diff -r 40e42c95ac39 -r dab8a43dd738 hotspot/src/cpu/x86/vm/vm_version_x86.hpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hotspot/src/cpu/x86/vm/vm_version_x86.hpp Mon Feb 23 12:02:30 2009 -0800 @@ -0,0 +1,459 @@ +/* + * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + */ + +class VM_Version : public Abstract_VM_Version { +public: + // cpuid result register layouts. These are all unions of a uint32_t + // (in case anyone wants access to the register as a whole) and a bitfield. + + union StdCpuid1Eax { + uint32_t value; + struct { + uint32_t stepping : 4, + model : 4, + family : 4, + proc_type : 2, + : 2, + ext_model : 4, + ext_family : 8, + : 4; + } bits; + }; + + union StdCpuid1Ebx { // example, unused + uint32_t value; + struct { + uint32_t brand_id : 8, + clflush_size : 8, + threads_per_cpu : 8, + apic_id : 8; + } bits; + }; + + union StdCpuid1Ecx { + uint32_t value; + struct { + uint32_t sse3 : 1, + : 2, + monitor : 1, + : 1, + vmx : 1, + : 1, + est : 1, + : 1, + ssse3 : 1, + cid : 1, + : 2, + cmpxchg16: 1, + : 4, + dca : 1, + sse4_1 : 1, + sse4_2 : 1, + : 11; + } bits; + }; + + union StdCpuid1Edx { + uint32_t value; + struct { + uint32_t : 4, + tsc : 1, + : 3, + cmpxchg8 : 1, + : 6, + cmov : 1, + : 7, + mmx : 1, + fxsr : 1, + sse : 1, + sse2 : 1, + : 1, + ht : 1, + : 3; + } bits; + }; + + union DcpCpuid4Eax { + uint32_t value; + struct { + uint32_t cache_type : 5, + : 21, + cores_per_cpu : 6; + } bits; + }; + + union DcpCpuid4Ebx { + uint32_t value; + struct { + uint32_t L1_line_size : 12, + partitions : 10, + associativity : 10; + } bits; + }; + + union ExtCpuid1Ecx { + uint32_t value; + struct { + uint32_t LahfSahf : 1, + CmpLegacy : 1, + : 4, + abm : 1, + sse4a : 1, + misalignsse : 1, + prefetchw : 1, + : 22; + } bits; + }; + + union ExtCpuid1Edx { + uint32_t value; + struct { + uint32_t : 22, + mmx_amd : 1, + mmx : 1, + fxsr : 1, + : 4, + long_mode : 1, + tdnow2 : 1, + tdnow : 1; + } bits; + }; + + union ExtCpuid5Ex { + uint32_t value; + struct { + uint32_t L1_line_size : 8, + L1_tag_lines : 8, + L1_assoc : 8, + L1_size : 8; + } bits; + }; + + union ExtCpuid8Ecx { + uint32_t value; + struct { + uint32_t cores_per_cpu : 8, + : 24; + } bits; + }; + +protected: + static int _cpu; + static int _model; + static int _stepping; + static int _cpuFeatures; // features returned by the "cpuid" instruction + // 0 if this instruction is not available + static const char* _features_str; + + enum { + CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX) + CPU_CMOV = (1 << 1), + CPU_FXSR = (1 << 2), + CPU_HT = (1 << 3), + CPU_MMX = (1 << 4), + CPU_3DNOW = (1 << 5), // 3DNow comes from cpuid 0x80000001 (EDX) + CPU_SSE = (1 << 6), + CPU_SSE2 = (1 << 7), + CPU_SSE3 = (1 << 8), // SSE3 comes from cpuid 1 (ECX) + CPU_SSSE3 = (1 << 9), + CPU_SSE4A = (1 << 10), + CPU_SSE4_1 = (1 << 11), + CPU_SSE4_2 = (1 << 12) + } cpuFeatureFlags; + + // cpuid information block. All info derived from executing cpuid with + // various function numbers is stored here. Intel and AMD info is + // merged in this block: accessor methods disentangle it. + // + // The info block is laid out in subblocks of 4 dwords corresponding to + // eax, ebx, ecx and edx, whether or not they contain anything useful. + struct CpuidInfo { + // cpuid function 0 + uint32_t std_max_function; + uint32_t std_vendor_name_0; + uint32_t std_vendor_name_1; + uint32_t std_vendor_name_2; + + // cpuid function 1 + StdCpuid1Eax std_cpuid1_eax; + StdCpuid1Ebx std_cpuid1_ebx; + StdCpuid1Ecx std_cpuid1_ecx; + StdCpuid1Edx std_cpuid1_edx; + + // cpuid function 4 (deterministic cache parameters) + DcpCpuid4Eax dcp_cpuid4_eax; + DcpCpuid4Ebx dcp_cpuid4_ebx; + uint32_t dcp_cpuid4_ecx; // unused currently + uint32_t dcp_cpuid4_edx; // unused currently + + // cpuid function 0x80000000 // example, unused + uint32_t ext_max_function; + uint32_t ext_vendor_name_0; + uint32_t ext_vendor_name_1; + uint32_t ext_vendor_name_2; + + // cpuid function 0x80000001 + uint32_t ext_cpuid1_eax; // reserved + uint32_t ext_cpuid1_ebx; // reserved + ExtCpuid1Ecx ext_cpuid1_ecx; + ExtCpuid1Edx ext_cpuid1_edx; + + // cpuid functions 0x80000002 thru 0x80000004: example, unused + uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3; + uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7; + uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11; + + // cpuid function 0x80000005 //AMD L1, Intel reserved + uint32_t ext_cpuid5_eax; // unused currently + uint32_t ext_cpuid5_ebx; // reserved + ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD) + ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD) + + // cpuid function 0x80000008 + uint32_t ext_cpuid8_eax; // unused currently + uint32_t ext_cpuid8_ebx; // reserved + ExtCpuid8Ecx ext_cpuid8_ecx; + uint32_t ext_cpuid8_edx; // reserved + }; + + // The actual cpuid info block + static CpuidInfo _cpuid_info; + + // Extractors and predicates + static uint32_t extended_cpu_family() { + uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family; + result += _cpuid_info.std_cpuid1_eax.bits.ext_family; + return result; + } + static uint32_t extended_cpu_model() { + uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model; + result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4; + return result; + } + static uint32_t cpu_stepping() { + uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping; + return result; + } + static uint logical_processor_count() { + uint result = threads_per_core(); + return result; + } + static uint32_t feature_flags() { + uint32_t result = 0; + if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0) + result |= CPU_CX8; + if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0) + result |= CPU_CMOV; + if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || is_amd() && + _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0) + result |= CPU_FXSR; + // HT flag is set for multi-core processors also. + if (threads_per_core() > 1) + result |= CPU_HT; + if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || is_amd() && + _cpuid_info.ext_cpuid1_edx.bits.mmx != 0) + result |= CPU_MMX; + if (is_amd() && _cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) + result |= CPU_3DNOW; + if (_cpuid_info.std_cpuid1_edx.bits.sse != 0) + result |= CPU_SSE; + if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0) + result |= CPU_SSE2; + if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0) + result |= CPU_SSE3; + if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0) + result |= CPU_SSSE3; + if (is_amd() && _cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0) + result |= CPU_SSE4A; + if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0) + result |= CPU_SSE4_1; + if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0) + result |= CPU_SSE4_2; + return result; + } + + static void get_processor_features(); + +public: + // Offsets for cpuid asm stub + static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); } + static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); } + static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); } + static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); } + static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); } + static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); } + + // Initialization + static void initialize(); + + // Asserts + static void assert_is_initialized() { + assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized"); + } + + // + // Processor family: + // 3 - 386 + // 4 - 486 + // 5 - Pentium + // 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon, + // Pentium M, Core Solo, Core Duo, Core2 Duo + // family 6 model: 9, 13, 14, 15 + // 0x0f - Pentium 4, Opteron + // + // Note: The cpu family should be used to select between + // instruction sequences which are valid on all Intel + // processors. Use the feature test functions below to + // determine whether a particular instruction is supported. + // + static int cpu_family() { return _cpu;} + static bool is_P6() { return cpu_family() >= 6; } + + static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA' + static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG' + + static uint cores_per_cpu() { + uint result = 1; + if (is_intel()) { + result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1); + } else if (is_amd()) { + result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1); + } + return result; + } + + static uint threads_per_core() { + uint result = 1; + if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) { + result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu / + cores_per_cpu(); + } + return result; + } + + static intx L1_data_cache_line_size() { + intx result = 0; + if (is_intel()) { + result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1); + } else if (is_amd()) { + result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size; + } + if (result < 32) // not defined ? + result = 32; // 32 bytes by default on x86 and other x64 + return result; + } + + // + // Feature identification + // + static bool supports_cpuid() { return _cpuFeatures != 0; } + static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; } + static bool supports_cmov() { return (_cpuFeatures & CPU_CMOV) != 0; } + static bool supports_fxsr() { return (_cpuFeatures & CPU_FXSR) != 0; } + static bool supports_ht() { return (_cpuFeatures & CPU_HT) != 0; } + static bool supports_mmx() { return (_cpuFeatures & CPU_MMX) != 0; } + static bool supports_sse() { return (_cpuFeatures & CPU_SSE) != 0; } + static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; } + static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; } + static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; } + static bool supports_sse4_1() { return (_cpuFeatures & CPU_SSE4_1) != 0; } + static bool supports_sse4_2() { return (_cpuFeatures & CPU_SSE4_2) != 0; } + // + // AMD features + // + static bool supports_3dnow() { return (_cpuFeatures & CPU_3DNOW) != 0; } + static bool supports_mmx_ext() { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; } + static bool supports_3dnow2() { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.tdnow2 != 0; } + static bool supports_sse4a() { return (_cpuFeatures & CPU_SSE4A) != 0; } + + static bool supports_compare_and_exchange() { return true; } + + static const char* cpu_features() { return _features_str; } + + static intx allocate_prefetch_distance() { + // This method should be called before allocate_prefetch_style(). + // + // Hardware prefetching (distance/size in bytes): + // Pentium 3 - 64 / 32 + // Pentium 4 - 256 / 128 + // Athlon - 64 / 32 ???? + // Opteron - 128 / 64 only when 2 sequential cache lines accessed + // Core - 128 / 64 + // + // Software prefetching (distance in bytes / instruction with best score): + // Pentium 3 - 128 / prefetchnta + // Pentium 4 - 512 / prefetchnta + // Athlon - 128 / prefetchnta + // Opteron - 256 / prefetchnta + // Core - 256 / prefetchnta + // It will be used only when AllocatePrefetchStyle > 0 + + intx count = AllocatePrefetchDistance; + if (count < 0) { // default ? + if (is_amd()) { // AMD + if (supports_sse2()) + count = 256; // Opteron + else + count = 128; // Athlon + } else { // Intel + if (supports_sse2()) + if (cpu_family() == 6) { + count = 256; // Pentium M, Core, Core2 + } else { + count = 512; // Pentium 4 + } + else + count = 128; // Pentium 3 (and all other old CPUs) + } + } + return count; + } + static intx allocate_prefetch_style() { + assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive"); + // Return 0 if AllocatePrefetchDistance was not defined. + return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0; + } + + // Prefetch interval for gc copy/scan == 9 dcache lines. Derived from + // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap. + // Tested intervals from 128 to 2048 in increments of 64 == one cache line. + // 256 bytes (4 dcache lines) was the nearest runner-up to 576. + + // gc copy/scan is disabled if prefetchw isn't supported, because + // Prefetch::write emits an inlined prefetchw on Linux. + // Do not use the 3dnow prefetchw instruction. It isn't supported on em64t. + // The used prefetcht0 instruction works for both amd64 and em64t. + static intx prefetch_copy_interval_in_bytes() { + intx interval = PrefetchCopyIntervalInBytes; + return interval >= 0 ? interval : 576; + } + static intx prefetch_scan_interval_in_bytes() { + intx interval = PrefetchScanIntervalInBytes; + return interval >= 0 ? interval : 576; + } + static intx prefetch_fields_ahead() { + intx count = PrefetchFieldsAhead; + return count >= 0 ? count : 1; + } +};