diff -r b0c958c0e6c6 -r f02ffcb61dce src/java.base/share/classes/java/util/random/MRG32k3a.java --- a/src/java.base/share/classes/java/util/random/MRG32k3a.java Thu Jun 27 18:02:51 2019 -0300 +++ b/src/java.base/share/classes/java/util/random/MRG32k3a.java Thu Jun 27 18:30:27 2019 -0300 @@ -22,7 +22,8 @@ * or visit www.oracle.com if you need additional information or have any * questions. */ -package java.util; + +package java.util.random; import java.math.BigInteger; import java.util.concurrent.atomic.AtomicLong; @@ -30,30 +31,29 @@ /** * A generator of uniform pseudorandom values applicable for use in * (among other contexts) isolated parallel computations that may - * generate subtasks. Class {@code MRG32k3a} implements - * interfaces {@link java.util.Rng} and {@link java.util.AbstractArbitrarilyJumpableRng}, + * generate subtasks. Class {@link MRG32k3a} implements + * interfaces {@link RandomNumberGenerator} and {@link AbstractArbitrarilyJumpableRNG}, * and therefore supports methods for producing pseudorandomly chosen * numbers of type {@code int}, {@code long}, {@code float}, and {@code double} - * as well as creating new {@code Xoroshiro128PlusMRG32k3a} objects + * as well as creating new {@link Xoroshiro128PlusMRG32k3a} objects * by "jumping" or "leaping". - * - *

Instances {@code Xoroshiro128Plus} are not thread-safe. + *

+ * Instances {@link Xoroshiro128Plus} are not thread-safe. * They are designed to be used so that each thread as its own instance. * The methods {@link #jump} and {@link #leap} and {@link #jumps} and {@link #leaps} - * can be used to construct new instances of {@code Xoroshiro128Plus} that traverse + * can be used to construct new instances of {@link Xoroshiro128Plus} that traverse * other parts of the state cycle. - * - *

Instances of {@code MRG32k3a} are not cryptographically + *

+ * Instances of {@link MRG32k3a} are not cryptographically * secure. Consider instead using {@link java.security.SecureRandom} * in security-sensitive applications. Additionally, * default-constructed instances do not use a cryptographically random * seed unless the {@linkplain System#getProperty system property} * {@code java.util.secureRandomSeed} is set to {@code true}. * - * @author Guy Steele - * @since 1.9 + * @since 14 */ -public final class MRG32k3a extends AbstractArbitrarilyJumpableRng { +public final class MRG32k3a extends AbstractArbitrarilyJumpableRNG { /* * Implementation Overview. @@ -65,31 +65,29 @@ * some custom spliterator classes needed for stream methods. */ - private final static double norm1 = 2.328306549295728e-10; - private final static double norm2 = 2.328318824698632e-10; - private final static double m1 = 4294967087.0; - private final static double m2 = 4294944443.0; - private final static double a12 = 1403580.0; - private final static double a13n = 810728.0; - private final static double a21 = 527612.0; - private final static double a23n = 1370589.0; - private final static int m1_deficit = 209; - - // IllegalArgumentException messages - private static final String BadLogDistance = "logDistance must be non-negative and not greater than 192"; + private final static double NORM1 = 2.328306549295728e-10; + private final static double NORM2 = 2.328318824698632e-10; + private final static double M1 = 4294967087.0; + private final static double M2 = 4294944443.0; + private final static double A12 = 1403580.0; + private final static double A13N = 810728.0; + private final static double A21 = 527612.0; + private final static double A23N = 1370589.0; + private final static int M1_DEFICIT = 209; /** * The per-instance state. - The seeds for s10, s11, s12 must be integers in [0, m1 - 1] and not all 0. - The seeds for s20, s21, s22 must be integers in [0, m2 - 1] and not all 0. + The seeds for s10, s11, s12 must be integers in [0, m1 - 1] and not all 0. + The seeds for s20, s21, s22 must be integers in [0, m2 - 1] and not all 0. */ private double s10, s11, s12, - s20, s21, s22; + s20, s21, s22; /** * The seed generator for default constructors. */ - private static final AtomicLong defaultGen = new AtomicLong(RngSupport.initialSeed()); + private static final AtomicLong DEFAULT_GEN = + new AtomicLong(RNGSupport.initialSeed()); /* 32-bits Random number generator U(0,1): MRG32k3a @@ -98,58 +96,59 @@ Number Generators, Shorter version in Operations Research, 47, 1 (1999), 159--164. - --------------------------------------------------------- + --------------------------------------------------------- */ private void nextState() { - /* Component 1 */ - double p1 = a12 * s11 - a13n * s10; - double k1 = p1 / m1; p1 -= k1 * m1; if (p1 < 0.0) p1 += m1; - s10 = s11; s11 = s12; s12 = p1; - /* Component 2 */ - double p2 = a21 * s22 - a23n * s20; - double k2 = p2 / m2; p2 -= k2 * m2; if (p2 < 0.0) p2 += m2; - s20 = s21; s21 = s22; s22 = p2; + /* Component 1 */ + double p1 = A12 * s11 - A13N * s10; + double k1 = p1 / M1; p1 -= k1 * M1; if (p1 < 0.0) p1 += M1; + s10 = s11; s11 = s12; s12 = p1; + /* Component 2 */ + double p2 = A21 * s22 - A23N * s20; + double k2 = p2 / M2; p2 -= k2 * M2; if (p2 < 0.0) p2 += M2; + s20 = s21; s21 = s22; s22 = p2; } - + /** * The form of nextInt used by IntStream Spliterators. * Exactly the same as long version, except for types. * * @param origin the least value, unless greater than bound * @param bound the upper bound (exclusive), must not equal origin + * * @return a pseudorandom value */ private int internalNextInt(int origin, int bound) { if (origin < bound) { final int n = bound - origin; - final int m = n - 1; - if (n > 0) { - int r; + final int m = n - 1; + if (n > 0) { + int r; for (int u = (int)nextDouble() >>> 1; - u + m + ((m1_deficit + 1) >>> 1) - (r = u % n) < 0; + u + m + ((M1_DEFICIT + 1) >>> 1) - (r = u % n) < 0; u = (int)nextDouble() >>> 1) ; return (r + origin); } else { - return RngSupport.boundedNextInt(this, origin, bound); + return RNGSupport.boundedNextInt(this, origin, bound); } } else { - return nextInt(); - } + return nextInt(); + } } private int internalNextInt(int bound) { // Specialize internalNextInt for origin == 0, bound > 0 - final int n = bound; - final int m = n - 1; - int r; - for (int u = (int)nextDouble() >>> 1; - u + m + ((m1_deficit + 1) >>> 1) - (r = u % n) < 0; - u = (int)nextDouble() >>> 1) - ; - return r; + final int n = bound; + final int m = n - 1; + int r; + for (int u = (int)nextDouble() >>> 1; + u + m + ((M1_DEFICIT + 1) >>> 1) - (r = u % n) < 0; + u = (int)nextDouble() >>> 1) + ; + return r; } /** @@ -157,15 +156,15 @@ * less than the appropriate modulus. */ private MRG32k3a(double s10, double s11, double s12, - double s20, double s21, double s22) { - this.s10 = s10; this.s11 = s11; this.s12 = s12; - this.s20 = s20; this.s21 = s21; this.s22 = s22; - if ((s10 == 0.0) && (s11 == 0.0) && (s12 == 0.0)) { - this.s10 = this.s11 = this.s12 = 12345.0; - } - if ((s20 == 0.0) && (s21 == 0.0) && (s22 == 0.0)) { - this.s20 = this.s21 = this.s21 = 12345.0; - } + double s20, double s21, double s22) { + this.s10 = s10; this.s11 = s11; this.s12 = s12; + this.s20 = s20; this.s21 = s21; this.s22 = s22; + if ((s10 == 0.0) && (s11 == 0.0) && (s12 == 0.0)) { + this.s10 = this.s11 = this.s12 = 12345.0; + } + if ((s20 == 0.0) && (s21 == 0.0) && (s22 == 0.0)) { + this.s20 = this.s21 = this.s21 = 12345.0; + } } /* ---------------- public methods ---------------- */ @@ -186,13 +185,13 @@ * @param s22 the third seed value for the second subgenerator */ public MRG32k3a(int s10, int s11, int s12, - int s20, int s21, int s22) { - this(((double)(((long)s10) & 0x00000000ffffffffL)) % m1, - ((double)(((long)s11) & 0x00000000ffffffffL)) % m1, - ((double)(((long)s12) & 0x00000000ffffffffL)) % m1, - ((double)(((long)s20) & 0x00000000ffffffffL)) % m2, - ((double)(((long)s21) & 0x00000000ffffffffL)) % m2, - ((double)(((long)s22) & 0x00000000ffffffffL)) % m2); + int s20, int s21, int s22) { + this(((double)(((long)s10) & 0x00000000ffffffffL)) % M1, + ((double)(((long)s11) & 0x00000000ffffffffL)) % M1, + ((double)(((long)s12) & 0x00000000ffffffffL)) % M1, + ((double)(((long)s20) & 0x00000000ffffffffL)) % M2, + ((double)(((long)s21) & 0x00000000ffffffffL)) % M2, + ((double)(((long)s22) & 0x00000000ffffffffL)) % M2); } /** @@ -206,11 +205,11 @@ */ public MRG32k3a(long seed) { this((double)((seed & 0x7FF) + 12345), - (double)(((seed >>> 11) & 0x7FF) + 12345), - (double)(((seed >>> 22) & 0x7FF) + 12345), - (double)(((seed >>> 33) & 0x7FF) + 12345), - (double)(((seed >>> 44) & 0x7FF) + 12345), - (double)((seed >>> 55) + 12345)); + (double)(((seed >>> 11) & 0x7FF) + 12345), + (double)(((seed >>> 22) & 0x7FF) + 12345), + (double)(((seed >>> 33) & 0x7FF) + 12345), + (double)(((seed >>> 44) & 0x7FF) + 12345), + (double)((seed >>> 55) + 12345)); } /** @@ -220,36 +219,38 @@ * may, and typically does, vary across program invocations. */ public MRG32k3a() { - this(defaultGen.getAndAdd(RngSupport.GOLDEN_RATIO_64)); + this(DEFAULT_GEN.getAndAdd(RNGSupport.GOLDEN_RATIO_64)); } /** - * Creates a new instance of {@code Xoshiro256StarStar} using the specified array of - * initial seed bytes. Instances of {@code Xoshiro256StarStar} created with the same + * Creates a new instance of {@link Xoshiro256StarStar} using the specified array of + * initial seed bytes. Instances of {@link Xoshiro256StarStar} created with the same * seed array in the same program execution generate identical sequences of values. * * @param seed the initial seed */ public MRG32k3a(byte[] seed) { - // Convert the seed to 6 int values. - int[] data = RngSupport.convertSeedBytesToInts(seed, 6, 0); - int s10 = data[0], s11 = data[1], s12 = data[2]; - int s20 = data[3], s21 = data[4], s22 = data[5]; - this.s10 = ((double)(((long)s10) & 0x00000000ffffffffL)) % m1; - this.s11 = ((double)(((long)s11) & 0x00000000ffffffffL)) % m1; - this.s12 = ((double)(((long)s12) & 0x00000000ffffffffL)) % m1; - this.s20 = ((double)(((long)s20) & 0x00000000ffffffffL)) % m2; - this.s21 = ((double)(((long)s21) & 0x00000000ffffffffL)) % m2; - this.s22 = ((double)(((long)s22) & 0x00000000ffffffffL)) % m2; - if ((s10 == 0.0) && (s11 == 0.0) && (s12 == 0.0)) { - this.s10 = this.s11 = this.s12 = 12345.0; - } - if ((s20 == 0.0) && (s21 == 0.0) && (s22 == 0.0)) { - this.s20 = this.s21 = this.s21 = 12345.0; - } + // Convert the seed to 6 int values. + int[] data = RNGSupport.convertSeedBytesToInts(seed, 6, 0); + int s10 = data[0], s11 = data[1], s12 = data[2]; + int s20 = data[3], s21 = data[4], s22 = data[5]; + this.s10 = ((double)(((long)s10) & 0x00000000ffffffffL)) % M1; + this.s11 = ((double)(((long)s11) & 0x00000000ffffffffL)) % M1; + this.s12 = ((double)(((long)s12) & 0x00000000ffffffffL)) % M1; + this.s20 = ((double)(((long)s20) & 0x00000000ffffffffL)) % M2; + this.s21 = ((double)(((long)s21) & 0x00000000ffffffffL)) % M2; + this.s22 = ((double)(((long)s22) & 0x00000000ffffffffL)) % M2; + if ((s10 == 0.0) && (s11 == 0.0) && (s12 == 0.0)) { + this.s10 = this.s11 = this.s12 = 12345.0; + } + if ((s20 == 0.0) && (s21 == 0.0) && (s22 == 0.0)) { + this.s20 = this.s21 = this.s21 = 12345.0; + } } - public MRG32k3a copy() { return new MRG32k3a(s10, s11, s12, s20, s21, s22); } + public MRG32k3a copy() { + return new MRG32k3a(s10, s11, s12, s20, s21, s22); + } /** * Returns a pseudorandom {@code double} value between zero @@ -259,12 +260,12 @@ * (exclusive) and one (exclusive) */ public double nextOpenDouble() { - nextState(); - double p1 = s12, p2 = s22; - if (p1 <= p2) - return ((p1 - p2 + m1) * norm1); - else - return ((p1 - p2) * norm1); + nextState(); + double p1 = s12, p2 = s22; + if (p1 <= p2) + return ((p1 - p2 + M1) * NORM1); + else + return ((p1 - p2) * NORM1); } /** @@ -275,14 +276,14 @@ * (inclusive) and one (exclusive) */ public double nextDouble() { - nextState(); - double p1 = s12, p2 = s22; - final double p = p1 * norm1 - p2 * norm2; - if (p < 0.0) return (p + 1.0); - else return p; + nextState(); + double p1 = s12, p2 = s22; + final double p = p1 * NORM1 - p2 * NORM2; + if (p < 0.0) return (p + 1.0); + else return p; } - + /** * Returns a pseudorandom {@code float} value between zero * (inclusive) and one (exclusive). @@ -300,7 +301,7 @@ * @return a pseudorandom {@code int} value */ public int nextInt() { - return (internalNextInt(0x10000) << 16) | internalNextInt(0x10000); + return (internalNextInt(0x10000) << 16) | internalNextInt(0x10000); } /** @@ -310,147 +311,156 @@ */ public long nextLong() { - return (((long)internalNextInt(0x200000) << 43) | - ((long)internalNextInt(0x200000) << 22) | - ((long)internalNextInt(0x400000))); + return (((long)internalNextInt(0x200000) << 43) | + ((long)internalNextInt(0x200000) << 22) | + ((long)internalNextInt(0x400000))); } // Period is (m1**3 - 1)(m2**3 - 1)/2, or approximately 2**191. static BigInteger calculateThePeriod() { - BigInteger bigm1 = BigInteger.valueOf((long)m1); - BigInteger bigm2 = BigInteger.valueOf((long)m2); - BigInteger t1 = bigm1.multiply(bigm1).multiply(bigm1).subtract(BigInteger.ONE); - BigInteger t2 = bigm2.multiply(bigm2).multiply(bigm2).subtract(BigInteger.ONE); - return t1.shiftRight(1).multiply(t2); + BigInteger bigm1 = BigInteger.valueOf((long)M1); + BigInteger bigm2 = BigInteger.valueOf((long)M2); + BigInteger t1 = bigm1.multiply(bigm1).multiply(bigm1).subtract(BigInteger.ONE); + BigInteger t2 = bigm2.multiply(bigm2).multiply(bigm2).subtract(BigInteger.ONE); + return t1.shiftRight(1).multiply(t2); } - static final BigInteger thePeriod = calculateThePeriod(); - public BigInteger period() { return thePeriod; } + + static final BigInteger PERIOD = calculateThePeriod(); + + public BigInteger period() { + return PERIOD; + } // Jump and leap distances recommended in Section 1.3 of this paper: // Pierre L'Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton. // An Object-Oriented Random-Number Package with Many Long Streams and Substreams. // Operations Research 50, 6 (Nov--Dec 2002), 1073--1075. - public double defaultJumpDistance() { return 0x1.0p76; } // 2**76 - public double defaultLeapDistance() { return 0x1.0p127; } // 2**127 - + public double defaultJumpDistance() { + return 0x1.0p76; // 2**76 + } + + public double defaultLeapDistance() { + return 0x1.0p127; // 2**127 + } + public void jump(double distance) { if (distance < 0.0 || Double.isInfinite(distance) || distance != Math.floor(distance)) throw new IllegalArgumentException("jump distance must be a nonnegative finite integer"); - // We will compute a jump transformation (s => M s) for each LCG. - // We initialize each transformation to the identity transformation. - // Each will be turned into the d'th power of the corresponding base transformation. - long m1_00 = 1, m1_01 = 0, m1_02 = 0, - m1_10 = 0, m1_11 = 1, m1_12 = 0, - m1_20 = 0, m1_21 = 0, m1_22 = 1; - long m2_00 = 1, m2_01 = 0, m2_02 = 0, - m2_10 = 0, m2_11 = 1, m2_12 = 0, - m2_20 = 0, m2_21 = 0, m2_22 = 1; - // These are the base transformations, which will be repeatedly squared, - // and composed with the computed transformations for each 1-bit in distance. - long t1_00 = 0, t1_01 = 1, t1_02 = 0, - t1_10 = 0, t1_11 = 0, t1_12 = 1, - t1_20 = -(long)a13n, t1_21 = (long)a12, t1_22 = 0; - long t2_00 = 0, t2_01 = 1, t2_02 = 0, - t2_10 = 0, t2_11 = 0, t2_12 = 1, - t2_20 = -(long)a23n, t2_21 = (long)a21, t2_22 = 0; - while (distance > 0.0) { - final double dhalf = 0.5 * distance; - if (Math.floor(dhalf) != dhalf) { - // distance is odd: accumulate current squaring - final long n1_00 = m1_00 * t1_00 + m1_01 * t1_10 + m1_02 * t1_20; - final long n1_01 = m1_00 * t1_01 + m1_01 * t1_11 + m1_02 * t1_21; - final long n1_02 = m1_00 * t1_02 + m1_01 * t1_12 + m1_02 * t1_22; - final long n1_10 = m1_10 * t1_00 + m1_11 * t1_10 + m1_12 * t1_20; - final long n1_11 = m1_10 * t1_01 + m1_11 * t1_11 + m1_12 * t1_21; - final long n1_12 = m1_10 * t1_02 + m1_11 * t1_12 + m1_12 * t1_22; - final long n1_20 = m1_20 * t1_00 + m1_21 * t1_10 + m1_22 * t1_20; - final long n1_21 = m1_20 * t1_01 + m1_21 * t1_11 + m1_22 * t1_21; - final long n1_22 = m1_20 * t1_02 + m1_21 * t1_12 + m1_22 * t1_22; - m1_00 = Math.floorMod(n1_00, (long)m1); - m1_01 = Math.floorMod(n1_01, (long)m1); - m1_02 = Math.floorMod(n1_02, (long)m1); - m1_10 = Math.floorMod(n1_10, (long)m1); - m1_11 = Math.floorMod(n1_11, (long)m1); - m1_12 = Math.floorMod(n1_12, (long)m1); - m1_20 = Math.floorMod(n1_20, (long)m1); - m1_21 = Math.floorMod(n1_21, (long)m1); - m1_22 = Math.floorMod(n1_22, (long)m1); - final long n2_00 = m2_00 * t2_00 + m2_01 * t2_10 + m2_02 * t2_20; - final long n2_01 = m2_00 * t2_01 + m2_01 * t2_11 + m2_02 * t2_21; - final long n2_02 = m2_00 * t2_02 + m2_01 * t2_12 + m2_02 * t2_22; - final long n2_10 = m2_10 * t2_00 + m2_11 * t2_10 + m2_12 * t2_20; - final long n2_11 = m2_10 * t2_01 + m2_11 * t2_11 + m2_12 * t2_21; - final long n2_12 = m2_10 * t2_02 + m2_11 * t2_12 + m2_12 * t2_22; - final long n2_20 = m2_20 * t2_00 + m2_21 * t2_10 + m2_22 * t2_20; - final long n2_21 = m2_20 * t2_01 + m2_21 * t2_11 + m2_22 * t2_21; - final long n2_22 = m2_20 * t2_02 + m2_21 * t2_12 + m2_22 * t2_22; - m2_00 = Math.floorMod(n2_00, (long)m2); - m2_01 = Math.floorMod(n2_01, (long)m2); - m2_02 = Math.floorMod(n2_02, (long)m2); - m2_10 = Math.floorMod(n2_10, (long)m2); - m2_11 = Math.floorMod(n2_11, (long)m2); - m2_12 = Math.floorMod(n2_12, (long)m2); - m2_20 = Math.floorMod(n2_20, (long)m2); - m2_21 = Math.floorMod(n2_21, (long)m2); - m2_22 = Math.floorMod(n2_22, (long)m2); - } - // Square the base transformations. - { - final long z1_00 = m1_00 * m1_00 + m1_01 * m1_10 + m1_02 * m1_20; - final long z1_01 = m1_00 * m1_01 + m1_01 * m1_11 + m1_02 * m1_21; - final long z1_02 = m1_00 * m1_02 + m1_01 * m1_12 + m1_02 * m1_22; - final long z1_10 = m1_10 * m1_00 + m1_11 * m1_10 + m1_12 * m1_20; - final long z1_11 = m1_10 * m1_01 + m1_11 * m1_11 + m1_12 * m1_21; - final long z1_12 = m1_10 * m1_02 + m1_11 * m1_12 + m1_12 * m1_22; - final long z1_20 = m1_20 * m1_00 + m1_21 * m1_10 + m1_22 * m1_20; - final long z1_21 = m1_20 * m1_01 + m1_21 * m1_11 + m1_22 * m1_21; - final long z1_22 = m1_20 * m1_02 + m1_21 * m1_12 + m1_22 * m1_22; - m1_00 = Math.floorMod(z1_00, (long)m1); - m1_01 = Math.floorMod(z1_01, (long)m1); - m1_02 = Math.floorMod(z1_02, (long)m1); - m1_10 = Math.floorMod(z1_10, (long)m1); - m1_11 = Math.floorMod(z1_11, (long)m1); - m1_12 = Math.floorMod(z1_12, (long)m1); - m1_20 = Math.floorMod(z1_20, (long)m1); - m1_21 = Math.floorMod(z1_21, (long)m1); - m1_22 = Math.floorMod(z1_22, (long)m1); - final long z2_00 = m2_00 * m2_00 + m2_01 * m2_10 + m2_02 * m2_20; - final long z2_01 = m2_00 * m2_01 + m2_01 * m2_11 + m2_02 * m2_21; - final long z2_02 = m2_00 * m2_02 + m2_01 * m2_12 + m2_02 * m2_22; - final long z2_10 = m2_10 * m2_00 + m2_11 * m2_10 + m2_12 * m2_20; - final long z2_11 = m2_10 * m2_01 + m2_11 * m2_11 + m2_12 * m2_21; - final long z2_12 = m2_10 * m2_02 + m2_11 * m2_12 + m2_12 * m2_22; - final long z2_20 = m2_20 * m2_00 + m2_21 * m2_10 + m2_22 * m2_20; - final long z2_21 = m2_20 * m2_01 + m2_21 * m2_11 + m2_22 * m2_21; - final long z2_22 = m2_20 * m2_02 + m2_21 * m2_12 + m2_22 * m2_22; - m2_00 = Math.floorMod(z2_00, (long)m2); - m2_01 = Math.floorMod(z2_01, (long)m2); - m2_02 = Math.floorMod(z2_02, (long)m2); - m2_10 = Math.floorMod(z2_10, (long)m2); - m2_11 = Math.floorMod(z2_11, (long)m2); - m2_12 = Math.floorMod(z2_12, (long)m2); - m2_20 = Math.floorMod(z2_20, (long)m2); - m2_21 = Math.floorMod(z2_21, (long)m2); - m2_22 = Math.floorMod(z2_22, (long)m2); - } - // Divide distance by 2. - distance = dhalf; - } - final long w10 = m1_00 * (long)s10 + m1_01 * (long)s11 + m1_02 * (long)s12; - final long w11 = m1_10 * (long)s10 + m1_11 * (long)s11 + m1_12 * (long)s12; - final long w12 = m1_20 * (long)s10 + m1_21 * (long)s11 + m1_22 * (long)s12; - s10 = Math.floorMod(w10, (long)m1); - s11 = Math.floorMod(w11, (long)m1); - s12 = Math.floorMod(w12, (long)m1); - final long w20 = m2_00 * (long)s20 + m2_01 * (long)s21 + m2_02 * (long)s22; - final long w21 = m2_10 * (long)s20 + m2_11 * (long)s21 + m2_12 * (long)s22; - final long w22 = m2_20 * (long)s20 + m2_21 * (long)s21 + m2_22 * (long)s22; - s20 = Math.floorMod(w20, (long)m2); - s21 = Math.floorMod(w21, (long)m2); - s22 = Math.floorMod(w22, (long)m2); + // We will compute a jump transformation (s => M s) for each LCG. + // We initialize each transformation to the identity transformation. + // Each will be turned into the d'th power of the corresponding base transformation. + long m1_00 = 1, m1_01 = 0, m1_02 = 0, + m1_10 = 0, m1_11 = 1, m1_12 = 0, + m1_20 = 0, m1_21 = 0, m1_22 = 1; + long m2_00 = 1, m2_01 = 0, m2_02 = 0, + m2_10 = 0, m2_11 = 1, m2_12 = 0, + m2_20 = 0, m2_21 = 0, m2_22 = 1; + // These are the base transformations, which will be repeatedly squared, + // and composed with the computed transformations for each 1-bit in distance. + long t1_00 = 0, t1_01 = 1, t1_02 = 0, + t1_10 = 0, t1_11 = 0, t1_12 = 1, + t1_20 = -(long)A13N, t1_21 = (long)A12, t1_22 = 0; + long t2_00 = 0, t2_01 = 1, t2_02 = 0, + t2_10 = 0, t2_11 = 0, t2_12 = 1, + t2_20 = -(long)A23N, t2_21 = (long)A21, t2_22 = 0; + while (distance > 0.0) { + final double dhalf = 0.5 * distance; + if (Math.floor(dhalf) != dhalf) { + // distance is odd: accumulate current squaring + final long n1_00 = m1_00 * t1_00 + m1_01 * t1_10 + m1_02 * t1_20; + final long n1_01 = m1_00 * t1_01 + m1_01 * t1_11 + m1_02 * t1_21; + final long n1_02 = m1_00 * t1_02 + m1_01 * t1_12 + m1_02 * t1_22; + final long n1_10 = m1_10 * t1_00 + m1_11 * t1_10 + m1_12 * t1_20; + final long n1_11 = m1_10 * t1_01 + m1_11 * t1_11 + m1_12 * t1_21; + final long n1_12 = m1_10 * t1_02 + m1_11 * t1_12 + m1_12 * t1_22; + final long n1_20 = m1_20 * t1_00 + m1_21 * t1_10 + m1_22 * t1_20; + final long n1_21 = m1_20 * t1_01 + m1_21 * t1_11 + m1_22 * t1_21; + final long n1_22 = m1_20 * t1_02 + m1_21 * t1_12 + m1_22 * t1_22; + m1_00 = Math.floorMod(n1_00, (long)M1); + m1_01 = Math.floorMod(n1_01, (long)M1); + m1_02 = Math.floorMod(n1_02, (long)M1); + m1_10 = Math.floorMod(n1_10, (long)M1); + m1_11 = Math.floorMod(n1_11, (long)M1); + m1_12 = Math.floorMod(n1_12, (long)M1); + m1_20 = Math.floorMod(n1_20, (long)M1); + m1_21 = Math.floorMod(n1_21, (long)M1); + m1_22 = Math.floorMod(n1_22, (long)M1); + final long n2_00 = m2_00 * t2_00 + m2_01 * t2_10 + m2_02 * t2_20; + final long n2_01 = m2_00 * t2_01 + m2_01 * t2_11 + m2_02 * t2_21; + final long n2_02 = m2_00 * t2_02 + m2_01 * t2_12 + m2_02 * t2_22; + final long n2_10 = m2_10 * t2_00 + m2_11 * t2_10 + m2_12 * t2_20; + final long n2_11 = m2_10 * t2_01 + m2_11 * t2_11 + m2_12 * t2_21; + final long n2_12 = m2_10 * t2_02 + m2_11 * t2_12 + m2_12 * t2_22; + final long n2_20 = m2_20 * t2_00 + m2_21 * t2_10 + m2_22 * t2_20; + final long n2_21 = m2_20 * t2_01 + m2_21 * t2_11 + m2_22 * t2_21; + final long n2_22 = m2_20 * t2_02 + m2_21 * t2_12 + m2_22 * t2_22; + m2_00 = Math.floorMod(n2_00, (long)M2); + m2_01 = Math.floorMod(n2_01, (long)M2); + m2_02 = Math.floorMod(n2_02, (long)M2); + m2_10 = Math.floorMod(n2_10, (long)M2); + m2_11 = Math.floorMod(n2_11, (long)M2); + m2_12 = Math.floorMod(n2_12, (long)M2); + m2_20 = Math.floorMod(n2_20, (long)M2); + m2_21 = Math.floorMod(n2_21, (long)M2); + m2_22 = Math.floorMod(n2_22, (long)M2); + } + // Square the base transformations. + { + final long z1_00 = m1_00 * m1_00 + m1_01 * m1_10 + m1_02 * m1_20; + final long z1_01 = m1_00 * m1_01 + m1_01 * m1_11 + m1_02 * m1_21; + final long z1_02 = m1_00 * m1_02 + m1_01 * m1_12 + m1_02 * m1_22; + final long z1_10 = m1_10 * m1_00 + m1_11 * m1_10 + m1_12 * m1_20; + final long z1_11 = m1_10 * m1_01 + m1_11 * m1_11 + m1_12 * m1_21; + final long z1_12 = m1_10 * m1_02 + m1_11 * m1_12 + m1_12 * m1_22; + final long z1_20 = m1_20 * m1_00 + m1_21 * m1_10 + m1_22 * m1_20; + final long z1_21 = m1_20 * m1_01 + m1_21 * m1_11 + m1_22 * m1_21; + final long z1_22 = m1_20 * m1_02 + m1_21 * m1_12 + m1_22 * m1_22; + m1_00 = Math.floorMod(z1_00, (long)M1); + m1_01 = Math.floorMod(z1_01, (long)M1); + m1_02 = Math.floorMod(z1_02, (long)M1); + m1_10 = Math.floorMod(z1_10, (long)M1); + m1_11 = Math.floorMod(z1_11, (long)M1); + m1_12 = Math.floorMod(z1_12, (long)M1); + m1_20 = Math.floorMod(z1_20, (long)M1); + m1_21 = Math.floorMod(z1_21, (long)M1); + m1_22 = Math.floorMod(z1_22, (long)M1); + final long z2_00 = m2_00 * m2_00 + m2_01 * m2_10 + m2_02 * m2_20; + final long z2_01 = m2_00 * m2_01 + m2_01 * m2_11 + m2_02 * m2_21; + final long z2_02 = m2_00 * m2_02 + m2_01 * m2_12 + m2_02 * m2_22; + final long z2_10 = m2_10 * m2_00 + m2_11 * m2_10 + m2_12 * m2_20; + final long z2_11 = m2_10 * m2_01 + m2_11 * m2_11 + m2_12 * m2_21; + final long z2_12 = m2_10 * m2_02 + m2_11 * m2_12 + m2_12 * m2_22; + final long z2_20 = m2_20 * m2_00 + m2_21 * m2_10 + m2_22 * m2_20; + final long z2_21 = m2_20 * m2_01 + m2_21 * m2_11 + m2_22 * m2_21; + final long z2_22 = m2_20 * m2_02 + m2_21 * m2_12 + m2_22 * m2_22; + m2_00 = Math.floorMod(z2_00, (long)M2); + m2_01 = Math.floorMod(z2_01, (long)M2); + m2_02 = Math.floorMod(z2_02, (long)M2); + m2_10 = Math.floorMod(z2_10, (long)M2); + m2_11 = Math.floorMod(z2_11, (long)M2); + m2_12 = Math.floorMod(z2_12, (long)M2); + m2_20 = Math.floorMod(z2_20, (long)M2); + m2_21 = Math.floorMod(z2_21, (long)M2); + m2_22 = Math.floorMod(z2_22, (long)M2); + } + // Divide distance by 2. + distance = dhalf; + } + final long w10 = m1_00 * (long)s10 + m1_01 * (long)s11 + m1_02 * (long)s12; + final long w11 = m1_10 * (long)s10 + m1_11 * (long)s11 + m1_12 * (long)s12; + final long w12 = m1_20 * (long)s10 + m1_21 * (long)s11 + m1_22 * (long)s12; + s10 = Math.floorMod(w10, (long)M1); + s11 = Math.floorMod(w11, (long)M1); + s12 = Math.floorMod(w12, (long)M1); + final long w20 = m2_00 * (long)s20 + m2_01 * (long)s21 + m2_02 * (long)s22; + final long w21 = m2_10 * (long)s20 + m2_11 * (long)s21 + m2_12 * (long)s22; + final long w22 = m2_20 * (long)s20 + m2_21 * (long)s21 + m2_22 * (long)s22; + s20 = Math.floorMod(w20, (long)M2); + s21 = Math.floorMod(w21, (long)M2); + s22 = Math.floorMod(w22, (long)M2); } - + /** * Alter the state of this pseudorandom number generator so as to * jump forward a distance equal to 2{@code logDistance} @@ -459,14 +469,15 @@ * @param logDistance the base-2 logarithm of the distance to jump * forward within the state cycle. Must be non-negative and * not greater than 192. + * * @throws IllegalArgumentException if {@code logDistance} is * less than zero or 2{@code logDistance} is * greater than the period of this generator */ public void jumpPowerOfTwo(int logDistance) { if (logDistance < 0 || logDistance > 192) - throw new IllegalArgumentException(BadLogDistance); - jump(Math.scalb(1.0, logDistance)); + throw new IllegalArgumentException("logDistance must be non-negative and not greater than 192"); + jump(Math.scalb(1.0, logDistance)); } }