diff -r af2bc14f35f8 -r fccee5238e70 hotspot/src/share/vm/memory/sharedHeap.hpp --- a/hotspot/src/share/vm/memory/sharedHeap.hpp Tue Nov 22 04:47:10 2011 -0500 +++ b/hotspot/src/share/vm/memory/sharedHeap.hpp Tue Aug 09 10:16:01 2011 -0700 @@ -49,6 +49,62 @@ class CollectorPolicy; class KlassHandle; +// Note on use of FlexibleWorkGang's for GC. +// There are three places where task completion is determined. +// In +// 1) ParallelTaskTerminator::offer_termination() where _n_threads +// must be set to the correct value so that count of workers that +// have offered termination will exactly match the number +// working on the task. Tasks such as those derived from GCTask +// use ParallelTaskTerminator's. Tasks that want load balancing +// by work stealing use this method to gauge completion. +// 2) SubTasksDone has a variable _n_threads that is used in +// all_tasks_completed() to determine completion. all_tasks_complete() +// counts the number of tasks that have been done and then reset +// the SubTasksDone so that it can be used again. When the number of +// tasks is set to the number of GC workers, then _n_threads must +// be set to the number of active GC workers. G1CollectedHeap, +// HRInto_G1RemSet, GenCollectedHeap and SharedHeap have SubTasksDone. +// This seems too many. +// 3) SequentialSubTasksDone has an _n_threads that is used in +// a way similar to SubTasksDone and has the same dependency on the +// number of active GC workers. CompactibleFreeListSpace and Space +// have SequentialSubTasksDone's. +// Example of using SubTasksDone and SequentialSubTasksDone +// G1CollectedHeap::g1_process_strong_roots() calls +// process_strong_roots(false, // no scoping; this is parallel code +// collecting_perm_gen, so, +// &buf_scan_non_heap_roots, +// &eager_scan_code_roots, +// &buf_scan_perm); +// which delegates to SharedHeap::process_strong_roots() and uses +// SubTasksDone* _process_strong_tasks to claim tasks. +// process_strong_roots() calls +// rem_set()->younger_refs_iterate(perm_gen(), perm_blk); +// to scan the card table and which eventually calls down into +// CardTableModRefBS::par_non_clean_card_iterate_work(). This method +// uses SequentialSubTasksDone* _pst to claim tasks. +// Both SubTasksDone and SequentialSubTasksDone call their method +// all_tasks_completed() to count the number of GC workers that have +// finished their work. That logic is "when all the workers are +// finished the tasks are finished". +// +// The pattern that appears in the code is to set _n_threads +// to a value > 1 before a task that you would like executed in parallel +// and then to set it to 0 after that task has completed. A value of +// 0 is a "special" value in set_n_threads() which translates to +// setting _n_threads to 1. +// +// Some code uses _n_terminiation to decide if work should be done in +// parallel. The notorious possibly_parallel_oops_do() in threads.cpp +// is an example of such code. Look for variable "is_par" for other +// examples. +// +// The active_workers is not reset to 0 after a parallel phase. It's +// value may be used in later phases and in one instance at least +// (the parallel remark) it has to be used (the parallel remark depends +// on the partitioning done in the previous parallel scavenge). + class SharedHeap : public CollectedHeap { friend class VMStructs; @@ -84,11 +140,6 @@ // If we're doing parallel GC, use this gang of threads. FlexibleWorkGang* _workers; - // Number of parallel threads currently working on GC tasks. - // O indicates use sequential code; 1 means use parallel code even with - // only one thread, for performance testing purposes. - int _n_par_threads; - // Full initialization is done in a concrete subtype's "initialize" // function. SharedHeap(CollectorPolicy* policy_); @@ -107,6 +158,7 @@ CollectorPolicy *collector_policy() const { return _collector_policy; } void set_barrier_set(BarrierSet* bs); + SubTasksDone* process_strong_tasks() { return _process_strong_tasks; } // Does operations required after initialization has been done. virtual void post_initialize(); @@ -198,13 +250,6 @@ FlexibleWorkGang* workers() const { return _workers; } - // Sets the number of parallel threads that will be doing tasks - // (such as process strong roots) subsequently. - virtual void set_par_threads(int t); - - // Number of threads currently working on GC tasks. - int n_par_threads() { return _n_par_threads; } - // Invoke the "do_oop" method the closure "roots" on all root locations. // If "collecting_perm_gen" is false, then roots that may only contain // references to permGen objects are not scanned; instead, in that case, @@ -240,6 +285,13 @@ virtual void gc_prologue(bool full) = 0; virtual void gc_epilogue(bool full) = 0; + // Sets the number of parallel threads that will be doing tasks + // (such as process strong roots) subsequently. + virtual void set_par_threads(int t); + + int n_termination(); + void set_n_termination(int t); + // // New methods from CollectedHeap //