diff -r effb66aab08b -r da026c172c1e src/java.base/share/classes/java/util/random/MRG32k3a.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/java.base/share/classes/java/util/random/MRG32k3a.java Thu Nov 14 12:50:08 2019 -0400 @@ -0,0 +1,485 @@ +/* + * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.util.random; + +import java.math.BigInteger; +import java.util.concurrent.atomic.AtomicLong; +import java.util.random.RandomGenerator.LeapableGenerator; +import java.util.random.RandomSupport.AbstractArbitrarilyJumpableGenerator; + +/** + * A generator of uniform pseudorandom values applicable for use in + * (among other contexts) isolated parallel computations that may + * generate subtasks. Class {@link MRG32k3a} implements + * interfaces {@link RandomGenerator} and {@link AbstractArbitrarilyJumpableGenerator}, + * and therefore supports methods for producing pseudorandomly chosen + * numbers of type {@code int}, {@code long}, {@code float}, and {@code double} + * as well as creating new {@link Xoroshiro128PlusMRG32k3a} objects + * by "jumping" or "leaping". + *

+ * Instances {@link Xoroshiro128Plus} are not thread-safe. + * They are designed to be used so that each thread as its own instance. + * The methods {@link #jump} and {@link #leap} and {@link #jumps} and {@link #leaps} + * can be used to construct new instances of {@link Xoroshiro128Plus} that traverse + * other parts of the state cycle. + *

+ * Instances of {@link MRG32k3a} are not cryptographically + * secure. Consider instead using {@link java.security.SecureRandom} + * in security-sensitive applications. Additionally, + * default-constructed instances do not use a cryptographically random + * seed unless the {@linkplain System#getProperty system property} + * {@code java.util.secureRandomSeed} is set to {@code true}. + * + * @since 14 + */ +public final class MRG32k3a extends AbstractArbitrarilyJumpableGenerator { + + /* + * Implementation Overview. + * + * See http://simul.iro.umontreal.ca/rng/MRG32k3a.c . + * + * File organization: First the non-public methods that constitute + * the main algorithm, then the main public methods, followed by + * some custom spliterator classes needed for stream methods. + */ + + private final static double NORM1 = 2.328306549295728e-10; + private final static double NORM2 = 2.328318824698632e-10; + private final static double M1 = 4294967087.0; + private final static double M2 = 4294944443.0; + private final static double A12 = 1403580.0; + private final static double A13N = 810728.0; + private final static double A21 = 527612.0; + private final static double A23N = 1370589.0; + private final static int M1_DEFICIT = 209; + + /** + * The per-instance state. + The seeds for s10, s11, s12 must be integers in [0, m1 - 1] and not all 0. + The seeds for s20, s21, s22 must be integers in [0, m2 - 1] and not all 0. + */ + private double s10, s11, s12, + s20, s21, s22; + + /** + * The seed generator for default constructors. + */ + private static final AtomicLong DEFAULT_GEN = + new AtomicLong(RandomSupport.initialSeed()); + + /* + 32-bits Random number generator U(0,1): MRG32k3a + Author: Pierre L'Ecuyer, + Source: Good Parameter Sets for Combined Multiple Recursive Random + Number Generators, + Shorter version in Operations Research, + 47, 1 (1999), 159--164. + --------------------------------------------------------- + */ + + private void nextState() { + /* Component 1 */ + double p1 = A12 * s11 - A13N * s10; + double k1 = p1 / M1; p1 -= k1 * M1; if (p1 < 0.0) p1 += M1; + s10 = s11; s11 = s12; s12 = p1; + /* Component 2 */ + double p2 = A21 * s22 - A23N * s20; + double k2 = p2 / M2; p2 -= k2 * M2; if (p2 < 0.0) p2 += M2; + s20 = s21; s21 = s22; s22 = p2; + } + + + /** + * The form of nextInt used by IntStream Spliterators. + * Exactly the same as long version, except for types. + * + * @param origin the least value, unless greater than bound + * @param bound the upper bound (exclusive), must not equal origin + * + * @return a pseudorandom value + */ + private int internalNextInt(int origin, int bound) { + if (origin < bound) { + final int n = bound - origin; + final int m = n - 1; + if (n > 0) { + int r; + for (int u = (int)nextDouble() >>> 1; + u + m + ((M1_DEFICIT + 1) >>> 1) - (r = u % n) < 0; + u = (int)nextDouble() >>> 1) + ; + return (r + origin); + } else { + return RandomSupport.boundedNextInt(this, origin, bound); + } + } else { + return nextInt(); + } + } + + private int internalNextInt(int bound) { + // Specialize internalNextInt for origin == 0, bound > 0 + final int n = bound; + final int m = n - 1; + int r; + for (int u = (int)nextDouble() >>> 1; + u + m + ((M1_DEFICIT + 1) >>> 1) - (r = u % n) < 0; + u = (int)nextDouble() >>> 1) + ; + return r; + } + + /** + * All arguments must be known to be nonnegative integral values + * less than the appropriate modulus. + */ + private MRG32k3a(double s10, double s11, double s12, + double s20, double s21, double s22) { + this.s10 = s10; this.s11 = s11; this.s12 = s12; + this.s20 = s20; this.s21 = s21; this.s22 = s22; + if ((s10 == 0.0) && (s11 == 0.0) && (s12 == 0.0)) { + this.s10 = this.s11 = this.s12 = 12345.0; + } + if ((s20 == 0.0) && (s21 == 0.0) && (s22 == 0.0)) { + this.s20 = this.s21 = this.s21 = 12345.0; + } + } + + /* ---------------- public methods ---------------- */ + + /** + * Creates a new MRG32k3a instance using six specified {@code int} + * initial seed values. MRG32k3a instances created with the same + * seeds in the same program generate identical sequences of values. + * If all six seed values are zero, the generator is seeded to a + * widely used initialization of MRG32k3a: all six state variables + * are set to 12345. + * + * @param s10 the first seed value for the first subgenerator + * @param s11 the second seed value for the first subgenerator + * @param s12 the third seed value for the first subgenerator + * @param s20 the first seed value for the second subgenerator + * @param s21 the second seed value for the second subgenerator + * @param s22 the third seed value for the second subgenerator + */ + public MRG32k3a(int s10, int s11, int s12, + int s20, int s21, int s22) { + this(((double)(((long)s10) & 0x00000000ffffffffL)) % M1, + ((double)(((long)s11) & 0x00000000ffffffffL)) % M1, + ((double)(((long)s12) & 0x00000000ffffffffL)) % M1, + ((double)(((long)s20) & 0x00000000ffffffffL)) % M2, + ((double)(((long)s21) & 0x00000000ffffffffL)) % M2, + ((double)(((long)s22) & 0x00000000ffffffffL)) % M2); + } + + /** + * Creates a new MRG32k3a instance using the specified + * initial seed. MRG32k3a instances created with the same + * seed in the same program generate identical sequences of values. + * An argument of 0 seeds the generator to a widely used initialization + * of MRG32k3a: all six state variables are set to 12345. + * + * @param seed the initial seed + */ + public MRG32k3a(long seed) { + this((double)((seed & 0x7FF) + 12345), + (double)(((seed >>> 11) & 0x7FF) + 12345), + (double)(((seed >>> 22) & 0x7FF) + 12345), + (double)(((seed >>> 33) & 0x7FF) + 12345), + (double)(((seed >>> 44) & 0x7FF) + 12345), + (double)((seed >>> 55) + 12345)); + } + + /** + * Creates a new MRG32k3a instance that is likely to + * generate sequences of values that are statistically independent + * of those of any other instances in the current program; and + * may, and typically does, vary across program invocations. + */ + public MRG32k3a() { + this(DEFAULT_GEN.getAndAdd(RandomSupport.GOLDEN_RATIO_64)); + } + + /** + * Creates a new instance of {@link Xoshiro256StarStar} using the specified array of + * initial seed bytes. Instances of {@link Xoshiro256StarStar} created with the same + * seed array in the same program execution generate identical sequences of values. + * + * @param seed the initial seed + */ + public MRG32k3a(byte[] seed) { + // Convert the seed to 6 int values. + int[] data = RandomSupport.convertSeedBytesToInts(seed, 6, 0); + int s10 = data[0], s11 = data[1], s12 = data[2]; + int s20 = data[3], s21 = data[4], s22 = data[5]; + this.s10 = ((double)(((long)s10) & 0x00000000ffffffffL)) % M1; + this.s11 = ((double)(((long)s11) & 0x00000000ffffffffL)) % M1; + this.s12 = ((double)(((long)s12) & 0x00000000ffffffffL)) % M1; + this.s20 = ((double)(((long)s20) & 0x00000000ffffffffL)) % M2; + this.s21 = ((double)(((long)s21) & 0x00000000ffffffffL)) % M2; + this.s22 = ((double)(((long)s22) & 0x00000000ffffffffL)) % M2; + if ((s10 == 0.0) && (s11 == 0.0) && (s12 == 0.0)) { + this.s10 = this.s11 = this.s12 = 12345.0; + } + if ((s20 == 0.0) && (s21 == 0.0) && (s22 == 0.0)) { + this.s20 = this.s21 = this.s21 = 12345.0; + } + } + + public MRG32k3a copy() { + return new MRG32k3a(s10, s11, s12, s20, s21, s22); + } + + /** + * Returns a pseudorandom {@code double} value between zero + * (exclusive) and one (exclusive). + * + * @return a pseudorandom {@code double} value between zero + * (exclusive) and one (exclusive) + */ + public double nextOpenDouble() { + nextState(); + double p1 = s12, p2 = s22; + if (p1 <= p2) + return ((p1 - p2 + M1) * NORM1); + else + return ((p1 - p2) * NORM1); + } + + /** + * Returns a pseudorandom {@code double} value between zero + * (inclusive) and one (exclusive). + * + * @return a pseudorandom {@code double} value between zero + * (inclusive) and one (exclusive) + */ + public double nextDouble() { + nextState(); + double p1 = s12, p2 = s22; + final double p = p1 * NORM1 - p2 * NORM2; + if (p < 0.0) return (p + 1.0); + else return p; + } + + + /** + * Returns a pseudorandom {@code float} value between zero + * (inclusive) and one (exclusive). + * + * @return a pseudorandom {@code float} value between zero + * (inclusive) and one (exclusive) + */ + public float nextFloat() { + return (float)nextDouble(); + } + + /** + * Returns a pseudorandom {@code int} value. + * + * @return a pseudorandom {@code int} value + */ + public int nextInt() { + return (internalNextInt(0x10000) << 16) | internalNextInt(0x10000); + } + + /** + * Returns a pseudorandom {@code long} value. + * + * @return a pseudorandom {@code long} value + */ + + public long nextLong() { + return (((long)internalNextInt(0x200000) << 43) | + ((long)internalNextInt(0x200000) << 22) | + ((long)internalNextInt(0x400000))); + } + + // Period is (m1**3 - 1)(m2**3 - 1)/2, or approximately 2**191. + static BigInteger calculateThePeriod() { + BigInteger bigm1 = BigInteger.valueOf((long)M1); + BigInteger bigm2 = BigInteger.valueOf((long)M2); + BigInteger t1 = bigm1.multiply(bigm1).multiply(bigm1).subtract(BigInteger.ONE); + BigInteger t2 = bigm2.multiply(bigm2).multiply(bigm2).subtract(BigInteger.ONE); + return t1.shiftRight(1).multiply(t2); + } + + static final BigInteger PERIOD = calculateThePeriod(); + + public BigInteger period() { + return PERIOD; + } + + // Jump and leap distances recommended in Section 1.3 of this paper: + // Pierre L'Ecuyer, Richard Simard, E. Jack Chen, and W. David Kelton. + // An Object-Oriented Random-Number Package with Many Long Streams and Substreams. + // Operations Research 50, 6 (Nov--Dec 2002), 1073--1075. + + public double defaultJumpDistance() { + return 0x1.0p76; // 2**76 + } + + public double defaultLeapDistance() { + return 0x1.0p127; // 2**127 + } + + public void jump(double distance) { + if (distance < 0.0 || Double.isInfinite(distance) || distance != Math.floor(distance)) + throw new IllegalArgumentException("jump distance must be a nonnegative finite integer"); + // We will compute a jump transformation (s => M s) for each LCG. + // We initialize each transformation to the identity transformation. + // Each will be turned into the d'th power of the corresponding base transformation. + long m1_00 = 1, m1_01 = 0, m1_02 = 0, + m1_10 = 0, m1_11 = 1, m1_12 = 0, + m1_20 = 0, m1_21 = 0, m1_22 = 1; + long m2_00 = 1, m2_01 = 0, m2_02 = 0, + m2_10 = 0, m2_11 = 1, m2_12 = 0, + m2_20 = 0, m2_21 = 0, m2_22 = 1; + // These are the base transformations, which will be repeatedly squared, + // and composed with the computed transformations for each 1-bit in distance. + long t1_00 = 0, t1_01 = 1, t1_02 = 0, + t1_10 = 0, t1_11 = 0, t1_12 = 1, + t1_20 = -(long)A13N, t1_21 = (long)A12, t1_22 = 0; + long t2_00 = 0, t2_01 = 1, t2_02 = 0, + t2_10 = 0, t2_11 = 0, t2_12 = 1, + t2_20 = -(long)A23N, t2_21 = (long)A21, t2_22 = 0; + while (distance > 0.0) { + final double dhalf = 0.5 * distance; + if (Math.floor(dhalf) != dhalf) { + // distance is odd: accumulate current squaring + final long n1_00 = m1_00 * t1_00 + m1_01 * t1_10 + m1_02 * t1_20; + final long n1_01 = m1_00 * t1_01 + m1_01 * t1_11 + m1_02 * t1_21; + final long n1_02 = m1_00 * t1_02 + m1_01 * t1_12 + m1_02 * t1_22; + final long n1_10 = m1_10 * t1_00 + m1_11 * t1_10 + m1_12 * t1_20; + final long n1_11 = m1_10 * t1_01 + m1_11 * t1_11 + m1_12 * t1_21; + final long n1_12 = m1_10 * t1_02 + m1_11 * t1_12 + m1_12 * t1_22; + final long n1_20 = m1_20 * t1_00 + m1_21 * t1_10 + m1_22 * t1_20; + final long n1_21 = m1_20 * t1_01 + m1_21 * t1_11 + m1_22 * t1_21; + final long n1_22 = m1_20 * t1_02 + m1_21 * t1_12 + m1_22 * t1_22; + m1_00 = Math.floorMod(n1_00, (long)M1); + m1_01 = Math.floorMod(n1_01, (long)M1); + m1_02 = Math.floorMod(n1_02, (long)M1); + m1_10 = Math.floorMod(n1_10, (long)M1); + m1_11 = Math.floorMod(n1_11, (long)M1); + m1_12 = Math.floorMod(n1_12, (long)M1); + m1_20 = Math.floorMod(n1_20, (long)M1); + m1_21 = Math.floorMod(n1_21, (long)M1); + m1_22 = Math.floorMod(n1_22, (long)M1); + final long n2_00 = m2_00 * t2_00 + m2_01 * t2_10 + m2_02 * t2_20; + final long n2_01 = m2_00 * t2_01 + m2_01 * t2_11 + m2_02 * t2_21; + final long n2_02 = m2_00 * t2_02 + m2_01 * t2_12 + m2_02 * t2_22; + final long n2_10 = m2_10 * t2_00 + m2_11 * t2_10 + m2_12 * t2_20; + final long n2_11 = m2_10 * t2_01 + m2_11 * t2_11 + m2_12 * t2_21; + final long n2_12 = m2_10 * t2_02 + m2_11 * t2_12 + m2_12 * t2_22; + final long n2_20 = m2_20 * t2_00 + m2_21 * t2_10 + m2_22 * t2_20; + final long n2_21 = m2_20 * t2_01 + m2_21 * t2_11 + m2_22 * t2_21; + final long n2_22 = m2_20 * t2_02 + m2_21 * t2_12 + m2_22 * t2_22; + m2_00 = Math.floorMod(n2_00, (long)M2); + m2_01 = Math.floorMod(n2_01, (long)M2); + m2_02 = Math.floorMod(n2_02, (long)M2); + m2_10 = Math.floorMod(n2_10, (long)M2); + m2_11 = Math.floorMod(n2_11, (long)M2); + m2_12 = Math.floorMod(n2_12, (long)M2); + m2_20 = Math.floorMod(n2_20, (long)M2); + m2_21 = Math.floorMod(n2_21, (long)M2); + m2_22 = Math.floorMod(n2_22, (long)M2); + } + // Square the base transformations. + { + final long z1_00 = m1_00 * m1_00 + m1_01 * m1_10 + m1_02 * m1_20; + final long z1_01 = m1_00 * m1_01 + m1_01 * m1_11 + m1_02 * m1_21; + final long z1_02 = m1_00 * m1_02 + m1_01 * m1_12 + m1_02 * m1_22; + final long z1_10 = m1_10 * m1_00 + m1_11 * m1_10 + m1_12 * m1_20; + final long z1_11 = m1_10 * m1_01 + m1_11 * m1_11 + m1_12 * m1_21; + final long z1_12 = m1_10 * m1_02 + m1_11 * m1_12 + m1_12 * m1_22; + final long z1_20 = m1_20 * m1_00 + m1_21 * m1_10 + m1_22 * m1_20; + final long z1_21 = m1_20 * m1_01 + m1_21 * m1_11 + m1_22 * m1_21; + final long z1_22 = m1_20 * m1_02 + m1_21 * m1_12 + m1_22 * m1_22; + m1_00 = Math.floorMod(z1_00, (long)M1); + m1_01 = Math.floorMod(z1_01, (long)M1); + m1_02 = Math.floorMod(z1_02, (long)M1); + m1_10 = Math.floorMod(z1_10, (long)M1); + m1_11 = Math.floorMod(z1_11, (long)M1); + m1_12 = Math.floorMod(z1_12, (long)M1); + m1_20 = Math.floorMod(z1_20, (long)M1); + m1_21 = Math.floorMod(z1_21, (long)M1); + m1_22 = Math.floorMod(z1_22, (long)M1); + final long z2_00 = m2_00 * m2_00 + m2_01 * m2_10 + m2_02 * m2_20; + final long z2_01 = m2_00 * m2_01 + m2_01 * m2_11 + m2_02 * m2_21; + final long z2_02 = m2_00 * m2_02 + m2_01 * m2_12 + m2_02 * m2_22; + final long z2_10 = m2_10 * m2_00 + m2_11 * m2_10 + m2_12 * m2_20; + final long z2_11 = m2_10 * m2_01 + m2_11 * m2_11 + m2_12 * m2_21; + final long z2_12 = m2_10 * m2_02 + m2_11 * m2_12 + m2_12 * m2_22; + final long z2_20 = m2_20 * m2_00 + m2_21 * m2_10 + m2_22 * m2_20; + final long z2_21 = m2_20 * m2_01 + m2_21 * m2_11 + m2_22 * m2_21; + final long z2_22 = m2_20 * m2_02 + m2_21 * m2_12 + m2_22 * m2_22; + m2_00 = Math.floorMod(z2_00, (long)M2); + m2_01 = Math.floorMod(z2_01, (long)M2); + m2_02 = Math.floorMod(z2_02, (long)M2); + m2_10 = Math.floorMod(z2_10, (long)M2); + m2_11 = Math.floorMod(z2_11, (long)M2); + m2_12 = Math.floorMod(z2_12, (long)M2); + m2_20 = Math.floorMod(z2_20, (long)M2); + m2_21 = Math.floorMod(z2_21, (long)M2); + m2_22 = Math.floorMod(z2_22, (long)M2); + } + // Divide distance by 2. + distance = dhalf; + } + final long w10 = m1_00 * (long)s10 + m1_01 * (long)s11 + m1_02 * (long)s12; + final long w11 = m1_10 * (long)s10 + m1_11 * (long)s11 + m1_12 * (long)s12; + final long w12 = m1_20 * (long)s10 + m1_21 * (long)s11 + m1_22 * (long)s12; + s10 = Math.floorMod(w10, (long)M1); + s11 = Math.floorMod(w11, (long)M1); + s12 = Math.floorMod(w12, (long)M1); + final long w20 = m2_00 * (long)s20 + m2_01 * (long)s21 + m2_02 * (long)s22; + final long w21 = m2_10 * (long)s20 + m2_11 * (long)s21 + m2_12 * (long)s22; + final long w22 = m2_20 * (long)s20 + m2_21 * (long)s21 + m2_22 * (long)s22; + s20 = Math.floorMod(w20, (long)M2); + s21 = Math.floorMod(w21, (long)M2); + s22 = Math.floorMod(w22, (long)M2); + } + + /** + * Alter the state of this pseudorandom number generator so as to + * jump forward a distance equal to 2{@code logDistance} + * within its state cycle. + * + * @param logDistance the base-2 logarithm of the distance to jump + * forward within the state cycle. Must be non-negative and + * not greater than 192. + * + * @throws IllegalArgumentException if {@code logDistance} is + * less than zero or 2{@code logDistance} is + * greater than the period of this generator + */ + public void jumpPowerOfTwo(int logDistance) { + if (logDistance < 0 || logDistance > 192) + throw new IllegalArgumentException("logDistance must be non-negative and not greater than 192"); + jump(Math.scalb(1.0, logDistance)); + } + +}