diff -r caf5eb7dd4a7 -r 882756847a04 hotspot/src/share/vm/gc_interface/collectedHeap.hpp --- a/hotspot/src/share/vm/gc_interface/collectedHeap.hpp Fri Aug 31 16:39:35 2012 -0700 +++ b/hotspot/src/share/vm/gc_interface/collectedHeap.hpp Sat Sep 01 13:25:18 2012 -0400 @@ -77,7 +77,6 @@ class CollectedHeap : public CHeapObj { friend class VMStructs; friend class IsGCActiveMark; // Block structured external access to _is_gc_active - friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe #ifdef ASSERT static int _fire_out_of_memory_count; @@ -140,14 +139,6 @@ // is guaranteed initialized to zeros. inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS); - // Same as common_mem version, except memory is allocated in the permanent area - // If there is no permanent area, revert to common_mem_allocate_noinit - inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS); - - // Same as common_mem version, except memory is allocated in the permanent area - // If there is no permanent area, revert to common_mem_allocate_init - inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS); - // Helper functions for (VM) allocation. inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj); inline static void post_allocation_setup_no_klass_install(KlassHandle klass, @@ -221,14 +212,11 @@ // reach, without a garbage collection. virtual bool is_maximal_no_gc() const = 0; - virtual size_t permanent_capacity() const = 0; - virtual size_t permanent_used() const = 0; - // Support for java.lang.Runtime.maxMemory(): return the maximum amount of // memory that the vm could make available for storing 'normal' java objects. // This is based on the reserved address space, but should not include space - // that the vm uses internally for bookkeeping or temporary storage (e.g., - // perm gen space or, in the case of the young gen, one of the survivor + // that the vm uses internally for bookkeeping or temporary storage + // (e.g., in the case of the young gen, one of the survivor // spaces). virtual size_t max_capacity() const = 0; @@ -250,6 +238,15 @@ return p == NULL || is_in(p); } + bool is_in_place(Metadata** p) { + return !Universe::heap()->is_in(p); + } + bool is_in_place(oop* p) { return Universe::heap()->is_in(p); } + bool is_in_place(narrowOop* p) { + oop o = oopDesc::load_decode_heap_oop_not_null(p); + return Universe::heap()->is_in((const void*)o); + } + // Let's define some terms: a "closed" subset of a heap is one that // // 1) contains all currently-allocated objects, and @@ -282,37 +279,12 @@ return p == NULL || is_in_closed_subset(p); } - // XXX is_permanent() and is_in_permanent() should be better named - // to distinguish one from the other. - - // Returns "TRUE" if "p" is allocated as "permanent" data. - // If the heap does not use "permanent" data, returns the same - // value is_in_reserved() would return. - // NOTE: this actually returns true if "p" is in reserved space - // for the space not that it is actually allocated (i.e. in committed - // space). If you need the more conservative answer use is_permanent(). - virtual bool is_in_permanent(const void *p) const = 0; - - #ifdef ASSERT // Returns true if "p" is in the part of the // heap being collected. virtual bool is_in_partial_collection(const void *p) = 0; #endif - bool is_in_permanent_or_null(const void *p) const { - return p == NULL || is_in_permanent(p); - } - - // Returns "TRUE" if "p" is in the committed area of "permanent" data. - // If the heap does not use "permanent" data, returns the same - // value is_in() would return. - virtual bool is_permanent(const void *p) const = 0; - - bool is_permanent_or_null(const void *p) const { - return p == NULL || is_permanent(p); - } - // An object is scavengable if its location may move during a scavenge. // (A scavenge is a GC which is not a full GC.) virtual bool is_scavengable(const void *p) = 0; @@ -320,7 +292,7 @@ // Returns "TRUE" if "p" is a method oop in the // current heap, with high probability. This predicate // is not stable, in general. - bool is_valid_method(oop p) const; + bool is_valid_method(Method* p) const; void set_gc_cause(GCCause::Cause v) { if (UsePerfData) { @@ -338,11 +310,6 @@ // May be overridden to set additional parallelism. virtual void set_par_threads(uint t) { _n_par_threads = t; }; - // Preload classes into the shared portion of the heap, and then dump - // that data to a file so that it can be loaded directly by another - // VM (then terminate). - virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); } - // Allocate and initialize instances of Class static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS); @@ -351,30 +318,15 @@ inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS); inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS); - // Special obj/array allocation facilities. - // Some heaps may want to manage "permanent" data uniquely. These default - // to the general routines if the heap does not support such handling. - inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS); - // permanent_obj_allocate_no_klass_install() does not do the installation of - // the klass pointer in the newly created object (as permanent_obj_allocate() - // above does). This allows for a delay in the installation of the klass - // pointer that is needed during the create of klassKlass's. The - // method post_allocation_install_obj_klass() is used to install the - // klass pointer. - inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass, - int size, - TRAPS); - inline static void post_allocation_install_obj_klass(KlassHandle klass, oop obj); - inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS); + inline static void post_allocation_install_obj_klass(KlassHandle klass, + oop obj); // Raw memory allocation facilities // The obj and array allocate methods are covers for these methods. - // The permanent allocation method should default to mem_allocate if - // permanent memory isn't supported. mem_allocate() should never be + // mem_allocate() should never be // called to allocate TLABs, only individual objects. virtual HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded) = 0; - virtual HeapWord* permanent_mem_allocate(size_t size) = 0; // Utilities for turning raw memory into filler objects. // @@ -504,11 +456,6 @@ // remembered set. virtual void flush_deferred_store_barrier(JavaThread* thread); - // Can a compiler elide a store barrier when it writes - // a permanent oop into the heap? Applies when the compiler - // is storing x to the heap, where x->is_perm() is true. - virtual bool can_elide_permanent_oop_store_barriers() const = 0; - // Does this heap support heap inspection (+PrintClassHistogram?) virtual bool supports_heap_inspection() const = 0; @@ -517,11 +464,19 @@ // "CollectedHeap" supports. virtual void collect(GCCause::Cause cause) = 0; + // Perform a full collection + virtual void do_full_collection(bool clear_all_soft_refs) = 0; + // This interface assumes that it's being called by the // vm thread. It collects the heap assuming that the // heap lock is already held and that we are executing in // the context of the vm thread. - virtual void collect_as_vm_thread(GCCause::Cause cause) = 0; + virtual void collect_as_vm_thread(GCCause::Cause cause); + + // Callback from VM_CollectForMetadataAllocation operation. + MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, + size_t size, + Metaspace::MetadataType mdtype); // Returns the barrier set for this heap BarrierSet* barrier_set() { return _barrier_set; } @@ -552,28 +507,19 @@ // Return the CollectorPolicy for the heap virtual CollectorPolicy* collector_policy() const = 0; + void oop_iterate_no_header(OopClosure* cl); + // Iterate over all the ref-containing fields of all objects, calling - // "cl.do_oop" on each. This includes objects in permanent memory. - virtual void oop_iterate(OopClosure* cl) = 0; + // "cl.do_oop" on each. + virtual void oop_iterate(ExtendedOopClosure* cl) = 0; // Iterate over all objects, calling "cl.do_object" on each. - // This includes objects in permanent memory. virtual void object_iterate(ObjectClosure* cl) = 0; // Similar to object_iterate() except iterates only // over live objects. virtual void safe_object_iterate(ObjectClosure* cl) = 0; - // Behaves the same as oop_iterate, except only traverses - // interior pointers contained in permanent memory. If there - // is no permanent memory, does nothing. - virtual void permanent_oop_iterate(OopClosure* cl) = 0; - - // Behaves the same as object_iterate, except only traverses - // object contained in permanent memory. If there is no - // permanent memory, does nothing. - virtual void permanent_object_iterate(ObjectClosure* cl) = 0; - // NOTE! There is no requirement that a collector implement these // functions. //