ // memorize the rendering bounding box:
+ /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
+ to have correct coverage computation */
+ // inclusive:
+ bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
+ // exclusive:
+ bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
+ // inclusive:
+ bbox_spminY = spminY;
+ // exclusive:
+ bbox_spmaxY = FloatMath.min(spmaxY + 1, pmaxY << SUBPIXEL_LG_POSITIONS_Y);
+
+ if (doLogBounds) {
+ MarlinUtils.logInfo("pXY = [" + pminX + " ... " + pmaxX
+ + "[ [" + pminY + " ... " + pmaxY + "[");
+ MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
+ + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
+ + bbox_spmaxY + "[");
+ }
+
+ // Prepare alpha line:
+ // add 2 to better deal with the last pixel in a pixel row.
+ final int width = (pmaxX - pminX) + 2;
+
+ // Useful when processing tile line by tile line
+ if (width > INITIAL_AA_ARRAY) {
+ if (doStats) {
+ RendererContext.stats.stat_array_renderer_alphaline
+ .add(width);
+ }
+ alphaLine = rdrCtx.getIntArray(width);
+ }
+
+ // process first tile line:
+ endRendering(pminY);
+
+ return true;
+ }
+
+ private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
+
+ void endRendering(final int pminY) {
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_endRendering_Y.start();
+ }
+
+ final int spminY = pminY << SUBPIXEL_LG_POSITIONS_Y;
+ final int fixed_spminY = FloatMath.max(bbox_spminY, spminY);
+
+ // avoid rendering for last call to nextTile()
+ if (fixed_spminY < bbox_spmaxY) {
+ // process a complete tile line ie scanlines for 32 rows
+ final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE);
+
+ // process tile line [0 - 32]
+ cache.resetTileLine(pminY);
+
+ // Process only one tile line:
+ _endRendering(fixed_spminY, spmaxY);
+ }
+ if (doMonitors) {
+ RendererContext.stats.mon_rdr_endRendering_Y.stop();
+ }
+ }
+
+ private boolean enableBlkFlags = false;
+ private boolean prevUseBlkFlags = false;
+
+ private final int[] blkFlags_initial = new int[INITIAL_ARRAY]; // 1 tile line
+ /* block flags (0|1) */
+ private int[] blkFlags = blkFlags_initial;
+
+ void copyAARow(final int[] alphaRow,
+ final int pix_y, final int pix_from, final int pix_to,
+ final boolean useBlockFlags)
+ {
+ if (useBlockFlags) {
+ if (doStats) {
+ RendererContext.stats.hist_tile_generator_encoding.add(1);
+ }
+ cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to);
+ } else {
+ if (doStats) {
+ RendererContext.stats.hist_tile_generator_encoding.add(0);
+ }
+ cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to);
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/RendererContext.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,471 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.awt.geom.Path2D;
+import java.lang.ref.SoftReference;
+import java.lang.ref.WeakReference;
+import java.util.concurrent.atomic.AtomicInteger;
+import static sun.java2d.marlin.ArrayCache.*;
+import sun.java2d.marlin.MarlinRenderingEngine.NormalizingPathIterator;
+import static sun.java2d.marlin.MarlinUtils.getCallerInfo;
+import static sun.java2d.marlin.MarlinUtils.logInfo;
+
+/**
+ * This class is a renderer context dedicated to a single thread
+ */
+final class RendererContext implements MarlinConst {
+
+ private static final String className = RendererContext.class.getName();
+ // RendererContext creation counter
+ private static final AtomicInteger contextCount = new AtomicInteger(1);
+ // RendererContext statistics
+ static final RendererStats stats = (doStats || doMonitors)
+ ? RendererStats.getInstance(): null;
+
+ private static final boolean USE_CACHE_HARD_REF = doStats
+ || (MarlinRenderingEngine.REF_TYPE == MarlinRenderingEngine.REF_WEAK);
+
+ /**
+ * Create a new renderer context
+ *
+ * @return new RendererContext instance
+ */
+ static RendererContext createContext() {
+ final RendererContext newCtx = new RendererContext("ctx"
+ + Integer.toString(contextCount.getAndIncrement()));
+ if (RendererContext.stats != null) {
+ RendererContext.stats.allContexts.add(newCtx);
+ }
+ return newCtx;
+ }
+
+ // context name (debugging purposes)
+ final String name;
+ /*
+ * Reference to this instance (hard, soft or weak).
+ * @see MarlinRenderingEngine#REF_TYPE
+ */
+ final Object reference;
+ // dirty flag indicating an exception occured during pipeline in pathTo()
+ boolean dirty = false;
+ // dynamic array caches kept using weak reference (low memory footprint)
+ WeakReference<ArrayCachesHolder> refArrayCaches = null;
+ // hard reference to array caches (for statistics)
+ ArrayCachesHolder hardRefArrayCaches = null;
+ // shared data
+ final float[] float6 = new float[6];
+ // shared curve (dirty) (Renderer / Stroker)
+ final Curve curve = new Curve();
+ // MarlinRenderingEngine NormalizingPathIterator NearestPixelCenter:
+ final NormalizingPathIterator nPCPathIterator;
+ // MarlinRenderingEngine NearestPixelQuarter NormalizingPathIterator:
+ final NormalizingPathIterator nPQPathIterator;
+ // MarlinRenderingEngine.TransformingPathConsumer2D
+ final TransformingPathConsumer2D transformerPC2D;
+ // recycled Path2D instance
+ Path2D.Float p2d = null;
+ final Renderer renderer;
+ final Stroker stroker;
+ // Simplifies out collinear lines
+ final CollinearSimplifier simplifier = new CollinearSimplifier();
+ final Dasher dasher;
+ final MarlinTileGenerator ptg;
+ final MarlinCache cache;
+ // flag indicating the shape is stroked (1) or filled (0)
+ int stroking = 0;
+
+ /**
+ * Constructor
+ *
+ * @param name
+ */
+ RendererContext(final String name) {
+ if (logCreateContext) {
+ MarlinUtils.logInfo("new RendererContext = " + name);
+ }
+
+ this.name = name;
+
+ // NormalizingPathIterator instances:
+ nPCPathIterator = new NormalizingPathIterator.NearestPixelCenter(float6);
+ nPQPathIterator = new NormalizingPathIterator.NearestPixelQuarter(float6);
+
+ // MarlinRenderingEngine.TransformingPathConsumer2D
+ transformerPC2D = new TransformingPathConsumer2D();
+
+ // Renderer:
+ cache = new MarlinCache(this);
+ renderer = new Renderer(this); // needs MarlinCache from rdrCtx.cache
+ ptg = new MarlinTileGenerator(renderer);
+
+ stroker = new Stroker(this);
+ dasher = new Dasher(this);
+
+ // Create the reference to this instance (hard, soft or weak):
+ switch (MarlinRenderingEngine.REF_TYPE) {
+ default:
+ case MarlinRenderingEngine.REF_HARD:
+ reference = this;
+ break;
+ case MarlinRenderingEngine.REF_SOFT:
+ reference = new SoftReference<RendererContext>(this);
+ break;
+ case MarlinRenderingEngine.REF_WEAK:
+ reference = new WeakReference<RendererContext>(this);
+ break;
+ }
+ }
+
+ /**
+ * Disposes this renderer context:
+ * clean up before reusing this context
+ */
+ void dispose() {
+ stroking = 0;
+ // reset hard reference to array caches if needed:
+ if (!USE_CACHE_HARD_REF) {
+ hardRefArrayCaches = null;
+ }
+ // if context is maked as DIRTY:
+ if (dirty) {
+ // may happen if an exception if thrown in the pipeline processing:
+ // force cleanup of all possible pipelined blocks (except Renderer):
+
+ // NormalizingPathIterator instances:
+ this.nPCPathIterator.dispose();
+ this.nPQPathIterator.dispose();
+ // Dasher:
+ this.dasher.dispose();
+ // Stroker:
+ this.stroker.dispose();
+
+ // mark context as CLEAN:
+ dirty = false;
+ }
+ }
+
+ // Array caches
+ ArrayCachesHolder getArrayCachesHolder() {
+ // Use hard reference first (cached resolved weak reference):
+ ArrayCachesHolder holder = hardRefArrayCaches;
+ if (holder == null) {
+ // resolve reference:
+ holder = (refArrayCaches != null)
+ ? refArrayCaches.get()
+ : null;
+ // create a new ArrayCachesHolder if none is available
+ if (holder == null) {
+ if (logCreateContext) {
+ MarlinUtils.logInfo("new ArrayCachesHolder for "
+ + "RendererContext = " + name);
+ }
+
+ holder = new ArrayCachesHolder();
+
+ if (USE_CACHE_HARD_REF) {
+ // update hard reference:
+ hardRefArrayCaches = holder;
+ }
+
+ // update weak reference:
+ refArrayCaches = new WeakReference<ArrayCachesHolder>(holder);
+ }
+ }
+ return holder;
+ }
+
+ // dirty byte array cache
+ ByteArrayCache getDirtyByteArrayCache(final int length) {
+ final int bucket = ArrayCache.getBucketDirtyBytes(length);
+ return getArrayCachesHolder().dirtyByteArrayCaches[bucket];
+ }
+
+ byte[] getDirtyByteArray(final int length) {
+ if (length <= MAX_DIRTY_BYTE_ARRAY_SIZE) {
+ return getDirtyByteArrayCache(length).getArray();
+ }
+
+ if (doStats) {
+ incOversize();
+ }
+
+ if (doLogOverSize) {
+ logInfo("getDirtyByteArray[oversize]: length=\t" + length
+ + "\tfrom=\t" + getCallerInfo(className));
+ }
+
+ return new byte[length];
+ }
+
+ void putDirtyByteArray(final byte[] array) {
+ final int length = array.length;
+ // odd sized array are non-cached arrays (initial arrays)
+ // ensure to never store initial arrays in cache:
+ if (((length & 0x1) == 0) && (length <= MAX_DIRTY_BYTE_ARRAY_SIZE)) {
+ getDirtyByteArrayCache(length).putDirtyArray(array, length);
+ }
+ }
+
+ byte[] widenDirtyByteArray(final byte[] in,
+ final int usedSize, final int needSize)
+ {
+ final int length = in.length;
+ if (doChecks && length >= needSize) {
+ return in;
+ }
+ if (doStats) {
+ incResizeDirtyByte();
+ }
+
+ // maybe change bucket:
+ // ensure getNewSize() > newSize:
+ final byte[] res = getDirtyByteArray(getNewSize(usedSize, needSize));
+
+ System.arraycopy(in, 0, res, 0, usedSize); // copy only used elements
+
+ // maybe return current array:
+ // NO clean-up of array data = DIRTY ARRAY
+ putDirtyByteArray(in);
+
+ if (doLogWidenArray) {
+ logInfo("widenDirtyByteArray[" + res.length + "]: usedSize=\t"
+ + usedSize + "\tlength=\t" + length + "\tneeded length=\t"
+ + needSize + "\tfrom=\t" + getCallerInfo(className));
+ }
+ return res;
+ }
+
+ // int array cache
+ IntArrayCache getIntArrayCache(final int length) {
+ final int bucket = ArrayCache.getBucket(length);
+ return getArrayCachesHolder().intArrayCaches[bucket];
+ }
+
+ int[] getIntArray(final int length) {
+ if (length <= MAX_ARRAY_SIZE) {
+ return getIntArrayCache(length).getArray();
+ }
+
+ if (doStats) {
+ incOversize();
+ }
+
+ if (doLogOverSize) {
+ logInfo("getIntArray[oversize]: length=\t" + length + "\tfrom=\t"
+ + getCallerInfo(className));
+ }
+
+ return new int[length];
+ }
+
+ // unused
+ int[] widenIntArray(final int[] in, final int usedSize,
+ final int needSize, final int clearTo)
+ {
+ final int length = in.length;
+ if (doChecks && length >= needSize) {
+ return in;
+ }
+ if (doStats) {
+ incResizeInt();
+ }
+
+ // maybe change bucket:
+ // ensure getNewSize() > newSize:
+ final int[] res = getIntArray(getNewSize(usedSize, needSize));
+
+ System.arraycopy(in, 0, res, 0, usedSize); // copy only used elements
+
+ // maybe return current array:
+ putIntArray(in, 0, clearTo); // ensure all array is cleared (grow-reduce algo)
+
+ if (doLogWidenArray) {
+ logInfo("widenIntArray[" + res.length + "]: usedSize=\t"
+ + usedSize + "\tlength=\t" + length + "\tneeded length=\t"
+ + needSize + "\tfrom=\t" + getCallerInfo(className));
+ }
+ return res;
+ }
+
+ void putIntArray(final int[] array, final int fromIndex,
+ final int toIndex)
+ {
+ final int length = array.length;
+ // odd sized array are non-cached arrays (initial arrays)
+ // ensure to never store initial arrays in cache:
+ if (((length & 0x1) == 0) && (length <= MAX_ARRAY_SIZE)) {
+ getIntArrayCache(length).putArray(array, length, fromIndex, toIndex);
+ }
+ }
+
+ // dirty int array cache
+ IntArrayCache getDirtyIntArrayCache(final int length) {
+ final int bucket = ArrayCache.getBucket(length);
+ return getArrayCachesHolder().dirtyIntArrayCaches[bucket];
+ }
+
+ int[] getDirtyIntArray(final int length) {
+ if (length <= MAX_ARRAY_SIZE) {
+ return getDirtyIntArrayCache(length).getArray();
+ }
+
+ if (doStats) {
+ incOversize();
+ }
+
+ if (doLogOverSize) {
+ logInfo("getDirtyIntArray[oversize]: length=\t" + length
+ + "\tfrom=\t" + getCallerInfo(className));
+ }
+
+ return new int[length];
+ }
+
+ int[] widenDirtyIntArray(final int[] in,
+ final int usedSize, final int needSize)
+ {
+ final int length = in.length;
+ if (doChecks && length >= needSize) {
+ return in;
+ }
+ if (doStats) {
+ incResizeDirtyInt();
+ }
+
+ // maybe change bucket:
+ // ensure getNewSize() > newSize:
+ final int[] res = getDirtyIntArray(getNewSize(usedSize, needSize));
+
+ System.arraycopy(in, 0, res, 0, usedSize); // copy only used elements
+
+ // maybe return current array:
+ // NO clean-up of array data = DIRTY ARRAY
+ putDirtyIntArray(in);
+
+ if (doLogWidenArray) {
+ logInfo("widenDirtyIntArray[" + res.length + "]: usedSize=\t"
+ + usedSize + "\tlength=\t" + length + "\tneeded length=\t"
+ + needSize + "\tfrom=\t" + getCallerInfo(className));
+ }
+ return res;
+ }
+
+ void putDirtyIntArray(final int[] array) {
+ final int length = array.length;
+ // odd sized array are non-cached arrays (initial arrays)
+ // ensure to never store initial arrays in cache:
+ if (((length & 0x1) == 0) && (length <= MAX_ARRAY_SIZE)) {
+ getDirtyIntArrayCache(length).putDirtyArray(array, length);
+ }
+ }
+
+ // dirty float array cache
+ FloatArrayCache getDirtyFloatArrayCache(final int length) {
+ final int bucket = ArrayCache.getBucket(length);
+ return getArrayCachesHolder().dirtyFloatArrayCaches[bucket];
+ }
+
+ float[] getDirtyFloatArray(final int length) {
+ if (length <= MAX_ARRAY_SIZE) {
+ return getDirtyFloatArrayCache(length).getArray();
+ }
+
+ if (doStats) {
+ incOversize();
+ }
+
+ if (doLogOverSize) {
+ logInfo("getDirtyFloatArray[oversize]: length=\t" + length
+ + "\tfrom=\t" + getCallerInfo(className));
+ }
+
+ return new float[length];
+ }
+
+ float[] widenDirtyFloatArray(final float[] in,
+ final int usedSize, final int needSize)
+ {
+ final int length = in.length;
+ if (doChecks && length >= needSize) {
+ return in;
+ }
+ if (doStats) {
+ incResizeDirtyFloat();
+ }
+
+ // maybe change bucket:
+ // ensure getNewSize() > newSize:
+ final float[] res = getDirtyFloatArray(getNewSize(usedSize, needSize));
+
+ System.arraycopy(in, 0, res, 0, usedSize); // copy only used elements
+
+ // maybe return current array:
+ // NO clean-up of array data = DIRTY ARRAY
+ putDirtyFloatArray(in);
+
+ if (doLogWidenArray) {
+ logInfo("widenDirtyFloatArray[" + res.length + "]: usedSize=\t"
+ + usedSize + "\tlength=\t" + length + "\tneeded length=\t"
+ + needSize + "\tfrom=\t" + getCallerInfo(className));
+ }
+ return res;
+ }
+
+ void putDirtyFloatArray(final float[] array) {
+ final int length = array.length;
+ // odd sized array are non-cached arrays (initial arrays)
+ // ensure to never store initial arrays in cache:
+ if (((length & 0x1) == 0) && (length <= MAX_ARRAY_SIZE)) {
+ getDirtyFloatArrayCache(length).putDirtyArray(array, length);
+ }
+ }
+
+ /* class holding all array cache instances */
+ static final class ArrayCachesHolder {
+ // zero-filled int array cache:
+ final IntArrayCache[] intArrayCaches;
+ // dirty array caches:
+ final IntArrayCache[] dirtyIntArrayCaches;
+ final FloatArrayCache[] dirtyFloatArrayCaches;
+ final ByteArrayCache[] dirtyByteArrayCaches;
+
+ ArrayCachesHolder() {
+ intArrayCaches = new IntArrayCache[BUCKETS];
+ dirtyIntArrayCaches = new IntArrayCache[BUCKETS];
+ dirtyFloatArrayCaches = new FloatArrayCache[BUCKETS];
+ dirtyByteArrayCaches = new ByteArrayCache[BUCKETS];
+
+ for (int i = 0; i < BUCKETS; i++) {
+ intArrayCaches[i] = new IntArrayCache(ARRAY_SIZES[i]);
+ // dirty array caches:
+ dirtyIntArrayCaches[i] = new IntArrayCache(ARRAY_SIZES[i]);
+ dirtyFloatArrayCaches[i] = new FloatArrayCache(ARRAY_SIZES[i]);
+ dirtyByteArrayCaches[i] = new ByteArrayCache(DIRTY_BYTE_ARRAY_SIZES[i]);
+ }
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/RendererStats.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,319 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.Timer;
+import java.util.TimerTask;
+import java.util.concurrent.ConcurrentLinkedQueue;
+import static sun.java2d.marlin.MarlinUtils.logInfo;
+import sun.java2d.marlin.stats.Histogram;
+import sun.java2d.marlin.stats.Monitor;
+import sun.java2d.marlin.stats.StatLong;
+
+/**
+ * This class gathers global rendering statistics for debugging purposes only
+ */
+public final class RendererStats implements MarlinConst {
+
+ // singleton
+ private static volatile RendererStats singleton = null;
+
+ static RendererStats getInstance() {
+ if (singleton == null) {
+ singleton = new RendererStats();
+ }
+ return singleton;
+ }
+
+ public static void dumpStats() {
+ if (singleton != null) {
+ singleton.dump();
+ }
+ }
+
+ /* RendererContext collection as hard references
+ (only used for debugging purposes) */
+ final ConcurrentLinkedQueue<RendererContext> allContexts
+ = new ConcurrentLinkedQueue<RendererContext>();
+ // stats
+ final StatLong stat_cache_rowAA
+ = new StatLong("cache.rowAA");
+ final StatLong stat_cache_rowAAChunk
+ = new StatLong("cache.rowAAChunk");
+ final StatLong stat_cache_tiles
+ = new StatLong("cache.tiles");
+ final StatLong stat_rdr_poly_stack_curves
+ = new StatLong("renderer.poly.stack.curves");
+ final StatLong stat_rdr_poly_stack_types
+ = new StatLong("renderer.poly.stack.types");
+ final StatLong stat_rdr_addLine
+ = new StatLong("renderer.addLine");
+ final StatLong stat_rdr_addLine_skip
+ = new StatLong("renderer.addLine.skip");
+ final StatLong stat_rdr_curveBreak
+ = new StatLong("renderer.curveBreakIntoLinesAndAdd");
+ final StatLong stat_rdr_curveBreak_dec
+ = new StatLong("renderer.curveBreakIntoLinesAndAdd.dec");
+ final StatLong stat_rdr_curveBreak_inc
+ = new StatLong("renderer.curveBreakIntoLinesAndAdd.inc");
+ final StatLong stat_rdr_quadBreak
+ = new StatLong("renderer.quadBreakIntoLinesAndAdd");
+ final StatLong stat_rdr_quadBreak_dec
+ = new StatLong("renderer.quadBreakIntoLinesAndAdd.dec");
+ final StatLong stat_rdr_edges
+ = new StatLong("renderer.edges");
+ final StatLong stat_rdr_edges_count
+ = new StatLong("renderer.edges.count");
+ final StatLong stat_rdr_edges_resizes
+ = new StatLong("renderer.edges.resize");
+ final StatLong stat_rdr_activeEdges
+ = new StatLong("renderer.activeEdges");
+ final StatLong stat_rdr_activeEdges_updates
+ = new StatLong("renderer.activeEdges.updates");
+ final StatLong stat_rdr_activeEdges_adds
+ = new StatLong("renderer.activeEdges.adds");
+ final StatLong stat_rdr_activeEdges_adds_high
+ = new StatLong("renderer.activeEdges.adds_high");
+ final StatLong stat_rdr_crossings_updates
+ = new StatLong("renderer.crossings.updates");
+ final StatLong stat_rdr_crossings_sorts
+ = new StatLong("renderer.crossings.sorts");
+ final StatLong stat_rdr_crossings_bsearch
+ = new StatLong("renderer.crossings.bsearch");
+ final StatLong stat_rdr_crossings_msorts
+ = new StatLong("renderer.crossings.msorts");
+ // growable arrays
+ final StatLong stat_array_dasher_dasher
+ = new StatLong("array.dasher.dasher.d_float");
+ final StatLong stat_array_dasher_firstSegmentsBuffer
+ = new StatLong("array.dasher.firstSegmentsBuffer.d_float");
+ final StatLong stat_array_stroker_polystack_curves
+ = new StatLong("array.stroker.polystack.curves.d_float");
+ final StatLong stat_array_stroker_polystack_curveTypes
+ = new StatLong("array.stroker.polystack.curveTypes.d_byte");
+ final StatLong stat_array_marlincache_rowAAChunk
+ = new StatLong("array.marlincache.rowAAChunk.d_byte");
+ final StatLong stat_array_marlincache_touchedTile
+ = new StatLong("array.marlincache.touchedTile.int");
+ final StatLong stat_array_renderer_alphaline
+ = new StatLong("array.renderer.alphaline.int");
+ final StatLong stat_array_renderer_crossings
+ = new StatLong("array.renderer.crossings.int");
+ final StatLong stat_array_renderer_aux_crossings
+ = new StatLong("array.renderer.aux_crossings.int");
+ final StatLong stat_array_renderer_edgeBuckets
+ = new StatLong("array.renderer.edgeBuckets.int");
+ final StatLong stat_array_renderer_edgeBucketCounts
+ = new StatLong("array.renderer.edgeBucketCounts.int");
+ final StatLong stat_array_renderer_edgePtrs
+ = new StatLong("array.renderer.edgePtrs.int");
+ final StatLong stat_array_renderer_aux_edgePtrs
+ = new StatLong("array.renderer.aux_edgePtrs.int");
+ // histograms
+ final Histogram hist_rdr_crossings
+ = new Histogram("renderer.crossings");
+ final Histogram hist_rdr_crossings_ratio
+ = new Histogram("renderer.crossings.ratio");
+ final Histogram hist_rdr_crossings_adds
+ = new Histogram("renderer.crossings.adds");
+ final Histogram hist_rdr_crossings_msorts
+ = new Histogram("renderer.crossings.msorts");
+ final Histogram hist_rdr_crossings_msorts_adds
+ = new Histogram("renderer.crossings.msorts.adds");
+ final Histogram hist_tile_generator_alpha
+ = new Histogram("tile_generator.alpha");
+ final Histogram hist_tile_generator_encoding
+ = new Histogram("tile_generator.encoding");
+ final Histogram hist_tile_generator_encoding_dist
+ = new Histogram("tile_generator.encoding.dist");
+ final Histogram hist_tile_generator_encoding_ratio
+ = new Histogram("tile_generator.encoding.ratio");
+ final Histogram hist_tile_generator_encoding_runLen
+ = new Histogram("tile_generator.encoding.runLen");
+ // all stats
+ final StatLong[] statistics = new StatLong[]{
+ stat_cache_rowAA,
+ stat_cache_rowAAChunk,
+ stat_cache_tiles,
+ stat_rdr_poly_stack_types,
+ stat_rdr_poly_stack_curves,
+ stat_rdr_addLine,
+ stat_rdr_addLine_skip,
+ stat_rdr_curveBreak,
+ stat_rdr_curveBreak_dec,
+ stat_rdr_curveBreak_inc,
+ stat_rdr_quadBreak,
+ stat_rdr_quadBreak_dec,
+ stat_rdr_edges,
+ stat_rdr_edges_count,
+ stat_rdr_edges_resizes,
+ stat_rdr_activeEdges,
+ stat_rdr_activeEdges_updates,
+ stat_rdr_activeEdges_adds,
+ stat_rdr_activeEdges_adds_high,
+ stat_rdr_crossings_updates,
+ stat_rdr_crossings_sorts,
+ stat_rdr_crossings_bsearch,
+ stat_rdr_crossings_msorts,
+ hist_rdr_crossings,
+ hist_rdr_crossings_ratio,
+ hist_rdr_crossings_adds,
+ hist_rdr_crossings_msorts,
+ hist_rdr_crossings_msorts_adds,
+ hist_tile_generator_alpha,
+ hist_tile_generator_encoding,
+ hist_tile_generator_encoding_dist,
+ hist_tile_generator_encoding_ratio,
+ hist_tile_generator_encoding_runLen,
+ stat_array_dasher_dasher,
+ stat_array_dasher_firstSegmentsBuffer,
+ stat_array_stroker_polystack_curves,
+ stat_array_stroker_polystack_curveTypes,
+ stat_array_marlincache_rowAAChunk,
+ stat_array_marlincache_touchedTile,
+ stat_array_renderer_alphaline,
+ stat_array_renderer_crossings,
+ stat_array_renderer_aux_crossings,
+ stat_array_renderer_edgeBuckets,
+ stat_array_renderer_edgeBucketCounts,
+ stat_array_renderer_edgePtrs,
+ stat_array_renderer_aux_edgePtrs
+ };
+ // monitors
+ final Monitor mon_pre_getAATileGenerator
+ = new Monitor("MarlinRenderingEngine.getAATileGenerator()");
+ final Monitor mon_npi_currentSegment
+ = new Monitor("NormalizingPathIterator.currentSegment()");
+ final Monitor mon_rdr_addLine
+ = new Monitor("Renderer.addLine()");
+ final Monitor mon_rdr_endRendering
+ = new Monitor("Renderer.endRendering()");
+ final Monitor mon_rdr_endRendering_Y
+ = new Monitor("Renderer._endRendering(Y)");
+ final Monitor mon_rdr_copyAARow
+ = new Monitor("Renderer.copyAARow()");
+ final Monitor mon_pipe_renderTiles
+ = new Monitor("AAShapePipe.renderTiles()");
+ final Monitor mon_ptg_getAlpha
+ = new Monitor("MarlinTileGenerator.getAlpha()");
+ final Monitor mon_debug
+ = new Monitor("DEBUG()");
+ // all monitors
+ final Monitor[] monitors = new Monitor[]{
+ mon_pre_getAATileGenerator,
+ mon_npi_currentSegment,
+ mon_rdr_addLine,
+ mon_rdr_endRendering,
+ mon_rdr_endRendering_Y,
+ mon_rdr_copyAARow,
+ mon_pipe_renderTiles,
+ mon_ptg_getAlpha,
+ mon_debug
+ };
+
+ private RendererStats() {
+ super();
+
+ Runtime.getRuntime().addShutdownHook(new Thread() {
+ @Override
+ public void run() {
+ dump();
+ }
+ });
+
+ if (useDumpThread) {
+ final Timer statTimer = new Timer("RendererStats");
+ statTimer.scheduleAtFixedRate(new TimerTask() {
+ @Override
+ public void run() {
+ dump();
+ }
+ }, statDump, statDump);
+ }
+ }
+
+ void dump() {
+ if (doStats) {
+ ArrayCache.dumpStats();
+ }
+ final RendererContext[] all = allContexts.toArray(
+ new RendererContext[allContexts.size()]);
+ for (RendererContext rdrCtx : all) {
+ logInfo("RendererContext: " + rdrCtx.name);
+
+ if (doMonitors) {
+ for (Monitor monitor : monitors) {
+ if (monitor.count != 0) {
+ logInfo(monitor.toString());
+ }
+ }
+ // As getAATileGenerator percents:
+ final long total = mon_pre_getAATileGenerator.sum;
+ if (total != 0L) {
+ for (Monitor monitor : monitors) {
+ logInfo(monitor.name + " : "
+ + ((100d * monitor.sum) / total) + " %");
+ }
+ }
+ if (doFlushMonitors) {
+ for (Monitor m : monitors) {
+ m.reset();
+ }
+ }
+ }
+
+ if (doStats) {
+ for (StatLong stat : statistics) {
+ if (stat.count != 0) {
+ logInfo(stat.toString());
+ stat.reset();
+ }
+ }
+ // IntArrayCaches stats:
+ final RendererContext.ArrayCachesHolder holder
+ = rdrCtx.getArrayCachesHolder();
+
+ logInfo("Array caches for thread: " + rdrCtx.name);
+
+ for (IntArrayCache cache : holder.intArrayCaches) {
+ cache.dumpStats();
+ }
+
+ logInfo("Dirty Array caches for thread: " + rdrCtx.name);
+
+ for (IntArrayCache cache : holder.dirtyIntArrayCaches) {
+ cache.dumpStats();
+ }
+ for (FloatArrayCache cache : holder.dirtyFloatArrayCaches) {
+ cache.dumpStats();
+ }
+ for (ByteArrayCache cache : holder.dirtyByteArrayCaches) {
+ cache.dumpStats();
+ }
+ }
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Stroker.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,1388 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import java.util.Arrays;
+import static java.lang.Math.ulp;
+import static java.lang.Math.sqrt;
+
+import sun.awt.geom.PathConsumer2D;
+import sun.java2d.marlin.Curve.BreakPtrIterator;
+
+
+// TODO: some of the arithmetic here is too verbose and prone to hard to
+// debug typos. We should consider making a small Point/Vector class that
+// has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such
+final class Stroker implements PathConsumer2D, MarlinConst {
+
+ private static final int MOVE_TO = 0;
+ private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad
+ private static final int CLOSE = 2;
+
+ /**
+ * Constant value for join style.
+ */
+ public static final int JOIN_MITER = 0;
+
+ /**
+ * Constant value for join style.
+ */
+ public static final int JOIN_ROUND = 1;
+
+ /**
+ * Constant value for join style.
+ */
+ public static final int JOIN_BEVEL = 2;
+
+ /**
+ * Constant value for end cap style.
+ */
+ public static final int CAP_BUTT = 0;
+
+ /**
+ * Constant value for end cap style.
+ */
+ public static final int CAP_ROUND = 1;
+
+ /**
+ * Constant value for end cap style.
+ */
+ public static final int CAP_SQUARE = 2;
+
+ // pisces used to use fixed point arithmetic with 16 decimal digits. I
+ // didn't want to change the values of the constant below when I converted
+ // it to floating point, so that's why the divisions by 2^16 are there.
+ private static final float ROUND_JOIN_THRESHOLD = 1000/65536f;
+
+ private static final float C = 0.5522847498307933f;
+
+ private static final int MAX_N_CURVES = 11;
+
+ private PathConsumer2D out;
+
+ private int capStyle;
+ private int joinStyle;
+
+ private float lineWidth2;
+
+ private final float[] offset0 = new float[2];
+ private final float[] offset1 = new float[2];
+ private final float[] offset2 = new float[2];
+ private final float[] miter = new float[2];
+ private float miterLimitSq;
+
+ private int prev;
+
+ // The starting point of the path, and the slope there.
+ private float sx0, sy0, sdx, sdy;
+ // the current point and the slope there.
+ private float cx0, cy0, cdx, cdy; // c stands for current
+ // vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the
+ // first and last points on the left parallel path. Since this path is
+ // parallel, it's slope at any point is parallel to the slope of the
+ // original path (thought they may have different directions), so these
+ // could be computed from sdx,sdy and cdx,cdy (and vice versa), but that
+ // would be error prone and hard to read, so we keep these anyway.
+ private float smx, smy, cmx, cmy;
+
+ private final PolyStack reverse;
+
+ // This is where the curve to be processed is put. We give it
+ // enough room to store 2 curves: one for the current subdivision, the
+ // other for the rest of the curve.
+ private final float[] middle = new float[2 * 8];
+ private final float[] lp = new float[8];
+ private final float[] rp = new float[8];
+ private final float[] subdivTs = new float[MAX_N_CURVES - 1];
+
+ // per-thread renderer context
+ final RendererContext rdrCtx;
+
+ // dirty curve
+ final Curve curve;
+
+ /**
+ * Constructs a <code>Stroker</code>.
+ * @param rdrCtx per-thread renderer context
+ */
+ Stroker(final RendererContext rdrCtx) {
+ this.rdrCtx = rdrCtx;
+
+ this.reverse = new PolyStack(rdrCtx);
+ this.curve = rdrCtx.curve;
+ }
+
+ /**
+ * Inits the <code>Stroker</code>.
+ *
+ * @param pc2d an output <code>PathConsumer2D</code>.
+ * @param lineWidth the desired line width in pixels
+ * @param capStyle the desired end cap style, one of
+ * <code>CAP_BUTT</code>, <code>CAP_ROUND</code> or
+ * <code>CAP_SQUARE</code>.
+ * @param joinStyle the desired line join style, one of
+ * <code>JOIN_MITER</code>, <code>JOIN_ROUND</code> or
+ * <code>JOIN_BEVEL</code>.
+ * @param miterLimit the desired miter limit
+ * @return this instance
+ */
+ Stroker init(PathConsumer2D pc2d,
+ float lineWidth,
+ int capStyle,
+ int joinStyle,
+ float miterLimit)
+ {
+ this.out = pc2d;
+
+ this.lineWidth2 = lineWidth / 2f;
+ this.capStyle = capStyle;
+ this.joinStyle = joinStyle;
+
+ float limit = miterLimit * lineWidth2;
+ this.miterLimitSq = limit * limit;
+
+ this.prev = CLOSE;
+
+ rdrCtx.stroking = 1;
+
+ return this; // fluent API
+ }
+
+ /**
+ * Disposes this stroker:
+ * clean up before reusing this instance
+ */
+ void dispose() {
+ reverse.dispose();
+
+ if (doCleanDirty) {
+ // Force zero-fill dirty arrays:
+ Arrays.fill(offset0, 0f);
+ Arrays.fill(offset1, 0f);
+ Arrays.fill(offset2, 0f);
+ Arrays.fill(miter, 0f);
+ Arrays.fill(middle, 0f);
+ Arrays.fill(lp, 0f);
+ Arrays.fill(rp, 0f);
+ Arrays.fill(subdivTs, 0f);
+ }
+ }
+
+ private static void computeOffset(final float lx, final float ly,
+ final float w, final float[] m)
+ {
+ float len = lx*lx + ly*ly;
+ if (len == 0f) {
+ m[0] = 0f;
+ m[1] = 0f;
+ } else {
+ len = (float) sqrt(len);
+ m[0] = (ly * w) / len;
+ m[1] = -(lx * w) / len;
+ }
+ }
+
+ // Returns true if the vectors (dx1, dy1) and (dx2, dy2) are
+ // clockwise (if dx1,dy1 needs to be rotated clockwise to close
+ // the smallest angle between it and dx2,dy2).
+ // This is equivalent to detecting whether a point q is on the right side
+ // of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and
+ // q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a
+ // clockwise order.
+ // NOTE: "clockwise" here assumes coordinates with 0,0 at the bottom left.
+ private static boolean isCW(final float dx1, final float dy1,
+ final float dx2, final float dy2)
+ {
+ return dx1 * dy2 <= dy1 * dx2;
+ }
+
+ private void drawRoundJoin(float x, float y,
+ float omx, float omy, float mx, float my,
+ boolean rev,
+ float threshold)
+ {
+ if ((omx == 0 && omy == 0) || (mx == 0 && my == 0)) {
+ return;
+ }
+
+ float domx = omx - mx;
+ float domy = omy - my;
+ float len = domx*domx + domy*domy;
+ if (len < threshold) {
+ return;
+ }
+
+ if (rev) {
+ omx = -omx;
+ omy = -omy;
+ mx = -mx;
+ my = -my;
+ }
+ drawRoundJoin(x, y, omx, omy, mx, my, rev);
+ }
+
+ private void drawRoundJoin(float cx, float cy,
+ float omx, float omy,
+ float mx, float my,
+ boolean rev)
+ {
+ // The sign of the dot product of mx,my and omx,omy is equal to the
+ // the sign of the cosine of ext
+ // (ext is the angle between omx,omy and mx,my).
+ double cosext = omx * mx + omy * my;
+ // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only
+ // need 1 curve to approximate the circle section that joins omx,omy
+ // and mx,my.
+ final int numCurves = cosext >= 0 ? 1 : 2;
+
+ switch (numCurves) {
+ case 1:
+ drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev);
+ break;
+ case 2:
+ // we need to split the arc into 2 arcs spanning the same angle.
+ // The point we want will be one of the 2 intersections of the
+ // perpendicular bisector of the chord (omx,omy)->(mx,my) and the
+ // circle. We could find this by scaling the vector
+ // (omx+mx, omy+my)/2 so that it has length=lineWidth2 (and thus lies
+ // on the circle), but that can have numerical problems when the angle
+ // between omx,omy and mx,my is close to 180 degrees. So we compute a
+ // normal of (omx,omy)-(mx,my). This will be the direction of the
+ // perpendicular bisector. To get one of the intersections, we just scale
+ // this vector that its length is lineWidth2 (this works because the
+ // perpendicular bisector goes through the origin). This scaling doesn't
+ // have numerical problems because we know that lineWidth2 divided by
+ // this normal's length is at least 0.5 and at most sqrt(2)/2 (because
+ // we know the angle of the arc is > 90 degrees).
+ float nx = my - omy, ny = omx - mx;
+ float nlen = (float) sqrt(nx*nx + ny*ny);
+ float scale = lineWidth2/nlen;
+ float mmx = nx * scale, mmy = ny * scale;
+
+ // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've
+ // computed the wrong intersection so we get the other one.
+ // The test above is equivalent to if (rev).
+ if (rev) {
+ mmx = -mmx;
+ mmy = -mmy;
+ }
+ drawBezApproxForArc(cx, cy, omx, omy, mmx, mmy, rev);
+ drawBezApproxForArc(cx, cy, mmx, mmy, mx, my, rev);
+ break;
+ default:
+ }
+ }
+
+ // the input arc defined by omx,omy and mx,my must span <= 90 degrees.
+ private void drawBezApproxForArc(final float cx, final float cy,
+ final float omx, final float omy,
+ final float mx, final float my,
+ boolean rev)
+ {
+ float cosext2 = (omx * mx + omy * my) / (2f * lineWidth2 * lineWidth2);
+ // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc
+ // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that
+ // define the bezier curve we're computing.
+ // It is computed using the constraints that P1-P0 and P3-P2 are parallel
+ // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|.
+ float cv = (float) ((4.0 / 3.0) * sqrt(0.5-cosext2) /
+ (1.0 + sqrt(cosext2+0.5)));
+ // if clockwise, we need to negate cv.
+ if (rev) { // rev is equivalent to isCW(omx, omy, mx, my)
+ cv = -cv;
+ }
+ final float x1 = cx + omx;
+ final float y1 = cy + omy;
+ final float x2 = x1 - cv * omy;
+ final float y2 = y1 + cv * omx;
+
+ final float x4 = cx + mx;
+ final float y4 = cy + my;
+ final float x3 = x4 + cv * my;
+ final float y3 = y4 - cv * mx;
+
+ emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev);
+ }
+
+ private void drawRoundCap(float cx, float cy, float mx, float my) {
+ // the first and second arguments of the following two calls
+ // are really will be ignored by emitCurveTo (because of the false),
+ // but we put them in anyway, as opposed to just giving it 4 zeroes,
+ // because it's just 4 additions and it's not good to rely on this
+ // sort of assumption (right now it's true, but that may change).
+ emitCurveTo(cx+mx-C*my, cy+my+C*mx,
+ cx-my+C*mx, cy+mx+C*my,
+ cx-my, cy+mx);
+ emitCurveTo(cx-my-C*mx, cy+mx-C*my,
+ cx-mx-C*my, cy-my+C*mx,
+ cx-mx, cy-my);
+ }
+
+ // Put the intersection point of the lines (x0, y0) -> (x1, y1)
+ // and (x0p, y0p) -> (x1p, y1p) in m[off] and m[off+1].
+ // If the lines are parallel, it will put a non finite number in m.
+ private static void computeIntersection(final float x0, final float y0,
+ final float x1, final float y1,
+ final float x0p, final float y0p,
+ final float x1p, final float y1p,
+ final float[] m, int off)
+ {
+ float x10 = x1 - x0;
+ float y10 = y1 - y0;
+ float x10p = x1p - x0p;
+ float y10p = y1p - y0p;
+
+ float den = x10*y10p - x10p*y10;
+ float t = x10p*(y0-y0p) - y10p*(x0-x0p);
+ t /= den;
+ m[off++] = x0 + t*x10;
+ m[off] = y0 + t*y10;
+ }
+
+ private void drawMiter(final float pdx, final float pdy,
+ final float x0, final float y0,
+ final float dx, final float dy,
+ float omx, float omy, float mx, float my,
+ boolean rev)
+ {
+ if ((mx == omx && my == omy) ||
+ (pdx == 0f && pdy == 0f) ||
+ (dx == 0f && dy == 0f))
+ {
+ return;
+ }
+
+ if (rev) {
+ omx = -omx;
+ omy = -omy;
+ mx = -mx;
+ my = -my;
+ }
+
+ computeIntersection((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy,
+ (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my,
+ miter, 0);
+
+ final float miterX = miter[0];
+ final float miterY = miter[1];
+ float lenSq = (miterX-x0)*(miterX-x0) + (miterY-y0)*(miterY-y0);
+
+ // If the lines are parallel, lenSq will be either NaN or +inf
+ // (actually, I'm not sure if the latter is possible. The important
+ // thing is that -inf is not possible, because lenSq is a square).
+ // For both of those values, the comparison below will fail and
+ // no miter will be drawn, which is correct.
+ if (lenSq < miterLimitSq) {
+ emitLineTo(miterX, miterY, rev);
+ }
+ }
+
+ @Override
+ public void moveTo(float x0, float y0) {
+ if (prev == DRAWING_OP_TO) {
+ finish();
+ }
+ this.sx0 = this.cx0 = x0;
+ this.sy0 = this.cy0 = y0;
+ this.cdx = this.sdx = 1;
+ this.cdy = this.sdy = 0;
+ this.prev = MOVE_TO;
+ }
+
+ @Override
+ public void lineTo(float x1, float y1) {
+ float dx = x1 - cx0;
+ float dy = y1 - cy0;
+ if (dx == 0f && dy == 0f) {
+ dx = 1f;
+ }
+ computeOffset(dx, dy, lineWidth2, offset0);
+ final float mx = offset0[0];
+ final float my = offset0[1];
+
+ drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my);
+
+ emitLineTo(cx0 + mx, cy0 + my);
+ emitLineTo( x1 + mx, y1 + my);
+
+ emitLineToRev(cx0 - mx, cy0 - my);
+ emitLineToRev( x1 - mx, y1 - my);
+
+ this.cmx = mx;
+ this.cmy = my;
+ this.cdx = dx;
+ this.cdy = dy;
+ this.cx0 = x1;
+ this.cy0 = y1;
+ this.prev = DRAWING_OP_TO;
+ }
+
+ @Override
+ public void closePath() {
+ if (prev != DRAWING_OP_TO) {
+ if (prev == CLOSE) {
+ return;
+ }
+ emitMoveTo(cx0, cy0 - lineWidth2);
+ this.cmx = this.smx = 0;
+ this.cmy = this.smy = -lineWidth2;
+ this.cdx = this.sdx = 1;
+ this.cdy = this.sdy = 0;
+ finish();
+ return;
+ }
+
+ if (cx0 != sx0 || cy0 != sy0) {
+ lineTo(sx0, sy0);
+ }
+
+ drawJoin(cdx, cdy, cx0, cy0, sdx, sdy, cmx, cmy, smx, smy);
+
+ emitLineTo(sx0 + smx, sy0 + smy);
+
+ emitMoveTo(sx0 - smx, sy0 - smy);
+ emitReverse();
+
+ this.prev = CLOSE;
+ emitClose();
+ }
+
+ private void emitReverse() {
+ reverse.popAll(out);
+ }
+
+ @Override
+ public void pathDone() {
+ if (prev == DRAWING_OP_TO) {
+ finish();
+ }
+
+ out.pathDone();
+
+ // this shouldn't matter since this object won't be used
+ // after the call to this method.
+ this.prev = CLOSE;
+
+ // Dispose this instance:
+ dispose();
+ }
+
+ private void finish() {
+ if (capStyle == CAP_ROUND) {
+ drawRoundCap(cx0, cy0, cmx, cmy);
+ } else if (capStyle == CAP_SQUARE) {
+ emitLineTo(cx0 - cmy + cmx, cy0 + cmx + cmy);
+ emitLineTo(cx0 - cmy - cmx, cy0 + cmx - cmy);
+ }
+
+ emitReverse();
+
+ if (capStyle == CAP_ROUND) {
+ drawRoundCap(sx0, sy0, -smx, -smy);
+ } else if (capStyle == CAP_SQUARE) {
+ emitLineTo(sx0 + smy - smx, sy0 - smx - smy);
+ emitLineTo(sx0 + smy + smx, sy0 - smx + smy);
+ }
+
+ emitClose();
+ }
+
+ private void emitMoveTo(final float x0, final float y0) {
+ out.moveTo(x0, y0);
+ }
+
+ private void emitLineTo(final float x1, final float y1) {
+ out.lineTo(x1, y1);
+ }
+
+ private void emitLineToRev(final float x1, final float y1) {
+ reverse.pushLine(x1, y1);
+ }
+
+ private void emitLineTo(final float x1, final float y1,
+ final boolean rev)
+ {
+ if (rev) {
+ emitLineToRev(x1, y1);
+ } else {
+ emitLineTo(x1, y1);
+ }
+ }
+
+ private void emitQuadTo(final float x1, final float y1,
+ final float x2, final float y2)
+ {
+ out.quadTo(x1, y1, x2, y2);
+ }
+
+ private void emitQuadToRev(final float x0, final float y0,
+ final float x1, final float y1)
+ {
+ reverse.pushQuad(x0, y0, x1, y1);
+ }
+
+ private void emitCurveTo(final float x1, final float y1,
+ final float x2, final float y2,
+ final float x3, final float y3)
+ {
+ out.curveTo(x1, y1, x2, y2, x3, y3);
+ }
+
+ private void emitCurveToRev(final float x0, final float y0,
+ final float x1, final float y1,
+ final float x2, final float y2)
+ {
+ reverse.pushCubic(x0, y0, x1, y1, x2, y2);
+ }
+
+ private void emitCurveTo(final float x0, final float y0,
+ final float x1, final float y1,
+ final float x2, final float y2,
+ final float x3, final float y3, final boolean rev)
+ {
+ if (rev) {
+ reverse.pushCubic(x0, y0, x1, y1, x2, y2);
+ } else {
+ out.curveTo(x1, y1, x2, y2, x3, y3);
+ }
+ }
+
+ private void emitClose() {
+ out.closePath();
+ }
+
+ private void drawJoin(float pdx, float pdy,
+ float x0, float y0,
+ float dx, float dy,
+ float omx, float omy,
+ float mx, float my)
+ {
+ if (prev != DRAWING_OP_TO) {
+ emitMoveTo(x0 + mx, y0 + my);
+ this.sdx = dx;
+ this.sdy = dy;
+ this.smx = mx;
+ this.smy = my;
+ } else {
+ boolean cw = isCW(pdx, pdy, dx, dy);
+ if (joinStyle == JOIN_MITER) {
+ drawMiter(pdx, pdy, x0, y0, dx, dy, omx, omy, mx, my, cw);
+ } else if (joinStyle == JOIN_ROUND) {
+ drawRoundJoin(x0, y0,
+ omx, omy,
+ mx, my, cw,
+ ROUND_JOIN_THRESHOLD);
+ }
+ emitLineTo(x0, y0, !cw);
+ }
+ prev = DRAWING_OP_TO;
+ }
+
+ private static boolean within(final float x1, final float y1,
+ final float x2, final float y2,
+ final float ERR)
+ {
+ assert ERR > 0 : "";
+ // compare taxicab distance. ERR will always be small, so using
+ // true distance won't give much benefit
+ return (Helpers.within(x1, x2, ERR) && // we want to avoid calling Math.abs
+ Helpers.within(y1, y2, ERR)); // this is just as good.
+ }
+
+ private void getLineOffsets(float x1, float y1,
+ float x2, float y2,
+ float[] left, float[] right) {
+ computeOffset(x2 - x1, y2 - y1, lineWidth2, offset0);
+ final float mx = offset0[0];
+ final float my = offset0[1];
+ left[0] = x1 + mx;
+ left[1] = y1 + my;
+ left[2] = x2 + mx;
+ left[3] = y2 + my;
+ right[0] = x1 - mx;
+ right[1] = y1 - my;
+ right[2] = x2 - mx;
+ right[3] = y2 - my;
+ }
+
+ private int computeOffsetCubic(float[] pts, final int off,
+ float[] leftOff, float[] rightOff)
+ {
+ // if p1=p2 or p3=p4 it means that the derivative at the endpoint
+ // vanishes, which creates problems with computeOffset. Usually
+ // this happens when this stroker object is trying to winden
+ // a curve with a cusp. What happens is that curveTo splits
+ // the input curve at the cusp, and passes it to this function.
+ // because of inaccuracies in the splitting, we consider points
+ // equal if they're very close to each other.
+ final float x1 = pts[off + 0], y1 = pts[off + 1];
+ final float x2 = pts[off + 2], y2 = pts[off + 3];
+ final float x3 = pts[off + 4], y3 = pts[off + 5];
+ final float x4 = pts[off + 6], y4 = pts[off + 7];
+
+ float dx4 = x4 - x3;
+ float dy4 = y4 - y3;
+ float dx1 = x2 - x1;
+ float dy1 = y2 - y1;
+
+ // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4,
+ // in which case ignore if p1 == p2
+ final boolean p1eqp2 = within(x1,y1,x2,y2, 6f * ulp(y2));
+ final boolean p3eqp4 = within(x3,y3,x4,y4, 6f * ulp(y4));
+ if (p1eqp2 && p3eqp4) {
+ getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
+ return 4;
+ } else if (p1eqp2) {
+ dx1 = x3 - x1;
+ dy1 = y3 - y1;
+ } else if (p3eqp4) {
+ dx4 = x4 - x2;
+ dy4 = y4 - y2;
+ }
+
+ // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line
+ float dotsq = (dx1 * dx4 + dy1 * dy4);
+ dotsq *= dotsq;
+ float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4;
+ if (Helpers.within(dotsq, l1sq * l4sq, 4f * ulp(dotsq))) {
+ getLineOffsets(x1, y1, x4, y4, leftOff, rightOff);
+ return 4;
+ }
+
+// What we're trying to do in this function is to approximate an ideal
+// offset curve (call it I) of the input curve B using a bezier curve Bp.
+// The constraints I use to get the equations are:
+//
+// 1. The computed curve Bp should go through I(0) and I(1). These are
+// x1p, y1p, x4p, y4p, which are p1p and p4p. We still need to find
+// 4 variables: the x and y components of p2p and p3p (i.e. x2p, y2p, x3p, y3p).
+//
+// 2. Bp should have slope equal in absolute value to I at the endpoints. So,
+// (by the way, the operator || in the comments below means "aligned with".
+// It is defined on vectors, so when we say I'(0) || Bp'(0) we mean that
+// vectors I'(0) and Bp'(0) are aligned, which is the same as saying
+// that the tangent lines of I and Bp at 0 are parallel. Mathematically
+// this means (I'(t) || Bp'(t)) <==> (I'(t) = c * Bp'(t)) where c is some
+// nonzero constant.)
+// I'(0) || Bp'(0) and I'(1) || Bp'(1). Obviously, I'(0) || B'(0) and
+// I'(1) || B'(1); therefore, Bp'(0) || B'(0) and Bp'(1) || B'(1).
+// We know that Bp'(0) || (p2p-p1p) and Bp'(1) || (p4p-p3p) and the same
+// is true for any bezier curve; therefore, we get the equations
+// (1) p2p = c1 * (p2-p1) + p1p
+// (2) p3p = c2 * (p4-p3) + p4p
+// We know p1p, p4p, p2, p1, p3, and p4; therefore, this reduces the number
+// of unknowns from 4 to 2 (i.e. just c1 and c2).
+// To eliminate these 2 unknowns we use the following constraint:
+//
+// 3. Bp(0.5) == I(0.5). Bp(0.5)=(x,y) and I(0.5)=(xi,yi), and I should note
+// that I(0.5) is *the only* reason for computing dxm,dym. This gives us
+// (3) Bp(0.5) = (p1p + 3 * (p2p + p3p) + p4p)/8, which is equivalent to
+// (4) p2p + p3p = (Bp(0.5)*8 - p1p - p4p) / 3
+// We can substitute (1) and (2) from above into (4) and we get:
+// (5) c1*(p2-p1) + c2*(p4-p3) = (Bp(0.5)*8 - p1p - p4p)/3 - p1p - p4p
+// which is equivalent to
+// (6) c1*(p2-p1) + c2*(p4-p3) = (4/3) * (Bp(0.5) * 2 - p1p - p4p)
+//
+// The right side of this is a 2D vector, and we know I(0.5), which gives us
+// Bp(0.5), which gives us the value of the right side.
+// The left side is just a matrix vector multiplication in disguise. It is
+//
+// [x2-x1, x4-x3][c1]
+// [y2-y1, y4-y3][c2]
+// which, is equal to
+// [dx1, dx4][c1]
+// [dy1, dy4][c2]
+// At this point we are left with a simple linear system and we solve it by
+// getting the inverse of the matrix above. Then we use [c1,c2] to compute
+// p2p and p3p.
+
+ float x = (x1 + 3f * (x2 + x3) + x4) / 8f;
+ float y = (y1 + 3f * (y2 + y3) + y4) / 8f;
+ // (dxm,dym) is some tangent of B at t=0.5. This means it's equal to
+ // c*B'(0.5) for some constant c.
+ float dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2;
+
+ // this computes the offsets at t=0, 0.5, 1, using the property that
+ // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to
+ // the (dx/dt, dy/dt) vectors at the endpoints.
+ computeOffset(dx1, dy1, lineWidth2, offset0);
+ computeOffset(dxm, dym, lineWidth2, offset1);
+ computeOffset(dx4, dy4, lineWidth2, offset2);
+ float x1p = x1 + offset0[0]; // start
+ float y1p = y1 + offset0[1]; // point
+ float xi = x + offset1[0]; // interpolation
+ float yi = y + offset1[1]; // point
+ float x4p = x4 + offset2[0]; // end
+ float y4p = y4 + offset2[1]; // point
+
+ float invdet43 = 4f / (3f * (dx1 * dy4 - dy1 * dx4));
+
+ float two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p;
+ float two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p;
+ float c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
+ float c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
+
+ float x2p, y2p, x3p, y3p;
+ x2p = x1p + c1*dx1;
+ y2p = y1p + c1*dy1;
+ x3p = x4p + c2*dx4;
+ y3p = y4p + c2*dy4;
+
+ leftOff[0] = x1p; leftOff[1] = y1p;
+ leftOff[2] = x2p; leftOff[3] = y2p;
+ leftOff[4] = x3p; leftOff[5] = y3p;
+ leftOff[6] = x4p; leftOff[7] = y4p;
+
+ x1p = x1 - offset0[0]; y1p = y1 - offset0[1];
+ xi = xi - 2f * offset1[0]; yi = yi - 2f * offset1[1];
+ x4p = x4 - offset2[0]; y4p = y4 - offset2[1];
+
+ two_pi_m_p1_m_p4x = 2f * xi - x1p - x4p;
+ two_pi_m_p1_m_p4y = 2f * yi - y1p - y4p;
+ c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y);
+ c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x);
+
+ x2p = x1p + c1*dx1;
+ y2p = y1p + c1*dy1;
+ x3p = x4p + c2*dx4;
+ y3p = y4p + c2*dy4;
+
+ rightOff[0] = x1p; rightOff[1] = y1p;
+ rightOff[2] = x2p; rightOff[3] = y2p;
+ rightOff[4] = x3p; rightOff[5] = y3p;
+ rightOff[6] = x4p; rightOff[7] = y4p;
+ return 8;
+ }
+
+ // return the kind of curve in the right and left arrays.
+ private int computeOffsetQuad(float[] pts, final int off,
+ float[] leftOff, float[] rightOff)
+ {
+ final float x1 = pts[off + 0], y1 = pts[off + 1];
+ final float x2 = pts[off + 2], y2 = pts[off + 3];
+ final float x3 = pts[off + 4], y3 = pts[off + 5];
+
+ final float dx3 = x3 - x2;
+ final float dy3 = y3 - y2;
+ final float dx1 = x2 - x1;
+ final float dy1 = y2 - y1;
+
+ // this computes the offsets at t = 0, 1
+ computeOffset(dx1, dy1, lineWidth2, offset0);
+ computeOffset(dx3, dy3, lineWidth2, offset1);
+
+ leftOff[0] = x1 + offset0[0]; leftOff[1] = y1 + offset0[1];
+ leftOff[4] = x3 + offset1[0]; leftOff[5] = y3 + offset1[1];
+ rightOff[0] = x1 - offset0[0]; rightOff[1] = y1 - offset0[1];
+ rightOff[4] = x3 - offset1[0]; rightOff[5] = y3 - offset1[1];
+
+ float x1p = leftOff[0]; // start
+ float y1p = leftOff[1]; // point
+ float x3p = leftOff[4]; // end
+ float y3p = leftOff[5]; // point
+
+ // Corner cases:
+ // 1. If the two control vectors are parallel, we'll end up with NaN's
+ // in leftOff (and rightOff in the body of the if below), so we'll
+ // do getLineOffsets, which is right.
+ // 2. If the first or second two points are equal, then (dx1,dy1)==(0,0)
+ // or (dx3,dy3)==(0,0), so (x1p, y1p)==(x1p+dx1, y1p+dy1)
+ // or (x3p, y3p)==(x3p-dx3, y3p-dy3), which means that
+ // computeIntersection will put NaN's in leftOff and right off, and
+ // we will do getLineOffsets, which is right.
+ computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2);
+ float cx = leftOff[2];
+ float cy = leftOff[3];
+
+ if (!(isFinite(cx) && isFinite(cy))) {
+ // maybe the right path is not degenerate.
+ x1p = rightOff[0];
+ y1p = rightOff[1];
+ x3p = rightOff[4];
+ y3p = rightOff[5];
+ computeIntersection(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2);
+ cx = rightOff[2];
+ cy = rightOff[3];
+ if (!(isFinite(cx) && isFinite(cy))) {
+ // both are degenerate. This curve is a line.
+ getLineOffsets(x1, y1, x3, y3, leftOff, rightOff);
+ return 4;
+ }
+ // {left,right}Off[0,1,4,5] are already set to the correct values.
+ leftOff[2] = 2f * x2 - cx;
+ leftOff[3] = 2f * y2 - cy;
+ return 6;
+ }
+
+ // rightOff[2,3] = (x2,y2) - ((left_x2, left_y2) - (x2, y2))
+ // == 2*(x2, y2) - (left_x2, left_y2)
+ rightOff[2] = 2f * x2 - cx;
+ rightOff[3] = 2f * y2 - cy;
+ return 6;
+ }
+
+ private static boolean isFinite(float x) {
+ return (Float.NEGATIVE_INFINITY < x && x < Float.POSITIVE_INFINITY);
+ }
+
+ // If this class is compiled with ecj, then Hotspot crashes when OSR
+ // compiling this function. See bugs 7004570 and 6675699
+ // TODO: until those are fixed, we should work around that by
+ // manually inlining this into curveTo and quadTo.
+/******************************* WORKAROUND **********************************
+ private void somethingTo(final int type) {
+ // need these so we can update the state at the end of this method
+ final float xf = middle[type-2], yf = middle[type-1];
+ float dxs = middle[2] - middle[0];
+ float dys = middle[3] - middle[1];
+ float dxf = middle[type - 2] - middle[type - 4];
+ float dyf = middle[type - 1] - middle[type - 3];
+ switch(type) {
+ case 6:
+ if ((dxs == 0f && dys == 0f) ||
+ (dxf == 0f && dyf == 0f)) {
+ dxs = dxf = middle[4] - middle[0];
+ dys = dyf = middle[5] - middle[1];
+ }
+ break;
+ case 8:
+ boolean p1eqp2 = (dxs == 0f && dys == 0f);
+ boolean p3eqp4 = (dxf == 0f && dyf == 0f);
+ if (p1eqp2) {
+ dxs = middle[4] - middle[0];
+ dys = middle[5] - middle[1];
+ if (dxs == 0f && dys == 0f) {
+ dxs = middle[6] - middle[0];
+ dys = middle[7] - middle[1];
+ }
+ }
+ if (p3eqp4) {
+ dxf = middle[6] - middle[2];
+ dyf = middle[7] - middle[3];
+ if (dxf == 0f && dyf == 0f) {
+ dxf = middle[6] - middle[0];
+ dyf = middle[7] - middle[1];
+ }
+ }
+ }
+ if (dxs == 0f && dys == 0f) {
+ // this happens iff the "curve" is just a point
+ lineTo(middle[0], middle[1]);
+ return;
+ }
+ // if these vectors are too small, normalize them, to avoid future
+ // precision problems.
+ if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
+ float len = (float) sqrt(dxs*dxs + dys*dys);
+ dxs /= len;
+ dys /= len;
+ }
+ if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
+ float len = (float) sqrt(dxf*dxf + dyf*dyf);
+ dxf /= len;
+ dyf /= len;
+ }
+
+ computeOffset(dxs, dys, lineWidth2, offset0);
+ final float mx = offset0[0];
+ final float my = offset0[1];
+ drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my);
+
+ int nSplits = findSubdivPoints(curve, middle, subdivTs, type, lineWidth2);
+
+ int kind = 0;
+ BreakPtrIterator it = curve.breakPtsAtTs(middle, type, subdivTs, nSplits);
+ while(it.hasNext()) {
+ int curCurveOff = it.next();
+
+ switch (type) {
+ case 8:
+ kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
+ break;
+ case 6:
+ kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
+ break;
+ }
+ emitLineTo(lp[0], lp[1]);
+ switch(kind) {
+ case 8:
+ emitCurveTo(lp[2], lp[3], lp[4], lp[5], lp[6], lp[7]);
+ emitCurveToRev(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5]);
+ break;
+ case 6:
+ emitQuadTo(lp[2], lp[3], lp[4], lp[5]);
+ emitQuadToRev(rp[0], rp[1], rp[2], rp[3]);
+ break;
+ case 4:
+ emitLineTo(lp[2], lp[3]);
+ emitLineTo(rp[0], rp[1], true);
+ break;
+ }
+ emitLineTo(rp[kind - 2], rp[kind - 1], true);
+ }
+
+ this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2;
+ this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2;
+ this.cdx = dxf;
+ this.cdy = dyf;
+ this.cx0 = xf;
+ this.cy0 = yf;
+ this.prev = DRAWING_OP_TO;
+ }
+****************************** END WORKAROUND *******************************/
+
+ // finds values of t where the curve in pts should be subdivided in order
+ // to get good offset curves a distance of w away from the middle curve.
+ // Stores the points in ts, and returns how many of them there were.
+ private static int findSubdivPoints(final Curve c, float[] pts, float[] ts,
+ final int type, final float w)
+ {
+ final float x12 = pts[2] - pts[0];
+ final float y12 = pts[3] - pts[1];
+ // if the curve is already parallel to either axis we gain nothing
+ // from rotating it.
+ if (y12 != 0f && x12 != 0f) {
+ // we rotate it so that the first vector in the control polygon is
+ // parallel to the x-axis. This will ensure that rotated quarter
+ // circles won't be subdivided.
+ final float hypot = (float) sqrt(x12 * x12 + y12 * y12);
+ final float cos = x12 / hypot;
+ final float sin = y12 / hypot;
+ final float x1 = cos * pts[0] + sin * pts[1];
+ final float y1 = cos * pts[1] - sin * pts[0];
+ final float x2 = cos * pts[2] + sin * pts[3];
+ final float y2 = cos * pts[3] - sin * pts[2];
+ final float x3 = cos * pts[4] + sin * pts[5];
+ final float y3 = cos * pts[5] - sin * pts[4];
+
+ switch(type) {
+ case 8:
+ final float x4 = cos * pts[6] + sin * pts[7];
+ final float y4 = cos * pts[7] - sin * pts[6];
+ c.set(x1, y1, x2, y2, x3, y3, x4, y4);
+ break;
+ case 6:
+ c.set(x1, y1, x2, y2, x3, y3);
+ break;
+ default:
+ }
+ } else {
+ c.set(pts, type);
+ }
+
+ int ret = 0;
+ // we subdivide at values of t such that the remaining rotated
+ // curves are monotonic in x and y.
+ ret += c.dxRoots(ts, ret);
+ ret += c.dyRoots(ts, ret);
+ // subdivide at inflection points.
+ if (type == 8) {
+ // quadratic curves can't have inflection points
+ ret += c.infPoints(ts, ret);
+ }
+
+ // now we must subdivide at points where one of the offset curves will have
+ // a cusp. This happens at ts where the radius of curvature is equal to w.
+ ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001f);
+
+ ret = Helpers.filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f);
+ Helpers.isort(ts, 0, ret);
+ return ret;
+ }
+
+ @Override public void curveTo(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3)
+ {
+ final float[] mid = middle;
+
+ mid[0] = cx0; mid[1] = cy0;
+ mid[2] = x1; mid[3] = y1;
+ mid[4] = x2; mid[5] = y2;
+ mid[6] = x3; mid[7] = y3;
+
+ // inlined version of somethingTo(8);
+ // See the TODO on somethingTo
+
+ // need these so we can update the state at the end of this method
+ final float xf = mid[6], yf = mid[7];
+ float dxs = mid[2] - mid[0];
+ float dys = mid[3] - mid[1];
+ float dxf = mid[6] - mid[4];
+ float dyf = mid[7] - mid[5];
+
+ boolean p1eqp2 = (dxs == 0f && dys == 0f);
+ boolean p3eqp4 = (dxf == 0f && dyf == 0f);
+ if (p1eqp2) {
+ dxs = mid[4] - mid[0];
+ dys = mid[5] - mid[1];
+ if (dxs == 0f && dys == 0f) {
+ dxs = mid[6] - mid[0];
+ dys = mid[7] - mid[1];
+ }
+ }
+ if (p3eqp4) {
+ dxf = mid[6] - mid[2];
+ dyf = mid[7] - mid[3];
+ if (dxf == 0f && dyf == 0f) {
+ dxf = mid[6] - mid[0];
+ dyf = mid[7] - mid[1];
+ }
+ }
+ if (dxs == 0f && dys == 0f) {
+ // this happens if the "curve" is just a point
+ lineTo(mid[0], mid[1]);
+ return;
+ }
+
+ // if these vectors are too small, normalize them, to avoid future
+ // precision problems.
+ if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
+ float len = (float) sqrt(dxs*dxs + dys*dys);
+ dxs /= len;
+ dys /= len;
+ }
+ if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
+ float len = (float) sqrt(dxf*dxf + dyf*dyf);
+ dxf /= len;
+ dyf /= len;
+ }
+
+ computeOffset(dxs, dys, lineWidth2, offset0);
+ drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);
+
+ int nSplits = findSubdivPoints(curve, mid, subdivTs, 8, lineWidth2);
+
+ final float[] l = lp;
+ final float[] r = rp;
+
+ int kind = 0;
+ BreakPtrIterator it = curve.breakPtsAtTs(mid, 8, subdivTs, nSplits);
+ while(it.hasNext()) {
+ int curCurveOff = it.next();
+
+ kind = computeOffsetCubic(mid, curCurveOff, l, r);
+ emitLineTo(l[0], l[1]);
+
+ switch(kind) {
+ case 8:
+ emitCurveTo(l[2], l[3], l[4], l[5], l[6], l[7]);
+ emitCurveToRev(r[0], r[1], r[2], r[3], r[4], r[5]);
+ break;
+ case 4:
+ emitLineTo(l[2], l[3]);
+ emitLineToRev(r[0], r[1]);
+ break;
+ default:
+ }
+ emitLineToRev(r[kind - 2], r[kind - 1]);
+ }
+
+ this.cmx = (l[kind - 2] - r[kind - 2]) / 2f;
+ this.cmy = (l[kind - 1] - r[kind - 1]) / 2f;
+ this.cdx = dxf;
+ this.cdy = dyf;
+ this.cx0 = xf;
+ this.cy0 = yf;
+ this.prev = DRAWING_OP_TO;
+ }
+
+ @Override public void quadTo(float x1, float y1, float x2, float y2) {
+ final float[] mid = middle;
+
+ mid[0] = cx0; mid[1] = cy0;
+ mid[2] = x1; mid[3] = y1;
+ mid[4] = x2; mid[5] = y2;
+
+ // inlined version of somethingTo(8);
+ // See the TODO on somethingTo
+
+ // need these so we can update the state at the end of this method
+ final float xf = mid[4], yf = mid[5];
+ float dxs = mid[2] - mid[0];
+ float dys = mid[3] - mid[1];
+ float dxf = mid[4] - mid[2];
+ float dyf = mid[5] - mid[3];
+ if ((dxs == 0f && dys == 0f) || (dxf == 0f && dyf == 0f)) {
+ dxs = dxf = mid[4] - mid[0];
+ dys = dyf = mid[5] - mid[1];
+ }
+ if (dxs == 0f && dys == 0f) {
+ // this happens if the "curve" is just a point
+ lineTo(mid[0], mid[1]);
+ return;
+ }
+ // if these vectors are too small, normalize them, to avoid future
+ // precision problems.
+ if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
+ float len = (float) sqrt(dxs*dxs + dys*dys);
+ dxs /= len;
+ dys /= len;
+ }
+ if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
+ float len = (float) sqrt(dxf*dxf + dyf*dyf);
+ dxf /= len;
+ dyf /= len;
+ }
+
+ computeOffset(dxs, dys, lineWidth2, offset0);
+ drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, offset0[0], offset0[1]);
+
+ int nSplits = findSubdivPoints(curve, mid, subdivTs, 6, lineWidth2);
+
+ final float[] l = lp;
+ final float[] r = rp;
+
+ int kind = 0;
+ BreakPtrIterator it = curve.breakPtsAtTs(mid, 6, subdivTs, nSplits);
+ while(it.hasNext()) {
+ int curCurveOff = it.next();
+
+ kind = computeOffsetQuad(mid, curCurveOff, l, r);
+ emitLineTo(l[0], l[1]);
+
+ switch(kind) {
+ case 6:
+ emitQuadTo(l[2], l[3], l[4], l[5]);
+ emitQuadToRev(r[0], r[1], r[2], r[3]);
+ break;
+ case 4:
+ emitLineTo(l[2], l[3]);
+ emitLineToRev(r[0], r[1]);
+ break;
+ default:
+ }
+ emitLineToRev(r[kind - 2], r[kind - 1]);
+ }
+
+ this.cmx = (l[kind - 2] - r[kind - 2]) / 2f;
+ this.cmy = (l[kind - 1] - r[kind - 1]) / 2f;
+ this.cdx = dxf;
+ this.cdy = dyf;
+ this.cx0 = xf;
+ this.cy0 = yf;
+ this.prev = DRAWING_OP_TO;
+ }
+
+ @Override public long getNativeConsumer() {
+ throw new InternalError("Stroker doesn't use a native consumer");
+ }
+
+ // a stack of polynomial curves where each curve shares endpoints with
+ // adjacent ones.
+ static final class PolyStack {
+ private static final byte TYPE_LINETO = (byte) 0;
+ private static final byte TYPE_QUADTO = (byte) 1;
+ private static final byte TYPE_CUBICTO = (byte) 2;
+
+ float[] curves;
+ int end;
+ byte[] curveTypes;
+ int numCurves;
+
+ // per-thread renderer context
+ final RendererContext rdrCtx;
+
+ // per-thread initial arrays (large enough to satisfy most usages: 8192)
+ // +1 to avoid recycling in Helpers.widenArray()
+ private final float[] curves_initial = new float[INITIAL_LARGE_ARRAY + 1]; // 32K
+ private final byte[] curveTypes_initial = new byte[INITIAL_LARGE_ARRAY + 1]; // 8K
+
+ // used marks (stats only)
+ int curveTypesUseMark;
+ int curvesUseMark;
+
+ /**
+ * Constructor
+ * @param rdrCtx per-thread renderer context
+ */
+ PolyStack(final RendererContext rdrCtx) {
+ this.rdrCtx = rdrCtx;
+
+ curves = curves_initial;
+ curveTypes = curveTypes_initial;
+ end = 0;
+ numCurves = 0;
+
+ if (doStats) {
+ curveTypesUseMark = 0;
+ curvesUseMark = 0;
+ }
+ }
+
+ /**
+ * Disposes this PolyStack:
+ * clean up before reusing this instance
+ */
+ void dispose() {
+ end = 0;
+ numCurves = 0;
+
+ if (doStats) {
+ RendererContext.stats.stat_rdr_poly_stack_types
+ .add(curveTypesUseMark);
+ RendererContext.stats.stat_rdr_poly_stack_curves
+ .add(curvesUseMark);
+ // reset marks
+ curveTypesUseMark = 0;
+ curvesUseMark = 0;
+ }
+
+ // Return arrays:
+ // curves and curveTypes are kept dirty
+ if (curves != curves_initial) {
+ rdrCtx.putDirtyFloatArray(curves);
+ curves = curves_initial;
+ }
+
+ if (curveTypes != curveTypes_initial) {
+ rdrCtx.putDirtyByteArray(curveTypes);
+ curveTypes = curveTypes_initial;
+ }
+ }
+
+ private void ensureSpace(final int n) {
+ if (end + n > curves.length) {
+ if (doStats) {
+ RendererContext.stats.stat_array_stroker_polystack_curves
+ .add(end + n);
+ }
+ curves = rdrCtx.widenDirtyFloatArray(curves, end, end + n);
+ }
+ if (numCurves + 1 > curveTypes.length) {
+ if (doStats) {
+ RendererContext.stats.stat_array_stroker_polystack_curveTypes
+ .add(numCurves + 1);
+ }
+ curveTypes = rdrCtx.widenDirtyByteArray(curveTypes,
+ numCurves,
+ numCurves + 1);
+ }
+ }
+
+ void pushCubic(float x0, float y0,
+ float x1, float y1,
+ float x2, float y2)
+ {
+ ensureSpace(6);
+ curveTypes[numCurves++] = TYPE_CUBICTO;
+ // we reverse the coordinate order to make popping easier
+ final float[] _curves = curves;
+ int e = end;
+ _curves[e++] = x2; _curves[e++] = y2;
+ _curves[e++] = x1; _curves[e++] = y1;
+ _curves[e++] = x0; _curves[e++] = y0;
+ end = e;
+ }
+
+ void pushQuad(float x0, float y0,
+ float x1, float y1)
+ {
+ ensureSpace(4);
+ curveTypes[numCurves++] = TYPE_QUADTO;
+ final float[] _curves = curves;
+ int e = end;
+ _curves[e++] = x1; _curves[e++] = y1;
+ _curves[e++] = x0; _curves[e++] = y0;
+ end = e;
+ }
+
+ void pushLine(float x, float y) {
+ ensureSpace(2);
+ curveTypes[numCurves++] = TYPE_LINETO;
+ curves[end++] = x; curves[end++] = y;
+ }
+
+ void popAll(PathConsumer2D io) {
+ if (doStats) {
+ // update used marks:
+ if (numCurves > curveTypesUseMark) {
+ curveTypesUseMark = numCurves;
+ }
+ if (end > curvesUseMark) {
+ curvesUseMark = end;
+ }
+ }
+ final byte[] _curveTypes = curveTypes;
+ final float[] _curves = curves;
+ int nc = numCurves;
+ int e = end;
+
+ while (nc != 0) {
+ switch(_curveTypes[--nc]) {
+ case TYPE_LINETO:
+ e -= 2;
+ io.lineTo(_curves[e], _curves[e+1]);
+ continue;
+ case TYPE_QUADTO:
+ e -= 4;
+ io.quadTo(_curves[e+0], _curves[e+1],
+ _curves[e+2], _curves[e+3]);
+ continue;
+ case TYPE_CUBICTO:
+ e -= 6;
+ io.curveTo(_curves[e+0], _curves[e+1],
+ _curves[e+2], _curves[e+3],
+ _curves[e+4], _curves[e+5]);
+ continue;
+ default:
+ }
+ }
+ numCurves = 0;
+ end = 0;
+ }
+
+ @Override
+ public String toString() {
+ String ret = "";
+ int nc = numCurves;
+ int e = end;
+ int len;
+ while (nc != 0) {
+ switch(curveTypes[--nc]) {
+ case TYPE_LINETO:
+ len = 2;
+ ret += "line: ";
+ break;
+ case TYPE_QUADTO:
+ len = 4;
+ ret += "quad: ";
+ break;
+ case TYPE_CUBICTO:
+ len = 6;
+ ret += "cubic: ";
+ break;
+ default:
+ len = 0;
+ }
+ e -= len;
+ ret += Arrays.toString(Arrays.copyOfRange(curves, e, e+len))
+ + "\n";
+ }
+ return ret;
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/TransformingPathConsumer2D.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,507 @@
+/*
+ * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+import sun.awt.geom.PathConsumer2D;
+import java.awt.geom.AffineTransform;
+import java.awt.geom.Path2D;
+
+final class TransformingPathConsumer2D {
+
+ TransformingPathConsumer2D() {
+ // used by RendererContext
+ }
+
+ // recycled PathConsumer2D instance from transformConsumer()
+ private final Path2DWrapper wp_Path2DWrapper = new Path2DWrapper();
+
+ PathConsumer2D wrapPath2d(Path2D.Float p2d)
+ {
+ return wp_Path2DWrapper.init(p2d);
+ }
+
+ // recycled PathConsumer2D instances from transformConsumer()
+ private final TranslateFilter tx_TranslateFilter = new TranslateFilter();
+ private final DeltaScaleFilter tx_DeltaScaleFilter = new DeltaScaleFilter();
+ private final ScaleFilter tx_ScaleFilter = new ScaleFilter();
+ private final DeltaTransformFilter tx_DeltaTransformFilter = new DeltaTransformFilter();
+ private final TransformFilter tx_TransformFilter = new TransformFilter();
+
+ PathConsumer2D transformConsumer(PathConsumer2D out,
+ AffineTransform at)
+ {
+ if (at == null) {
+ return out;
+ }
+ float mxx = (float) at.getScaleX();
+ float mxy = (float) at.getShearX();
+ float mxt = (float) at.getTranslateX();
+ float myx = (float) at.getShearY();
+ float myy = (float) at.getScaleY();
+ float myt = (float) at.getTranslateY();
+ if (mxy == 0f && myx == 0f) {
+ if (mxx == 1f && myy == 1f) {
+ if (mxt == 0f && myt == 0f) {
+ return out;
+ } else {
+ return tx_TranslateFilter.init(out, mxt, myt);
+ }
+ } else {
+ if (mxt == 0f && myt == 0f) {
+ return tx_DeltaScaleFilter.init(out, mxx, myy);
+ } else {
+ return tx_ScaleFilter.init(out, mxx, myy, mxt, myt);
+ }
+ }
+ } else if (mxt == 0f && myt == 0f) {
+ return tx_DeltaTransformFilter.init(out, mxx, mxy, myx, myy);
+ } else {
+ return tx_TransformFilter.init(out, mxx, mxy, mxt, myx, myy, myt);
+ }
+ }
+
+ // recycled PathConsumer2D instances from deltaTransformConsumer()
+ private final DeltaScaleFilter dt_DeltaScaleFilter = new DeltaScaleFilter();
+ private final DeltaTransformFilter dt_DeltaTransformFilter = new DeltaTransformFilter();
+
+ PathConsumer2D deltaTransformConsumer(PathConsumer2D out,
+ AffineTransform at)
+ {
+ if (at == null) {
+ return out;
+ }
+ float mxx = (float) at.getScaleX();
+ float mxy = (float) at.getShearX();
+ float myx = (float) at.getShearY();
+ float myy = (float) at.getScaleY();
+ if (mxy == 0f && myx == 0f) {
+ if (mxx == 1f && myy == 1f) {
+ return out;
+ } else {
+ return dt_DeltaScaleFilter.init(out, mxx, myy);
+ }
+ } else {
+ return dt_DeltaTransformFilter.init(out, mxx, mxy, myx, myy);
+ }
+ }
+
+ // recycled PathConsumer2D instances from inverseDeltaTransformConsumer()
+ private final DeltaScaleFilter iv_DeltaScaleFilter = new DeltaScaleFilter();
+ private final DeltaTransformFilter iv_DeltaTransformFilter = new DeltaTransformFilter();
+
+ PathConsumer2D inverseDeltaTransformConsumer(PathConsumer2D out,
+ AffineTransform at)
+ {
+ if (at == null) {
+ return out;
+ }
+ float mxx = (float) at.getScaleX();
+ float mxy = (float) at.getShearX();
+ float myx = (float) at.getShearY();
+ float myy = (float) at.getScaleY();
+ if (mxy == 0f && myx == 0f) {
+ if (mxx == 1f && myy == 1f) {
+ return out;
+ } else {
+ return iv_DeltaScaleFilter.init(out, 1.0f/mxx, 1.0f/myy);
+ }
+ } else {
+ float det = mxx * myy - mxy * myx;
+ return iv_DeltaTransformFilter.init(out,
+ myy / det,
+ -mxy / det,
+ -myx / det,
+ mxx / det);
+ }
+ }
+
+ static final class TranslateFilter implements PathConsumer2D {
+ private PathConsumer2D out;
+ private float tx, ty;
+
+ TranslateFilter() {}
+
+ TranslateFilter init(PathConsumer2D out,
+ float tx, float ty)
+ {
+ this.out = out;
+ this.tx = tx;
+ this.ty = ty;
+ return this; // fluent API
+ }
+
+ @Override
+ public void moveTo(float x0, float y0) {
+ out.moveTo(x0 + tx, y0 + ty);
+ }
+
+ @Override
+ public void lineTo(float x1, float y1) {
+ out.lineTo(x1 + tx, y1 + ty);
+ }
+
+ @Override
+ public void quadTo(float x1, float y1,
+ float x2, float y2)
+ {
+ out.quadTo(x1 + tx, y1 + ty,
+ x2 + tx, y2 + ty);
+ }
+
+ @Override
+ public void curveTo(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3)
+ {
+ out.curveTo(x1 + tx, y1 + ty,
+ x2 + tx, y2 + ty,
+ x3 + tx, y3 + ty);
+ }
+
+ @Override
+ public void closePath() {
+ out.closePath();
+ }
+
+ @Override
+ public void pathDone() {
+ out.pathDone();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ return 0;
+ }
+ }
+
+ static final class ScaleFilter implements PathConsumer2D {
+ private PathConsumer2D out;
+ private float sx, sy, tx, ty;
+
+ ScaleFilter() {}
+
+ ScaleFilter init(PathConsumer2D out,
+ float sx, float sy,
+ float tx, float ty)
+ {
+ this.out = out;
+ this.sx = sx;
+ this.sy = sy;
+ this.tx = tx;
+ this.ty = ty;
+ return this; // fluent API
+ }
+
+ @Override
+ public void moveTo(float x0, float y0) {
+ out.moveTo(x0 * sx + tx, y0 * sy + ty);
+ }
+
+ @Override
+ public void lineTo(float x1, float y1) {
+ out.lineTo(x1 * sx + tx, y1 * sy + ty);
+ }
+
+ @Override
+ public void quadTo(float x1, float y1,
+ float x2, float y2)
+ {
+ out.quadTo(x1 * sx + tx, y1 * sy + ty,
+ x2 * sx + tx, y2 * sy + ty);
+ }
+
+ @Override
+ public void curveTo(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3)
+ {
+ out.curveTo(x1 * sx + tx, y1 * sy + ty,
+ x2 * sx + tx, y2 * sy + ty,
+ x3 * sx + tx, y3 * sy + ty);
+ }
+
+ @Override
+ public void closePath() {
+ out.closePath();
+ }
+
+ @Override
+ public void pathDone() {
+ out.pathDone();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ return 0;
+ }
+ }
+
+ static final class TransformFilter implements PathConsumer2D {
+ private PathConsumer2D out;
+ private float mxx, mxy, mxt, myx, myy, myt;
+
+ TransformFilter() {}
+
+ TransformFilter init(PathConsumer2D out,
+ float mxx, float mxy, float mxt,
+ float myx, float myy, float myt)
+ {
+ this.out = out;
+ this.mxx = mxx;
+ this.mxy = mxy;
+ this.mxt = mxt;
+ this.myx = myx;
+ this.myy = myy;
+ this.myt = myt;
+ return this; // fluent API
+ }
+
+ @Override
+ public void moveTo(float x0, float y0) {
+ out.moveTo(x0 * mxx + y0 * mxy + mxt,
+ x0 * myx + y0 * myy + myt);
+ }
+
+ @Override
+ public void lineTo(float x1, float y1) {
+ out.lineTo(x1 * mxx + y1 * mxy + mxt,
+ x1 * myx + y1 * myy + myt);
+ }
+
+ @Override
+ public void quadTo(float x1, float y1,
+ float x2, float y2)
+ {
+ out.quadTo(x1 * mxx + y1 * mxy + mxt,
+ x1 * myx + y1 * myy + myt,
+ x2 * mxx + y2 * mxy + mxt,
+ x2 * myx + y2 * myy + myt);
+ }
+
+ @Override
+ public void curveTo(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3)
+ {
+ out.curveTo(x1 * mxx + y1 * mxy + mxt,
+ x1 * myx + y1 * myy + myt,
+ x2 * mxx + y2 * mxy + mxt,
+ x2 * myx + y2 * myy + myt,
+ x3 * mxx + y3 * mxy + mxt,
+ x3 * myx + y3 * myy + myt);
+ }
+
+ @Override
+ public void closePath() {
+ out.closePath();
+ }
+
+ @Override
+ public void pathDone() {
+ out.pathDone();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ return 0;
+ }
+ }
+
+ static final class DeltaScaleFilter implements PathConsumer2D {
+ private PathConsumer2D out;
+ private float sx, sy;
+
+ DeltaScaleFilter() {}
+
+ DeltaScaleFilter init(PathConsumer2D out,
+ float mxx, float myy)
+ {
+ this.out = out;
+ sx = mxx;
+ sy = myy;
+ return this; // fluent API
+ }
+
+ @Override
+ public void moveTo(float x0, float y0) {
+ out.moveTo(x0 * sx, y0 * sy);
+ }
+
+ @Override
+ public void lineTo(float x1, float y1) {
+ out.lineTo(x1 * sx, y1 * sy);
+ }
+
+ @Override
+ public void quadTo(float x1, float y1,
+ float x2, float y2)
+ {
+ out.quadTo(x1 * sx, y1 * sy,
+ x2 * sx, y2 * sy);
+ }
+
+ @Override
+ public void curveTo(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3)
+ {
+ out.curveTo(x1 * sx, y1 * sy,
+ x2 * sx, y2 * sy,
+ x3 * sx, y3 * sy);
+ }
+
+ @Override
+ public void closePath() {
+ out.closePath();
+ }
+
+ @Override
+ public void pathDone() {
+ out.pathDone();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ return 0;
+ }
+ }
+
+ static final class DeltaTransformFilter implements PathConsumer2D {
+ private PathConsumer2D out;
+ private float mxx, mxy, myx, myy;
+
+ DeltaTransformFilter() {}
+
+ DeltaTransformFilter init(PathConsumer2D out,
+ float mxx, float mxy,
+ float myx, float myy)
+ {
+ this.out = out;
+ this.mxx = mxx;
+ this.mxy = mxy;
+ this.myx = myx;
+ this.myy = myy;
+ return this; // fluent API
+ }
+
+ @Override
+ public void moveTo(float x0, float y0) {
+ out.moveTo(x0 * mxx + y0 * mxy,
+ x0 * myx + y0 * myy);
+ }
+
+ @Override
+ public void lineTo(float x1, float y1) {
+ out.lineTo(x1 * mxx + y1 * mxy,
+ x1 * myx + y1 * myy);
+ }
+
+ @Override
+ public void quadTo(float x1, float y1,
+ float x2, float y2)
+ {
+ out.quadTo(x1 * mxx + y1 * mxy,
+ x1 * myx + y1 * myy,
+ x2 * mxx + y2 * mxy,
+ x2 * myx + y2 * myy);
+ }
+
+ @Override
+ public void curveTo(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3)
+ {
+ out.curveTo(x1 * mxx + y1 * mxy,
+ x1 * myx + y1 * myy,
+ x2 * mxx + y2 * mxy,
+ x2 * myx + y2 * myy,
+ x3 * mxx + y3 * mxy,
+ x3 * myx + y3 * myy);
+ }
+
+ @Override
+ public void closePath() {
+ out.closePath();
+ }
+
+ @Override
+ public void pathDone() {
+ out.pathDone();
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ return 0;
+ }
+ }
+
+ static final class Path2DWrapper implements PathConsumer2D {
+ private Path2D.Float p2d;
+
+ Path2DWrapper() {}
+
+ Path2DWrapper init(Path2D.Float p2d) {
+ this.p2d = p2d;
+ return this;
+ }
+
+ @Override
+ public void moveTo(float x0, float y0) {
+ p2d.moveTo(x0, y0);
+ }
+
+ @Override
+ public void lineTo(float x1, float y1) {
+ p2d.lineTo(x1, y1);
+ }
+
+ @Override
+ public void closePath() {
+ p2d.closePath();
+ }
+
+ @Override
+ public void pathDone() {}
+
+ @Override
+ public void curveTo(float x1, float y1,
+ float x2, float y2,
+ float x3, float y3)
+ {
+ p2d.curveTo(x1, y1, x2, y2, x3, y3);
+ }
+
+ @Override
+ public void quadTo(float x1, float y1, float x2, float y2) {
+ p2d.quadTo(x1, y1, x2, y2);
+ }
+
+ @Override
+ public long getNativeConsumer() {
+ throw new InternalError("Not using a native peer");
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/Version.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,39 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin;
+
+public final class Version {
+
+ private static final String version = "marlin-0.7.2-Unsafe-OpenJDK";
+
+ public static String getVersion() {
+ return version;
+ }
+
+ private Version() {
+ }
+
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/stats/Histogram.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,102 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin.stats;
+
+import java.util.Arrays;
+
+/**
+ * Generic histogram based on long statistics
+ */
+public final class Histogram extends StatLong {
+
+ static final int BUCKET = 2;
+ static final int MAX = 20;
+ static final int LAST = MAX - 1;
+ static final int[] STEPS = new int[MAX];
+
+ static {
+ STEPS[0] = 0;
+ STEPS[1] = 1;
+
+ for (int i = 2; i < MAX; i++) {
+ STEPS[i] = STEPS[i - 1] * BUCKET;
+ }
+// System.out.println("Histogram.STEPS = " + Arrays.toString(STEPS));
+ }
+
+ static int bucket(int val) {
+ for (int i = 1; i < MAX; i++) {
+ if (val < STEPS[i]) {
+ return i - 1;
+ }
+ }
+ return LAST;
+ }
+
+ private final StatLong[] stats = new StatLong[MAX];
+
+ public Histogram(final String name) {
+ super(name);
+ for (int i = 0; i < MAX; i++) {
+ stats[i] = new StatLong(String.format("%5s .. %5s", STEPS[i],
+ ((i + 1 < MAX) ? STEPS[i + 1] : "~")));
+ }
+ }
+
+ @Override
+ public void reset() {
+ super.reset();
+ for (int i = 0; i < MAX; i++) {
+ stats[i].reset();
+ }
+ }
+
+ @Override
+ public void add(int val) {
+ super.add(val);
+ stats[bucket(val)].add(val);
+ }
+
+ @Override
+ public void add(long val) {
+ add((int) val);
+ }
+
+ @Override
+ public String toString() {
+ final StringBuilder sb = new StringBuilder(2048);
+ super.toString(sb).append(" { ");
+
+ for (int i = 0; i < MAX; i++) {
+ if (stats[i].count != 0l) {
+ sb.append("\n ").append(stats[i].toString());
+ }
+ }
+
+ return sb.append(" }").toString();
+ }
+}
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/stats/Monitor.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,53 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin.stats;
+
+/**
+ * Generic monitor ie gathers time statistics as nanos.
+ */
+public final class Monitor extends StatLong {
+
+ private static final long INVALID = -1L;
+
+ private long start = INVALID;
+
+ public Monitor(final String name) {
+ super(name);
+ }
+
+ public void start() {
+ start = System.nanoTime();
+ }
+
+ public void stop() {
+ final long elapsed = System.nanoTime() - start;
+ if (start != INVALID && elapsed > 0l) {
+ add(elapsed);
+ }
+ start = INVALID;
+ }
+}
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/stats/StatLong.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,97 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.java2d.marlin.stats;
+
+/**
+ * Statistics as long values
+ */
+public class StatLong {
+
+ public final String name;
+ public long count = 0l;
+ public long sum = 0l;
+ public long min = Integer.MAX_VALUE;
+ public long max = Integer.MIN_VALUE;
+
+ public StatLong(final String name) {
+ this.name = name;
+ }
+
+ public void reset() {
+ count = 0l;
+ sum = 0l;
+ min = Integer.MAX_VALUE;
+ max = Integer.MIN_VALUE;
+ }
+
+ public void add(final int val) {
+ count++;
+ sum += val;
+ if (val < min) {
+ min = val;
+ }
+ if (val > max) {
+ max = val;
+ }
+ }
+
+ public void add(final long val) {
+ count++;
+ sum += val;
+ if (val < min) {
+ min = val;
+ }
+ if (val > max) {
+ max = val;
+ }
+ }
+
+ @Override
+ public String toString() {
+ final StringBuilder sb = new StringBuilder(128);
+ toString(sb);
+ return sb.toString();
+ }
+
+ public final StringBuilder toString(final StringBuilder sb) {
+ sb.append(name).append('[').append(count);
+ sb.append("] sum: ").append(sum).append(" avg: ");
+ sb.append(trimTo3Digits(((double) sum) / count));
+ sb.append(" [").append(min).append(" | ").append(max).append("]");
+ return sb;
+ }
+
+ /**
+ * Adjust the given double value to keep only 3 decimal digits
+ *
+ * @param value value to adjust
+ * @return double value with only 3 decimal digits
+ */
+ public static double trimTo3Digits(final double value) {
+ return ((long) (1e3d * value)) / 1e3d;
+ }
+}
+
--- a/jdk/src/java.desktop/share/classes/sun/java2d/pipe/AAShapePipe.java Mon Nov 23 14:56:43 2015 -0800
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/pipe/AAShapePipe.java Mon Nov 23 15:02:19 2015 -0800
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -22,14 +22,12 @@
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
-
package sun.java2d.pipe;
import java.awt.BasicStroke;
import java.awt.Rectangle;
import java.awt.Shape;
import java.awt.geom.Rectangle2D;
-import java.awt.geom.PathIterator;
import sun.awt.SunHints;
import sun.java2d.SunGraphics2D;
@@ -45,6 +43,15 @@
{
static RenderingEngine renderengine = RenderingEngine.getInstance();
+ // Per-thread TileState (~1K very small so do not use any Weak Reference)
+ private static final ThreadLocal<TileState> tileStateThreadLocal =
+ new ThreadLocal<TileState>() {
+ @Override
+ protected TileState initialValue() {
+ return new TileState();
+ }
+ };
+
CompositePipe outpipe;
public AAShapePipe(CompositePipe pipe) {
@@ -68,20 +75,6 @@
renderPath(sg, s, null);
}
- private static Rectangle2D computeBBox(double ux1, double uy1,
- double ux2, double uy2)
- {
- if ((ux2 -= ux1) < 0) {
- ux1 += ux2;
- ux2 = -ux2;
- }
- if ((uy2 -= uy1) < 0) {
- uy1 += uy2;
- uy2 = -uy2;
- }
- return new Rectangle2D.Double(ux1, uy1, ux2, uy2);
- }
-
public void fillParallelogram(SunGraphics2D sg,
double ux1, double uy1,
double ux2, double uy2,
@@ -90,7 +83,9 @@
double dx2, double dy2)
{
Region clip = sg.getCompClip();
- int abox[] = new int[4];
+ final TileState ts = tileStateThreadLocal.get();
+ final int[] abox = ts.abox;
+
AATileGenerator aatg =
renderengine.getAATileGenerator(x, y, dx1, dy1, dx2, dy2, 0, 0,
clip, abox);
@@ -99,7 +94,7 @@
return;
}
- renderTiles(sg, computeBBox(ux1, uy1, ux2, uy2), aatg, abox);
+ renderTiles(sg, ts.computeBBox(ux1, uy1, ux2, uy2), aatg, abox, ts);
}
public void drawParallelogram(SunGraphics2D sg,
@@ -111,7 +106,9 @@
double lw1, double lw2)
{
Region clip = sg.getCompClip();
- int abox[] = new int[4];
+ final TileState ts = tileStateThreadLocal.get();
+ final int[] abox = ts.abox;
+
AATileGenerator aatg =
renderengine.getAATileGenerator(x, y, dx1, dy1, dx2, dy2, lw1, lw2,
clip, abox);
@@ -122,23 +119,7 @@
// Note that bbox is of the original shape, not the wide path.
// This is appropriate for handing to Paint methods...
- renderTiles(sg, computeBBox(ux1, uy1, ux2, uy2), aatg, abox);
- }
-
- private static byte[] theTile;
-
- private static synchronized byte[] getAlphaTile(int len) {
- byte[] t = theTile;
- if (t == null || t.length < len) {
- t = new byte[len];
- } else {
- theTile = null;
- }
- return t;
- }
-
- private static synchronized void dropAlphaTile(byte[] t) {
- theTile = t;
+ renderTiles(sg, ts.computeBBox(ux1, uy1, ux2, uy2), aatg, abox, ts);
}
public void renderPath(SunGraphics2D sg, Shape s, BasicStroke bs) {
@@ -147,7 +128,9 @@
boolean thin = (sg.strokeState <= SunGraphics2D.STROKE_THINDASHED);
Region clip = sg.getCompClip();
- int abox[] = new int[4];
+ final TileState ts = tileStateThreadLocal.get();
+ final int[] abox = ts.abox;
+
AATileGenerator aatg =
renderengine.getAATileGenerator(s, sg.transform, clip,
bs, thin, adjust, abox);
@@ -156,31 +139,30 @@
return;
}
- renderTiles(sg, s, aatg, abox);
+ renderTiles(sg, s, aatg, abox, ts);
}
public void renderTiles(SunGraphics2D sg, Shape s,
- AATileGenerator aatg, int abox[])
+ AATileGenerator aatg, int abox[], TileState ts)
{
Object context = null;
- byte alpha[] = null;
try {
context = outpipe.startSequence(sg, s,
- new Rectangle(abox[0], abox[1],
- abox[2] - abox[0],
- abox[3] - abox[1]),
+ ts.computeDevBox(abox),
abox);
- int tw = aatg.getTileWidth();
- int th = aatg.getTileHeight();
- alpha = getAlphaTile(tw * th);
+ final int tw = aatg.getTileWidth();
+ final int th = aatg.getTileHeight();
+ // get tile from thread local storage:
+ final byte[] alpha = ts.getAlphaTile(tw * th);
byte[] atile;
for (int y = abox[1]; y < abox[3]; y += th) {
+ int h = Math.min(th, abox[3] - y);
+
for (int x = abox[0]; x < abox[2]; x += tw) {
int w = Math.min(tw, abox[2] - x);
- int h = Math.min(th, abox[3] - y);
int a = aatg.getTypicalAlpha();
if (a == 0x00 ||
@@ -207,9 +189,56 @@
if (context != null) {
outpipe.endSequence(context);
}
- if (alpha != null) {
- dropAlphaTile(alpha);
- }
}
}
+
+ // Tile state used by AAShapePipe
+ static final class TileState {
+ // cached tile (32 x 32 tile by default)
+ private byte[] theTile = new byte[32 * 32];
+ // dirty aabox array
+ final int[] abox = new int[4];
+ // dirty bbox rectangle
+ private final Rectangle dev = new Rectangle();
+ // dirty bbox rectangle2D.Double
+ private final Rectangle2D.Double bbox2D = new Rectangle2D.Double();
+
+ byte[] getAlphaTile(int len) {
+ byte[] t = theTile;
+ if (t.length < len) {
+ // create a larger tile and may free current theTile (too small)
+ theTile = t = new byte[len];
+ }
+ return t;
+ }
+
+ Rectangle computeDevBox(final int[] abox) {
+ final Rectangle box = this.dev;
+ box.x = abox[0];
+ box.y = abox[1];
+ box.width = abox[2] - abox[0];
+ box.height = abox[3] - abox[1];
+ return box;
+ }
+
+ Rectangle2D computeBBox(double ux1, double uy1,
+ double ux2, double uy2)
+ {
+ if ((ux2 -= ux1) < 0.0) {
+ ux1 += ux2;
+ ux2 = -ux2;
+ }
+ if ((uy2 -= uy1) < 0.0) {
+ uy1 += uy2;
+ uy2 = -uy2;
+ }
+ final Rectangle2D.Double box = this.bbox2D;
+ box.x = ux1;
+ box.y = uy1;
+ box.width = ux2;
+ box.height = uy2;
+ return box;
+ }
+ }
+
}
--- a/jdk/src/java.desktop/share/classes/sun/java2d/pipe/RenderingEngine.java Mon Nov 23 14:56:43 2015 -0800
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/pipe/RenderingEngine.java Mon Nov 23 15:02:19 2015 -0800
@@ -96,9 +96,14 @@
* </pre>
*
* If no specific {@code RenderingEngine} is specified on the command
- * or Ductus renderer is specified, it will first attempt loading the
- * sun.dc.DuctusRenderingEngine class using Class.forName, if that
- * is not found, then it will look for Pisces.
+ * line or the requested class fails to load, then the Marlin
+ * renderer will be used as the default.
+ * <p>
+ * A printout of which RenderingEngine is loaded and used can be
+ * enabled by specifying the runtime flag:
+ * <pre>
+ * java -Dsun.java2d.renderer.verbose=true
+ * </pre>
* <p>
* Runtime tracing of the actions of the {@code RenderingEngine}
* can be enabled by specifying the runtime flag:
@@ -113,20 +118,23 @@
return reImpl;
}
- /* Look first for ductus or an app-override renderer,
- * if not specified or present, then look for pisces.
+ /* Look first for an app-override renderer,
+ * if not specified or present, then look for marlin.
*/
- final String ductusREClass = "sun.dc.DuctusRenderingEngine";
- final String piscesREClass = "sun.java2d.pisces.PiscesRenderingEngine";
GetPropertyAction gpa =
- new GetPropertyAction("sun.java2d.renderer", ductusREClass);
+ new GetPropertyAction("sun.java2d.renderer");
String reClass = AccessController.doPrivileged(gpa);
- try {
- Class<?> cls = Class.forName(reClass);
- reImpl = (RenderingEngine) cls.newInstance();
- } catch (ReflectiveOperationException ignored0) {
+ if (reClass != null) {
try {
- Class<?> cls = Class.forName(piscesREClass);
+ Class<?> cls = Class.forName(reClass);
+ reImpl = (RenderingEngine) cls.newInstance();
+ } catch (ReflectiveOperationException ignored0) {
+ }
+ }
+ if (reImpl == null) {
+ final String marlinREClass = "sun.java2d.marlin.MarlinRenderingEngine";
+ try {
+ Class<?> cls = Class.forName(marlinREClass);
reImpl = (RenderingEngine) cls.newInstance();
} catch (ReflectiveOperationException ignored1) {
}
@@ -136,6 +144,12 @@
throw new InternalError("No RenderingEngine module found");
}
+ gpa = new GetPropertyAction("sun.java2d.renderer.verbose");
+ String verbose = AccessController.doPrivileged(gpa);
+ if (verbose != null && verbose.startsWith("t")) {
+ System.out.println("RenderingEngine = "+reImpl);
+ }
+
gpa = new GetPropertyAction("sun.java2d.renderer.trace");
String reTrace = AccessController.doPrivileged(gpa);
if (reTrace != null) {
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/test/sun/java2d/marlin/CeilAndFloorTests.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,249 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+import sun.java2d.marlin.FloatMath;
+
+/*
+ * @test
+ * @summary Check for correct implementation of FloatMath.ceil/floor
+ * @run main CeilAndFloorTests
+ */
+public class CeilAndFloorTests {
+
+ public static String toHexString(float f) {
+ if (!Float.isNaN(f))
+ return Float.toHexString(f);
+ else
+ return "NaN(0x" + Integer.toHexString(Float.floatToRawIntBits(f)) + ")";
+ }
+
+ public static int test(String testName, float input,
+ float result, float expected) {
+ if (Float.compare(expected, result) != 0) {
+ System.err.println("Failure for " + testName + ":\n" +
+ "\tFor input " + input + "\t(" + toHexString(input) + ")\n" +
+ "\texpected " + expected + "\t(" + toHexString(expected) + ")\n" +
+ "\tgot " + result + "\t(" + toHexString(result) + ").");
+ return 1;
+ }
+ else
+ return 0;
+ }
+
+ public static int test_skip_0(String testName, float input,
+ float result, float expected)
+ {
+ // floor_int does not distinguish +0f and -0f
+ // but it is not critical for Marlin
+ if (Float.compare(expected, result) != 0 && (expected != 0f))
+ {
+ System.err.println("Failure for " + testName + ":\n" +
+ "\tFor input " + input + "\t(" + toHexString(input) + ")\n" +
+ "\texpected " + expected + "\t(" + toHexString(expected) + ")\n" +
+ "\tgot " + result + "\t(" + toHexString(result) + ").");
+ return 1;
+ }
+ else
+ return 0;
+ }
+
+ private static int testCeilCase(float input, float expected) {
+ int failures = 0;
+ // float result:
+ failures += test("FloatMath.ceil_f", input, FloatMath.ceil_f(input), expected);
+ // int result:
+ failures += test("FloatMath.ceil_int", input, FloatMath.ceil_int(input), (int)expected);
+ failures += test("FloatMath.ceil_f (int)", input, (int)FloatMath.ceil_f(input), (int)expected);
+ return failures;
+ }
+
+ private static int testFloorCase(float input, float expected) {
+ int failures = 0;
+ // float result:
+ failures += test ("FloatMath.floor_f", input, FloatMath.floor_f(input), expected);
+ // ignore difference between +0f and -0f:
+ failures += test_skip_0("FloatMath.floor_int", input, FloatMath.floor_int(input), (int)expected);
+ failures += test_skip_0("FloatMath.floor_f (int)", input, (int)FloatMath.floor_f(input), (int)expected);
+ return failures;
+ }
+
+ private static int nearIntegerTests() {
+ int failures = 0;
+
+ float [] fixedPoints = {
+ -0.0f,
+ 0.0f,
+ -1.0f,
+ 1.0f,
+ -0x1.0p52f,
+ 0x1.0p52f,
+ -Float.MAX_VALUE,
+ Float.MAX_VALUE,
+ Float.NEGATIVE_INFINITY,
+ Float.POSITIVE_INFINITY,
+ Float.NaN,
+ };
+
+ for(float fixedPoint : fixedPoints) {
+ failures += testCeilCase(fixedPoint, fixedPoint);
+ failures += testFloorCase(fixedPoint, fixedPoint);
+ }
+
+ for(int i = Float.MIN_EXPONENT; i <= Float.MAX_EXPONENT; i++) {
+ float powerOfTwo = Math.scalb(1.0f, i);
+ float neighborDown = Math.nextDown(powerOfTwo);
+ float neighborUp = Math.nextUp(powerOfTwo);
+
+ if (i < 0) {
+ failures += testCeilCase( powerOfTwo, 1.0f);
+ failures += testCeilCase(-powerOfTwo, -0.0f);
+
+ failures += testFloorCase( powerOfTwo, 0.0f);
+ failures += testFloorCase(-powerOfTwo, -1.0f);
+
+ failures += testCeilCase( neighborDown, 1.0f);
+ failures += testCeilCase(-neighborDown, -0.0f);
+
+ failures += testFloorCase( neighborUp, 0.0f);
+ failures += testFloorCase(-neighborUp, -1.0f);
+ } else {
+ failures += testCeilCase(powerOfTwo, powerOfTwo);
+ failures += testFloorCase(powerOfTwo, powerOfTwo);
+
+ if (neighborDown==Math.rint(neighborDown)) {
+ failures += testCeilCase( neighborDown, neighborDown);
+ failures += testCeilCase(-neighborDown, -neighborDown);
+
+ failures += testFloorCase( neighborDown, neighborDown);
+ failures += testFloorCase(-neighborDown,-neighborDown);
+ } else {
+ failures += testCeilCase( neighborDown, powerOfTwo);
+ failures += testFloorCase(-neighborDown, -powerOfTwo);
+ }
+
+ if (neighborUp==Math.rint(neighborUp)) {
+ failures += testCeilCase(neighborUp, neighborUp);
+ failures += testCeilCase(-neighborUp, -neighborUp);
+
+ failures += testFloorCase(neighborUp, neighborUp);
+ failures += testFloorCase(-neighborUp, -neighborUp);
+ } else {
+ failures += testFloorCase(neighborUp, powerOfTwo);
+ failures += testCeilCase(-neighborUp, -powerOfTwo);
+ }
+ }
+ }
+
+ for(int i = -(0x10000); i <= 0x10000; i++) {
+ float f = (float) i;
+ float neighborDown = Math.nextDown(f);
+ float neighborUp = Math.nextUp(f);
+
+ failures += testCeilCase( f, f);
+ failures += testCeilCase(-f, -f);
+
+ failures += testFloorCase( f, f);
+ failures += testFloorCase(-f, -f);
+
+ if (Math.abs(f) > 1.0) {
+ failures += testCeilCase( neighborDown, f);
+ failures += testCeilCase(-neighborDown, -f+1);
+
+ failures += testFloorCase( neighborUp, f);
+ failures += testFloorCase(-neighborUp, -f-1);
+ }
+ }
+
+ return failures;
+ }
+
+ public static int roundingTests() {
+ int failures = 0;
+ float [][] testCases = {
+ { Float.MIN_VALUE, 1.0f},
+ {-Float.MIN_VALUE, -0.0f},
+ { Math.nextDown(Float.MIN_NORMAL), 1.0f},
+ {-Math.nextDown(Float.MIN_NORMAL), -0.0f},
+ { Float.MIN_NORMAL, 1.0f},
+ {-Float.MIN_NORMAL, -0.0f},
+
+ { 0.1f, 1.0f},
+ {-0.1f, -0.0f},
+
+ { 0.5f, 1.0f},
+ {-0.5f, -0.0f},
+
+ { 1.5f, 2.0f},
+ {-1.5f, -1.0f},
+
+ { 2.5f, 3.0f},
+ {-2.5f, -2.0f},
+
+ { 12.3456789f, 13.0f},
+ {-12.3456789f, -12.0f},
+
+ { Math.nextDown(1.0f), 1.0f},
+ { Math.nextDown(-1.0f), -1.0f},
+
+ { Math.nextUp(1.0f), 2.0f},
+ { Math.nextUp(-1.0f), -0.0f},
+
+ { 0x1.0p22f, 0x1.0p22f},
+ {-0x1.0p22f, -0x1.0p22f},
+
+ { Math.nextDown(0x1.0p22f), 0x1.0p22f},
+ {-Math.nextUp(0x1.0p22f), -0x1.0p22f},
+
+ { Math.nextUp(0x1.0p22f), 0x1.0p22f+1f},
+ {-Math.nextDown(0x1.0p22f), -0x1.0p22f+1f},
+
+ { Math.nextDown(0x1.0p23f), 0x1.0p23f},
+ {-Math.nextUp(0x1.0p23f), -0x1.0p23f-1f},
+
+ { Math.nextUp(0x1.0p23f), 0x1.0p23f+1f},
+ {-Math.nextDown(0x1.0p23f), -0x1.0p23f+1f},
+ };
+
+ for(float[] testCase : testCases) {
+ failures += testCeilCase(testCase[0], testCase[1]);
+ failures += testFloorCase(-testCase[0], -testCase[1]);
+ }
+ return failures;
+ }
+
+ public static void main(String... args) {
+ int failures = 0;
+
+ System.out.println("nearIntegerTests");
+ failures += nearIntegerTests();
+
+ System.out.println("roundingTests");
+ failures += roundingTests();
+
+ if (failures > 0) {
+ System.err.println("Testing {FloatMath}.ceil/floor incurred "
+ + failures + " failures.");
+ throw new RuntimeException();
+ }
+ }
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/test/sun/java2d/marlin/CrashTest.java Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,289 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+import java.awt.BasicStroke;
+import java.awt.Color;
+import java.awt.Graphics2D;
+import java.awt.RenderingHints;
+import java.awt.geom.Path2D;
+import static java.awt.geom.Path2D.WIND_NON_ZERO;
+import java.awt.image.BufferedImage;
+import java.io.File;
+import java.io.IOException;
+import javax.imageio.ImageIO;
+import sun.java2d.pipe.RenderingEngine;
+
+/**
+ * Simple crash rendering test using huge GeneralPaths with marlin renderer
+ *
+ * run it with large heap (2g):
+ * java -Dsun.java2d.renderer=sun.java2d.marlin.MarlinRenderingEngine marlin.CrashTest
+ *
+ * @author bourgesl
+ */
+public class CrashTest {
+
+ static final boolean SAVE_IMAGE = false;
+ static boolean USE_ROUND_CAPS_AND_JOINS = true;
+
+ public static void main(String[] args) {
+ // try insane image sizes:
+
+ // subpixel coords may overflow:
+// testHugeImage((Integer.MAX_VALUE >> 3) + 1, 6);
+ // larger than 23 bits: (RLE)
+ testHugeImage(8388608 + 1, 10);
+
+ test(0.1f, false, 0);
+ test(0.1f, true, 7f);
+
+ // Exceed 2Gb OffHeap buffer for edges:
+ try {
+ USE_ROUND_CAPS_AND_JOINS = true;
+ test(0.1f, true, 0.1f);
+ System.out.println("Exception MISSING.");
+ }
+ catch (Throwable th) {
+ if (th instanceof ArrayIndexOutOfBoundsException) {
+ System.out.println("ArrayIndexOutOfBoundsException expected.");
+ } else {
+ System.out.println("Exception occured:");
+ th.printStackTrace();
+ }
+ }
+
+ }
+
+ private static void test(final float lineStroke,
+ final boolean useDashes,
+ final float dashMinLen)
+ throws ArrayIndexOutOfBoundsException
+ {
+ System.out.println("---\n" + "test: "
+ + "lineStroke=" + lineStroke
+ + ", useDashes=" + useDashes
+ +", dashMinLen=" + dashMinLen
+ );
+
+ final String renderer = RenderingEngine.getInstance().getClass().getSimpleName();
+ System.out.println("Testing renderer = " + renderer);
+
+ final BasicStroke stroke = createStroke(lineStroke, useDashes, dashMinLen);
+
+ // TODO: test Dasher.firstSegmentsBuffer resizing ?
+// array.dasher.firstSegmentsBuffer.d_float[2] sum: 6 avg: 3.0 [3 | 3]
+ /*
+ // Marlin growable arrays:
+ = new StatLong("array.dasher.firstSegmentsBuffer.d_float");
+ = new StatLong("array.stroker.polystack.curves.d_float");
+ = new StatLong("array.stroker.polystack.curveTypes.d_byte");
+ = new StatLong("array.marlincache.rowAAChunk.d_byte");
+ = new StatLong("array.marlincache.touchedTile.int");
+ = new StatLong("array.renderer.alphaline.int");
+ = new StatLong("array.renderer.crossings.int");
+ = new StatLong("array.renderer.aux_crossings.int");
+ = new StatLong("array.renderer.edgeBuckets.int");
+ = new StatLong("array.renderer.edgeBucketCounts.int");
+ = new StatLong("array.renderer.edgePtrs.int");
+ = new StatLong("array.renderer.aux_edgePtrs.int");
+ */
+ // size > 8192 (exceed both tile and buckets arrays)
+ final int size = 9000;
+ System.out.println("image size = " + size);
+
+ final BufferedImage image = new BufferedImage(size, size, BufferedImage.TYPE_INT_ARGB);
+
+ final Graphics2D g2d = (Graphics2D) image.getGraphics();
+ try {
+ g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
+ g2d.setRenderingHint(RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_QUALITY);
+
+ g2d.setClip(0, 0, size, size);
+ g2d.setBackground(Color.WHITE);
+ g2d.clearRect(0, 0, size, size);
+
+ g2d.setStroke(stroke);
+ g2d.setColor(Color.BLACK);
+
+ final long start = System.nanoTime();
+
+ paint(g2d, size - 10f);
+
+ final long time = System.nanoTime() - start;
+
+ System.out.println("paint: duration= " + (1e-6 * time) + " ms.");
+
+ if (SAVE_IMAGE) {
+ try {
+ final File file = new File("CrashTest-" + renderer + "-dash-" + useDashes + ".bmp");
+
+ System.out.println("Writing file: " + file.getAbsolutePath());
+ ImageIO.write(image, "BMP", file);
+ } catch (IOException ex) {
+ System.out.println("Writing file failure:");
+ ex.printStackTrace();
+ }
+ }
+ } finally {
+ g2d.dispose();
+ }
+ }
+
+ private static void testHugeImage(final int width, final int height)
+ throws ArrayIndexOutOfBoundsException
+ {
+ System.out.println("---\n" + "testHugeImage: "
+ + "width=" + width
+ + ", height=" + height
+ );
+
+ final String renderer = RenderingEngine.getInstance().getClass().getSimpleName();
+ System.out.println("Testing renderer = " + renderer);
+
+ final BasicStroke stroke = createStroke(2.5f, false, 0);
+
+ // size > 24bits (exceed both tile and buckets arrays)
+ System.out.println("image size = " + width + " x "+height);
+
+ final BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_BYTE_GRAY);
+
+ final Graphics2D g2d = (Graphics2D) image.getGraphics();
+ try {
+ g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
+ g2d.setRenderingHint(RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_QUALITY);
+
+ g2d.setBackground(Color.WHITE);
+ g2d.clearRect(0, 0, width, height);
+
+ g2d.setStroke(stroke);
+ g2d.setColor(Color.BLACK);
+
+ final Path2D.Float path = new Path2D.Float(WIND_NON_ZERO, 32);
+ path.moveTo(0, 0);
+ path.lineTo(width, 0);
+ path.lineTo(width, height);
+ path.lineTo(0, height);
+ path.lineTo(0, 0);
+
+ final long start = System.nanoTime();
+
+ g2d.draw(path);
+
+ final long time = System.nanoTime() - start;
+
+ System.out.println("paint: duration= " + (1e-6 * time) + " ms.");
+
+ if (SAVE_IMAGE) {
+ try {
+ final File file = new File("CrashTest-" + renderer +
+ "-huge-" + width + "x" +height + ".bmp");
+
+ System.out.println("Writing file: " + file.getAbsolutePath());
+ ImageIO.write(image, "BMP", file);
+ } catch (IOException ex) {
+ System.out.println("Writing file failure:");
+ ex.printStackTrace();
+ }
+ }
+ } finally {
+ g2d.dispose();
+ }
+ }
+
+ private static void paint(final Graphics2D g2d, final float size) {
+ final double halfSize = size / 2.0;
+
+ final Path2D.Float path = new Path2D.Float(WIND_NON_ZERO, 32 * 1024);
+
+ // show cross:
+ path.moveTo(0, 0);
+ path.lineTo(size, size);
+
+ path.moveTo(size, 0);
+ path.lineTo(0, size);
+
+ path.moveTo(0, 0);
+ path.lineTo(size, 0);
+
+ path.moveTo(0, 0);
+ path.lineTo(0, size);
+
+ path.moveTo(0, 0);
+
+ double r = size;
+
+ final int ratio = 100;
+ int repeats = 1;
+
+ int n = 0;
+
+ while (r > 1.0) {
+ repeats *= ratio;
+
+ if (repeats > 10000) {
+ repeats = 10000;
+ }
+
+ for (int i = 0; i < repeats; i++) {
+ path.lineTo(halfSize - 0.5 * r + i * r / repeats,
+ halfSize - 0.5 * r);
+ n++;
+ path.lineTo(halfSize - 0.5 * r + i * r / repeats + 0.1,
+ halfSize + 0.5 * r);
+ n++;
+ }
+
+ r -= halfSize;
+ }
+ System.out.println("draw : " + n + " lines.");
+ g2d.draw(path);
+ }
+
+ private static BasicStroke createStroke(final float width,
+ final boolean useDashes,
+ final float dashMinLen) {
+ final float[] dashes;
+
+ if (useDashes) {
+ // huge dash array (exceed Dasher.INITIAL_ARRAY)
+ dashes = new float[512];
+
+ float cur = dashMinLen;
+ float step = 0.01f;
+
+ for (int i = 0; i < dashes.length; i += 2) {
+ dashes[i] = cur;
+ dashes[i + 1] = cur;
+ cur += step;
+ }
+ } else {
+ dashes = null;
+ }
+
+ if (USE_ROUND_CAPS_AND_JOINS) {
+ // Use both round Caps & Joins:
+ return new BasicStroke(width, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND, 100.0f, dashes, 0.0f);
+ }
+ return new BasicStroke(width, BasicStroke.CAP_BUTT, BasicStroke.JOIN_MITER, 100.0f, dashes, 0.0f);
+ }
+}