diff -r 4ebc2e2fb97c -r 71c04702a3d5 src/java.base/share/classes/java/lang/invoke/MethodHandles.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/java.base/share/classes/java/lang/invoke/MethodHandles.java Tue Sep 12 19:03:39 2017 +0200 @@ -0,0 +1,5893 @@ +/* + * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang.invoke; + +import jdk.internal.misc.SharedSecrets; +import jdk.internal.module.IllegalAccessLogger; +import jdk.internal.org.objectweb.asm.ClassReader; +import jdk.internal.reflect.CallerSensitive; +import jdk.internal.reflect.Reflection; +import jdk.internal.vm.annotation.ForceInline; +import sun.invoke.util.ValueConversions; +import sun.invoke.util.VerifyAccess; +import sun.invoke.util.Wrapper; +import sun.reflect.misc.ReflectUtil; +import sun.security.util.SecurityConstants; + +import java.lang.invoke.LambdaForm.BasicType; +import java.lang.reflect.Constructor; +import java.lang.reflect.Field; +import java.lang.reflect.Member; +import java.lang.reflect.Method; +import java.lang.reflect.Modifier; +import java.lang.reflect.ReflectPermission; +import java.nio.ByteOrder; +import java.security.AccessController; +import java.security.PrivilegedAction; +import java.security.ProtectionDomain; +import java.util.ArrayList; +import java.util.Arrays; +import java.util.BitSet; +import java.util.Iterator; +import java.util.List; +import java.util.Objects; +import java.util.concurrent.ConcurrentHashMap; +import java.util.stream.Collectors; +import java.util.stream.Stream; + +import static java.lang.invoke.MethodHandleImpl.Intrinsic; +import static java.lang.invoke.MethodHandleNatives.Constants.*; +import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException; +import static java.lang.invoke.MethodType.methodType; + +/** + * This class consists exclusively of static methods that operate on or return + * method handles. They fall into several categories: + * + * + * @author John Rose, JSR 292 EG + * @since 1.7 + */ +public class MethodHandles { + + private MethodHandles() { } // do not instantiate + + static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); + + // See IMPL_LOOKUP below. + + //// Method handle creation from ordinary methods. + + /** + * Returns a {@link Lookup lookup object} with + * full capabilities to emulate all supported bytecode behaviors of the caller. + * These capabilities include private access to the caller. + * Factory methods on the lookup object can create + * direct method handles + * for any member that the caller has access to via bytecodes, + * including protected and private fields and methods. + * This lookup object is a capability which may be delegated to trusted agents. + * Do not store it in place where untrusted code can access it. + *

+ * This method is caller sensitive, which means that it may return different + * values to different callers. + *

+ * For any given caller class {@code C}, the lookup object returned by this call + * has equivalent capabilities to any lookup object + * supplied by the JVM to the bootstrap method of an + * invokedynamic instruction + * executing in the same caller class {@code C}. + * @return a lookup object for the caller of this method, with private access + */ + @CallerSensitive + @ForceInline // to ensure Reflection.getCallerClass optimization + public static Lookup lookup() { + return new Lookup(Reflection.getCallerClass()); + } + + /** + * This reflected$lookup method is the alternate implementation of + * the lookup method when being invoked by reflection. + */ + @CallerSensitive + private static Lookup reflected$lookup() { + Class caller = Reflection.getCallerClass(); + if (caller.getClassLoader() == null) { + throw newIllegalArgumentException("illegal lookupClass: "+caller); + } + return new Lookup(caller); + } + + /** + * Returns a {@link Lookup lookup object} which is trusted minimally. + * The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes. + * It can only be used to create method handles to public members of + * public classes in packages that are exported unconditionally. + *

+ * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class} + * of this lookup object will be {@link java.lang.Object}. + * + * @apiNote The use of Object is conventional, and because the lookup modes are + * limited, there is no special access provided to the internals of Object, its package + * or its module. Consequently, the lookup context of this lookup object will be the + * bootstrap class loader, which means it cannot find user classes. + * + *

+ * Discussion: + * The lookup class can be changed to any other class {@code C} using an expression of the form + * {@link Lookup#in publicLookup().in(C.class)}. + * but may change the lookup context by virtue of changing the class loader. + * A public lookup object is always subject to + * security manager checks. + * Also, it cannot access + * caller sensitive methods. + * @return a lookup object which is trusted minimally + * + * @revised 9 + * @spec JPMS + */ + public static Lookup publicLookup() { + return Lookup.PUBLIC_LOOKUP; + } + + /** + * Returns a {@link Lookup lookup object} with full capabilities to emulate all + * supported bytecode behaviors, including + * private access, on a target class. + * This method checks that a caller, specified as a {@code Lookup} object, is allowed to + * do deep reflection on the target class. If {@code m1} is the module containing + * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing + * the target class, then this check ensures that + *

+ *

+ * If there is a security manager, its {@code checkPermission} method is called to + * check {@code ReflectPermission("suppressAccessChecks")}. + * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object + * was created by code in the caller module (or derived from a lookup object originally + * created by the caller). A lookup object with the {@code MODULE} lookup mode can be + * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE} + * access to the caller. + * @param targetClass the target class + * @param lookup the caller lookup object + * @return a lookup object for the target class, with private access + * @throws IllegalArgumentException if {@code targetClass} is a primitve type or array class + * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null} + * @throws IllegalAccessException if the access check specified above fails + * @throws SecurityException if denied by the security manager + * @since 9 + * @spec JPMS + * @see Lookup#dropLookupMode + */ + public static Lookup privateLookupIn(Class targetClass, Lookup lookup) throws IllegalAccessException { + SecurityManager sm = System.getSecurityManager(); + if (sm != null) sm.checkPermission(ACCESS_PERMISSION); + if (targetClass.isPrimitive()) + throw new IllegalArgumentException(targetClass + " is a primitive class"); + if (targetClass.isArray()) + throw new IllegalArgumentException(targetClass + " is an array class"); + Module targetModule = targetClass.getModule(); + Module callerModule = lookup.lookupClass().getModule(); + if (!callerModule.canRead(targetModule)) + throw new IllegalAccessException(callerModule + " does not read " + targetModule); + if (targetModule.isNamed()) { + String pn = targetClass.getPackageName(); + assert pn.length() > 0 : "unnamed package cannot be in named module"; + if (!targetModule.isOpen(pn, callerModule)) + throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule); + } + if ((lookup.lookupModes() & Lookup.MODULE) == 0) + throw new IllegalAccessException("lookup does not have MODULE lookup mode"); + if (!callerModule.isNamed() && targetModule.isNamed()) { + IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger(); + if (logger != null) { + logger.logIfOpenedForIllegalAccess(lookup, targetClass); + } + } + return new Lookup(targetClass); + } + + /** + * Performs an unchecked "crack" of a + * direct method handle. + * The result is as if the user had obtained a lookup object capable enough + * to crack the target method handle, called + * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect} + * on the target to obtain its symbolic reference, and then called + * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs} + * to resolve the symbolic reference to a member. + *

+ * If there is a security manager, its {@code checkPermission} method + * is called with a {@code ReflectPermission("suppressAccessChecks")} permission. + * @param the desired type of the result, either {@link Member} or a subtype + * @param target a direct method handle to crack into symbolic reference components + * @param expected a class object representing the desired result type {@code T} + * @return a reference to the method, constructor, or field object + * @exception SecurityException if the caller is not privileged to call {@code setAccessible} + * @exception NullPointerException if either argument is {@code null} + * @exception IllegalArgumentException if the target is not a direct method handle + * @exception ClassCastException if the member is not of the expected type + * @since 1.8 + */ + public static T + reflectAs(Class expected, MethodHandle target) { + SecurityManager smgr = System.getSecurityManager(); + if (smgr != null) smgr.checkPermission(ACCESS_PERMISSION); + Lookup lookup = Lookup.IMPL_LOOKUP; // use maximally privileged lookup + return lookup.revealDirect(target).reflectAs(expected, lookup); + } + // Copied from AccessibleObject, as used by Method.setAccessible, etc.: + private static final java.security.Permission ACCESS_PERMISSION = + new ReflectPermission("suppressAccessChecks"); + + /** + * A lookup object is a factory for creating method handles, + * when the creation requires access checking. + * Method handles do not perform + * access checks when they are called, but rather when they are created. + * Therefore, method handle access + * restrictions must be enforced when a method handle is created. + * The caller class against which those restrictions are enforced + * is known as the {@linkplain #lookupClass() lookup class}. + *

+ * A lookup class which needs to create method handles will call + * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself. + * When the {@code Lookup} factory object is created, the identity of the lookup class is + * determined, and securely stored in the {@code Lookup} object. + * The lookup class (or its delegates) may then use factory methods + * on the {@code Lookup} object to create method handles for access-checked members. + * This includes all methods, constructors, and fields which are allowed to the lookup class, + * even private ones. + * + *

Lookup Factory Methods

+ * The factory methods on a {@code Lookup} object correspond to all major + * use cases for methods, constructors, and fields. + * Each method handle created by a factory method is the functional + * equivalent of a particular bytecode behavior. + * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.) + * Here is a summary of the correspondence between these factory methods and + * the behavior of the resulting method handles: + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + * + *
lookup method behaviors
lookup expressionmemberbytecode behavior
{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}{@code FT f;}{@code (T) this.f;}
{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}{@code static}
{@code FT f;}
{@code (T) C.f;}
{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}{@code FT f;}{@code this.f = x;}
{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}{@code static}
{@code FT f;}
{@code C.f = arg;}
{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}{@code T m(A*);}{@code (T) this.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}{@code static}
{@code T m(A*);}
{@code (T) C.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}{@code T m(A*);}{@code (T) super.m(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}{@code C(A*);}{@code new C(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}({@code static})?
{@code FT f;}
{@code (FT) aField.get(thisOrNull);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}({@code static})?
{@code FT f;}
{@code aField.set(thisOrNull, arg);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}({@code static})?
{@code T m(A*);}
{@code (T) aMethod.invoke(thisOrNull, arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}{@code C(A*);}{@code (C) aConstructor.newInstance(arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}({@code static})?
{@code T m(A*);}
{@code (T) aMethod.invoke(thisOrNull, arg*);}
{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}{@code class C { ... }}{@code C.class;}
+ * + * Here, the type {@code C} is the class or interface being searched for a member, + * documented as a parameter named {@code refc} in the lookup methods. + * The method type {@code MT} is composed from the return type {@code T} + * and the sequence of argument types {@code A*}. + * The constructor also has a sequence of argument types {@code A*} and + * is deemed to return the newly-created object of type {@code C}. + * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. + * The formal parameter {@code this} stands for the self-reference of type {@code C}; + * if it is present, it is always the leading argument to the method handle invocation. + * (In the case of some {@code protected} members, {@code this} may be + * restricted in type to the lookup class; see below.) + * The name {@code arg} stands for all the other method handle arguments. + * In the code examples for the Core Reflection API, the name {@code thisOrNull} + * stands for a null reference if the accessed method or field is static, + * and {@code this} otherwise. + * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand + * for reflective objects corresponding to the given members. + *

+ * The bytecode behavior for a {@code findClass} operation is a load of a constant class, + * as if by {@code ldc CONSTANT_Class}. + * The behavior is represented, not as a method handle, but directly as a {@code Class} constant. + *

+ * In cases where the given member is of variable arity (i.e., a method or constructor) + * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}. + * In all other cases, the returned method handle will be of fixed arity. + *

+ * Discussion: + * The equivalence between looked-up method handles and underlying + * class members and bytecode behaviors + * can break down in a few ways: + *

+ * + *

Access checking

+ * Access checks are applied in the factory methods of {@code Lookup}, + * when a method handle is created. + * This is a key difference from the Core Reflection API, since + * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} + * performs access checking against every caller, on every call. + *

+ * All access checks start from a {@code Lookup} object, which + * compares its recorded lookup class against all requests to + * create method handles. + * A single {@code Lookup} object can be used to create any number + * of access-checked method handles, all checked against a single + * lookup class. + *

+ * A {@code Lookup} object can be shared with other trusted code, + * such as a metaobject protocol. + * A shared {@code Lookup} object delegates the capability + * to create method handles on private members of the lookup class. + * Even if privileged code uses the {@code Lookup} object, + * the access checking is confined to the privileges of the + * original lookup class. + *

+ * A lookup can fail, because + * the containing class is not accessible to the lookup class, or + * because the desired class member is missing, or because the + * desired class member is not accessible to the lookup class, or + * because the lookup object is not trusted enough to access the member. + * In any of these cases, a {@code ReflectiveOperationException} will be + * thrown from the attempted lookup. The exact class will be one of + * the following: + *

+ *

+ * In general, the conditions under which a method handle may be + * looked up for a method {@code M} are no more restrictive than the conditions + * under which the lookup class could have compiled, verified, and resolved a call to {@code M}. + * Where the JVM would raise exceptions like {@code NoSuchMethodError}, + * a method handle lookup will generally raise a corresponding + * checked exception, such as {@code NoSuchMethodException}. + * And the effect of invoking the method handle resulting from the lookup + * is exactly equivalent + * to executing the compiled, verified, and resolved call to {@code M}. + * The same point is true of fields and constructors. + *

+ * Discussion: + * Access checks only apply to named and reflected methods, + * constructors, and fields. + * Other method handle creation methods, such as + * {@link MethodHandle#asType MethodHandle.asType}, + * do not require any access checks, and are used + * independently of any {@code Lookup} object. + *

+ * If the desired member is {@code protected}, the usual JVM rules apply, + * including the requirement that the lookup class must be either be in the + * same package as the desired member, or must inherit that member. + * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.) + * In addition, if the desired member is a non-static field or method + * in a different package, the resulting method handle may only be applied + * to objects of the lookup class or one of its subclasses. + * This requirement is enforced by narrowing the type of the leading + * {@code this} parameter from {@code C} + * (which will necessarily be a superclass of the lookup class) + * to the lookup class itself. + *

+ * The JVM imposes a similar requirement on {@code invokespecial} instruction, + * that the receiver argument must match both the resolved method and + * the current class. Again, this requirement is enforced by narrowing the + * type of the leading parameter to the resulting method handle. + * (See the Java Virtual Machine Specification, section 4.10.1.9.) + *

+ * The JVM represents constructors and static initializer blocks as internal methods + * with special names ({@code ""} and {@code ""}). + * The internal syntax of invocation instructions allows them to refer to such internal + * methods as if they were normal methods, but the JVM bytecode verifier rejects them. + * A lookup of such an internal method will produce a {@code NoSuchMethodException}. + *

+ * In some cases, access between nested classes is obtained by the Java compiler by creating + * an wrapper method to access a private method of another class + * in the same top-level declaration. + * For example, a nested class {@code C.D} + * can access private members within other related classes such as + * {@code C}, {@code C.D.E}, or {@code C.B}, + * but the Java compiler may need to generate wrapper methods in + * those related classes. In such cases, a {@code Lookup} object on + * {@code C.E} would be unable to those private members. + * A workaround for this limitation is the {@link Lookup#in Lookup.in} method, + * which can transform a lookup on {@code C.E} into one on any of those other + * classes, without special elevation of privilege. + *

+ * The accesses permitted to a given lookup object may be limited, + * according to its set of {@link #lookupModes lookupModes}, + * to a subset of members normally accessible to the lookup class. + * For example, the {@link MethodHandles#publicLookup publicLookup} + * method produces a lookup object which is only allowed to access + * public members in public classes of exported packages. + * The caller sensitive method {@link MethodHandles#lookup lookup} + * produces a lookup object with full capabilities relative to + * its caller class, to emulate all supported bytecode behaviors. + * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object + * with fewer access modes than the original lookup object. + * + *

+ * + * Discussion of private access: + * We say that a lookup has private access + * if its {@linkplain #lookupModes lookup modes} + * include the possibility of accessing {@code private} members. + * As documented in the relevant methods elsewhere, + * only lookups with private access possess the following capabilities: + *

+ *

+ * Each of these permissions is a consequence of the fact that a lookup object + * with private access can be securely traced back to an originating class, + * whose bytecode behaviors and Java language access permissions + * can be reliably determined and emulated by method handles. + * + *

Security manager interactions

+ * Although bytecode instructions can only refer to classes in + * a related class loader, this API can search for methods in any + * class, as long as a reference to its {@code Class} object is + * available. Such cross-loader references are also possible with the + * Core Reflection API, and are impossible to bytecode instructions + * such as {@code invokestatic} or {@code getfield}. + * There is a {@linkplain java.lang.SecurityManager security manager API} + * to allow applications to check such cross-loader references. + * These checks apply to both the {@code MethodHandles.Lookup} API + * and the Core Reflection API + * (as found on {@link java.lang.Class Class}). + *

+ * If a security manager is present, member and class lookups are subject to + * additional checks. + * From one to three calls are made to the security manager. + * Any of these calls can refuse access by throwing a + * {@link java.lang.SecurityException SecurityException}. + * Define {@code smgr} as the security manager, + * {@code lookc} as the lookup class of the current lookup object, + * {@code refc} as the containing class in which the member + * is being sought, and {@code defc} as the class in which the + * member is actually defined. + * (If a class or other type is being accessed, + * the {@code refc} and {@code defc} values are the class itself.) + * The value {@code lookc} is defined as not present + * if the current lookup object does not have + * private access. + * The calls are made according to the following rules: + *

+ * Security checks are performed after other access checks have passed. + * Therefore, the above rules presuppose a member or class that is public, + * or else that is being accessed from a lookup class that has + * rights to access the member or class. + * + *

Caller sensitive methods

+ * A small number of Java methods have a special property called caller sensitivity. + * A caller-sensitive method can behave differently depending on the + * identity of its immediate caller. + *

+ * If a method handle for a caller-sensitive method is requested, + * the general rules for bytecode behaviors apply, + * but they take account of the lookup class in a special way. + * The resulting method handle behaves as if it were called + * from an instruction contained in the lookup class, + * so that the caller-sensitive method detects the lookup class. + * (By contrast, the invoker of the method handle is disregarded.) + * Thus, in the case of caller-sensitive methods, + * different lookup classes may give rise to + * differently behaving method handles. + *

+ * In cases where the lookup object is + * {@link MethodHandles#publicLookup() publicLookup()}, + * or some other lookup object without + * private access, + * the lookup class is disregarded. + * In such cases, no caller-sensitive method handle can be created, + * access is forbidden, and the lookup fails with an + * {@code IllegalAccessException}. + *

+ * Discussion: + * For example, the caller-sensitive method + * {@link java.lang.Class#forName(String) Class.forName(x)} + * can return varying classes or throw varying exceptions, + * depending on the class loader of the class that calls it. + * A public lookup of {@code Class.forName} will fail, because + * there is no reasonable way to determine its bytecode behavior. + *

+ * If an application caches method handles for broad sharing, + * it should use {@code publicLookup()} to create them. + * If there is a lookup of {@code Class.forName}, it will fail, + * and the application must take appropriate action in that case. + * It may be that a later lookup, perhaps during the invocation of a + * bootstrap method, can incorporate the specific identity + * of the caller, making the method accessible. + *

+ * The function {@code MethodHandles.lookup} is caller sensitive + * so that there can be a secure foundation for lookups. + * Nearly all other methods in the JSR 292 API rely on lookup + * objects to check access requests. + * + * @revised 9 + */ + public static final + class Lookup { + /** The class on behalf of whom the lookup is being performed. */ + private final Class lookupClass; + + /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ + private final int allowedModes; + + /** A single-bit mask representing {@code public} access, + * which may contribute to the result of {@link #lookupModes lookupModes}. + * The value, {@code 0x01}, happens to be the same as the value of the + * {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. + */ + public static final int PUBLIC = Modifier.PUBLIC; + + /** A single-bit mask representing {@code private} access, + * which may contribute to the result of {@link #lookupModes lookupModes}. + * The value, {@code 0x02}, happens to be the same as the value of the + * {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. + */ + public static final int PRIVATE = Modifier.PRIVATE; + + /** A single-bit mask representing {@code protected} access, + * which may contribute to the result of {@link #lookupModes lookupModes}. + * The value, {@code 0x04}, happens to be the same as the value of the + * {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. + */ + public static final int PROTECTED = Modifier.PROTECTED; + + /** A single-bit mask representing {@code package} access (default access), + * which may contribute to the result of {@link #lookupModes lookupModes}. + * The value is {@code 0x08}, which does not correspond meaningfully to + * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. + */ + public static final int PACKAGE = Modifier.STATIC; + + /** A single-bit mask representing {@code module} access (default access), + * which may contribute to the result of {@link #lookupModes lookupModes}. + * The value is {@code 0x10}, which does not correspond meaningfully to + * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. + * In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup} + * with this lookup mode can access all public types in the module of the + * lookup class and public types in packages exported by other modules + * to the module of the lookup class. + * @since 9 + * @spec JPMS + */ + public static final int MODULE = PACKAGE << 1; + + /** A single-bit mask representing {@code unconditional} access + * which may contribute to the result of {@link #lookupModes lookupModes}. + * The value is {@code 0x20}, which does not correspond meaningfully to + * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. + * A {@code Lookup} with this lookup mode assumes {@linkplain + * java.lang.Module#canRead(java.lang.Module) readability}. + * In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup} + * with this lookup mode can access all public members of public types + * of all modules where the type is in a package that is {@link + * java.lang.Module#isExported(String) exported unconditionally}. + * @since 9 + * @spec JPMS + * @see #publicLookup() + */ + public static final int UNCONDITIONAL = PACKAGE << 2; + + private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL); + private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL); + private static final int TRUSTED = -1; + + private static int fixmods(int mods) { + mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL); + return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL); + } + + /** Tells which class is performing the lookup. It is this class against + * which checks are performed for visibility and access permissions. + *

+ * The class implies a maximum level of access permission, + * but the permissions may be additionally limited by the bitmask + * {@link #lookupModes lookupModes}, which controls whether non-public members + * can be accessed. + * @return the lookup class, on behalf of which this lookup object finds members + */ + public Class lookupClass() { + return lookupClass; + } + + // This is just for calling out to MethodHandleImpl. + private Class lookupClassOrNull() { + return (allowedModes == TRUSTED) ? null : lookupClass; + } + + /** Tells which access-protection classes of members this lookup object can produce. + * The result is a bit-mask of the bits + * {@linkplain #PUBLIC PUBLIC (0x01)}, + * {@linkplain #PRIVATE PRIVATE (0x02)}, + * {@linkplain #PROTECTED PROTECTED (0x04)}, + * {@linkplain #PACKAGE PACKAGE (0x08)}, + * {@linkplain #MODULE MODULE (0x10)}, + * and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}. + *

+ * A freshly-created lookup object + * on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has + * all possible bits set, except {@code UNCONDITIONAL}. The lookup can be used to + * access all members of the caller's class, all public types in the caller's module, + * and all public types in packages exported by other modules to the caller's module. + * A lookup object on a new lookup class + * {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object} + * may have some mode bits set to zero. + * Mode bits can also be + * {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}. + * Once cleared, mode bits cannot be restored from the downgraded lookup object. + * The purpose of this is to restrict access via the new lookup object, + * so that it can access only names which can be reached by the original + * lookup object, and also by the new lookup class. + * @return the lookup modes, which limit the kinds of access performed by this lookup object + * @see #in + * @see #dropLookupMode + * + * @revised 9 + * @spec JPMS + */ + public int lookupModes() { + return allowedModes & ALL_MODES; + } + + /** Embody the current class (the lookupClass) as a lookup class + * for method handle creation. + * Must be called by from a method in this package, + * which in turn is called by a method not in this package. + */ + Lookup(Class lookupClass) { + this(lookupClass, FULL_POWER_MODES); + // make sure we haven't accidentally picked up a privileged class: + checkUnprivilegedlookupClass(lookupClass); + } + + private Lookup(Class lookupClass, int allowedModes) { + this.lookupClass = lookupClass; + this.allowedModes = allowedModes; + } + + /** + * Creates a lookup on the specified new lookup class. + * The resulting object will report the specified + * class as its own {@link #lookupClass() lookupClass}. + *

+ * However, the resulting {@code Lookup} object is guaranteed + * to have no more access capabilities than the original. + * In particular, access capabilities can be lost as follows:

+ *

+ * The resulting lookup's capabilities for loading classes + * (used during {@link #findClass} invocations) + * are determined by the lookup class' loader, + * which may change due to this operation. + * + * @param requestedLookupClass the desired lookup class for the new lookup object + * @return a lookup object which reports the desired lookup class, or the same object + * if there is no change + * @throws NullPointerException if the argument is null + * + * @revised 9 + * @spec JPMS + */ + public Lookup in(Class requestedLookupClass) { + Objects.requireNonNull(requestedLookupClass); + if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all + return new Lookup(requestedLookupClass, FULL_POWER_MODES); + if (requestedLookupClass == this.lookupClass) + return this; // keep same capabilities + int newModes = (allowedModes & FULL_POWER_MODES); + if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) { + // Need to drop all access when teleporting from a named module to another + // module. The exception is publicLookup where PUBLIC is not lost. + if (this.lookupClass.getModule().isNamed() + && (this.allowedModes & UNCONDITIONAL) == 0) + newModes = 0; + else + newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED); + } + if ((newModes & PACKAGE) != 0 + && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { + newModes &= ~(PACKAGE|PRIVATE|PROTECTED); + } + // Allow nestmate lookups to be created without special privilege: + if ((newModes & PRIVATE) != 0 + && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { + newModes &= ~(PRIVATE|PROTECTED); + } + if ((newModes & PUBLIC) != 0 + && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) { + // The requested class it not accessible from the lookup class. + // No permissions. + newModes = 0; + } + + checkUnprivilegedlookupClass(requestedLookupClass); + return new Lookup(requestedLookupClass, newModes); + } + + + /** + * Creates a lookup on the same lookup class which this lookup object + * finds members, but with a lookup mode that has lost the given lookup mode. + * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE + * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}. + * {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always + * dropped and so the resulting lookup mode will never have these access capabilities. + * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE} + * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will + * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC} + * is dropped then the resulting lookup has no access. + * @param modeToDrop the lookup mode to drop + * @return a lookup object which lacks the indicated mode, or the same object if there is no change + * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC}, + * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL} + * @see MethodHandles#privateLookupIn + * @since 9 + */ + public Lookup dropLookupMode(int modeToDrop) { + int oldModes = lookupModes(); + int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL); + switch (modeToDrop) { + case PUBLIC: newModes &= ~(ALL_MODES); break; + case MODULE: newModes &= ~(PACKAGE | PRIVATE); break; + case PACKAGE: newModes &= ~(PRIVATE); break; + case PROTECTED: + case PRIVATE: + case UNCONDITIONAL: break; + default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop"); + } + if (newModes == oldModes) return this; // return self if no change + return new Lookup(lookupClass(), newModes); + } + + /** + * Defines a class to the same class loader and in the same runtime package and + * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's + * {@linkplain #lookupClass() lookup class}. + * + *

The {@linkplain #lookupModes() lookup modes} for this lookup must include + * {@link #PACKAGE PACKAGE} access as default (package) members will be + * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate + * that the lookup object was created by a caller in the runtime package (or derived + * from a lookup originally created by suitably privileged code to a target class in + * the runtime package).

+ * + *

The {@code bytes} parameter is the class bytes of a valid class file (as defined + * by the The Java Virtual Machine Specification) with a class name in the + * same package as the lookup class.

+ * + *

This method does not run the class initializer. The class initializer may + * run at a later time, as detailed in section 12.4 of the The Java Language + * Specification.

+ * + *

If there is a security manager, its {@code checkPermission} method is first called + * to check {@code RuntimePermission("defineClass")}.

+ * + * @param bytes the class bytes + * @return the {@code Class} object for the class + * @throws IllegalArgumentException the bytes are for a class in a different package + * to the lookup class + * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access + * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be + * verified ({@code VerifyError}), is already defined, or another linkage error occurs + * @throws SecurityException if denied by the security manager + * @throws NullPointerException if {@code bytes} is {@code null} + * @since 9 + * @spec JPMS + * @see Lookup#privateLookupIn + * @see Lookup#dropLookupMode + * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain) + */ + public Class defineClass(byte[] bytes) throws IllegalAccessException { + SecurityManager sm = System.getSecurityManager(); + if (sm != null) + sm.checkPermission(new RuntimePermission("defineClass")); + if ((lookupModes() & PACKAGE) == 0) + throw new IllegalAccessException("Lookup does not have PACKAGE access"); + assert (lookupModes() & (MODULE|PUBLIC)) != 0; + + // parse class bytes to get class name (in internal form) + bytes = bytes.clone(); + String name; + try { + ClassReader reader = new ClassReader(bytes); + name = reader.getClassName(); + } catch (RuntimeException e) { + // ASM exceptions are poorly specified + ClassFormatError cfe = new ClassFormatError(); + cfe.initCause(e); + throw cfe; + } + + // get package and class name in binary form + String cn, pn; + int index = name.lastIndexOf('/'); + if (index == -1) { + cn = name; + pn = ""; + } else { + cn = name.replace('/', '.'); + pn = cn.substring(0, index); + } + if (!pn.equals(lookupClass.getPackageName())) { + throw new IllegalArgumentException("Class not in same package as lookup class"); + } + + // invoke the class loader's defineClass method + ClassLoader loader = lookupClass.getClassLoader(); + ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null; + String source = "__Lookup_defineClass__"; + Class clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source); + assert clazz.getClassLoader() == lookupClass.getClassLoader() + && clazz.getPackageName().equals(lookupClass.getPackageName()) + && protectionDomain(clazz) == lookupClassProtectionDomain(); + return clazz; + } + + private ProtectionDomain lookupClassProtectionDomain() { + ProtectionDomain pd = cachedProtectionDomain; + if (pd == null) { + cachedProtectionDomain = pd = protectionDomain(lookupClass); + } + return pd; + } + + private ProtectionDomain protectionDomain(Class clazz) { + PrivilegedAction pa = clazz::getProtectionDomain; + return AccessController.doPrivileged(pa); + } + + // cached protection domain + private volatile ProtectionDomain cachedProtectionDomain; + + + // Make sure outer class is initialized first. + static { IMPL_NAMES.getClass(); } + + /** Package-private version of lookup which is trusted. */ + static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED); + + /** Version of lookup which is trusted minimally. + * It can only be used to create method handles to publicly accessible + * members in packages that are exported unconditionally. + */ + static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL)); + + private static void checkUnprivilegedlookupClass(Class lookupClass) { + String name = lookupClass.getName(); + if (name.startsWith("java.lang.invoke.")) + throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); + } + + /** + * Displays the name of the class from which lookups are to be made. + * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) + * If there are restrictions on the access permitted to this lookup, + * this is indicated by adding a suffix to the class name, consisting + * of a slash and a keyword. The keyword represents the strongest + * allowed access, and is chosen as follows: + * + * If none of the above cases apply, it is the case that full + * access (public, module, package, private, and protected) is allowed. + * In this case, no suffix is added. + * This is true only of an object obtained originally from + * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}. + * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in} + * always have restricted access, and will display a suffix. + *

+ * (It may seem strange that protected access should be + * stronger than private access. Viewed independently from + * package access, protected access is the first to be lost, + * because it requires a direct subclass relationship between + * caller and callee.) + * @see #in + * + * @revised 9 + * @spec JPMS + */ + @Override + public String toString() { + String cname = lookupClass.getName(); + switch (allowedModes) { + case 0: // no privileges + return cname + "/noaccess"; + case PUBLIC: + return cname + "/public"; + case PUBLIC|UNCONDITIONAL: + return cname + "/publicLookup"; + case PUBLIC|MODULE: + return cname + "/module"; + case PUBLIC|MODULE|PACKAGE: + return cname + "/package"; + case FULL_POWER_MODES & ~PROTECTED: + return cname + "/private"; + case FULL_POWER_MODES: + return cname; + case TRUSTED: + return "/trusted"; // internal only; not exported + default: // Should not happen, but it's a bitfield... + cname = cname + "/" + Integer.toHexString(allowedModes); + assert(false) : cname; + return cname; + } + } + + /** + * Produces a method handle for a static method. + * The type of the method handle will be that of the method. + * (Since static methods do not take receivers, there is no + * additional receiver argument inserted into the method handle type, + * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) + * The method and all its argument types must be accessible to the lookup object. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * If the returned method handle is invoked, the method's class will + * be initialized, if it has not already been initialized. + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
+  "asList", methodType(List.class, Object[].class));
+assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
+         * }
+ * @param refc the class from which the method is accessed + * @param name the name of the method + * @param type the type of the method + * @return the desired method handle + * @throws NoSuchMethodException if the method does not exist + * @throws IllegalAccessException if access checking fails, + * or if the method is not {@code static}, + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public + MethodHandle findStatic(Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { + MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type); + return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method)); + } + + /** + * Produces a method handle for a virtual method. + * The type of the method handle will be that of the method, + * with the receiver type (usually {@code refc}) prepended. + * The method and all its argument types must be accessible to the lookup object. + *

+ * When called, the handle will treat the first argument as a receiver + * and dispatch on the receiver's type to determine which method + * implementation to enter. + * (The dispatching action is identical with that performed by an + * {@code invokevirtual} or {@code invokeinterface} instruction.) + *

+ * The first argument will be of type {@code refc} if the lookup + * class has full privileges to access the member. Otherwise + * the member must be {@code protected} and the first argument + * will be restricted in type to the lookup class. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * Because of the general equivalence between {@code invokevirtual} + * instructions and method handles produced by {@code findVirtual}, + * if the class is {@code MethodHandle} and the name string is + * {@code invokeExact} or {@code invoke}, the resulting + * method handle is equivalent to one produced by + * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or + * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker} + * with the same {@code type} argument. + *

+ * If the class is {@code VarHandle} and the name string corresponds to + * the name of a signature-polymorphic access mode method, the resulting + * method handle is equivalent to one produced by + * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with + * the access mode corresponding to the name string and with the same + * {@code type} arguments. + *

+ * Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle MH_concat = publicLookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
+  "hashCode", methodType(int.class));
+MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
+  "hashCode", methodType(int.class));
+assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
+assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
+assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
+// interface method:
+MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
+  "subSequence", methodType(CharSequence.class, int.class, int.class));
+assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
+// constructor "internal method" must be accessed differently:
+MethodType MT_newString = methodType(void.class); //()V for new String()
+try { assertEquals("impossible", lookup()
+        .findVirtual(String.class, "", MT_newString));
+ } catch (NoSuchMethodException ex) { } // OK
+MethodHandle MH_newString = publicLookup()
+  .findConstructor(String.class, MT_newString);
+assertEquals("", (String) MH_newString.invokeExact());
+         * }
+ * + * @param refc the class or interface from which the method is accessed + * @param name the name of the method + * @param type the type of the method, with the receiver argument omitted + * @return the desired method handle + * @throws NoSuchMethodException if the method does not exist + * @throws IllegalAccessException if access checking fails, + * or if the method is {@code static}, + * or if the method is {@code private} method of interface, + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findVirtual(Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { + if (refc == MethodHandle.class) { + MethodHandle mh = findVirtualForMH(name, type); + if (mh != null) return mh; + } else if (refc == VarHandle.class) { + MethodHandle mh = findVirtualForVH(name, type); + if (mh != null) return mh; + } + byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual); + MemberName method = resolveOrFail(refKind, refc, name, type); + return getDirectMethod(refKind, refc, method, findBoundCallerClass(method)); + } + private MethodHandle findVirtualForMH(String name, MethodType type) { + // these names require special lookups because of the implicit MethodType argument + if ("invoke".equals(name)) + return invoker(type); + if ("invokeExact".equals(name)) + return exactInvoker(type); + assert(!MemberName.isMethodHandleInvokeName(name)); + return null; + } + private MethodHandle findVirtualForVH(String name, MethodType type) { + try { + return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type); + } catch (IllegalArgumentException e) { + return null; + } + } + + /** + * Produces a method handle which creates an object and initializes it, using + * the constructor of the specified type. + * The parameter types of the method handle will be those of the constructor, + * while the return type will be a reference to the constructor's class. + * The constructor and all its argument types must be accessible to the lookup object. + *

+ * The requested type must have a return type of {@code void}. + * (This is consistent with the JVM's treatment of constructor type descriptors.) + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the constructor's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * If the returned method handle is invoked, the constructor's class will + * be initialized, if it has not already been initialized. + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle MH_newArrayList = publicLookup().findConstructor(
+  ArrayList.class, methodType(void.class, Collection.class));
+Collection orig = Arrays.asList("x", "y");
+Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
+assert(orig != copy);
+assertEquals(orig, copy);
+// a variable-arity constructor:
+MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
+  ProcessBuilder.class, methodType(void.class, String[].class));
+ProcessBuilder pb = (ProcessBuilder)
+  MH_newProcessBuilder.invoke("x", "y", "z");
+assertEquals("[x, y, z]", pb.command().toString());
+         * }
+ * @param refc the class or interface from which the method is accessed + * @param type the type of the method, with the receiver argument omitted, and a void return type + * @return the desired method handle + * @throws NoSuchMethodException if the constructor does not exist + * @throws IllegalAccessException if access checking fails + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findConstructor(Class refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { + if (refc.isArray()) { + throw new NoSuchMethodException("no constructor for array class: " + refc.getName()); + } + String name = ""; + MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type); + return getDirectConstructor(refc, ctor); + } + + /** + * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static + * initializer of the class is not run. + *

+ * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class + * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to + * load the requested class, and then determines whether the class is accessible to this lookup object. + * + * @param targetName the fully qualified name of the class to be looked up. + * @return the requested class. + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws LinkageError if the linkage fails + * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader. + * @throws IllegalAccessException if the class is not accessible, using the allowed access + * modes. + * @exception SecurityException if a security manager is present and it + * refuses access + * @since 9 + */ + public Class findClass(String targetName) throws ClassNotFoundException, IllegalAccessException { + Class targetClass = Class.forName(targetName, false, lookupClass.getClassLoader()); + return accessClass(targetClass); + } + + /** + * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The + * static initializer of the class is not run. + *

+ * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the + * {@linkplain #lookupModes() lookup modes}. + * + * @param targetClass the class to be access-checked + * + * @return the class that has been access-checked + * + * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access + * modes. + * @exception SecurityException if a security manager is present and it + * refuses access + * @since 9 + */ + public Class accessClass(Class targetClass) throws IllegalAccessException { + if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) { + throw new MemberName(targetClass).makeAccessException("access violation", this); + } + checkSecurityManager(targetClass, null); + return targetClass; + } + + /** + * Produces an early-bound method handle for a virtual method. + * It will bypass checks for overriding methods on the receiver, + * as if called from an {@code invokespecial} + * instruction from within the explicitly specified {@code specialCaller}. + * The type of the method handle will be that of the method, + * with a suitably restricted receiver type prepended. + * (The receiver type will be {@code specialCaller} or a subtype.) + * The method and all its argument types must be accessible + * to the lookup object. + *

+ * Before method resolution, + * if the explicitly specified caller class is not identical with the + * lookup class, or if this lookup object does not have + * private access + * privileges, the access fails. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * (Note: JVM internal methods named {@code ""} are not visible to this API, + * even though the {@code invokespecial} instruction can refer to them + * in special circumstances. Use {@link #findConstructor findConstructor} + * to access instance initialization methods in a safe manner.) + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+static class Listie extends ArrayList {
+  public String toString() { return "[wee Listie]"; }
+  static Lookup lookup() { return MethodHandles.lookup(); }
+}
+...
+// no access to constructor via invokeSpecial:
+MethodHandle MH_newListie = Listie.lookup()
+  .findConstructor(Listie.class, methodType(void.class));
+Listie l = (Listie) MH_newListie.invokeExact();
+try { assertEquals("impossible", Listie.lookup().findSpecial(
+        Listie.class, "", methodType(void.class), Listie.class));
+ } catch (NoSuchMethodException ex) { } // OK
+// access to super and self methods via invokeSpecial:
+MethodHandle MH_super = Listie.lookup().findSpecial(
+  ArrayList.class, "toString" , methodType(String.class), Listie.class);
+MethodHandle MH_this = Listie.lookup().findSpecial(
+  Listie.class, "toString" , methodType(String.class), Listie.class);
+MethodHandle MH_duper = Listie.lookup().findSpecial(
+  Object.class, "toString" , methodType(String.class), Listie.class);
+assertEquals("[]", (String) MH_super.invokeExact(l));
+assertEquals(""+l, (String) MH_this.invokeExact(l));
+assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
+try { assertEquals("inaccessible", Listie.lookup().findSpecial(
+        String.class, "toString", methodType(String.class), Listie.class));
+ } catch (IllegalAccessException ex) { } // OK
+Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
+assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
+         * }
+ * + * @param refc the class or interface from which the method is accessed + * @param name the name of the method (which must not be "<init>") + * @param type the type of the method, with the receiver argument omitted + * @param specialCaller the proposed calling class to perform the {@code invokespecial} + * @return the desired method handle + * @throws NoSuchMethodException if the method does not exist + * @throws IllegalAccessException if access checking fails, + * or if the method is {@code static}, + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findSpecial(Class refc, String name, MethodType type, + Class specialCaller) throws NoSuchMethodException, IllegalAccessException { + checkSpecialCaller(specialCaller, refc); + Lookup specialLookup = this.in(specialCaller); + MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type); + return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method)); + } + + /** + * Produces a method handle giving read access to a non-static field. + * The type of the method handle will have a return type of the field's + * value type. + * The method handle's single argument will be the instance containing + * the field. + * Access checking is performed immediately on behalf of the lookup class. + * @param refc the class or interface from which the method is accessed + * @param name the field's name + * @param type the field's type + * @return a method handle which can load values from the field + * @throws NoSuchFieldException if the field does not exist + * @throws IllegalAccessException if access checking fails, or if the field is {@code static} + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + * @see #findVarHandle(Class, String, Class) + */ + public MethodHandle findGetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + MemberName field = resolveOrFail(REF_getField, refc, name, type); + return getDirectField(REF_getField, refc, field); + } + + /** + * Produces a method handle giving write access to a non-static field. + * The type of the method handle will have a void return type. + * The method handle will take two arguments, the instance containing + * the field, and the value to be stored. + * The second argument will be of the field's value type. + * Access checking is performed immediately on behalf of the lookup class. + * @param refc the class or interface from which the method is accessed + * @param name the field's name + * @param type the field's type + * @return a method handle which can store values into the field + * @throws NoSuchFieldException if the field does not exist + * @throws IllegalAccessException if access checking fails, or if the field is {@code static} + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + * @see #findVarHandle(Class, String, Class) + */ + public MethodHandle findSetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + MemberName field = resolveOrFail(REF_putField, refc, name, type); + return getDirectField(REF_putField, refc, field); + } + + /** + * Produces a VarHandle giving access to a non-static field {@code name} + * of type {@code type} declared in a class of type {@code recv}. + * The VarHandle's variable type is {@code type} and it has one + * coordinate type, {@code recv}. + *

+ * Access checking is performed immediately on behalf of the lookup + * class. + *

+ * Certain access modes of the returned VarHandle are unsupported under + * the following conditions: + *

+ *

+ * If the field is declared {@code volatile} then the returned VarHandle + * will override access to the field (effectively ignore the + * {@code volatile} declaration) in accordance to its specified + * access modes. + *

+ * If the field type is {@code float} or {@code double} then numeric + * and atomic update access modes compare values using their bitwise + * representation (see {@link Float#floatToRawIntBits} and + * {@link Double#doubleToRawLongBits}, respectively). + * @apiNote + * Bitwise comparison of {@code float} values or {@code double} values, + * as performed by the numeric and atomic update access modes, differ + * from the primitive {@code ==} operator and the {@link Float#equals} + * and {@link Double#equals} methods, specifically with respect to + * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. + * Care should be taken when performing a compare and set or a compare + * and exchange operation with such values since the operation may + * unexpectedly fail. + * There are many possible NaN values that are considered to be + * {@code NaN} in Java, although no IEEE 754 floating-point operation + * provided by Java can distinguish between them. Operation failure can + * occur if the expected or witness value is a NaN value and it is + * transformed (perhaps in a platform specific manner) into another NaN + * value, and thus has a different bitwise representation (see + * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more + * details). + * The values {@code -0.0} and {@code +0.0} have different bitwise + * representations but are considered equal when using the primitive + * {@code ==} operator. Operation failure can occur if, for example, a + * numeric algorithm computes an expected value to be say {@code -0.0} + * and previously computed the witness value to be say {@code +0.0}. + * @param recv the receiver class, of type {@code R}, that declares the + * non-static field + * @param name the field's name + * @param type the field's type, of type {@code T} + * @return a VarHandle giving access to non-static fields. + * @throws NoSuchFieldException if the field does not exist + * @throws IllegalAccessException if access checking fails, or if the field is {@code static} + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + * @since 9 + */ + public VarHandle findVarHandle(Class recv, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + MemberName getField = resolveOrFail(REF_getField, recv, name, type); + MemberName putField = resolveOrFail(REF_putField, recv, name, type); + return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField); + } + + /** + * Produces a method handle giving read access to a static field. + * The type of the method handle will have a return type of the field's + * value type. + * The method handle will take no arguments. + * Access checking is performed immediately on behalf of the lookup class. + *

+ * If the returned method handle is invoked, the field's class will + * be initialized, if it has not already been initialized. + * @param refc the class or interface from which the method is accessed + * @param name the field's name + * @param type the field's type + * @return a method handle which can load values from the field + * @throws NoSuchFieldException if the field does not exist + * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findStaticGetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + MemberName field = resolveOrFail(REF_getStatic, refc, name, type); + return getDirectField(REF_getStatic, refc, field); + } + + /** + * Produces a method handle giving write access to a static field. + * The type of the method handle will have a void return type. + * The method handle will take a single + * argument, of the field's value type, the value to be stored. + * Access checking is performed immediately on behalf of the lookup class. + *

+ * If the returned method handle is invoked, the field's class will + * be initialized, if it has not already been initialized. + * @param refc the class or interface from which the method is accessed + * @param name the field's name + * @param type the field's type + * @return a method handle which can store values into the field + * @throws NoSuchFieldException if the field does not exist + * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + */ + public MethodHandle findStaticSetter(Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + MemberName field = resolveOrFail(REF_putStatic, refc, name, type); + return getDirectField(REF_putStatic, refc, field); + } + + /** + * Produces a VarHandle giving access to a static field {@code name} of + * type {@code type} declared in a class of type {@code decl}. + * The VarHandle's variable type is {@code type} and it has no + * coordinate types. + *

+ * Access checking is performed immediately on behalf of the lookup + * class. + *

+ * If the returned VarHandle is operated on, the declaring class will be + * initialized, if it has not already been initialized. + *

+ * Certain access modes of the returned VarHandle are unsupported under + * the following conditions: + *

+ *

+ * If the field is declared {@code volatile} then the returned VarHandle + * will override access to the field (effectively ignore the + * {@code volatile} declaration) in accordance to its specified + * access modes. + *

+ * If the field type is {@code float} or {@code double} then numeric + * and atomic update access modes compare values using their bitwise + * representation (see {@link Float#floatToRawIntBits} and + * {@link Double#doubleToRawLongBits}, respectively). + * @apiNote + * Bitwise comparison of {@code float} values or {@code double} values, + * as performed by the numeric and atomic update access modes, differ + * from the primitive {@code ==} operator and the {@link Float#equals} + * and {@link Double#equals} methods, specifically with respect to + * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. + * Care should be taken when performing a compare and set or a compare + * and exchange operation with such values since the operation may + * unexpectedly fail. + * There are many possible NaN values that are considered to be + * {@code NaN} in Java, although no IEEE 754 floating-point operation + * provided by Java can distinguish between them. Operation failure can + * occur if the expected or witness value is a NaN value and it is + * transformed (perhaps in a platform specific manner) into another NaN + * value, and thus has a different bitwise representation (see + * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more + * details). + * The values {@code -0.0} and {@code +0.0} have different bitwise + * representations but are considered equal when using the primitive + * {@code ==} operator. Operation failure can occur if, for example, a + * numeric algorithm computes an expected value to be say {@code -0.0} + * and previously computed the witness value to be say {@code +0.0}. + * @param decl the class that declares the static field + * @param name the field's name + * @param type the field's type, of type {@code T} + * @return a VarHandle giving access to a static field + * @throws NoSuchFieldException if the field does not exist + * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + * @since 9 + */ + public VarHandle findStaticVarHandle(Class decl, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + MemberName getField = resolveOrFail(REF_getStatic, decl, name, type); + MemberName putField = resolveOrFail(REF_putStatic, decl, name, type); + return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField); + } + + /** + * Produces an early-bound method handle for a non-static method. + * The receiver must have a supertype {@code defc} in which a method + * of the given name and type is accessible to the lookup class. + * The method and all its argument types must be accessible to the lookup object. + * The type of the method handle will be that of the method, + * without any insertion of an additional receiver parameter. + * The given receiver will be bound into the method handle, + * so that every call to the method handle will invoke the + * requested method on the given receiver. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set + * and the trailing array argument is not the only argument. + * (If the trailing array argument is the only argument, + * the given receiver value will be bound to it.) + *

+ * This is almost equivalent to the following code, with some differences noted below: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle mh0 = lookup().findVirtual(defc, name, type);
+MethodHandle mh1 = mh0.bindTo(receiver);
+mh1 = mh1.withVarargs(mh0.isVarargsCollector());
+return mh1;
+         * }
+ * where {@code defc} is either {@code receiver.getClass()} or a super + * type of that class, in which the requested method is accessible + * to the lookup class. + * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity. + * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would + * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and + * the receiver is restricted by {@code findVirtual} to the lookup class.) + * @param receiver the object from which the method is accessed + * @param name the name of the method + * @param type the type of the method, with the receiver argument omitted + * @return the desired method handle + * @throws NoSuchMethodException if the method does not exist + * @throws IllegalAccessException if access checking fails + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws NullPointerException if any argument is null + * @see MethodHandle#bindTo + * @see #findVirtual + */ + public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { + Class refc = receiver.getClass(); // may get NPE + MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type); + MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method)); + if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) { + throw new IllegalAccessException("The restricted defining class " + + mh.type().leadingReferenceParameter().getName() + + " is not assignable from receiver class " + + receiver.getClass().getName()); + } + return mh.bindArgumentL(0, receiver).setVarargs(method); + } + + /** + * Makes a direct method handle + * to m, if the lookup class has permission. + * If m is non-static, the receiver argument is treated as an initial argument. + * If m is virtual, overriding is respected on every call. + * Unlike the Core Reflection API, exceptions are not wrapped. + * The type of the method handle will be that of the method, + * with the receiver type prepended (but only if it is non-static). + * If the method's {@code accessible} flag is not set, + * access checking is performed immediately on behalf of the lookup class. + * If m is not public, do not share the resulting handle with untrusted parties. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * If m is static, and + * if the returned method handle is invoked, the method's class will + * be initialized, if it has not already been initialized. + * @param m the reflected method + * @return a method handle which can invoke the reflected method + * @throws IllegalAccessException if access checking fails + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @throws NullPointerException if the argument is null + */ + public MethodHandle unreflect(Method m) throws IllegalAccessException { + if (m.getDeclaringClass() == MethodHandle.class) { + MethodHandle mh = unreflectForMH(m); + if (mh != null) return mh; + } + if (m.getDeclaringClass() == VarHandle.class) { + MethodHandle mh = unreflectForVH(m); + if (mh != null) return mh; + } + MemberName method = new MemberName(m); + byte refKind = method.getReferenceKind(); + if (refKind == REF_invokeSpecial) + refKind = REF_invokeVirtual; + assert(method.isMethod()); + @SuppressWarnings("deprecation") + Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this; + return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method)); + } + private MethodHandle unreflectForMH(Method m) { + // these names require special lookups because they throw UnsupportedOperationException + if (MemberName.isMethodHandleInvokeName(m.getName())) + return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m)); + return null; + } + private MethodHandle unreflectForVH(Method m) { + // these names require special lookups because they throw UnsupportedOperationException + if (MemberName.isVarHandleMethodInvokeName(m.getName())) + return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m)); + return null; + } + + /** + * Produces a method handle for a reflected method. + * It will bypass checks for overriding methods on the receiver, + * as if called from an {@code invokespecial} + * instruction from within the explicitly specified {@code specialCaller}. + * The type of the method handle will be that of the method, + * with a suitably restricted receiver type prepended. + * (The receiver type will be {@code specialCaller} or a subtype.) + * If the method's {@code accessible} flag is not set, + * access checking is performed immediately on behalf of the lookup class, + * as if {@code invokespecial} instruction were being linked. + *

+ * Before method resolution, + * if the explicitly specified caller class is not identical with the + * lookup class, or if this lookup object does not have + * private access + * privileges, the access fails. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the method's variable arity modifier bit ({@code 0x0080}) is set. + * @param m the reflected method + * @param specialCaller the class nominally calling the method + * @return a method handle which can invoke the reflected method + * @throws IllegalAccessException if access checking fails, + * or if the method is {@code static}, + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @throws NullPointerException if any argument is null + */ + public MethodHandle unreflectSpecial(Method m, Class specialCaller) throws IllegalAccessException { + checkSpecialCaller(specialCaller, null); + Lookup specialLookup = this.in(specialCaller); + MemberName method = new MemberName(m, true); + assert(method.isMethod()); + // ignore m.isAccessible: this is a new kind of access + return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method)); + } + + /** + * Produces a method handle for a reflected constructor. + * The type of the method handle will be that of the constructor, + * with the return type changed to the declaring class. + * The method handle will perform a {@code newInstance} operation, + * creating a new instance of the constructor's class on the + * arguments passed to the method handle. + *

+ * If the constructor's {@code accessible} flag is not set, + * access checking is performed immediately on behalf of the lookup class. + *

+ * The returned method handle will have + * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if + * the constructor's variable arity modifier bit ({@code 0x0080}) is set. + *

+ * If the returned method handle is invoked, the constructor's class will + * be initialized, if it has not already been initialized. + * @param c the reflected constructor + * @return a method handle which can invoke the reflected constructor + * @throws IllegalAccessException if access checking fails + * or if the method's variable arity modifier bit + * is set and {@code asVarargsCollector} fails + * @throws NullPointerException if the argument is null + */ + public MethodHandle unreflectConstructor(Constructor c) throws IllegalAccessException { + MemberName ctor = new MemberName(c); + assert(ctor.isConstructor()); + @SuppressWarnings("deprecation") + Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this; + return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor); + } + + /** + * Produces a method handle giving read access to a reflected field. + * The type of the method handle will have a return type of the field's + * value type. + * If the field is static, the method handle will take no arguments. + * Otherwise, its single argument will be the instance containing + * the field. + * If the field's {@code accessible} flag is not set, + * access checking is performed immediately on behalf of the lookup class. + *

+ * If the field is static, and + * if the returned method handle is invoked, the field's class will + * be initialized, if it has not already been initialized. + * @param f the reflected field + * @return a method handle which can load values from the reflected field + * @throws IllegalAccessException if access checking fails + * @throws NullPointerException if the argument is null + */ + public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { + return unreflectField(f, false); + } + private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException { + MemberName field = new MemberName(f, isSetter); + assert(isSetter + ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind()) + : MethodHandleNatives.refKindIsGetter(field.getReferenceKind())); + @SuppressWarnings("deprecation") + Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this; + return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field); + } + + /** + * Produces a method handle giving write access to a reflected field. + * The type of the method handle will have a void return type. + * If the field is static, the method handle will take a single + * argument, of the field's value type, the value to be stored. + * Otherwise, the two arguments will be the instance containing + * the field, and the value to be stored. + * If the field's {@code accessible} flag is not set, + * access checking is performed immediately on behalf of the lookup class. + *

+ * If the field is static, and + * if the returned method handle is invoked, the field's class will + * be initialized, if it has not already been initialized. + * @param f the reflected field + * @return a method handle which can store values into the reflected field + * @throws IllegalAccessException if access checking fails + * @throws NullPointerException if the argument is null + */ + public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { + return unreflectField(f, true); + } + + /** + * Produces a VarHandle giving access to a reflected field {@code f} + * of type {@code T} declared in a class of type {@code R}. + * The VarHandle's variable type is {@code T}. + * If the field is non-static the VarHandle has one coordinate type, + * {@code R}. Otherwise, the field is static, and the VarHandle has no + * coordinate types. + *

+ * Access checking is performed immediately on behalf of the lookup + * class, regardless of the value of the field's {@code accessible} + * flag. + *

+ * If the field is static, and if the returned VarHandle is operated + * on, the field's declaring class will be initialized, if it has not + * already been initialized. + *

+ * Certain access modes of the returned VarHandle are unsupported under + * the following conditions: + *

+ *

+ * If the field is declared {@code volatile} then the returned VarHandle + * will override access to the field (effectively ignore the + * {@code volatile} declaration) in accordance to its specified + * access modes. + *

+ * If the field type is {@code float} or {@code double} then numeric + * and atomic update access modes compare values using their bitwise + * representation (see {@link Float#floatToRawIntBits} and + * {@link Double#doubleToRawLongBits}, respectively). + * @apiNote + * Bitwise comparison of {@code float} values or {@code double} values, + * as performed by the numeric and atomic update access modes, differ + * from the primitive {@code ==} operator and the {@link Float#equals} + * and {@link Double#equals} methods, specifically with respect to + * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. + * Care should be taken when performing a compare and set or a compare + * and exchange operation with such values since the operation may + * unexpectedly fail. + * There are many possible NaN values that are considered to be + * {@code NaN} in Java, although no IEEE 754 floating-point operation + * provided by Java can distinguish between them. Operation failure can + * occur if the expected or witness value is a NaN value and it is + * transformed (perhaps in a platform specific manner) into another NaN + * value, and thus has a different bitwise representation (see + * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more + * details). + * The values {@code -0.0} and {@code +0.0} have different bitwise + * representations but are considered equal when using the primitive + * {@code ==} operator. Operation failure can occur if, for example, a + * numeric algorithm computes an expected value to be say {@code -0.0} + * and previously computed the witness value to be say {@code +0.0}. + * @param f the reflected field, with a field of type {@code T}, and + * a declaring class of type {@code R} + * @return a VarHandle giving access to non-static fields or a static + * field + * @throws IllegalAccessException if access checking fails + * @throws NullPointerException if the argument is null + * @since 9 + */ + public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException { + MemberName getField = new MemberName(f, false); + MemberName putField = new MemberName(f, true); + return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(), + f.getDeclaringClass(), getField, putField); + } + + /** + * Cracks a direct method handle + * created by this lookup object or a similar one. + * Security and access checks are performed to ensure that this lookup object + * is capable of reproducing the target method handle. + * This means that the cracking may fail if target is a direct method handle + * but was created by an unrelated lookup object. + * This can happen if the method handle is caller sensitive + * and was created by a lookup object for a different class. + * @param target a direct method handle to crack into symbolic reference components + * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object + * @exception SecurityException if a security manager is present and it + * refuses access + * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails + * @exception NullPointerException if the target is {@code null} + * @see MethodHandleInfo + * @since 1.8 + */ + public MethodHandleInfo revealDirect(MethodHandle target) { + MemberName member = target.internalMemberName(); + if (member == null || (!member.isResolved() && + !member.isMethodHandleInvoke() && + !member.isVarHandleMethodInvoke())) + throw newIllegalArgumentException("not a direct method handle"); + Class defc = member.getDeclaringClass(); + byte refKind = member.getReferenceKind(); + assert(MethodHandleNatives.refKindIsValid(refKind)); + if (refKind == REF_invokeSpecial && !target.isInvokeSpecial()) + // Devirtualized method invocation is usually formally virtual. + // To avoid creating extra MemberName objects for this common case, + // we encode this extra degree of freedom using MH.isInvokeSpecial. + refKind = REF_invokeVirtual; + if (refKind == REF_invokeVirtual && defc.isInterface()) + // Symbolic reference is through interface but resolves to Object method (toString, etc.) + refKind = REF_invokeInterface; + // Check SM permissions and member access before cracking. + try { + checkAccess(refKind, defc, member); + checkSecurityManager(defc, member); + } catch (IllegalAccessException ex) { + throw new IllegalArgumentException(ex); + } + if (allowedModes != TRUSTED && member.isCallerSensitive()) { + Class callerClass = target.internalCallerClass(); + if (!hasPrivateAccess() || callerClass != lookupClass()) + throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass); + } + // Produce the handle to the results. + return new InfoFromMemberName(this, member, refKind); + } + + /// Helper methods, all package-private. + + MemberName resolveOrFail(byte refKind, Class refc, String name, Class type) throws NoSuchFieldException, IllegalAccessException { + checkSymbolicClass(refc); // do this before attempting to resolve + Objects.requireNonNull(name); + Objects.requireNonNull(type); + return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), + NoSuchFieldException.class); + } + + MemberName resolveOrFail(byte refKind, Class refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { + checkSymbolicClass(refc); // do this before attempting to resolve + Objects.requireNonNull(name); + Objects.requireNonNull(type); + checkMethodName(refKind, name); // NPE check on name + return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), + NoSuchMethodException.class); + } + + MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException { + checkSymbolicClass(member.getDeclaringClass()); // do this before attempting to resolve + Objects.requireNonNull(member.getName()); + Objects.requireNonNull(member.getType()); + return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(), + ReflectiveOperationException.class); + } + + void checkSymbolicClass(Class refc) throws IllegalAccessException { + Objects.requireNonNull(refc); + Class caller = lookupClassOrNull(); + if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes)) + throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this); + } + + /** Check name for an illegal leading "<" character. */ + void checkMethodName(byte refKind, String name) throws NoSuchMethodException { + if (name.startsWith("<") && refKind != REF_newInvokeSpecial) + throw new NoSuchMethodException("illegal method name: "+name); + } + + + /** + * Find my trustable caller class if m is a caller sensitive method. + * If this lookup object has private access, then the caller class is the lookupClass. + * Otherwise, if m is caller-sensitive, throw IllegalAccessException. + */ + Class findBoundCallerClass(MemberName m) throws IllegalAccessException { + Class callerClass = null; + if (MethodHandleNatives.isCallerSensitive(m)) { + // Only lookups with private access are allowed to resolve caller-sensitive methods + if (hasPrivateAccess()) { + callerClass = lookupClass; + } else { + throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object"); + } + } + return callerClass; + } + + /** + * Returns {@code true} if this lookup has {@code PRIVATE} access. + * @return {@code true} if this lookup has {@code PRIVATE} access. + * @since 9 + */ + public boolean hasPrivateAccess() { + return (allowedModes & PRIVATE) != 0; + } + + /** + * Perform necessary access checks. + * Determines a trustable caller class to compare with refc, the symbolic reference class. + * If this lookup object has private access, then the caller class is the lookupClass. + */ + void checkSecurityManager(Class refc, MemberName m) { + SecurityManager smgr = System.getSecurityManager(); + if (smgr == null) return; + if (allowedModes == TRUSTED) return; + + // Step 1: + boolean fullPowerLookup = hasPrivateAccess(); + if (!fullPowerLookup || + !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) { + ReflectUtil.checkPackageAccess(refc); + } + + if (m == null) { // findClass or accessClass + // Step 2b: + if (!fullPowerLookup) { + smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); + } + return; + } + + // Step 2a: + if (m.isPublic()) return; + if (!fullPowerLookup) { + smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION); + } + + // Step 3: + Class defc = m.getDeclaringClass(); + if (!fullPowerLookup && defc != refc) { + ReflectUtil.checkPackageAccess(defc); + } + } + + void checkMethod(byte refKind, Class refc, MemberName m) throws IllegalAccessException { + boolean wantStatic = (refKind == REF_invokeStatic); + String message; + if (m.isConstructor()) + message = "expected a method, not a constructor"; + else if (!m.isMethod()) + message = "expected a method"; + else if (wantStatic != m.isStatic()) + message = wantStatic ? "expected a static method" : "expected a non-static method"; + else + { checkAccess(refKind, refc, m); return; } + throw m.makeAccessException(message, this); + } + + void checkField(byte refKind, Class refc, MemberName m) throws IllegalAccessException { + boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind); + String message; + if (wantStatic != m.isStatic()) + message = wantStatic ? "expected a static field" : "expected a non-static field"; + else + { checkAccess(refKind, refc, m); return; } + throw m.makeAccessException(message, this); + } + + /** Check public/protected/private bits on the symbolic reference class and its member. */ + void checkAccess(byte refKind, Class refc, MemberName m) throws IllegalAccessException { + assert(m.referenceKindIsConsistentWith(refKind) && + MethodHandleNatives.refKindIsValid(refKind) && + (MethodHandleNatives.refKindIsField(refKind) == m.isField())); + int allowedModes = this.allowedModes; + if (allowedModes == TRUSTED) return; + int mods = m.getModifiers(); + if (Modifier.isProtected(mods) && + refKind == REF_invokeVirtual && + m.getDeclaringClass() == Object.class && + m.getName().equals("clone") && + refc.isArray()) { + // The JVM does this hack also. + // (See ClassVerifier::verify_invoke_instructions + // and LinkResolver::check_method_accessability.) + // Because the JVM does not allow separate methods on array types, + // there is no separate method for int[].clone. + // All arrays simply inherit Object.clone. + // But for access checking logic, we make Object.clone + // (normally protected) appear to be public. + // Later on, when the DirectMethodHandle is created, + // its leading argument will be restricted to the + // requested array type. + // N.B. The return type is not adjusted, because + // that is *not* the bytecode behavior. + mods ^= Modifier.PROTECTED | Modifier.PUBLIC; + } + if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) { + // cannot "new" a protected ctor in a different package + mods ^= Modifier.PROTECTED; + } + if (Modifier.isFinal(mods) && + MethodHandleNatives.refKindIsSetter(refKind)) + throw m.makeAccessException("unexpected set of a final field", this); + int requestedModes = fixmods(mods); // adjust 0 => PACKAGE + if ((requestedModes & allowedModes) != 0) { + if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(), + mods, lookupClass(), allowedModes)) + return; + } else { + // Protected members can also be checked as if they were package-private. + if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0 + && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass())) + return; + } + throw m.makeAccessException(accessFailedMessage(refc, m), this); + } + + String accessFailedMessage(Class refc, MemberName m) { + Class defc = m.getDeclaringClass(); + int mods = m.getModifiers(); + // check the class first: + boolean classOK = (Modifier.isPublic(defc.getModifiers()) && + (defc == refc || + Modifier.isPublic(refc.getModifiers()))); + if (!classOK && (allowedModes & PACKAGE) != 0) { + classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) && + (defc == refc || + VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES))); + } + if (!classOK) + return "class is not public"; + if (Modifier.isPublic(mods)) + return "access to public member failed"; // (how?, module not readable?) + if (Modifier.isPrivate(mods)) + return "member is private"; + if (Modifier.isProtected(mods)) + return "member is protected"; + return "member is private to package"; + } + + private static final boolean ALLOW_NESTMATE_ACCESS = false; + + private void checkSpecialCaller(Class specialCaller, Class refc) throws IllegalAccessException { + int allowedModes = this.allowedModes; + if (allowedModes == TRUSTED) return; + if (!hasPrivateAccess() + || (specialCaller != lookupClass() + // ensure non-abstract methods in superinterfaces can be special-invoked + && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller)) + && !(ALLOW_NESTMATE_ACCESS && + VerifyAccess.isSamePackageMember(specialCaller, lookupClass())))) + throw new MemberName(specialCaller). + makeAccessException("no private access for invokespecial", this); + } + + private boolean restrictProtectedReceiver(MemberName method) { + // The accessing class only has the right to use a protected member + // on itself or a subclass. Enforce that restriction, from JVMS 5.4.4, etc. + if (!method.isProtected() || method.isStatic() + || allowedModes == TRUSTED + || method.getDeclaringClass() == lookupClass() + || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()) + || (ALLOW_NESTMATE_ACCESS && + VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass()))) + return false; + return true; + } + private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class caller) throws IllegalAccessException { + assert(!method.isStatic()); + // receiver type of mh is too wide; narrow to caller + if (!method.getDeclaringClass().isAssignableFrom(caller)) { + throw method.makeAccessException("caller class must be a subclass below the method", caller); + } + MethodType rawType = mh.type(); + if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow + MethodType narrowType = rawType.changeParameterType(0, caller); + assert(!mh.isVarargsCollector()); // viewAsType will lose varargs-ness + assert(mh.viewAsTypeChecks(narrowType, true)); + return mh.copyWith(narrowType, mh.form); + } + + /** Check access and get the requested method. */ + private MethodHandle getDirectMethod(byte refKind, Class refc, MemberName method, Class callerClass) throws IllegalAccessException { + final boolean doRestrict = true; + final boolean checkSecurity = true; + return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass); + } + /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */ + private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class refc, MemberName method, Class callerClass) throws IllegalAccessException { + final boolean doRestrict = false; + final boolean checkSecurity = true; + return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerClass); + } + /** Check access and get the requested method, eliding security manager checks. */ + private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class refc, MemberName method, Class callerClass) throws IllegalAccessException { + final boolean doRestrict = true; + final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants + return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass); + } + /** Common code for all methods; do not call directly except from immediately above. */ + private MethodHandle getDirectMethodCommon(byte refKind, Class refc, MemberName method, + boolean checkSecurity, + boolean doRestrict, Class callerClass) throws IllegalAccessException { + checkMethod(refKind, refc, method); + // Optionally check with the security manager; this isn't needed for unreflect* calls. + if (checkSecurity) + checkSecurityManager(refc, method); + assert(!method.isMethodHandleInvoke()); + + if (refKind == REF_invokeSpecial && + refc != lookupClass() && + !refc.isInterface() && + refc != lookupClass().getSuperclass() && + refc.isAssignableFrom(lookupClass())) { + assert(!method.getName().equals("")); // not this code path + // Per JVMS 6.5, desc. of invokespecial instruction: + // If the method is in a superclass of the LC, + // and if our original search was above LC.super, + // repeat the search (symbolic lookup) from LC.super + // and continue with the direct superclass of that class, + // and so forth, until a match is found or no further superclasses exist. + // FIXME: MemberName.resolve should handle this instead. + Class refcAsSuper = lookupClass(); + MemberName m2; + do { + refcAsSuper = refcAsSuper.getSuperclass(); + m2 = new MemberName(refcAsSuper, + method.getName(), + method.getMethodType(), + REF_invokeSpecial); + m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull()); + } while (m2 == null && // no method is found yet + refc != refcAsSuper); // search up to refc + if (m2 == null) throw new InternalError(method.toString()); + method = m2; + refc = refcAsSuper; + // redo basic checks + checkMethod(refKind, refc, method); + } + + DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method); + MethodHandle mh = dmh; + // Optionally narrow the receiver argument to refc using restrictReceiver. + if ((doRestrict && refKind == REF_invokeSpecial) || + (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) { + mh = restrictReceiver(method, dmh, lookupClass()); + } + mh = maybeBindCaller(method, mh, callerClass); + mh = mh.setVarargs(method); + return mh; + } + private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, + Class callerClass) + throws IllegalAccessException { + if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method)) + return mh; + Class hostClass = lookupClass; + if (!hasPrivateAccess()) // caller must have private access + hostClass = callerClass; // callerClass came from a security manager style stack walk + MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass); + // Note: caller will apply varargs after this step happens. + return cbmh; + } + /** Check access and get the requested field. */ + private MethodHandle getDirectField(byte refKind, Class refc, MemberName field) throws IllegalAccessException { + final boolean checkSecurity = true; + return getDirectFieldCommon(refKind, refc, field, checkSecurity); + } + /** Check access and get the requested field, eliding security manager checks. */ + private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class refc, MemberName field) throws IllegalAccessException { + final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants + return getDirectFieldCommon(refKind, refc, field, checkSecurity); + } + /** Common code for all fields; do not call directly except from immediately above. */ + private MethodHandle getDirectFieldCommon(byte refKind, Class refc, MemberName field, + boolean checkSecurity) throws IllegalAccessException { + checkField(refKind, refc, field); + // Optionally check with the security manager; this isn't needed for unreflect* calls. + if (checkSecurity) + checkSecurityManager(refc, field); + DirectMethodHandle dmh = DirectMethodHandle.make(refc, field); + boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) && + restrictProtectedReceiver(field)); + if (doRestrict) + return restrictReceiver(field, dmh, lookupClass()); + return dmh; + } + private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind, + Class refc, MemberName getField, MemberName putField) + throws IllegalAccessException { + final boolean checkSecurity = true; + return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity); + } + private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind, + Class refc, MemberName getField, MemberName putField) + throws IllegalAccessException { + final boolean checkSecurity = false; + return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity); + } + private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind, + Class refc, MemberName getField, MemberName putField, + boolean checkSecurity) throws IllegalAccessException { + assert getField.isStatic() == putField.isStatic(); + assert getField.isGetter() && putField.isSetter(); + assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind); + assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind); + + checkField(getRefKind, refc, getField); + if (checkSecurity) + checkSecurityManager(refc, getField); + + if (!putField.isFinal()) { + // A VarHandle does not support updates to final fields, any + // such VarHandle to a final field will be read-only and + // therefore the following write-based accessibility checks are + // only required for non-final fields + checkField(putRefKind, refc, putField); + if (checkSecurity) + checkSecurityManager(refc, putField); + } + + boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) && + restrictProtectedReceiver(getField)); + if (doRestrict) { + assert !getField.isStatic(); + // receiver type of VarHandle is too wide; narrow to caller + if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) { + throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass()); + } + refc = lookupClass(); + } + return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED); + } + /** Check access and get the requested constructor. */ + private MethodHandle getDirectConstructor(Class refc, MemberName ctor) throws IllegalAccessException { + final boolean checkSecurity = true; + return getDirectConstructorCommon(refc, ctor, checkSecurity); + } + /** Check access and get the requested constructor, eliding security manager checks. */ + private MethodHandle getDirectConstructorNoSecurityManager(Class refc, MemberName ctor) throws IllegalAccessException { + final boolean checkSecurity = false; // not needed for reflection or for linking CONSTANT_MH constants + return getDirectConstructorCommon(refc, ctor, checkSecurity); + } + /** Common code for all constructors; do not call directly except from immediately above. */ + private MethodHandle getDirectConstructorCommon(Class refc, MemberName ctor, + boolean checkSecurity) throws IllegalAccessException { + assert(ctor.isConstructor()); + checkAccess(REF_newInvokeSpecial, refc, ctor); + // Optionally check with the security manager; this isn't needed for unreflect* calls. + if (checkSecurity) + checkSecurityManager(refc, ctor); + assert(!MethodHandleNatives.isCallerSensitive(ctor)); // maybeBindCaller not relevant here + return DirectMethodHandle.make(ctor).setVarargs(ctor); + } + + /** Hook called from the JVM (via MethodHandleNatives) to link MH constants: + */ + /*non-public*/ + MethodHandle linkMethodHandleConstant(byte refKind, Class defc, String name, Object type) throws ReflectiveOperationException { + if (!(type instanceof Class || type instanceof MethodType)) + throw new InternalError("unresolved MemberName"); + MemberName member = new MemberName(refKind, defc, name, type); + MethodHandle mh = LOOKASIDE_TABLE.get(member); + if (mh != null) { + checkSymbolicClass(defc); + return mh; + } + // Treat MethodHandle.invoke and invokeExact specially. + if (defc == MethodHandle.class && refKind == REF_invokeVirtual) { + mh = findVirtualForMH(member.getName(), member.getMethodType()); + if (mh != null) { + return mh; + } + } + MemberName resolved = resolveOrFail(refKind, member); + mh = getDirectMethodForConstant(refKind, defc, resolved); + if (mh instanceof DirectMethodHandle + && canBeCached(refKind, defc, resolved)) { + MemberName key = mh.internalMemberName(); + if (key != null) { + key = key.asNormalOriginal(); + } + if (member.equals(key)) { // better safe than sorry + LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh); + } + } + return mh; + } + private + boolean canBeCached(byte refKind, Class defc, MemberName member) { + if (refKind == REF_invokeSpecial) { + return false; + } + if (!Modifier.isPublic(defc.getModifiers()) || + !Modifier.isPublic(member.getDeclaringClass().getModifiers()) || + !member.isPublic() || + member.isCallerSensitive()) { + return false; + } + ClassLoader loader = defc.getClassLoader(); + if (loader != null) { + ClassLoader sysl = ClassLoader.getSystemClassLoader(); + boolean found = false; + while (sysl != null) { + if (loader == sysl) { found = true; break; } + sysl = sysl.getParent(); + } + if (!found) { + return false; + } + } + try { + MemberName resolved2 = publicLookup().resolveOrFail(refKind, + new MemberName(refKind, defc, member.getName(), member.getType())); + checkSecurityManager(defc, resolved2); + } catch (ReflectiveOperationException | SecurityException ex) { + return false; + } + return true; + } + private + MethodHandle getDirectMethodForConstant(byte refKind, Class defc, MemberName member) + throws ReflectiveOperationException { + if (MethodHandleNatives.refKindIsField(refKind)) { + return getDirectFieldNoSecurityManager(refKind, defc, member); + } else if (MethodHandleNatives.refKindIsMethod(refKind)) { + return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass); + } else if (refKind == REF_newInvokeSpecial) { + return getDirectConstructorNoSecurityManager(defc, member); + } + // oops + throw newIllegalArgumentException("bad MethodHandle constant #"+member); + } + + static ConcurrentHashMap LOOKASIDE_TABLE = new ConcurrentHashMap<>(); + } + + /** + * Produces a method handle constructing arrays of a desired type. + * The return type of the method handle will be the array type. + * The type of its sole argument will be {@code int}, which specifies the size of the array. + * @param arrayClass an array type + * @return a method handle which can create arrays of the given type + * @throws NullPointerException if the argument is {@code null} + * @throws IllegalArgumentException if {@code arrayClass} is not an array type + * @see java.lang.reflect.Array#newInstance(Class, int) + * @since 9 + */ + public static + MethodHandle arrayConstructor(Class arrayClass) throws IllegalArgumentException { + if (!arrayClass.isArray()) { + throw newIllegalArgumentException("not an array class: " + arrayClass.getName()); + } + MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance). + bindTo(arrayClass.getComponentType()); + return ani.asType(ani.type().changeReturnType(arrayClass)); + } + + /** + * Produces a method handle returning the length of an array. + * The type of the method handle will have {@code int} as return type, + * and its sole argument will be the array type. + * @param arrayClass an array type + * @return a method handle which can retrieve the length of an array of the given array type + * @throws NullPointerException if the argument is {@code null} + * @throws IllegalArgumentException if arrayClass is not an array type + * @since 9 + */ + public static + MethodHandle arrayLength(Class arrayClass) throws IllegalArgumentException { + return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH); + } + + /** + * Produces a method handle giving read access to elements of an array. + * The type of the method handle will have a return type of the array's + * element type. Its first argument will be the array type, + * and the second will be {@code int}. + * @param arrayClass an array type + * @return a method handle which can load values from the given array type + * @throws NullPointerException if the argument is null + * @throws IllegalArgumentException if arrayClass is not an array type + */ + public static + MethodHandle arrayElementGetter(Class arrayClass) throws IllegalArgumentException { + return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET); + } + + /** + * Produces a method handle giving write access to elements of an array. + * The type of the method handle will have a void return type. + * Its last argument will be the array's element type. + * The first and second arguments will be the array type and int. + * @param arrayClass the class of an array + * @return a method handle which can store values into the array type + * @throws NullPointerException if the argument is null + * @throws IllegalArgumentException if arrayClass is not an array type + */ + public static + MethodHandle arrayElementSetter(Class arrayClass) throws IllegalArgumentException { + return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET); + } + + /** + * Produces a VarHandle giving access to elements of an array of type + * {@code arrayClass}. The VarHandle's variable type is the component type + * of {@code arrayClass} and the list of coordinate types is + * {@code (arrayClass, int)}, where the {@code int} coordinate type + * corresponds to an argument that is an index into an array. + *

+ * Certain access modes of the returned VarHandle are unsupported under + * the following conditions: + *

+ *

+ * If the component type is {@code float} or {@code double} then numeric + * and atomic update access modes compare values using their bitwise + * representation (see {@link Float#floatToRawIntBits} and + * {@link Double#doubleToRawLongBits}, respectively). + * @apiNote + * Bitwise comparison of {@code float} values or {@code double} values, + * as performed by the numeric and atomic update access modes, differ + * from the primitive {@code ==} operator and the {@link Float#equals} + * and {@link Double#equals} methods, specifically with respect to + * comparing NaN values or comparing {@code -0.0} with {@code +0.0}. + * Care should be taken when performing a compare and set or a compare + * and exchange operation with such values since the operation may + * unexpectedly fail. + * There are many possible NaN values that are considered to be + * {@code NaN} in Java, although no IEEE 754 floating-point operation + * provided by Java can distinguish between them. Operation failure can + * occur if the expected or witness value is a NaN value and it is + * transformed (perhaps in a platform specific manner) into another NaN + * value, and thus has a different bitwise representation (see + * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more + * details). + * The values {@code -0.0} and {@code +0.0} have different bitwise + * representations but are considered equal when using the primitive + * {@code ==} operator. Operation failure can occur if, for example, a + * numeric algorithm computes an expected value to be say {@code -0.0} + * and previously computed the witness value to be say {@code +0.0}. + * @param arrayClass the class of an array, of type {@code T[]} + * @return a VarHandle giving access to elements of an array + * @throws NullPointerException if the arrayClass is null + * @throws IllegalArgumentException if arrayClass is not an array type + * @since 9 + */ + public static + VarHandle arrayElementVarHandle(Class arrayClass) throws IllegalArgumentException { + return VarHandles.makeArrayElementHandle(arrayClass); + } + + /** + * Produces a VarHandle giving access to elements of a {@code byte[]} array + * viewed as if it were a different primitive array type, such as + * {@code int[]} or {@code long[]}. + * The VarHandle's variable type is the component type of + * {@code viewArrayClass} and the list of coordinate types is + * {@code (byte[], int)}, where the {@code int} coordinate type + * corresponds to an argument that is an index into a {@code byte[]} array. + * The returned VarHandle accesses bytes at an index in a {@code byte[]} + * array, composing bytes to or from a value of the component type of + * {@code viewArrayClass} according to the given endianness. + *

+ * The supported component types (variables types) are {@code short}, + * {@code char}, {@code int}, {@code long}, {@code float} and + * {@code double}. + *

+ * Access of bytes at a given index will result in an + * {@code IndexOutOfBoundsException} if the index is less than {@code 0} + * or greater than the {@code byte[]} array length minus the size (in bytes) + * of {@code T}. + *

+ * Access of bytes at an index may be aligned or misaligned for {@code T}, + * with respect to the underlying memory address, {@code A} say, associated + * with the array and index. + * If access is misaligned then access for anything other than the + * {@code get} and {@code set} access modes will result in an + * {@code IllegalStateException}. In such cases atomic access is only + * guaranteed with respect to the largest power of two that divides the GCD + * of {@code A} and the size (in bytes) of {@code T}. + * If access is aligned then following access modes are supported and are + * guaranteed to support atomic access: + *

+ *

+ * Misaligned access, and therefore atomicity guarantees, may be determined + * for {@code byte[]} arrays without operating on a specific array. Given + * an {@code index}, {@code T} and it's corresponding boxed type, + * {@code T_BOX}, misalignment may be determined as follows: + *

{@code
+     * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
+     * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
+     *     alignmentOffset(0, sizeOfT);
+     * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
+     * boolean isMisaligned = misalignedAtIndex != 0;
+     * }
+ *

+ * If the variable type is {@code float} or {@code double} then atomic + * update access modes compare values using their bitwise representation + * (see {@link Float#floatToRawIntBits} and + * {@link Double#doubleToRawLongBits}, respectively). + * @param viewArrayClass the view array class, with a component type of + * type {@code T} + * @param byteOrder the endianness of the view array elements, as + * stored in the underlying {@code byte} array + * @return a VarHandle giving access to elements of a {@code byte[]} array + * viewed as if elements corresponding to the components type of the view + * array class + * @throws NullPointerException if viewArrayClass or byteOrder is null + * @throws IllegalArgumentException if viewArrayClass is not an array type + * @throws UnsupportedOperationException if the component type of + * viewArrayClass is not supported as a variable type + * @since 9 + */ + public static + VarHandle byteArrayViewVarHandle(Class viewArrayClass, + ByteOrder byteOrder) throws IllegalArgumentException { + Objects.requireNonNull(byteOrder); + return VarHandles.byteArrayViewHandle(viewArrayClass, + byteOrder == ByteOrder.BIG_ENDIAN); + } + + /** + * Produces a VarHandle giving access to elements of a {@code ByteBuffer} + * viewed as if it were an array of elements of a different primitive + * component type to that of {@code byte}, such as {@code int[]} or + * {@code long[]}. + * The VarHandle's variable type is the component type of + * {@code viewArrayClass} and the list of coordinate types is + * {@code (ByteBuffer, int)}, where the {@code int} coordinate type + * corresponds to an argument that is an index into a {@code byte[]} array. + * The returned VarHandle accesses bytes at an index in a + * {@code ByteBuffer}, composing bytes to or from a value of the component + * type of {@code viewArrayClass} according to the given endianness. + *

+ * The supported component types (variables types) are {@code short}, + * {@code char}, {@code int}, {@code long}, {@code float} and + * {@code double}. + *

+ * Access will result in a {@code ReadOnlyBufferException} for anything + * other than the read access modes if the {@code ByteBuffer} is read-only. + *

+ * Access of bytes at a given index will result in an + * {@code IndexOutOfBoundsException} if the index is less than {@code 0} + * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of + * {@code T}. + *

+ * Access of bytes at an index may be aligned or misaligned for {@code T}, + * with respect to the underlying memory address, {@code A} say, associated + * with the {@code ByteBuffer} and index. + * If access is misaligned then access for anything other than the + * {@code get} and {@code set} access modes will result in an + * {@code IllegalStateException}. In such cases atomic access is only + * guaranteed with respect to the largest power of two that divides the GCD + * of {@code A} and the size (in bytes) of {@code T}. + * If access is aligned then following access modes are supported and are + * guaranteed to support atomic access: + *

+ *

+ * Misaligned access, and therefore atomicity guarantees, may be determined + * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an + * {@code index}, {@code T} and it's corresponding boxed type, + * {@code T_BOX}, as follows: + *

{@code
+     * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
+     * ByteBuffer bb = ...
+     * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
+     * boolean isMisaligned = misalignedAtIndex != 0;
+     * }
+ *

+ * If the variable type is {@code float} or {@code double} then atomic + * update access modes compare values using their bitwise representation + * (see {@link Float#floatToRawIntBits} and + * {@link Double#doubleToRawLongBits}, respectively). + * @param viewArrayClass the view array class, with a component type of + * type {@code T} + * @param byteOrder the endianness of the view array elements, as + * stored in the underlying {@code ByteBuffer} (Note this overrides the + * endianness of a {@code ByteBuffer}) + * @return a VarHandle giving access to elements of a {@code ByteBuffer} + * viewed as if elements corresponding to the components type of the view + * array class + * @throws NullPointerException if viewArrayClass or byteOrder is null + * @throws IllegalArgumentException if viewArrayClass is not an array type + * @throws UnsupportedOperationException if the component type of + * viewArrayClass is not supported as a variable type + * @since 9 + */ + public static + VarHandle byteBufferViewVarHandle(Class viewArrayClass, + ByteOrder byteOrder) throws IllegalArgumentException { + Objects.requireNonNull(byteOrder); + return VarHandles.makeByteBufferViewHandle(viewArrayClass, + byteOrder == ByteOrder.BIG_ENDIAN); + } + + + /// method handle invocation (reflective style) + + /** + * Produces a method handle which will invoke any method handle of the + * given {@code type}, with a given number of trailing arguments replaced by + * a single trailing {@code Object[]} array. + * The resulting invoker will be a method handle with the following + * arguments: + *

+ *

+ * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with + * the indicated {@code type}. + * That is, if the target is exactly of the given {@code type}, it will behave + * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} + * is used to convert the target to the required {@code type}. + *

+ * The type of the returned invoker will not be the given {@code type}, but rather + * will have all parameters except the first {@code leadingArgCount} + * replaced by a single array of type {@code Object[]}, which will be + * the final parameter. + *

+ * Before invoking its target, the invoker will spread the final array, apply + * reference casts as necessary, and unbox and widen primitive arguments. + * If, when the invoker is called, the supplied array argument does + * not have the correct number of elements, the invoker will throw + * an {@link IllegalArgumentException} instead of invoking the target. + *

+ * This method is equivalent to the following code (though it may be more efficient): + *

{@code
+MethodHandle invoker = MethodHandles.invoker(type);
+int spreadArgCount = type.parameterCount() - leadingArgCount;
+invoker = invoker.asSpreader(Object[].class, spreadArgCount);
+return invoker;
+     * }
+ * This method throws no reflective or security exceptions. + * @param type the desired target type + * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target + * @return a method handle suitable for invoking any method handle of the given type + * @throws NullPointerException if {@code type} is null + * @throws IllegalArgumentException if {@code leadingArgCount} is not in + * the range from 0 to {@code type.parameterCount()} inclusive, + * or if the resulting method handle's type would have + * too many parameters + */ + public static + MethodHandle spreadInvoker(MethodType type, int leadingArgCount) { + if (leadingArgCount < 0 || leadingArgCount > type.parameterCount()) + throw newIllegalArgumentException("bad argument count", leadingArgCount); + type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount); + return type.invokers().spreadInvoker(leadingArgCount); + } + + /** + * Produces a special invoker method handle which can be used to + * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}. + * The resulting invoker will have a type which is + * exactly equal to the desired type, except that it will accept + * an additional leading argument of type {@code MethodHandle}. + *

+ * This method is equivalent to the following code (though it may be more efficient): + * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)} + * + *

+ * Discussion: + * Invoker method handles can be useful when working with variable method handles + * of unknown types. + * For example, to emulate an {@code invokeExact} call to a variable method + * handle {@code M}, extract its type {@code T}, + * look up the invoker method {@code X} for {@code T}, + * and call the invoker method, as {@code X.invoke(T, A...)}. + * (It would not work to call {@code X.invokeExact}, since the type {@code T} + * is unknown.) + * If spreading, collecting, or other argument transformations are required, + * they can be applied once to the invoker {@code X} and reused on many {@code M} + * method handle values, as long as they are compatible with the type of {@code X}. + *

+ * (Note: The invoker method is not available via the Core Reflection API. + * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} + * on the declared {@code invokeExact} or {@code invoke} method will raise an + * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.) + *

+ * This method throws no reflective or security exceptions. + * @param type the desired target type + * @return a method handle suitable for invoking any method handle of the given type + * @throws IllegalArgumentException if the resulting method handle's type would have + * too many parameters + */ + public static + MethodHandle exactInvoker(MethodType type) { + return type.invokers().exactInvoker(); + } + + /** + * Produces a special invoker method handle which can be used to + * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}. + * The resulting invoker will have a type which is + * exactly equal to the desired type, except that it will accept + * an additional leading argument of type {@code MethodHandle}. + *

+ * Before invoking its target, if the target differs from the expected type, + * the invoker will apply reference casts as + * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}. + * Similarly, the return value will be converted as necessary. + * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle}, + * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}. + *

+ * This method is equivalent to the following code (though it may be more efficient): + * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)} + *

+ * Discussion: + * A {@linkplain MethodType#genericMethodType general method type} is one which + * mentions only {@code Object} arguments and return values. + * An invoker for such a type is capable of calling any method handle + * of the same arity as the general type. + *

+ * (Note: The invoker method is not available via the Core Reflection API. + * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke} + * on the declared {@code invokeExact} or {@code invoke} method will raise an + * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.) + *

+ * This method throws no reflective or security exceptions. + * @param type the desired target type + * @return a method handle suitable for invoking any method handle convertible to the given type + * @throws IllegalArgumentException if the resulting method handle's type would have + * too many parameters + */ + public static + MethodHandle invoker(MethodType type) { + return type.invokers().genericInvoker(); + } + + /** + * Produces a special invoker method handle which can be used to + * invoke a signature-polymorphic access mode method on any VarHandle whose + * associated access mode type is compatible with the given type. + * The resulting invoker will have a type which is exactly equal to the + * desired given type, except that it will accept an additional leading + * argument of type {@code VarHandle}. + * + * @param accessMode the VarHandle access mode + * @param type the desired target type + * @return a method handle suitable for invoking an access mode method of + * any VarHandle whose access mode type is of the given type. + * @since 9 + */ + static public + MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) { + return type.invokers().varHandleMethodExactInvoker(accessMode); + } + + /** + * Produces a special invoker method handle which can be used to + * invoke a signature-polymorphic access mode method on any VarHandle whose + * associated access mode type is compatible with the given type. + * The resulting invoker will have a type which is exactly equal to the + * desired given type, except that it will accept an additional leading + * argument of type {@code VarHandle}. + *

+ * Before invoking its target, if the access mode type differs from the + * desired given type, the invoker will apply reference casts as necessary + * and box, unbox, or widen primitive values, as if by + * {@link MethodHandle#asType asType}. Similarly, the return value will be + * converted as necessary. + *

+ * This method is equivalent to the following code (though it may be more + * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)} + * + * @param accessMode the VarHandle access mode + * @param type the desired target type + * @return a method handle suitable for invoking an access mode method of + * any VarHandle whose access mode type is convertible to the given + * type. + * @since 9 + */ + static public + MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) { + return type.invokers().varHandleMethodInvoker(accessMode); + } + + static /*non-public*/ + MethodHandle basicInvoker(MethodType type) { + return type.invokers().basicInvoker(); + } + + /// method handle modification (creation from other method handles) + + /** + * Produces a method handle which adapts the type of the + * given method handle to a new type by pairwise argument and return type conversion. + * The original type and new type must have the same number of arguments. + * The resulting method handle is guaranteed to report a type + * which is equal to the desired new type. + *

+ * If the original type and new type are equal, returns target. + *

+ * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType}, + * and some additional conversions are also applied if those conversions fail. + * Given types T0, T1, one of the following conversions is applied + * if possible, before or instead of any conversions done by {@code asType}: + *

+ * @param target the method handle to invoke after arguments are retyped + * @param newType the expected type of the new method handle + * @return a method handle which delegates to the target after performing + * any necessary argument conversions, and arranges for any + * necessary return value conversions + * @throws NullPointerException if either argument is null + * @throws WrongMethodTypeException if the conversion cannot be made + * @see MethodHandle#asType + */ + public static + MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { + explicitCastArgumentsChecks(target, newType); + // use the asTypeCache when possible: + MethodType oldType = target.type(); + if (oldType == newType) return target; + if (oldType.explicitCastEquivalentToAsType(newType)) { + return target.asFixedArity().asType(newType); + } + return MethodHandleImpl.makePairwiseConvert(target, newType, false); + } + + private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) { + if (target.type().parameterCount() != newType.parameterCount()) { + throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType); + } + } + + /** + * Produces a method handle which adapts the calling sequence of the + * given method handle to a new type, by reordering the arguments. + * The resulting method handle is guaranteed to report a type + * which is equal to the desired new type. + *

+ * The given array controls the reordering. + * Call {@code #I} the number of incoming parameters (the value + * {@code newType.parameterCount()}, and call {@code #O} the number + * of outgoing parameters (the value {@code target.type().parameterCount()}). + * Then the length of the reordering array must be {@code #O}, + * and each element must be a non-negative number less than {@code #I}. + * For every {@code N} less than {@code #O}, the {@code N}-th + * outgoing argument will be taken from the {@code I}-th incoming + * argument, where {@code I} is {@code reorder[N]}. + *

+ * No argument or return value conversions are applied. + * The type of each incoming argument, as determined by {@code newType}, + * must be identical to the type of the corresponding outgoing parameter + * or parameters in the target method handle. + * The return type of {@code newType} must be identical to the return + * type of the original target. + *

+ * The reordering array need not specify an actual permutation. + * An incoming argument will be duplicated if its index appears + * more than once in the array, and an incoming argument will be dropped + * if its index does not appear in the array. + * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, + * incoming arguments which are not mentioned in the reordering array + * may be of any type, as determined only by {@code newType}. + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodType intfn1 = methodType(int.class, int.class);
+MethodType intfn2 = methodType(int.class, int.class, int.class);
+MethodHandle sub = ... (int x, int y) -> (x-y) ...;
+assert(sub.type().equals(intfn2));
+MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
+MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
+assert((int)rsub.invokeExact(1, 100) == 99);
+MethodHandle add = ... (int x, int y) -> (x+y) ...;
+assert(add.type().equals(intfn2));
+MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
+assert(twice.type().equals(intfn1));
+assert((int)twice.invokeExact(21) == 42);
+     * }
+ *

+ * Note: The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector + * variable-arity method handle}, even if the original target method handle was. + * @param target the method handle to invoke after arguments are reordered + * @param newType the expected type of the new method handle + * @param reorder an index array which controls the reordering + * @return a method handle which delegates to the target after it + * drops unused arguments and moves and/or duplicates the other arguments + * @throws NullPointerException if any argument is null + * @throws IllegalArgumentException if the index array length is not equal to + * the arity of the target, or if any index array element + * not a valid index for a parameter of {@code newType}, + * or if two corresponding parameter types in + * {@code target.type()} and {@code newType} are not identical, + */ + public static + MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { + reorder = reorder.clone(); // get a private copy + MethodType oldType = target.type(); + permuteArgumentChecks(reorder, newType, oldType); + // first detect dropped arguments and handle them separately + int[] originalReorder = reorder; + BoundMethodHandle result = target.rebind(); + LambdaForm form = result.form; + int newArity = newType.parameterCount(); + // Normalize the reordering into a real permutation, + // by removing duplicates and adding dropped elements. + // This somewhat improves lambda form caching, as well + // as simplifying the transform by breaking it up into steps. + for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) { + if (ddIdx > 0) { + // We found a duplicated entry at reorder[ddIdx]. + // Example: (x,y,z)->asList(x,y,z) + // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1) + // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0) + // The starred element corresponds to the argument + // deleted by the dupArgumentForm transform. + int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos]; + boolean killFirst = false; + for (int val; (val = reorder[--dstPos]) != dupVal; ) { + // Set killFirst if the dup is larger than an intervening position. + // This will remove at least one inversion from the permutation. + if (dupVal > val) killFirst = true; + } + if (!killFirst) { + srcPos = dstPos; + dstPos = ddIdx; + } + form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos); + assert (reorder[srcPos] == reorder[dstPos]); + oldType = oldType.dropParameterTypes(dstPos, dstPos + 1); + // contract the reordering by removing the element at dstPos + int tailPos = dstPos + 1; + System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos); + reorder = Arrays.copyOf(reorder, reorder.length - 1); + } else { + int dropVal = ~ddIdx, insPos = 0; + while (insPos < reorder.length && reorder[insPos] < dropVal) { + // Find first element of reorder larger than dropVal. + // This is where we will insert the dropVal. + insPos += 1; + } + Class ptype = newType.parameterType(dropVal); + form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype)); + oldType = oldType.insertParameterTypes(insPos, ptype); + // expand the reordering by inserting an element at insPos + int tailPos = insPos + 1; + reorder = Arrays.copyOf(reorder, reorder.length + 1); + System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos); + reorder[insPos] = dropVal; + } + assert (permuteArgumentChecks(reorder, newType, oldType)); + } + assert (reorder.length == newArity); // a perfect permutation + // Note: This may cache too many distinct LFs. Consider backing off to varargs code. + form = form.editor().permuteArgumentsForm(1, reorder); + if (newType == result.type() && form == result.internalForm()) + return result; + return result.copyWith(newType, form); + } + + /** + * Return an indication of any duplicate or omission in reorder. + * If the reorder contains a duplicate entry, return the index of the second occurrence. + * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder. + * Otherwise, return zero. + * If an element not in [0..newArity-1] is encountered, return reorder.length. + */ + private static int findFirstDupOrDrop(int[] reorder, int newArity) { + final int BIT_LIMIT = 63; // max number of bits in bit mask + if (newArity < BIT_LIMIT) { + long mask = 0; + for (int i = 0; i < reorder.length; i++) { + int arg = reorder[i]; + if (arg >= newArity) { + return reorder.length; + } + long bit = 1L << arg; + if ((mask & bit) != 0) { + return i; // >0 indicates a dup + } + mask |= bit; + } + if (mask == (1L << newArity) - 1) { + assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity); + return 0; + } + // find first zero + long zeroBit = Long.lowestOneBit(~mask); + int zeroPos = Long.numberOfTrailingZeros(zeroBit); + assert(zeroPos <= newArity); + if (zeroPos == newArity) { + return 0; + } + return ~zeroPos; + } else { + // same algorithm, different bit set + BitSet mask = new BitSet(newArity); + for (int i = 0; i < reorder.length; i++) { + int arg = reorder[i]; + if (arg >= newArity) { + return reorder.length; + } + if (mask.get(arg)) { + return i; // >0 indicates a dup + } + mask.set(arg); + } + int zeroPos = mask.nextClearBit(0); + assert(zeroPos <= newArity); + if (zeroPos == newArity) { + return 0; + } + return ~zeroPos; + } + } + + private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) { + if (newType.returnType() != oldType.returnType()) + throw newIllegalArgumentException("return types do not match", + oldType, newType); + if (reorder.length == oldType.parameterCount()) { + int limit = newType.parameterCount(); + boolean bad = false; + for (int j = 0; j < reorder.length; j++) { + int i = reorder[j]; + if (i < 0 || i >= limit) { + bad = true; break; + } + Class src = newType.parameterType(i); + Class dst = oldType.parameterType(j); + if (src != dst) + throw newIllegalArgumentException("parameter types do not match after reorder", + oldType, newType); + } + if (!bad) return true; + } + throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder)); + } + + /** + * Produces a method handle of the requested return type which returns the given + * constant value every time it is invoked. + *

+ * Before the method handle is returned, the passed-in value is converted to the requested type. + * If the requested type is primitive, widening primitive conversions are attempted, + * else reference conversions are attempted. + *

The returned method handle is equivalent to {@code identity(type).bindTo(value)}. + * @param type the return type of the desired method handle + * @param value the value to return + * @return a method handle of the given return type and no arguments, which always returns the given value + * @throws NullPointerException if the {@code type} argument is null + * @throws ClassCastException if the value cannot be converted to the required return type + * @throws IllegalArgumentException if the given type is {@code void.class} + */ + public static + MethodHandle constant(Class type, Object value) { + if (type.isPrimitive()) { + if (type == void.class) + throw newIllegalArgumentException("void type"); + Wrapper w = Wrapper.forPrimitiveType(type); + value = w.convert(value, type); + if (w.zero().equals(value)) + return zero(w, type); + return insertArguments(identity(type), 0, value); + } else { + if (value == null) + return zero(Wrapper.OBJECT, type); + return identity(type).bindTo(value); + } + } + + /** + * Produces a method handle which returns its sole argument when invoked. + * @param type the type of the sole parameter and return value of the desired method handle + * @return a unary method handle which accepts and returns the given type + * @throws NullPointerException if the argument is null + * @throws IllegalArgumentException if the given type is {@code void.class} + */ + public static + MethodHandle identity(Class type) { + Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT); + int pos = btw.ordinal(); + MethodHandle ident = IDENTITY_MHS[pos]; + if (ident == null) { + ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType())); + } + if (ident.type().returnType() == type) + return ident; + // something like identity(Foo.class); do not bother to intern these + assert (btw == Wrapper.OBJECT); + return makeIdentity(type); + } + + /** + * Produces a constant method handle of the requested return type which + * returns the default value for that type every time it is invoked. + * The resulting constant method handle will have no side effects. + *

The returned method handle is equivalent to {@code empty(methodType(type))}. + * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))}, + * since {@code explicitCastArguments} converts {@code null} to default values. + * @param type the expected return type of the desired method handle + * @return a constant method handle that takes no arguments + * and returns the default value of the given type (or void, if the type is void) + * @throws NullPointerException if the argument is null + * @see MethodHandles#constant + * @see MethodHandles#empty + * @see MethodHandles#explicitCastArguments + * @since 9 + */ + public static MethodHandle zero(Class type) { + Objects.requireNonNull(type); + return type.isPrimitive() ? zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type); + } + + private static MethodHandle identityOrVoid(Class type) { + return type == void.class ? zero(type) : identity(type); + } + + /** + * Produces a method handle of the requested type which ignores any arguments, does nothing, + * and returns a suitable default depending on the return type. + * That is, it returns a zero primitive value, a {@code null}, or {@code void}. + *

The returned method handle is equivalent to + * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}. + * + * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as + * {@code guardWithTest(pred, target, empty(target.type())}. + * @param type the type of the desired method handle + * @return a constant method handle of the given type, which returns a default value of the given return type + * @throws NullPointerException if the argument is null + * @see MethodHandles#zero + * @see MethodHandles#constant + * @since 9 + */ + public static MethodHandle empty(MethodType type) { + Objects.requireNonNull(type); + return dropArguments(zero(type.returnType()), 0, type.parameterList()); + } + + private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT]; + private static MethodHandle makeIdentity(Class ptype) { + MethodType mtype = methodType(ptype, ptype); + LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype)); + return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY); + } + + private static MethodHandle zero(Wrapper btw, Class rtype) { + int pos = btw.ordinal(); + MethodHandle zero = ZERO_MHS[pos]; + if (zero == null) { + zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType())); + } + if (zero.type().returnType() == rtype) + return zero; + assert(btw == Wrapper.OBJECT); + return makeZero(rtype); + } + private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT]; + private static MethodHandle makeZero(Class rtype) { + MethodType mtype = methodType(rtype); + LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype)); + return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO); + } + + private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) { + // Simulate a CAS, to avoid racy duplication of results. + MethodHandle prev = cache[pos]; + if (prev != null) return prev; + return cache[pos] = value; + } + + /** + * Provides a target method handle with one or more bound arguments + * in advance of the method handle's invocation. + * The formal parameters to the target corresponding to the bound + * arguments are called bound parameters. + * Returns a new method handle which saves away the bound arguments. + * When it is invoked, it receives arguments for any non-bound parameters, + * binds the saved arguments to their corresponding parameters, + * and calls the original target. + *

+ * The type of the new method handle will drop the types for the bound + * parameters from the original target type, since the new method handle + * will no longer require those arguments to be supplied by its callers. + *

+ * Each given argument object must match the corresponding bound parameter type. + * If a bound parameter type is a primitive, the argument object + * must be a wrapper, and will be unboxed to produce the primitive value. + *

+ * The {@code pos} argument selects which parameters are to be bound. + * It may range between zero and N-L (inclusively), + * where N is the arity of the target method handle + * and L is the length of the values array. + *

+ * Note: The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector + * variable-arity method handle}, even if the original target method handle was. + * @param target the method handle to invoke after the argument is inserted + * @param pos where to insert the argument (zero for the first) + * @param values the series of arguments to insert + * @return a method handle which inserts an additional argument, + * before calling the original method handle + * @throws NullPointerException if the target or the {@code values} array is null + * @see MethodHandle#bindTo + */ + public static + MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { + int insCount = values.length; + Class[] ptypes = insertArgumentsChecks(target, insCount, pos); + if (insCount == 0) return target; + BoundMethodHandle result = target.rebind(); + for (int i = 0; i < insCount; i++) { + Object value = values[i]; + Class ptype = ptypes[pos+i]; + if (ptype.isPrimitive()) { + result = insertArgumentPrimitive(result, pos, ptype, value); + } else { + value = ptype.cast(value); // throw CCE if needed + result = result.bindArgumentL(pos, value); + } + } + return result; + } + + private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos, + Class ptype, Object value) { + Wrapper w = Wrapper.forPrimitiveType(ptype); + // perform unboxing and/or primitive conversion + value = w.convert(value, ptype); + switch (w) { + case INT: return result.bindArgumentI(pos, (int)value); + case LONG: return result.bindArgumentJ(pos, (long)value); + case FLOAT: return result.bindArgumentF(pos, (float)value); + case DOUBLE: return result.bindArgumentD(pos, (double)value); + default: return result.bindArgumentI(pos, ValueConversions.widenSubword(value)); + } + } + + private static Class[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException { + MethodType oldType = target.type(); + int outargs = oldType.parameterCount(); + int inargs = outargs - insCount; + if (inargs < 0) + throw newIllegalArgumentException("too many values to insert"); + if (pos < 0 || pos > inargs) + throw newIllegalArgumentException("no argument type to append"); + return oldType.ptypes(); + } + + /** + * Produces a method handle which will discard some dummy arguments + * before calling some other specified target method handle. + * The type of the new method handle will be the same as the target's type, + * except it will also include the dummy argument types, + * at some given position. + *

+ * The {@code pos} argument may range between zero and N, + * where N is the arity of the target. + * If {@code pos} is zero, the dummy arguments will precede + * the target's real arguments; if {@code pos} is N + * they will come after. + *

+ * Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
+MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
+assertEquals(bigType, d0.type());
+assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
+     * }
+ *

+ * This method is also equivalent to the following code: + *

+     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
+     * 
+ * @param target the method handle to invoke after the arguments are dropped + * @param valueTypes the type(s) of the argument(s) to drop + * @param pos position of first argument to drop (zero for the leftmost) + * @return a method handle which drops arguments of the given types, + * before calling the original method handle + * @throws NullPointerException if the target is null, + * or if the {@code valueTypes} list or any of its elements is null + * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, + * or if {@code pos} is negative or greater than the arity of the target, + * or if the new method handle's type would have too many parameters + */ + public static + MethodHandle dropArguments(MethodHandle target, int pos, List> valueTypes) { + return dropArguments0(target, pos, copyTypes(valueTypes.toArray())); + } + + private static List> copyTypes(Object[] array) { + return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class)); + } + + private static + MethodHandle dropArguments0(MethodHandle target, int pos, List> valueTypes) { + MethodType oldType = target.type(); // get NPE + int dropped = dropArgumentChecks(oldType, pos, valueTypes); + MethodType newType = oldType.insertParameterTypes(pos, valueTypes); + if (dropped == 0) return target; + BoundMethodHandle result = target.rebind(); + LambdaForm lform = result.form; + int insertFormArg = 1 + pos; + for (Class ptype : valueTypes) { + lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype)); + } + result = result.copyWith(newType, lform); + return result; + } + + private static int dropArgumentChecks(MethodType oldType, int pos, List> valueTypes) { + int dropped = valueTypes.size(); + MethodType.checkSlotCount(dropped); + int outargs = oldType.parameterCount(); + int inargs = outargs + dropped; + if (pos < 0 || pos > outargs) + throw newIllegalArgumentException("no argument type to remove" + + Arrays.asList(oldType, pos, valueTypes, inargs, outargs) + ); + return dropped; + } + + /** + * Produces a method handle which will discard some dummy arguments + * before calling some other specified target method handle. + * The type of the new method handle will be the same as the target's type, + * except it will also include the dummy argument types, + * at some given position. + *

+ * The {@code pos} argument may range between zero and N, + * where N is the arity of the target. + * If {@code pos} is zero, the dummy arguments will precede + * the target's real arguments; if {@code pos} is N + * they will come after. + * @apiNote + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodHandle d0 = dropArguments(cat, 0, String.class);
+assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
+MethodHandle d1 = dropArguments(cat, 1, String.class);
+assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
+MethodHandle d2 = dropArguments(cat, 2, String.class);
+assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
+MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
+assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
+     * }
+ *

+ * This method is also equivalent to the following code: + *

+     * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
+     * 
+ * @param target the method handle to invoke after the arguments are dropped + * @param valueTypes the type(s) of the argument(s) to drop + * @param pos position of first argument to drop (zero for the leftmost) + * @return a method handle which drops arguments of the given types, + * before calling the original method handle + * @throws NullPointerException if the target is null, + * or if the {@code valueTypes} array or any of its elements is null + * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class}, + * or if {@code pos} is negative or greater than the arity of the target, + * or if the new method handle's type would have + * too many parameters + */ + public static + MethodHandle dropArguments(MethodHandle target, int pos, Class... valueTypes) { + return dropArguments0(target, pos, copyTypes(valueTypes)); + } + + // private version which allows caller some freedom with error handling + private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List> newTypes, int pos, + boolean nullOnFailure) { + newTypes = copyTypes(newTypes.toArray()); + List> oldTypes = target.type().parameterList(); + int match = oldTypes.size(); + if (skip != 0) { + if (skip < 0 || skip > match) { + throw newIllegalArgumentException("illegal skip", skip, target); + } + oldTypes = oldTypes.subList(skip, match); + match -= skip; + } + List> addTypes = newTypes; + int add = addTypes.size(); + if (pos != 0) { + if (pos < 0 || pos > add) { + throw newIllegalArgumentException("illegal pos", pos, newTypes); + } + addTypes = addTypes.subList(pos, add); + add -= pos; + assert(addTypes.size() == add); + } + // Do not add types which already match the existing arguments. + if (match > add || !oldTypes.equals(addTypes.subList(0, match))) { + if (nullOnFailure) { + return null; + } + throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes); + } + addTypes = addTypes.subList(match, add); + add -= match; + assert(addTypes.size() == add); + // newTypes: ( P*[pos], M*[match], A*[add] ) + // target: ( S*[skip], M*[match] ) + MethodHandle adapter = target; + if (add > 0) { + adapter = dropArguments0(adapter, skip+ match, addTypes); + } + // adapter: (S*[skip], M*[match], A*[add] ) + if (pos > 0) { + adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos)); + } + // adapter: (S*[skip], P*[pos], M*[match], A*[add] ) + return adapter; + } + + /** + * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some + * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter + * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The + * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before + * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by + * {@link #dropArguments(MethodHandle, int, Class[])}. + *

+ * The resulting handle will have the same return type as the target handle. + *

+ * In more formal terms, assume these two type lists:

    + *
  • The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as + * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list, + * {@code newTypes}. + *
  • The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as + * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's + * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching + * sub-list. + *
+ * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type + * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by + * {@link #dropArguments(MethodHandle, int, Class[])}. + * + * @apiNote + * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be + * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows: + *
{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+...
+MethodHandle h0 = constant(boolean.class, true);
+MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
+MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
+MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
+if (h1.type().parameterCount() < h2.type().parameterCount())
+    h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
+else
+    h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
+MethodHandle h3 = guardWithTest(h0, h1, h2);
+assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
+     * }
+ * @param target the method handle to adapt + * @param skip number of targets parameters to disregard (they will be unchanged) + * @param newTypes the list of types to match {@code target}'s parameter type list to + * @param pos place in {@code newTypes} where the non-skipped target parameters must occur + * @return a possibly adapted method handle + * @throws NullPointerException if either argument is null + * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class}, + * or if {@code skip} is negative or greater than the arity of the target, + * or if {@code pos} is negative or greater than the newTypes list size, + * or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position + * {@code pos}. + * @since 9 + */ + public static + MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List> newTypes, int pos) { + Objects.requireNonNull(target); + Objects.requireNonNull(newTypes); + return dropArgumentsToMatch(target, skip, newTypes, pos, false); + } + + /** + * Adapts a target method handle by pre-processing + * one or more of its arguments, each with its own unary filter function, + * and then calling the target with each pre-processed argument + * replaced by the result of its corresponding filter function. + *

+ * The pre-processing is performed by one or more method handles, + * specified in the elements of the {@code filters} array. + * The first element of the filter array corresponds to the {@code pos} + * argument of the target, and so on in sequence. + *

+ * Null arguments in the array are treated as identity functions, + * and the corresponding arguments left unchanged. + * (If there are no non-null elements in the array, the original target is returned.) + * Each filter is applied to the corresponding argument of the adapter. + *

+ * If a filter {@code F} applies to the {@code N}th argument of + * the target, then {@code F} must be a method handle which + * takes exactly one argument. The type of {@code F}'s sole argument + * replaces the corresponding argument type of the target + * in the resulting adapted method handle. + * The return type of {@code F} must be identical to the corresponding + * parameter type of the target. + *

+ * It is an error if there are elements of {@code filters} + * (null or not) + * which do not correspond to argument positions in the target. + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle upcase = lookup().findVirtual(String.class,
+  "toUpperCase", methodType(String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodHandle f0 = filterArguments(cat, 0, upcase);
+assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
+MethodHandle f1 = filterArguments(cat, 1, upcase);
+assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
+MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
+assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
+     * }
+ *

Here is pseudocode for the resulting adapter. In the code, {@code T} + * denotes the return type of both the {@code target} and resulting adapter. + * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values + * of the parameters and arguments that precede and follow the filter position + * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and + * values of the filtered parameters and arguments; they also represent the + * return types of the {@code filter[i]} handles. The latter accept arguments + * {@code v[i]} of type {@code V[i]}, which also appear in the signature of + * the resulting adapter. + *

{@code
+     * T target(P... p, A[i]... a[i], B... b);
+     * A[i] filter[i](V[i]);
+     * T adapter(P... p, V[i]... v[i], B... b) {
+     *   return target(p..., filter[i](v[i])..., b...);
+     * }
+     * }
+ *

+ * Note: The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector + * variable-arity method handle}, even if the original target method handle was. + * + * @param target the method handle to invoke after arguments are filtered + * @param pos the position of the first argument to filter + * @param filters method handles to call initially on filtered arguments + * @return method handle which incorporates the specified argument filtering logic + * @throws NullPointerException if the target is null + * or if the {@code filters} array is null + * @throws IllegalArgumentException if a non-null element of {@code filters} + * does not match a corresponding argument type of target as described above, + * or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}, + * or if the resulting method handle's type would have + * too many parameters + */ + public static + MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { + filterArgumentsCheckArity(target, pos, filters); + MethodHandle adapter = target; + int curPos = pos-1; // pre-incremented + for (MethodHandle filter : filters) { + curPos += 1; + if (filter == null) continue; // ignore null elements of filters + adapter = filterArgument(adapter, curPos, filter); + } + return adapter; + } + + /*non-public*/ static + MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) { + filterArgumentChecks(target, pos, filter); + MethodType targetType = target.type(); + MethodType filterType = filter.type(); + BoundMethodHandle result = target.rebind(); + Class newParamType = filterType.parameterType(0); + LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType)); + MethodType newType = targetType.changeParameterType(pos, newParamType); + result = result.copyWithExtendL(newType, lform, filter); + return result; + } + + private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) { + MethodType targetType = target.type(); + int maxPos = targetType.parameterCount(); + if (pos + filters.length > maxPos) + throw newIllegalArgumentException("too many filters"); + } + + private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { + MethodType targetType = target.type(); + MethodType filterType = filter.type(); + if (filterType.parameterCount() != 1 + || filterType.returnType() != targetType.parameterType(pos)) + throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); + } + + /** + * Adapts a target method handle by pre-processing + * a sub-sequence of its arguments with a filter (another method handle). + * The pre-processed arguments are replaced by the result (if any) of the + * filter function. + * The target is then called on the modified (usually shortened) argument list. + *

+ * If the filter returns a value, the target must accept that value as + * its argument in position {@code pos}, preceded and/or followed by + * any arguments not passed to the filter. + * If the filter returns void, the target must accept all arguments + * not passed to the filter. + * No arguments are reordered, and a result returned from the filter + * replaces (in order) the whole subsequence of arguments originally + * passed to the adapter. + *

+ * The argument types (if any) of the filter + * replace zero or one argument types of the target, at position {@code pos}, + * in the resulting adapted method handle. + * The return type of the filter (if any) must be identical to the + * argument type of the target at position {@code pos}, and that target argument + * is supplied by the return value of the filter. + *

+ * In all cases, {@code pos} must be greater than or equal to zero, and + * {@code pos} must also be less than or equal to the target's arity. + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle deepToString = publicLookup()
+  .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
+
+MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
+assertEquals("[strange]", (String) ts1.invokeExact("strange"));
+
+MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
+assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
+
+MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
+MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
+assertEquals("[top, [up, down], strange]",
+             (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
+
+MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
+assertEquals("[top, [up, down], [strange]]",
+             (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
+
+MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
+assertEquals("[top, [[up, down, strange], charm], bottom]",
+             (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
+     * }
+ *

Here is pseudocode for the resulting adapter. In the code, {@code T} + * represents the return type of the {@code target} and resulting adapter. + * {@code V}/{@code v} stand for the return type and value of the + * {@code filter}, which are also found in the signature and arguments of + * the {@code target}, respectively, unless {@code V} is {@code void}. + * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types + * and values preceding and following the collection position, {@code pos}, + * in the {@code target}'s signature. They also turn up in the resulting + * adapter's signature and arguments, where they surround + * {@code B}/{@code b}, which represent the parameter types and arguments + * to the {@code filter} (if any). + *

{@code
+     * T target(A...,V,C...);
+     * V filter(B...);
+     * T adapter(A... a,B... b,C... c) {
+     *   V v = filter(b...);
+     *   return target(a...,v,c...);
+     * }
+     * // and if the filter has no arguments:
+     * T target2(A...,V,C...);
+     * V filter2();
+     * T adapter2(A... a,C... c) {
+     *   V v = filter2();
+     *   return target2(a...,v,c...);
+     * }
+     * // and if the filter has a void return:
+     * T target3(A...,C...);
+     * void filter3(B...);
+     * T adapter3(A... a,B... b,C... c) {
+     *   filter3(b...);
+     *   return target3(a...,c...);
+     * }
+     * }
+ *

+ * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to + * one which first "folds" the affected arguments, and then drops them, in separate + * steps as follows: + *

{@code
+     * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
+     * mh = MethodHandles.foldArguments(mh, coll); //step 1
+     * }
+ * If the target method handle consumes no arguments besides than the result + * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)} + * is equivalent to {@code filterReturnValue(coll, mh)}. + * If the filter method handle {@code coll} consumes one argument and produces + * a non-void result, then {@code collectArguments(mh, N, coll)} + * is equivalent to {@code filterArguments(mh, N, coll)}. + * Other equivalences are possible but would require argument permutation. + *

+ * Note: The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector + * variable-arity method handle}, even if the original target method handle was. + * + * @param target the method handle to invoke after filtering the subsequence of arguments + * @param pos the position of the first adapter argument to pass to the filter, + * and/or the target argument which receives the result of the filter + * @param filter method handle to call on the subsequence of arguments + * @return method handle which incorporates the specified argument subsequence filtering logic + * @throws NullPointerException if either argument is null + * @throws IllegalArgumentException if the return type of {@code filter} + * is non-void and is not the same as the {@code pos} argument of the target, + * or if {@code pos} is not between 0 and the target's arity, inclusive, + * or if the resulting method handle's type would have + * too many parameters + * @see MethodHandles#foldArguments + * @see MethodHandles#filterArguments + * @see MethodHandles#filterReturnValue + */ + public static + MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) { + MethodType newType = collectArgumentsChecks(target, pos, filter); + MethodType collectorType = filter.type(); + BoundMethodHandle result = target.rebind(); + LambdaForm lform; + if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) { + lform = result.editor().collectArgumentArrayForm(1 + pos, filter); + if (lform != null) { + return result.copyWith(newType, lform); + } + } + lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType()); + return result.copyWithExtendL(newType, lform, filter); + } + + private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException { + MethodType targetType = target.type(); + MethodType filterType = filter.type(); + Class rtype = filterType.returnType(); + List> filterArgs = filterType.parameterList(); + if (rtype == void.class) { + return targetType.insertParameterTypes(pos, filterArgs); + } + if (rtype != targetType.parameterType(pos)) { + throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); + } + return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs); + } + + /** + * Adapts a target method handle by post-processing + * its return value (if any) with a filter (another method handle). + * The result of the filter is returned from the adapter. + *

+ * If the target returns a value, the filter must accept that value as + * its only argument. + * If the target returns void, the filter must accept no arguments. + *

+ * The return type of the filter + * replaces the return type of the target + * in the resulting adapted method handle. + * The argument type of the filter (if any) must be identical to the + * return type of the target. + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle length = lookup().findVirtual(String.class,
+  "length", methodType(int.class));
+System.out.println((String) cat.invokeExact("x", "y")); // xy
+MethodHandle f0 = filterReturnValue(cat, length);
+System.out.println((int) f0.invokeExact("x", "y")); // 2
+     * }
+ *

Here is pseudocode for the resulting adapter. In the code, + * {@code T}/{@code t} represent the result type and value of the + * {@code target}; {@code V}, the result type of the {@code filter}; and + * {@code A}/{@code a}, the types and values of the parameters and arguments + * of the {@code target} as well as the resulting adapter. + *

{@code
+     * T target(A...);
+     * V filter(T);
+     * V adapter(A... a) {
+     *   T t = target(a...);
+     *   return filter(t);
+     * }
+     * // and if the target has a void return:
+     * void target2(A...);
+     * V filter2();
+     * V adapter2(A... a) {
+     *   target2(a...);
+     *   return filter2();
+     * }
+     * // and if the filter has a void return:
+     * T target3(A...);
+     * void filter3(V);
+     * void adapter3(A... a) {
+     *   T t = target3(a...);
+     *   filter3(t);
+     * }
+     * }
+ *

+ * Note: The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector + * variable-arity method handle}, even if the original target method handle was. + * @param target the method handle to invoke before filtering the return value + * @param filter method handle to call on the return value + * @return method handle which incorporates the specified return value filtering logic + * @throws NullPointerException if either argument is null + * @throws IllegalArgumentException if the argument list of {@code filter} + * does not match the return type of target as described above + */ + public static + MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { + MethodType targetType = target.type(); + MethodType filterType = filter.type(); + filterReturnValueChecks(targetType, filterType); + BoundMethodHandle result = target.rebind(); + BasicType rtype = BasicType.basicType(filterType.returnType()); + LambdaForm lform = result.editor().filterReturnForm(rtype, false); + MethodType newType = targetType.changeReturnType(filterType.returnType()); + result = result.copyWithExtendL(newType, lform, filter); + return result; + } + + private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException { + Class rtype = targetType.returnType(); + int filterValues = filterType.parameterCount(); + if (filterValues == 0 + ? (rtype != void.class) + : (rtype != filterType.parameterType(0) || filterValues != 1)) + throw newIllegalArgumentException("target and filter types do not match", targetType, filterType); + } + + /** + * Adapts a target method handle by pre-processing + * some of its arguments, and then calling the target with + * the result of the pre-processing, inserted into the original + * sequence of arguments. + *

+ * The pre-processing is performed by {@code combiner}, a second method handle. + * Of the arguments passed to the adapter, the first {@code N} arguments + * are copied to the combiner, which is then called. + * (Here, {@code N} is defined as the parameter count of the combiner.) + * After this, control passes to the target, with any result + * from the combiner inserted before the original {@code N} incoming + * arguments. + *

+ * If the combiner returns a value, the first parameter type of the target + * must be identical with the return type of the combiner, and the next + * {@code N} parameter types of the target must exactly match the parameters + * of the combiner. + *

+ * If the combiner has a void return, no result will be inserted, + * and the first {@code N} parameter types of the target + * must exactly match the parameters of the combiner. + *

+ * The resulting adapter is the same type as the target, except that the + * first parameter type is dropped, + * if it corresponds to the result of the combiner. + *

+ * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments + * that either the combiner or the target does not wish to receive. + * If some of the incoming arguments are destined only for the combiner, + * consider using {@link MethodHandle#asCollector asCollector} instead, since those + * arguments will not need to be live on the stack on entry to the + * target.) + *

Example: + *

{@code
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
+  "println", methodType(void.class, String.class))
+    .bindTo(System.out);
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
+MethodHandle catTrace = foldArguments(cat, trace);
+// also prints "boo":
+assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
+     * }
+ *

Here is pseudocode for the resulting adapter. In the code, {@code T} + * represents the result type of the {@code target} and resulting adapter. + * {@code V}/{@code v} represent the type and value of the parameter and argument + * of {@code target} that precedes the folding position; {@code V} also is + * the result type of the {@code combiner}. {@code A}/{@code a} denote the + * types and values of the {@code N} parameters and arguments at the folding + * position. {@code B}/{@code b} represent the types and values of the + * {@code target} parameters and arguments that follow the folded parameters + * and arguments. + *

{@code
+     * // there are N arguments in A...
+     * T target(V, A[N]..., B...);
+     * V combiner(A...);
+     * T adapter(A... a, B... b) {
+     *   V v = combiner(a...);
+     *   return target(v, a..., b...);
+     * }
+     * // and if the combiner has a void return:
+     * T target2(A[N]..., B...);
+     * void combiner2(A...);
+     * T adapter2(A... a, B... b) {
+     *   combiner2(a...);
+     *   return target2(a..., b...);
+     * }
+     * }
+ *

+ * Note: The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector + * variable-arity method handle}, even if the original target method handle was. + * @param target the method handle to invoke after arguments are combined + * @param combiner method handle to call initially on the incoming arguments + * @return method handle which incorporates the specified argument folding logic + * @throws NullPointerException if either argument is null + * @throws IllegalArgumentException if {@code combiner}'s return type + * is non-void and not the same as the first argument type of + * the target, or if the initial {@code N} argument types + * of the target + * (skipping one matching the {@code combiner}'s return type) + * are not identical with the argument types of {@code combiner} + */ + public static + MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { + return foldArguments(target, 0, combiner); + } + + /** + * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then + * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just + * before the folded arguments. + *

+ * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the + * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a + * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position + * 0. + * + * @apiNote Example: + *

{@code
+    import static java.lang.invoke.MethodHandles.*;
+    import static java.lang.invoke.MethodType.*;
+    ...
+    MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
+    "println", methodType(void.class, String.class))
+    .bindTo(System.out);
+    MethodHandle cat = lookup().findVirtual(String.class,
+    "concat", methodType(String.class, String.class));
+    assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
+    MethodHandle catTrace = foldArguments(cat, 1, trace);
+    // also prints "jum":
+    assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
+     * }
+ *

Here is pseudocode for the resulting adapter. In the code, {@code T} + * represents the result type of the {@code target} and resulting adapter. + * {@code V}/{@code v} represent the type and value of the parameter and argument + * of {@code target} that precedes the folding position; {@code V} also is + * the result type of the {@code combiner}. {@code A}/{@code a} denote the + * types and values of the {@code N} parameters and arguments at the folding + * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types + * and values of the {@code target} parameters and arguments that precede and + * follow the folded parameters and arguments starting at {@code pos}, + * respectively. + *

{@code
+     * // there are N arguments in A...
+     * T target(Z..., V, A[N]..., B...);
+     * V combiner(A...);
+     * T adapter(Z... z, A... a, B... b) {
+     *   V v = combiner(a...);
+     *   return target(z..., v, a..., b...);
+     * }
+     * // and if the combiner has a void return:
+     * T target2(Z..., A[N]..., B...);
+     * void combiner2(A...);
+     * T adapter2(Z... z, A... a, B... b) {
+     *   combiner2(a...);
+     *   return target2(z..., a..., b...);
+     * }
+     * }
+ *

+ * Note: The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector + * variable-arity method handle}, even if the original target method handle was. + * + * @param target the method handle to invoke after arguments are combined + * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code + * 0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}. + * @param combiner method handle to call initially on the incoming arguments + * @return method handle which incorporates the specified argument folding logic + * @throws NullPointerException if either argument is null + * @throws IllegalArgumentException if either of the following two conditions holds: + * (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position + * {@code pos} of the target signature; + * (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching + * the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}. + * + * @see #foldArguments(MethodHandle, MethodHandle) + * @since 9 + */ + public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) { + MethodType targetType = target.type(); + MethodType combinerType = combiner.type(); + Class rtype = foldArgumentChecks(pos, targetType, combinerType); + BoundMethodHandle result = target.rebind(); + boolean dropResult = rtype == void.class; + LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType()); + MethodType newType = targetType; + if (!dropResult) { + newType = newType.dropParameterTypes(pos, pos + 1); + } + result = result.copyWithExtendL(newType, lform, combiner); + return result; + } + + /** + * As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the + * added capability of selecting the arguments from the targets parameters + * to call the combiner with. This allows us to avoid some simple cases of + * permutations and padding the combiner with dropArguments to select the + * right argument, which may ultimately produce fewer intermediaries. + */ + static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) { + MethodType targetType = target.type(); + MethodType combinerType = combiner.type(); + Class rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions); + BoundMethodHandle result = target.rebind(); + boolean dropResult = rtype == void.class; + LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions); + MethodType newType = targetType; + if (!dropResult) { + newType = newType.dropParameterTypes(pos, pos + 1); + } + result = result.copyWithExtendL(newType, lform, combiner); + return result; + } + + private static Class foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) { + int foldArgs = combinerType.parameterCount(); + Class rtype = combinerType.returnType(); + int foldVals = rtype == void.class ? 0 : 1; + int afterInsertPos = foldPos + foldVals; + boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs); + if (ok) { + for (int i = 0; i < foldArgs; i++) { + if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) { + ok = false; + break; + } + } + } + if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) + ok = false; + if (!ok) + throw misMatchedTypes("target and combiner types", targetType, combinerType); + return rtype; + } + + private static Class foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) { + int foldArgs = combinerType.parameterCount(); + if (argPos.length != foldArgs) { + throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length); + } + Class rtype = combinerType.returnType(); + int foldVals = rtype == void.class ? 0 : 1; + boolean ok = true; + for (int i = 0; i < foldArgs; i++) { + int arg = argPos[i]; + if (arg < 0 || arg > targetType.parameterCount()) { + throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg); + } + if (combinerType.parameterType(i) != targetType.parameterType(arg)) { + throw newIllegalArgumentException("target argument type at position " + arg + + " must match combiner argument type at index " + i + ": " + targetType + + " -> " + combinerType + ", map: " + Arrays.toString(argPos)); + } + } + if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) { + ok = false; + } + if (!ok) + throw misMatchedTypes("target and combiner types", targetType, combinerType); + return rtype; + } + + /** + * Makes a method handle which adapts a target method handle, + * by guarding it with a test, a boolean-valued method handle. + * If the guard fails, a fallback handle is called instead. + * All three method handles must have the same corresponding + * argument and return types, except that the return type + * of the test must be boolean, and the test is allowed + * to have fewer arguments than the other two method handles. + *

+ * Here is pseudocode for the resulting adapter. In the code, {@code T} + * represents the uniform result type of the three involved handles; + * {@code A}/{@code a}, the types and values of the {@code target} + * parameters and arguments that are consumed by the {@code test}; and + * {@code B}/{@code b}, those types and values of the {@code target} + * parameters and arguments that are not consumed by the {@code test}. + *

{@code
+     * boolean test(A...);
+     * T target(A...,B...);
+     * T fallback(A...,B...);
+     * T adapter(A... a,B... b) {
+     *   if (test(a...))
+     *     return target(a..., b...);
+     *   else
+     *     return fallback(a..., b...);
+     * }
+     * }
+ * Note that the test arguments ({@code a...} in the pseudocode) cannot + * be modified by execution of the test, and so are passed unchanged + * from the caller to the target or fallback as appropriate. + * @param test method handle used for test, must return boolean + * @param target method handle to call if test passes + * @param fallback method handle to call if test fails + * @return method handle which incorporates the specified if/then/else logic + * @throws NullPointerException if any argument is null + * @throws IllegalArgumentException if {@code test} does not return boolean, + * or if all three method types do not match (with the return + * type of {@code test} changed to match that of the target). + */ + public static + MethodHandle guardWithTest(MethodHandle test, + MethodHandle target, + MethodHandle fallback) { + MethodType gtype = test.type(); + MethodType ttype = target.type(); + MethodType ftype = fallback.type(); + if (!ttype.equals(ftype)) + throw misMatchedTypes("target and fallback types", ttype, ftype); + if (gtype.returnType() != boolean.class) + throw newIllegalArgumentException("guard type is not a predicate "+gtype); + List> targs = ttype.parameterList(); + test = dropArgumentsToMatch(test, 0, targs, 0, true); + if (test == null) { + throw misMatchedTypes("target and test types", ttype, gtype); + } + return MethodHandleImpl.makeGuardWithTest(test, target, fallback); + } + + static RuntimeException misMatchedTypes(String what, T t1, T t2) { + return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); + } + + /** + * Makes a method handle which adapts a target method handle, + * by running it inside an exception handler. + * If the target returns normally, the adapter returns that value. + * If an exception matching the specified type is thrown, the fallback + * handle is called instead on the exception, plus the original arguments. + *

+ * The target and handler must have the same corresponding + * argument and return types, except that handler may omit trailing arguments + * (similarly to the predicate in {@link #guardWithTest guardWithTest}). + * Also, the handler must have an extra leading parameter of {@code exType} or a supertype. + *

+ * Here is pseudocode for the resulting adapter. In the code, {@code T} + * represents the return type of the {@code target} and {@code handler}, + * and correspondingly that of the resulting adapter; {@code A}/{@code a}, + * the types and values of arguments to the resulting handle consumed by + * {@code handler}; and {@code B}/{@code b}, those of arguments to the + * resulting handle discarded by {@code handler}. + *

{@code
+     * T target(A..., B...);
+     * T handler(ExType, A...);
+     * T adapter(A... a, B... b) {
+     *   try {
+     *     return target(a..., b...);
+     *   } catch (ExType ex) {
+     *     return handler(ex, a...);
+     *   }
+     * }
+     * }
+ * Note that the saved arguments ({@code a...} in the pseudocode) cannot + * be modified by execution of the target, and so are passed unchanged + * from the caller to the handler, if the handler is invoked. + *

+ * The target and handler must return the same type, even if the handler + * always throws. (This might happen, for instance, because the handler + * is simulating a {@code finally} clause). + * To create such a throwing handler, compose the handler creation logic + * with {@link #throwException throwException}, + * in order to create a method handle of the correct return type. + * @param target method handle to call + * @param exType the type of exception which the handler will catch + * @param handler method handle to call if a matching exception is thrown + * @return method handle which incorporates the specified try/catch logic + * @throws NullPointerException if any argument is null + * @throws IllegalArgumentException if {@code handler} does not accept + * the given exception type, or if the method handle types do + * not match in their return types and their + * corresponding parameters + * @see MethodHandles#tryFinally(MethodHandle, MethodHandle) + */ + public static + MethodHandle catchException(MethodHandle target, + Class exType, + MethodHandle handler) { + MethodType ttype = target.type(); + MethodType htype = handler.type(); + if (!Throwable.class.isAssignableFrom(exType)) + throw new ClassCastException(exType.getName()); + if (htype.parameterCount() < 1 || + !htype.parameterType(0).isAssignableFrom(exType)) + throw newIllegalArgumentException("handler does not accept exception type "+exType); + if (htype.returnType() != ttype.returnType()) + throw misMatchedTypes("target and handler return types", ttype, htype); + handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true); + if (handler == null) { + throw misMatchedTypes("target and handler types", ttype, htype); + } + return MethodHandleImpl.makeGuardWithCatch(target, exType, handler); + } + + /** + * Produces a method handle which will throw exceptions of the given {@code exType}. + * The method handle will accept a single argument of {@code exType}, + * and immediately throw it as an exception. + * The method type will nominally specify a return of {@code returnType}. + * The return type may be anything convenient: It doesn't matter to the + * method handle's behavior, since it will never return normally. + * @param returnType the return type of the desired method handle + * @param exType the parameter type of the desired method handle + * @return method handle which can throw the given exceptions + * @throws NullPointerException if either argument is null + */ + public static + MethodHandle throwException(Class returnType, Class exType) { + if (!Throwable.class.isAssignableFrom(exType)) + throw new ClassCastException(exType.getName()); + return MethodHandleImpl.throwException(methodType(returnType, exType)); + } + + /** + * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each + * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and + * delivers the loop's result, which is the return value of the resulting handle. + *

+ * Intuitively, every loop is formed by one or more "clauses", each specifying a local iteration variable and/or a loop + * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration + * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in + * terms of method handles, each clause will specify up to four independent actions:

    + *
  • init: Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}. + *
  • step: When a clause executes, an update step for the iteration variable {@code v}. + *
  • pred: When a clause executes, a predicate execution to test for loop exit. + *
  • fini: If a clause causes a loop exit, a finalizer execution to compute the loop's return value. + *
+ * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}. + * The values themselves will be {@code (v...)}. When we speak of "parameter lists", we will usually + * be referring to types, but in some contexts (describing execution) the lists will be of actual values. + *

+ * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in + * this case. See below for a detailed description. + *

+ * Parameters optional everywhere: + * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}. + * As an exception, the init functions cannot take any {@code v} parameters, + * because those values are not yet computed when the init functions are executed. + * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take. + * In fact, any clause function may take no arguments at all. + *

+ * Loop parameters: + * A clause function may take all the iteration variable values it is entitled to, in which case + * it may also take more trailing parameters. Such extra values are called loop parameters, + * with their types and values notated as {@code (A...)} and {@code (a...)}. + * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed. + * (Since init functions do not accept iteration variables {@code v}, any parameter to an + * init function is automatically a loop parameter {@code a}.) + * As with iteration variables, clause functions are allowed but not required to accept loop parameters. + * These loop parameters act as loop-invariant values visible across the whole loop. + *

+ * Parameters visible everywhere: + * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full + * list {@code (v... a...)} of current iteration variable values and incoming loop parameters. + * The init functions can observe initial pre-loop state, in the form {@code (a...)}. + * Most clause functions will not need all of this information, but they will be formally connected to it + * as if by {@link #dropArguments}. + * + * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full + * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}). + * In that notation, the general form of an init function parameter list + * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}. + *

+ * Checking clause structure: + * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the + * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must" + * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not + * met by the inputs to the loop combinator. + *

+ * Effectively identical sequences: + * + * A parameter list {@code A} is defined to be effectively identical to another parameter list {@code B} + * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}. + * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical" + * as a whole if the set contains a longest list, and all members of the set are effectively identical to + * that longest list. + * For example, any set of type sequences of the form {@code (V*)} is effectively identical, + * and the same is true if more sequences of the form {@code (V... A*)} are added. + *

+ * Step 0: Determine clause structure.

    + *
  1. The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element. + *
  2. The clause array may not contain {@code null}s or sub-arrays longer than four elements. + *
  3. Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length + * four. Padding takes place by appending elements to the array. + *
  4. Clauses with all {@code null}s are disregarded. + *
  5. Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini". + *
+ *

+ * Step 1A: Determine iteration variable types {@code (V...)}.

    + *
  1. The iteration variable type for each clause is determined using the clause's init and step return types. + *
  2. If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is + * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's + * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's + * iteration variable type. + *
  3. Form the list of return types (in clause order), omitting all occurrences of {@code void}. + *
  4. This list of types is called the "iteration variable types" ({@code (V...)}). + *
+ *

+ * Step 1B: Determine loop parameters {@code (A...)}.

    + *
  • Examine and collect init function parameter lists (which are of the form {@code (A*)}). + *
  • Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types. + * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.) + *
  • Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types. + * (These types will checked in step 2, along with all the clause function types.) + *
  • Omitted clause functions are ignored. (Equivalently, they are deemed to have empty parameter lists.) + *
  • All of the collected parameter lists must be effectively identical. + *
  • The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}). + *
  • If there is no such parameter list, the external parameter list is taken to be the empty sequence. + *
  • The combined list consisting of iteration variable types followed by the external parameter types is called + * the "internal parameter list". + *
+ *

+ * Step 1C: Determine loop return type.

    + *
  1. Examine fini function return types, disregarding omitted fini functions. + *
  2. If there are no fini functions, the loop return type is {@code void}. + *
  3. Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return + * type. + *
+ *

+ * Step 1D: Check other types.

    + *
  1. There must be at least one non-omitted pred function. + *
  2. Every non-omitted pred function must have a {@code boolean} return type. + *
+ *

+ * Step 2: Determine parameter lists.

    + *
  1. The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}. + *
  2. The parameter list for init functions will be adjusted to the external parameter list. + * (Note that their parameter lists are already effectively identical to this list.) + *
  3. The parameter list for every non-omitted, non-init (step, pred, and fini) function must be + * effectively identical to the internal parameter list {@code (V... A...)}. + *
+ *

+ * Step 3: Fill in omitted functions.

    + *
  1. If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable + * type. + *
  2. If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration + * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void} + * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.) + *
  3. If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far + * as this clause is concerned. Note that in such cases the corresponding fini function is unreachable.) + *
  4. If a fini function is omitted, use a {@linkplain #empty default value} for the + * loop return type. + *
+ *

+ * Step 4: Fill in missing parameter types.

    + *
  1. At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)}, + * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list. + *
  2. At this point, every non-init function parameter list is effectively identical to the internal parameter + * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list, + * pad out the end of the list. + *
  3. Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}. + *
+ *

+ * Final observations.

    + *
  1. After these steps, all clauses have been adjusted by supplying omitted functions and arguments. + *
  2. All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have. + *
  3. All fini functions have a common return type {@code R}, which the final loop handle will also have. + *
  4. All non-init functions have a common parameter type list {@code (V... A...)}, of + * (non-{@code void}) iteration variables {@code V} followed by loop parameters. + *
  5. Each pair of init and step functions agrees in their return type {@code V}. + *
  6. Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables. + *
  7. Every function will be able to observe the incoming values {@code (a...)} of all loop parameters. + *
+ *

+ * Example. As a consequence of step 1A above, the {@code loop} combinator has the following property: + *

    + *
  • Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}. + *
  • Suppose predicate handles {@code Pn} are either {@code null} or have no parameters. + * (Only one {@code Pn} has to be non-{@code null}.) + *
  • Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}. + *
  • Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types. + *
  • It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}. + *
  • The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}. + *
  • Any remaining types {@code BQ+1..BX} (if {@code Q + * In this example, the loop handle parameters {@code (A...)} were derived from the step functions, + * which is natural if most of the loop computation happens in the steps. For some loops, + * the burden of computation might be heaviest in the pred functions, and so the pred functions + * might need to accept the loop parameter values. For loops with complex exit logic, the fini + * functions might need to accept loop parameters, and likewise for loops with complex entry logic, + * where the init functions will need the extra parameters. For such reasons, the rules for + * determining these parameters are as symmetric as possible, across all clause parts. + * In general, the loop parameters function as common invariant values across the whole + * loop, while the iteration variables function as common variant values, or (if there is + * no step function) as internal loop invariant temporaries. + *

    + * Loop execution.

      + *
    1. When the loop is called, the loop input values are saved in locals, to be passed to + * every clause function. These locals are loop invariant. + *
    2. Each init function is executed in clause order (passing the external arguments {@code (a...)}) + * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals. + * These locals will be loop varying (unless their steps behave as identity functions, as noted above). + *
    3. All function executions (except init functions) will be passed the internal parameter list, consisting of + * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)} + * (in argument order). + *
    4. The step and pred functions are then executed, in clause order (step before pred), until a pred function + * returns {@code false}. + *
    5. The non-{@code void} result from a step function call is used to update the corresponding value in the + * sequence {@code (v...)} of loop variables. + * The updated value is immediately visible to all subsequent function calls. + *
    6. If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value + * (of type {@code R}) is returned from the loop as a whole. + *
    7. If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit + * except by throwing an exception. + *
    + *

    + * Usage tips. + *

      + *
    • Although each step function will receive the current values of all the loop variables, + * sometimes a step function only needs to observe the current value of its own variable. + * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}. + * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}. + *
    • Loop variables are not required to vary; they can be loop invariant. A clause can create + * a loop invariant by a suitable init function with no step, pred, or fini function. This may be + * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable. + *
    • If some of the clause functions are virtual methods on an instance, the instance + * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause + * like {@code new MethodHandle[]{identity(ObjType.class)}}. In that case, the instance reference + * will be the first iteration variable value, and it will be easy to use virtual + * methods as clause parts, since all of them will take a leading instance reference matching that value. + *
    + *

    + * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types + * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop; + * and {@code R} is the common result type of all finalizers as well as of the resulting loop. + *

    {@code
    +     * V... init...(A...);
    +     * boolean pred...(V..., A...);
    +     * V... step...(V..., A...);
    +     * R fini...(V..., A...);
    +     * R loop(A... a) {
    +     *   V... v... = init...(a...);
    +     *   for (;;) {
    +     *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
    +     *       v = s(v..., a...);
    +     *       if (!p(v..., a...)) {
    +     *         return f(v..., a...);
    +     *       }
    +     *     }
    +     *   }
    +     * }
    +     * }
    + * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded + * to their full length, even though individual clause functions may neglect to take them all. + * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}. + * + * @apiNote Example: + *
    {@code
    +     * // iterative implementation of the factorial function as a loop handle
    +     * static int one(int k) { return 1; }
    +     * static int inc(int i, int acc, int k) { return i + 1; }
    +     * static int mult(int i, int acc, int k) { return i * acc; }
    +     * static boolean pred(int i, int acc, int k) { return i < k; }
    +     * static int fin(int i, int acc, int k) { return acc; }
    +     * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
    +     * // null initializer for counter, should initialize to 0
    +     * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
    +     * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
    +     * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
    +     * assertEquals(120, loop.invoke(5));
    +     * }
    + * The same example, dropping arguments and using combinators: + *
    {@code
    +     * // simplified implementation of the factorial function as a loop handle
    +     * static int inc(int i) { return i + 1; } // drop acc, k
    +     * static int mult(int i, int acc) { return i * acc; } //drop k
    +     * static boolean cmp(int i, int k) { return i < k; }
    +     * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
    +     * // null initializer for counter, should initialize to 0
    +     * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
    +     * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
    +     * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
    +     * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
    +     * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
    +     * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
    +     * assertEquals(720, loop.invoke(6));
    +     * }
    + * A similar example, using a helper object to hold a loop parameter: + *
    {@code
    +     * // instance-based implementation of the factorial function as a loop handle
    +     * static class FacLoop {
    +     *   final int k;
    +     *   FacLoop(int k) { this.k = k; }
    +     *   int inc(int i) { return i + 1; }
    +     *   int mult(int i, int acc) { return i * acc; }
    +     *   boolean pred(int i) { return i < k; }
    +     *   int fin(int i, int acc) { return acc; }
    +     * }
    +     * // assume MH_FacLoop is a handle to the constructor
    +     * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
    +     * // null initializer for counter, should initialize to 0
    +     * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
    +     * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
    +     * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
    +     * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
    +     * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
    +     * assertEquals(5040, loop.invoke(7));
    +     * }
    + * + * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above. + * + * @return a method handle embodying the looping behavior as defined by the arguments. + * + * @throws IllegalArgumentException in case any of the constraints described above is violated. + * + * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle) + * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle) + * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle) + * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle) + * @since 9 + */ + public static MethodHandle loop(MethodHandle[]... clauses) { + // Step 0: determine clause structure. + loopChecks0(clauses); + + List init = new ArrayList<>(); + List step = new ArrayList<>(); + List pred = new ArrayList<>(); + List fini = new ArrayList<>(); + + Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> { + init.add(clause[0]); // all clauses have at least length 1 + step.add(clause.length <= 1 ? null : clause[1]); + pred.add(clause.length <= 2 ? null : clause[2]); + fini.add(clause.length <= 3 ? null : clause[3]); + }); + + assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1; + final int nclauses = init.size(); + + // Step 1A: determine iteration variables (V...). + final List> iterationVariableTypes = new ArrayList<>(); + for (int i = 0; i < nclauses; ++i) { + MethodHandle in = init.get(i); + MethodHandle st = step.get(i); + if (in == null && st == null) { + iterationVariableTypes.add(void.class); + } else if (in != null && st != null) { + loopChecks1a(i, in, st); + iterationVariableTypes.add(in.type().returnType()); + } else { + iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType()); + } + } + final List> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class). + collect(Collectors.toList()); + + // Step 1B: determine loop parameters (A...). + final List> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size()); + loopChecks1b(init, commonSuffix); + + // Step 1C: determine loop return type. + // Step 1D: check other types. + final Class loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type). + map(MethodType::returnType).findFirst().orElse(void.class); + loopChecks1cd(pred, fini, loopReturnType); + + // Step 2: determine parameter lists. + final List> commonParameterSequence = new ArrayList<>(commonPrefix); + commonParameterSequence.addAll(commonSuffix); + loopChecks2(step, pred, fini, commonParameterSequence); + + // Step 3: fill in omitted functions. + for (int i = 0; i < nclauses; ++i) { + Class t = iterationVariableTypes.get(i); + if (init.get(i) == null) { + init.set(i, empty(methodType(t, commonSuffix))); + } + if (step.get(i) == null) { + step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i)); + } + if (pred.get(i) == null) { + pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence)); + } + if (fini.get(i) == null) { + fini.set(i, empty(methodType(t, commonParameterSequence))); + } + } + + // Step 4: fill in missing parameter types. + // Also convert all handles to fixed-arity handles. + List finit = fixArities(fillParameterTypes(init, commonSuffix)); + List fstep = fixArities(fillParameterTypes(step, commonParameterSequence)); + List fpred = fixArities(fillParameterTypes(pred, commonParameterSequence)); + List ffini = fixArities(fillParameterTypes(fini, commonParameterSequence)); + + assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList). + allMatch(pl -> pl.equals(commonSuffix)); + assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList). + allMatch(pl -> pl.equals(commonParameterSequence)); + + return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini); + } + + private static void loopChecks0(MethodHandle[][] clauses) { + if (clauses == null || clauses.length == 0) { + throw newIllegalArgumentException("null or no clauses passed"); + } + if (Stream.of(clauses).anyMatch(Objects::isNull)) { + throw newIllegalArgumentException("null clauses are not allowed"); + } + if (Stream.of(clauses).anyMatch(c -> c.length > 4)) { + throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements."); + } + } + + private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) { + if (in.type().returnType() != st.type().returnType()) { + throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(), + st.type().returnType()); + } + } + + private static List> longestParameterList(Stream mhs, int skipSize) { + final List> empty = List.of(); + final List> longest = mhs.filter(Objects::nonNull). + // take only those that can contribute to a common suffix because they are longer than the prefix + map(MethodHandle::type). + filter(t -> t.parameterCount() > skipSize). + map(MethodType::parameterList). + reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); + return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size()); + } + + private static List> longestParameterList(List>> lists) { + final List> empty = List.of(); + return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty); + } + + private static List> buildCommonSuffix(List init, List step, List pred, List fini, int cpSize) { + final List> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize); + final List> longest2 = longestParameterList(init.stream(), 0); + return longestParameterList(Arrays.asList(longest1, longest2)); + } + + private static void loopChecks1b(List init, List> commonSuffix) { + if (init.stream().filter(Objects::nonNull).map(MethodHandle::type). + anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) { + throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init + + " (common suffix: " + commonSuffix + ")"); + } + } + + private static void loopChecks1cd(List pred, List fini, Class loopReturnType) { + if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). + anyMatch(t -> t != loopReturnType)) { + throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " + + loopReturnType + ")"); + } + + if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) { + throw newIllegalArgumentException("no predicate found", pred); + } + if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType). + anyMatch(t -> t != boolean.class)) { + throw newIllegalArgumentException("predicates must have boolean return type", pred); + } + } + + private static void loopChecks2(List step, List pred, List fini, List> commonParameterSequence) { + if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type). + anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) { + throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step + + "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")"); + } + } + + private static List fillParameterTypes(List hs, final List> targetParams) { + return hs.stream().map(h -> { + int pc = h.type().parameterCount(); + int tpsize = targetParams.size(); + return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h; + }).collect(Collectors.toList()); + } + + private static List fixArities(List hs) { + return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList()); + } + + /** + * Constructs a {@code while} loop from an initializer, a body, and a predicate. + * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. + *

    + * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this + * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate + * evaluates to {@code true}). + * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case). + *

    + * The {@code init} handle describes the initial value of an additional optional loop-local variable. + * In each iteration, this loop-local variable, if present, will be passed to the {@code body} + * and updated with the value returned from its invocation. The result of loop execution will be + * the final value of the additional loop-local variable (if present). + *

    + * The following rules hold for these argument handles:

      + *
    • The {@code body} handle must not be {@code null}; its type must be of the form + * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. + * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, + * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} + * is quietly dropped from the parameter list, leaving {@code (A...)V}.) + *
    • The parameter list {@code (V A...)} of the body is called the internal parameter list. + * It will constrain the parameter lists of the other loop parts. + *
    • If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter + * list {@code (A...)} is called the external parameter list. + *
    • The body return type {@code V}, if non-{@code void}, determines the type of an + * additional state variable of the loop. + * The body must both accept and return a value of this type {@code V}. + *
    • If {@code init} is non-{@code null}, it must have return type {@code V}. + * Its parameter list (of some form {@code (A*)}) must be + * effectively identical + * to the external parameter list {@code (A...)}. + *
    • If {@code init} is {@code null}, the loop variable will be initialized to its + * {@linkplain #empty default value}. + *
    • The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. + * Its parameter list (either empty or of the form {@code (V A*)}) must be + * effectively identical to the internal parameter list. + *
    + *

    + * The resulting loop handle's result type and parameter signature are determined as follows:

      + *
    • The loop handle's result type is the result type {@code V} of the body. + *
    • The loop handle's parameter types are the types {@code (A...)}, + * from the external parameter list. + *
    + *

    + * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of + * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument + * passed to the loop. + *

    {@code
    +     * V init(A...);
    +     * boolean pred(V, A...);
    +     * V body(V, A...);
    +     * V whileLoop(A... a...) {
    +     *   V v = init(a...);
    +     *   while (pred(v, a...)) {
    +     *     v = body(v, a...);
    +     *   }
    +     *   return v;
    +     * }
    +     * }
    + * + * @apiNote Example: + *
    {@code
    +     * // implement the zip function for lists as a loop handle
    +     * static List initZip(Iterator a, Iterator b) { return new ArrayList<>(); }
    +     * static boolean zipPred(List zip, Iterator a, Iterator b) { return a.hasNext() && b.hasNext(); }
    +     * static List zipStep(List zip, Iterator a, Iterator b) {
    +     *   zip.add(a.next());
    +     *   zip.add(b.next());
    +     *   return zip;
    +     * }
    +     * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
    +     * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
    +     * List a = Arrays.asList("a", "b", "c", "d");
    +     * List b = Arrays.asList("e", "f", "g", "h");
    +     * List zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
    +     * assertEquals(zipped, (List) loop.invoke(a.iterator(), b.iterator()));
    +     * }
    + * + * + * @apiNote The implementation of this method can be expressed as follows: + *
    {@code
    +     * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
    +     *     MethodHandle fini = (body.type().returnType() == void.class
    +     *                         ? null : identity(body.type().returnType()));
    +     *     MethodHandle[]
    +     *         checkExit = { null, null, pred, fini },
    +     *         varBody   = { init, body };
    +     *     return loop(checkExit, varBody);
    +     * }
    +     * }
    + * + * @param init optional initializer, providing the initial value of the loop variable. + * May be {@code null}, implying a default initial value. See above for other constraints. + * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See + * above for other constraints. + * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. + * See above for other constraints. + * + * @return a method handle implementing the {@code while} loop as described by the arguments. + * @throws IllegalArgumentException if the rules for the arguments are violated. + * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. + * + * @see #loop(MethodHandle[][]) + * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle) + * @since 9 + */ + public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { + whileLoopChecks(init, pred, body); + MethodHandle fini = identityOrVoid(body.type().returnType()); + MethodHandle[] checkExit = { null, null, pred, fini }; + MethodHandle[] varBody = { init, body }; + return loop(checkExit, varBody); + } + + /** + * Constructs a {@code do-while} loop from an initializer, a body, and a predicate. + * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. + *

    + * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this + * method will, in each iteration, first execute its body and then evaluate the predicate. + * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body. + *

    + * The {@code init} handle describes the initial value of an additional optional loop-local variable. + * In each iteration, this loop-local variable, if present, will be passed to the {@code body} + * and updated with the value returned from its invocation. The result of loop execution will be + * the final value of the additional loop-local variable (if present). + *

    + * The following rules hold for these argument handles:

      + *
    • The {@code body} handle must not be {@code null}; its type must be of the form + * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}. + * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, + * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V} + * is quietly dropped from the parameter list, leaving {@code (A...)V}.) + *
    • The parameter list {@code (V A...)} of the body is called the internal parameter list. + * It will constrain the parameter lists of the other loop parts. + *
    • If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter + * list {@code (A...)} is called the external parameter list. + *
    • The body return type {@code V}, if non-{@code void}, determines the type of an + * additional state variable of the loop. + * The body must both accept and return a value of this type {@code V}. + *
    • If {@code init} is non-{@code null}, it must have return type {@code V}. + * Its parameter list (of some form {@code (A*)}) must be + * effectively identical + * to the external parameter list {@code (A...)}. + *
    • If {@code init} is {@code null}, the loop variable will be initialized to its + * {@linkplain #empty default value}. + *
    • The {@code pred} handle must not be {@code null}. It must have {@code boolean} as its return type. + * Its parameter list (either empty or of the form {@code (V A*)}) must be + * effectively identical to the internal parameter list. + *
    + *

    + * The resulting loop handle's result type and parameter signature are determined as follows:

      + *
    • The loop handle's result type is the result type {@code V} of the body. + *
    • The loop handle's parameter types are the types {@code (A...)}, + * from the external parameter list. + *
    + *

    + * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of + * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument + * passed to the loop. + *

    {@code
    +     * V init(A...);
    +     * boolean pred(V, A...);
    +     * V body(V, A...);
    +     * V doWhileLoop(A... a...) {
    +     *   V v = init(a...);
    +     *   do {
    +     *     v = body(v, a...);
    +     *   } while (pred(v, a...));
    +     *   return v;
    +     * }
    +     * }
    + * + * @apiNote Example: + *
    {@code
    +     * // int i = 0; while (i < limit) { ++i; } return i; => limit
    +     * static int zero(int limit) { return 0; }
    +     * static int step(int i, int limit) { return i + 1; }
    +     * static boolean pred(int i, int limit) { return i < limit; }
    +     * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
    +     * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
    +     * assertEquals(23, loop.invoke(23));
    +     * }
    + * + * + * @apiNote The implementation of this method can be expressed as follows: + *
    {@code
    +     * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
    +     *     MethodHandle fini = (body.type().returnType() == void.class
    +     *                         ? null : identity(body.type().returnType()));
    +     *     MethodHandle[] clause = { init, body, pred, fini };
    +     *     return loop(clause);
    +     * }
    +     * }
    + * + * @param init optional initializer, providing the initial value of the loop variable. + * May be {@code null}, implying a default initial value. See above for other constraints. + * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type. + * See above for other constraints. + * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See + * above for other constraints. + * + * @return a method handle implementing the {@code while} loop as described by the arguments. + * @throws IllegalArgumentException if the rules for the arguments are violated. + * @throws NullPointerException if {@code pred} or {@code body} are {@code null}. + * + * @see #loop(MethodHandle[][]) + * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle) + * @since 9 + */ + public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { + whileLoopChecks(init, pred, body); + MethodHandle fini = identityOrVoid(body.type().returnType()); + MethodHandle[] clause = {init, body, pred, fini }; + return loop(clause); + } + + private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) { + Objects.requireNonNull(pred); + Objects.requireNonNull(body); + MethodType bodyType = body.type(); + Class returnType = bodyType.returnType(); + List> innerList = bodyType.parameterList(); + List> outerList = innerList; + if (returnType == void.class) { + // OK + } else if (innerList.size() == 0 || innerList.get(0) != returnType) { + // leading V argument missing => error + MethodType expected = bodyType.insertParameterTypes(0, returnType); + throw misMatchedTypes("body function", bodyType, expected); + } else { + outerList = innerList.subList(1, innerList.size()); + } + MethodType predType = pred.type(); + if (predType.returnType() != boolean.class || + !predType.effectivelyIdenticalParameters(0, innerList)) { + throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList)); + } + if (init != null) { + MethodType initType = init.type(); + if (initType.returnType() != returnType || + !initType.effectivelyIdenticalParameters(0, outerList)) { + throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); + } + } + } + + /** + * Constructs a loop that runs a given number of iterations. + * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. + *

    + * The number of iterations is determined by the {@code iterations} handle evaluation result. + * The loop counter {@code i} is an extra loop iteration variable of type {@code int}. + * It will be initialized to 0 and incremented by 1 in each iteration. + *

    + * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable + * of that type is also present. This variable is initialized using the optional {@code init} handle, + * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. + *

    + * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. + * A non-{@code void} value returned from the body (of type {@code V}) updates the leading + * iteration variable. + * The result of the loop handle execution will be the final {@code V} value of that variable + * (or {@code void} if there is no {@code V} variable). + *

    + * The following rules hold for the argument handles:

      + *
    • The {@code iterations} handle must not be {@code null}, and must return + * the type {@code int}, referred to here as {@code I} in parameter type lists. + *
    • The {@code body} handle must not be {@code null}; its type must be of the form + * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. + * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, + * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} + * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) + *
    • The parameter list {@code (V I A...)} of the body contributes to a list + * of types called the internal parameter list. + * It will constrain the parameter lists of the other loop parts. + *
    • As a special case, if the body contributes only {@code V} and {@code I} types, + * with no additional {@code A} types, then the internal parameter list is extended by + * the argument types {@code A...} of the {@code iterations} handle. + *
    • If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter + * list {@code (A...)} is called the external parameter list. + *
    • The body return type {@code V}, if non-{@code void}, determines the type of an + * additional state variable of the loop. + * The body must both accept a leading parameter and return a value of this type {@code V}. + *
    • If {@code init} is non-{@code null}, it must have return type {@code V}. + * Its parameter list (of some form {@code (A*)}) must be + * effectively identical + * to the external parameter list {@code (A...)}. + *
    • If {@code init} is {@code null}, the loop variable will be initialized to its + * {@linkplain #empty default value}. + *
    • The parameter list of {@code iterations} (of some form {@code (A*)}) must be + * effectively identical to the external parameter list {@code (A...)}. + *
    + *

    + * The resulting loop handle's result type and parameter signature are determined as follows:

      + *
    • The loop handle's result type is the result type {@code V} of the body. + *
    • The loop handle's parameter types are the types {@code (A...)}, + * from the external parameter list. + *
    + *

    + * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of + * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent + * arguments passed to the loop. + *

    {@code
    +     * int iterations(A...);
    +     * V init(A...);
    +     * V body(V, int, A...);
    +     * V countedLoop(A... a...) {
    +     *   int end = iterations(a...);
    +     *   V v = init(a...);
    +     *   for (int i = 0; i < end; ++i) {
    +     *     v = body(v, i, a...);
    +     *   }
    +     *   return v;
    +     * }
    +     * }
    + * + * @apiNote Example with a fully conformant body method: + *
    {@code
    +     * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
    +     * // => a variation on a well known theme
    +     * static String step(String v, int counter, String init) { return "na " + v; }
    +     * // assume MH_step is a handle to the method above
    +     * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
    +     * MethodHandle start = MethodHandles.identity(String.class);
    +     * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
    +     * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
    +     * }
    + * + * @apiNote Example with the simplest possible body method type, + * and passing the number of iterations to the loop invocation: + *
    {@code
    +     * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
    +     * // => a variation on a well known theme
    +     * static String step(String v, int counter ) { return "na " + v; }
    +     * // assume MH_step is a handle to the method above
    +     * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
    +     * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
    +     * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
    +     * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
    +     * }
    + * + * @apiNote Example that treats the number of iterations, string to append to, and string to append + * as loop parameters: + *
    {@code
    +     * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
    +     * // => a variation on a well known theme
    +     * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
    +     * // assume MH_step is a handle to the method above
    +     * MethodHandle count = MethodHandles.identity(int.class);
    +     * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
    +     * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
    +     * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
    +     * }
    + * + * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)} + * to enforce a loop type: + *
    {@code
    +     * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
    +     * // => a variation on a well known theme
    +     * static String step(String v, int counter, String pre) { return pre + " " + v; }
    +     * // assume MH_step is a handle to the method above
    +     * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
    +     * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
    +     * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
    +     * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
    +     * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
    +     * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
    +     * }
    + * + * @apiNote The implementation of this method can be expressed as follows: + *
    {@code
    +     * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
    +     *     return countedLoop(empty(iterations.type()), iterations, init, body);
    +     * }
    +     * }
    + * + * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's + * result type must be {@code int}. See above for other constraints. + * @param init optional initializer, providing the initial value of the loop variable. + * May be {@code null}, implying a default initial value. See above for other constraints. + * @param body body of the loop, which may not be {@code null}. + * It controls the loop parameters and result type in the standard case (see above for details). + * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), + * and may accept any number of additional types. + * See above for other constraints. + * + * @return a method handle representing the loop. + * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}. + * @throws IllegalArgumentException if any argument violates the rules formulated above. + * + * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle) + * @since 9 + */ + public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { + return countedLoop(empty(iterations.type()), iterations, init, body); + } + + /** + * Constructs a loop that counts over a range of numbers. + * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. + *

    + * The loop counter {@code i} is a loop iteration variable of type {@code int}. + * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive) + * values of the loop counter. + * The loop counter will be initialized to the {@code int} value returned from the evaluation of the + * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1. + *

    + * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable + * of that type is also present. This variable is initialized using the optional {@code init} handle, + * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. + *

    + * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. + * A non-{@code void} value returned from the body (of type {@code V}) updates the leading + * iteration variable. + * The result of the loop handle execution will be the final {@code V} value of that variable + * (or {@code void} if there is no {@code V} variable). + *

    + * The following rules hold for the argument handles:

      + *
    • The {@code start} and {@code end} handles must not be {@code null}, and must both return + * the common type {@code int}, referred to here as {@code I} in parameter type lists. + *
    • The {@code body} handle must not be {@code null}; its type must be of the form + * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}. + * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, + * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V} + * is quietly dropped from the parameter list, leaving {@code (I A...)V}.) + *
    • The parameter list {@code (V I A...)} of the body contributes to a list + * of types called the internal parameter list. + * It will constrain the parameter lists of the other loop parts. + *
    • As a special case, if the body contributes only {@code V} and {@code I} types, + * with no additional {@code A} types, then the internal parameter list is extended by + * the argument types {@code A...} of the {@code end} handle. + *
    • If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter + * list {@code (A...)} is called the external parameter list. + *
    • The body return type {@code V}, if non-{@code void}, determines the type of an + * additional state variable of the loop. + * The body must both accept a leading parameter and return a value of this type {@code V}. + *
    • If {@code init} is non-{@code null}, it must have return type {@code V}. + * Its parameter list (of some form {@code (A*)}) must be + * effectively identical + * to the external parameter list {@code (A...)}. + *
    • If {@code init} is {@code null}, the loop variable will be initialized to its + * {@linkplain #empty default value}. + *
    • The parameter list of {@code start} (of some form {@code (A*)}) must be + * effectively identical to the external parameter list {@code (A...)}. + *
    • Likewise, the parameter list of {@code end} must be effectively identical + * to the external parameter list. + *
    + *

    + * The resulting loop handle's result type and parameter signature are determined as follows:

      + *
    • The loop handle's result type is the result type {@code V} of the body. + *
    • The loop handle's parameter types are the types {@code (A...)}, + * from the external parameter list. + *
    + *

    + * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of + * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent + * arguments passed to the loop. + *

    {@code
    +     * int start(A...);
    +     * int end(A...);
    +     * V init(A...);
    +     * V body(V, int, A...);
    +     * V countedLoop(A... a...) {
    +     *   int e = end(a...);
    +     *   int s = start(a...);
    +     *   V v = init(a...);
    +     *   for (int i = s; i < e; ++i) {
    +     *     v = body(v, i, a...);
    +     *   }
    +     *   return v;
    +     * }
    +     * }
    + * + * @apiNote The implementation of this method can be expressed as follows: + *
    {@code
    +     * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
    +     *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
    +     *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
    +     *     // the following semantics:
    +     *     // MH_increment: (int limit, int counter) -> counter + 1
    +     *     // MH_predicate: (int limit, int counter) -> counter < limit
    +     *     Class counterType = start.type().returnType();  // int
    +     *     Class returnType = body.type().returnType();
    +     *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
    +     *     if (returnType != void.class) {  // ignore the V variable
    +     *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
    +     *         pred = dropArguments(pred, 1, returnType);  // ditto
    +     *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
    +     *     }
    +     *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
    +     *     MethodHandle[]
    +     *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
    +     *         bodyClause = { init, body },            // v = init(); v = body(v, i)
    +     *         indexVar   = { start, incr };           // i = start(); i = i + 1
    +     *     return loop(loopLimit, bodyClause, indexVar);
    +     * }
    +     * }
    + * + * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}. + * See above for other constraints. + * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to + * {@code end-1}). The result type must be {@code int}. See above for other constraints. + * @param init optional initializer, providing the initial value of the loop variable. + * May be {@code null}, implying a default initial value. See above for other constraints. + * @param body body of the loop, which may not be {@code null}. + * It controls the loop parameters and result type in the standard case (see above for details). + * It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter), + * and may accept any number of additional types. + * See above for other constraints. + * + * @return a method handle representing the loop. + * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}. + * @throws IllegalArgumentException if any argument violates the rules formulated above. + * + * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle) + * @since 9 + */ + public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { + countedLoopChecks(start, end, init, body); + Class counterType = start.type().returnType(); // int, but who's counting? + Class limitType = end.type().returnType(); // yes, int again + Class returnType = body.type().returnType(); + MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep); + MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred); + MethodHandle retv = null; + if (returnType != void.class) { + incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) + pred = dropArguments(pred, 1, returnType); // ditto + retv = dropArguments(identity(returnType), 0, counterType); + } + body = dropArguments(body, 0, counterType); // ignore the limit variable + MethodHandle[] + loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v + bodyClause = { init, body }, // v = init(); v = body(v, i) + indexVar = { start, incr }; // i = start(); i = i + 1 + return loop(loopLimit, bodyClause, indexVar); + } + + private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { + Objects.requireNonNull(start); + Objects.requireNonNull(end); + Objects.requireNonNull(body); + Class counterType = start.type().returnType(); + if (counterType != int.class) { + MethodType expected = start.type().changeReturnType(int.class); + throw misMatchedTypes("start function", start.type(), expected); + } else if (end.type().returnType() != counterType) { + MethodType expected = end.type().changeReturnType(counterType); + throw misMatchedTypes("end function", end.type(), expected); + } + MethodType bodyType = body.type(); + Class returnType = bodyType.returnType(); + List> innerList = bodyType.parameterList(); + // strip leading V value if present + int vsize = (returnType == void.class ? 0 : 1); + if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) { + // argument list has no "V" => error + MethodType expected = bodyType.insertParameterTypes(0, returnType); + throw misMatchedTypes("body function", bodyType, expected); + } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) { + // missing I type => error + MethodType expected = bodyType.insertParameterTypes(vsize, counterType); + throw misMatchedTypes("body function", bodyType, expected); + } + List> outerList = innerList.subList(vsize + 1, innerList.size()); + if (outerList.isEmpty()) { + // special case; take lists from end handle + outerList = end.type().parameterList(); + innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList(); + } + MethodType expected = methodType(counterType, outerList); + if (!start.type().effectivelyIdenticalParameters(0, outerList)) { + throw misMatchedTypes("start parameter types", start.type(), expected); + } + if (end.type() != start.type() && + !end.type().effectivelyIdenticalParameters(0, outerList)) { + throw misMatchedTypes("end parameter types", end.type(), expected); + } + if (init != null) { + MethodType initType = init.type(); + if (initType.returnType() != returnType || + !initType.effectivelyIdenticalParameters(0, outerList)) { + throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList)); + } + } + } + + /** + * Constructs a loop that ranges over the values produced by an {@code Iterator}. + * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}. + *

    + * The iterator itself will be determined by the evaluation of the {@code iterator} handle. + * Each value it produces will be stored in a loop iteration variable of type {@code T}. + *

    + * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable + * of that type is also present. This variable is initialized using the optional {@code init} handle, + * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}. + *

    + * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle. + * A non-{@code void} value returned from the body (of type {@code V}) updates the leading + * iteration variable. + * The result of the loop handle execution will be the final {@code V} value of that variable + * (or {@code void} if there is no {@code V} variable). + *

    + * The following rules hold for the argument handles:

      + *
    • The {@code body} handle must not be {@code null}; its type must be of the form + * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}. + * (In the {@code void} case, we assign the type {@code void} to the name {@code V}, + * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V} + * is quietly dropped from the parameter list, leaving {@code (T A...)V}.) + *
    • The parameter list {@code (V T A...)} of the body contributes to a list + * of types called the internal parameter list. + * It will constrain the parameter lists of the other loop parts. + *
    • As a special case, if the body contributes only {@code V} and {@code T} types, + * with no additional {@code A} types, then the internal parameter list is extended by + * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the + * single type {@code Iterable} is added and constitutes the {@code A...} list. + *
    • If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter + * list {@code (A...)} is called the external parameter list. + *
    • The body return type {@code V}, if non-{@code void}, determines the type of an + * additional state variable of the loop. + * The body must both accept a leading parameter and return a value of this type {@code V}. + *
    • If {@code init} is non-{@code null}, it must have return type {@code V}. + * Its parameter list (of some form {@code (A*)}) must be + * effectively identical + * to the external parameter list {@code (A...)}. + *
    • If {@code init} is {@code null}, the loop variable will be initialized to its + * {@linkplain #empty default value}. + *
    • If the {@code iterator} handle is non-{@code null}, it must have the return + * type {@code java.util.Iterator} or a subtype thereof. + * The iterator it produces when the loop is executed will be assumed + * to yield values which can be converted to type {@code T}. + *
    • The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be + * effectively identical to the external parameter list {@code (A...)}. + *
    • If {@code iterator} is {@code null} it defaults to a method handle which behaves + * like {@link java.lang.Iterable#iterator()}. In that case, the internal parameter list + * {@code (V T A...)} must have at least one {@code A} type, and the default iterator + * handle parameter is adjusted to accept the leading {@code A} type, as if by + * the {@link MethodHandle#asType asType} conversion method. + * The leading {@code A} type must be {@code Iterable} or a subtype thereof. + * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}. + *
    + *

    + * The type {@code T} may be either a primitive or reference. + * Since type {@code Iterator} is erased in the method handle representation to the raw type {@code Iterator}, + * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object} + * as if by the {@link MethodHandle#asType asType} conversion method. + * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur + * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}. + *

    + * The resulting loop handle's result type and parameter signature are determined as follows:

      + *
    • The loop handle's result type is the result type {@code V} of the body. + *
    • The loop handle's parameter types are the types {@code (A...)}, + * from the external parameter list. + *
    + *

    + * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of + * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the + * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop. + *

    {@code
    +     * Iterator iterator(A...);  // defaults to Iterable::iterator
    +     * V init(A...);
    +     * V body(V,T,A...);
    +     * V iteratedLoop(A... a...) {
    +     *   Iterator it = iterator(a...);
    +     *   V v = init(a...);
    +     *   while (it.hasNext()) {
    +     *     T t = it.next();
    +     *     v = body(v, t, a...);
    +     *   }
    +     *   return v;
    +     * }
    +     * }
    + * + * @apiNote Example: + *
    {@code
    +     * // get an iterator from a list
    +     * static List reverseStep(List r, String e) {
    +     *   r.add(0, e);
    +     *   return r;
    +     * }
    +     * static List newArrayList() { return new ArrayList<>(); }
    +     * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
    +     * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
    +     * List list = Arrays.asList("a", "b", "c", "d", "e");
    +     * List reversedList = Arrays.asList("e", "d", "c", "b", "a");
    +     * assertEquals(reversedList, (List) loop.invoke(list));
    +     * }
    + * + * @apiNote The implementation of this method can be expressed approximately as follows: + *
    {@code
    +     * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
    +     *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
    +     *     Class returnType = body.type().returnType();
    +     *     Class ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
    +     *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
    +     *     MethodHandle retv = null, step = body, startIter = iterator;
    +     *     if (returnType != void.class) {
    +     *         // the simple thing first:  in (I V A...), drop the I to get V
    +     *         retv = dropArguments(identity(returnType), 0, Iterator.class);
    +     *         // body type signature (V T A...), internal loop types (I V A...)
    +     *         step = swapArguments(body, 0, 1);  // swap V <-> T
    +     *     }
    +     *     if (startIter == null)  startIter = MH_getIter;
    +     *     MethodHandle[]
    +     *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
    +     *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
    +     *     return loop(iterVar, bodyClause);
    +     * }
    +     * }
    + * + * @param iterator an optional handle to return the iterator to start the loop. + * If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype. + * See above for other constraints. + * @param init optional initializer, providing the initial value of the loop variable. + * May be {@code null}, implying a default initial value. See above for other constraints. + * @param body body of the loop, which may not be {@code null}. + * It controls the loop parameters and result type in the standard case (see above for details). + * It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values), + * and may accept any number of additional types. + * See above for other constraints. + * + * @return a method handle embodying the iteration loop functionality. + * @throws NullPointerException if the {@code body} handle is {@code null}. + * @throws IllegalArgumentException if any argument violates the above requirements. + * + * @since 9 + */ + public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { + Class iterableType = iteratedLoopChecks(iterator, init, body); + Class returnType = body.type().returnType(); + MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred); + MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext); + MethodHandle startIter; + MethodHandle nextVal; + { + MethodType iteratorType; + if (iterator == null) { + // derive argument type from body, if available, else use Iterable + startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator); + iteratorType = startIter.type().changeParameterType(0, iterableType); + } else { + // force return type to the internal iterator class + iteratorType = iterator.type().changeReturnType(Iterator.class); + startIter = iterator; + } + Class ttype = body.type().parameterType(returnType == void.class ? 0 : 1); + MethodType nextValType = nextRaw.type().changeReturnType(ttype); + + // perform the asType transforms under an exception transformer, as per spec.: + try { + startIter = startIter.asType(iteratorType); + nextVal = nextRaw.asType(nextValType); + } catch (WrongMethodTypeException ex) { + throw new IllegalArgumentException(ex); + } + } + + MethodHandle retv = null, step = body; + if (returnType != void.class) { + // the simple thing first: in (I V A...), drop the I to get V + retv = dropArguments(identity(returnType), 0, Iterator.class); + // body type signature (V T A...), internal loop types (I V A...) + step = swapArguments(body, 0, 1); // swap V <-> T + } + + MethodHandle[] + iterVar = { startIter, null, hasNext, retv }, + bodyClause = { init, filterArgument(step, 0, nextVal) }; + return loop(iterVar, bodyClause); + } + + private static Class iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) { + Objects.requireNonNull(body); + MethodType bodyType = body.type(); + Class returnType = bodyType.returnType(); + List> internalParamList = bodyType.parameterList(); + // strip leading V value if present + int vsize = (returnType == void.class ? 0 : 1); + if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) { + // argument list has no "V" => error + MethodType expected = bodyType.insertParameterTypes(0, returnType); + throw misMatchedTypes("body function", bodyType, expected); + } else if (internalParamList.size() <= vsize) { + // missing T type => error + MethodType expected = bodyType.insertParameterTypes(vsize, Object.class); + throw misMatchedTypes("body function", bodyType, expected); + } + List> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size()); + Class iterableType = null; + if (iterator != null) { + // special case; if the body handle only declares V and T then + // the external parameter list is obtained from iterator handle + if (externalParamList.isEmpty()) { + externalParamList = iterator.type().parameterList(); + } + MethodType itype = iterator.type(); + if (!Iterator.class.isAssignableFrom(itype.returnType())) { + throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type"); + } + if (!itype.effectivelyIdenticalParameters(0, externalParamList)) { + MethodType expected = methodType(itype.returnType(), externalParamList); + throw misMatchedTypes("iterator parameters", itype, expected); + } + } else { + if (externalParamList.isEmpty()) { + // special case; if the iterator handle is null and the body handle + // only declares V and T then the external parameter list consists + // of Iterable + externalParamList = Arrays.asList(Iterable.class); + iterableType = Iterable.class; + } else { + // special case; if the iterator handle is null and the external + // parameter list is not empty then the first parameter must be + // assignable to Iterable + iterableType = externalParamList.get(0); + if (!Iterable.class.isAssignableFrom(iterableType)) { + throw newIllegalArgumentException( + "inferred first loop argument must inherit from Iterable: " + iterableType); + } + } + } + if (init != null) { + MethodType initType = init.type(); + if (initType.returnType() != returnType || + !initType.effectivelyIdenticalParameters(0, externalParamList)) { + throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList)); + } + } + return iterableType; // help the caller a bit + } + + /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) { + // there should be a better way to uncross my wires + int arity = mh.type().parameterCount(); + int[] order = new int[arity]; + for (int k = 0; k < arity; k++) order[k] = k; + order[i] = j; order[j] = i; + Class[] types = mh.type().parameterArray(); + Class ti = types[i]; types[i] = types[j]; types[j] = ti; + MethodType swapType = methodType(mh.type().returnType(), types); + return permuteArguments(mh, swapType, order); + } + + /** + * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block. + * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception + * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The + * exception will be rethrown, unless {@code cleanup} handle throws an exception first. The + * value returned from the {@code cleanup} handle's execution will be the result of the execution of the + * {@code try-finally} handle. + *

    + * The {@code cleanup} handle will be passed one or two additional leading arguments. + * The first is the exception thrown during the + * execution of the {@code target} handle, or {@code null} if no exception was thrown. + * The second is the result of the execution of the {@code target} handle, or, if it throws an exception, + * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder. + * The second argument is not present if the {@code target} handle has a {@code void} return type. + * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists + * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.) + *

    + * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except + * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or + * two extra leading parameters:

      + *
    • a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and + *
    • a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry + * the result from the execution of the {@code target} handle. + * This parameter is not present if the {@code target} returns {@code void}. + *
    + *

    + * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of + * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting + * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by + * the cleanup. + *

    {@code
    +     * V target(A..., B...);
    +     * V cleanup(Throwable, V, A...);
    +     * V adapter(A... a, B... b) {
    +     *   V result = (zero value for V);
    +     *   Throwable throwable = null;
    +     *   try {
    +     *     result = target(a..., b...);
    +     *   } catch (Throwable t) {
    +     *     throwable = t;
    +     *     throw t;
    +     *   } finally {
    +     *     result = cleanup(throwable, result, a...);
    +     *   }
    +     *   return result;
    +     * }
    +     * }
    + *

    + * Note that the saved arguments ({@code a...} in the pseudocode) cannot + * be modified by execution of the target, and so are passed unchanged + * from the caller to the cleanup, if it is invoked. + *

    + * The target and cleanup must return the same type, even if the cleanup + * always throws. + * To create such a throwing cleanup, compose the cleanup logic + * with {@link #throwException throwException}, + * in order to create a method handle of the correct return type. + *

    + * Note that {@code tryFinally} never converts exceptions into normal returns. + * In rare cases where exceptions must be converted in that way, first wrap + * the target with {@link #catchException(MethodHandle, Class, MethodHandle)} + * to capture an outgoing exception, and then wrap with {@code tryFinally}. + * + * @param target the handle whose execution is to be wrapped in a {@code try} block. + * @param cleanup the handle that is invoked in the finally block. + * + * @return a method handle embodying the {@code try-finally} block composed of the two arguments. + * @throws NullPointerException if any argument is null + * @throws IllegalArgumentException if {@code cleanup} does not accept + * the required leading arguments, or if the method handle types do + * not match in their return types and their + * corresponding trailing parameters + * + * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle) + * @since 9 + */ + public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) { + List> targetParamTypes = target.type().parameterList(); + List> cleanupParamTypes = cleanup.type().parameterList(); + Class rtype = target.type().returnType(); + + tryFinallyChecks(target, cleanup); + + // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments. + // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the + // target parameter list. + cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0); + + // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case. + return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes); + } + + private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) { + Class rtype = target.type().returnType(); + if (rtype != cleanup.type().returnType()) { + throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype); + } + MethodType cleanupType = cleanup.type(); + if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) { + throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class); + } + if (rtype != void.class && cleanupType.parameterType(1) != rtype) { + throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype); + } + // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the + // target parameter list. + int cleanupArgIndex = rtype == void.class ? 1 : 2; + if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) { + throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix", + cleanup.type(), target.type()); + } + } + +}