diff -r 4ebc2e2fb97c -r 71c04702a3d5 src/hotspot/share/gc/g1/g1RemSetSummary.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/hotspot/share/gc/g1/g1RemSetSummary.cpp Tue Sep 12 19:03:39 2017 +0200 @@ -0,0 +1,376 @@ +/* + * Copyright (c) 2013, 2017, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "gc/g1/concurrentG1Refine.hpp" +#include "gc/g1/concurrentG1RefineThread.hpp" +#include "gc/g1/g1CollectedHeap.inline.hpp" +#include "gc/g1/g1RemSet.inline.hpp" +#include "gc/g1/g1RemSetSummary.hpp" +#include "gc/g1/g1YoungRemSetSamplingThread.hpp" +#include "gc/g1/heapRegion.hpp" +#include "gc/g1/heapRegionRemSet.hpp" +#include "memory/allocation.inline.hpp" +#include "runtime/thread.inline.hpp" + +class GetRSThreadVTimeClosure : public ThreadClosure { +private: + G1RemSetSummary* _summary; + uint _counter; + +public: + GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) { + assert(_summary != NULL, "just checking"); + } + + virtual void do_thread(Thread* t) { + ConcurrentG1RefineThread* crt = (ConcurrentG1RefineThread*) t; + _summary->set_rs_thread_vtime(_counter, crt->vtime_accum()); + _counter++; + } +}; + +void G1RemSetSummary::update() { + _num_conc_refined_cards = _rem_set->num_conc_refined_cards(); + DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); + _num_processed_buf_mutator = dcqs.processed_buffers_mut(); + _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread(); + + _num_coarsenings = HeapRegionRemSet::n_coarsenings(); + + ConcurrentG1Refine * cg1r = G1CollectedHeap::heap()->concurrent_g1_refine(); + if (_rs_threads_vtimes != NULL) { + GetRSThreadVTimeClosure p(this); + cg1r->worker_threads_do(&p); + } + set_sampling_thread_vtime(cg1r->sampling_thread()->vtime_accum()); +} + +void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) { + assert(_rs_threads_vtimes != NULL, "just checking"); + assert(thread < _num_vtimes, "just checking"); + _rs_threads_vtimes[thread] = value; +} + +double G1RemSetSummary::rs_thread_vtime(uint thread) const { + assert(_rs_threads_vtimes != NULL, "just checking"); + assert(thread < _num_vtimes, "just checking"); + return _rs_threads_vtimes[thread]; +} + +G1RemSetSummary::G1RemSetSummary() : + _rem_set(NULL), + _num_conc_refined_cards(0), + _num_processed_buf_mutator(0), + _num_processed_buf_rs_threads(0), + _num_coarsenings(0), + _num_vtimes(ConcurrentG1Refine::thread_num()), + _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)), + _sampling_thread_vtime(0.0f) { + + memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes); +} + +G1RemSetSummary::G1RemSetSummary(G1RemSet* rem_set) : + _rem_set(rem_set), + _num_conc_refined_cards(0), + _num_processed_buf_mutator(0), + _num_processed_buf_rs_threads(0), + _num_coarsenings(0), + _num_vtimes(ConcurrentG1Refine::thread_num()), + _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)), + _sampling_thread_vtime(0.0f) { + update(); +} + +G1RemSetSummary::~G1RemSetSummary() { + if (_rs_threads_vtimes) { + FREE_C_HEAP_ARRAY(double, _rs_threads_vtimes); + } +} + +void G1RemSetSummary::set(G1RemSetSummary* other) { + assert(other != NULL, "just checking"); + assert(_num_vtimes == other->_num_vtimes, "just checking"); + + _num_conc_refined_cards = other->num_conc_refined_cards(); + + _num_processed_buf_mutator = other->num_processed_buf_mutator(); + _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads(); + + _num_coarsenings = other->_num_coarsenings; + + memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes); + + set_sampling_thread_vtime(other->sampling_thread_vtime()); +} + +void G1RemSetSummary::subtract_from(G1RemSetSummary* other) { + assert(other != NULL, "just checking"); + assert(_num_vtimes == other->_num_vtimes, "just checking"); + + _num_conc_refined_cards = other->num_conc_refined_cards() - _num_conc_refined_cards; + + _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator; + _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads; + + _num_coarsenings = other->num_coarsenings() - _num_coarsenings; + + for (uint i = 0; i < _num_vtimes; i++) { + set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i)); + } + + _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime; +} + +class RegionTypeCounter VALUE_OBJ_CLASS_SPEC { +private: + const char* _name; + + size_t _rs_mem_size; + size_t _cards_occupied; + size_t _amount; + + size_t _code_root_mem_size; + size_t _code_root_elems; + + double rs_mem_size_percent_of(size_t total) { + return percent_of(_rs_mem_size, total); + } + + double cards_occupied_percent_of(size_t total) { + return percent_of(_cards_occupied, total); + } + + double code_root_mem_size_percent_of(size_t total) { + return percent_of(_code_root_mem_size, total); + } + + double code_root_elems_percent_of(size_t total) { + return percent_of(_code_root_elems, total); + } + + size_t amount() const { return _amount; } + +public: + + RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0), + _amount(0), _code_root_mem_size(0), _code_root_elems(0) { } + + void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size, + size_t code_root_elems) { + _rs_mem_size += rs_mem_size; + _cards_occupied += cards_occupied; + _code_root_mem_size += code_root_mem_size; + _code_root_elems += code_root_elems; + _amount++; + } + + size_t rs_mem_size() const { return _rs_mem_size; } + size_t cards_occupied() const { return _cards_occupied; } + + size_t code_root_mem_size() const { return _code_root_mem_size; } + size_t code_root_elems() const { return _code_root_elems; } + + void print_rs_mem_info_on(outputStream * out, size_t total) { + out->print_cr(" " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions", + byte_size_in_proper_unit(rs_mem_size()), + proper_unit_for_byte_size(rs_mem_size()), + rs_mem_size_percent_of(total), amount(), _name); + } + + void print_cards_occupied_info_on(outputStream * out, size_t total) { + out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) entries by " SIZE_FORMAT " %s regions", + cards_occupied(), cards_occupied_percent_of(total), amount(), _name); + } + + void print_code_root_mem_info_on(outputStream * out, size_t total) { + out->print_cr(" " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions", + byte_size_in_proper_unit(code_root_mem_size()), + proper_unit_for_byte_size(code_root_mem_size()), + code_root_mem_size_percent_of(total), amount(), _name); + } + + void print_code_root_elems_info_on(outputStream * out, size_t total) { + out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) elements by " SIZE_FORMAT " %s regions", + code_root_elems(), code_root_elems_percent_of(total), amount(), _name); + } +}; + + +class HRRSStatsIter: public HeapRegionClosure { +private: + RegionTypeCounter _young; + RegionTypeCounter _humongous; + RegionTypeCounter _free; + RegionTypeCounter _old; + RegionTypeCounter _all; + + size_t _max_rs_mem_sz; + HeapRegion* _max_rs_mem_sz_region; + + size_t total_rs_mem_sz() const { return _all.rs_mem_size(); } + size_t total_cards_occupied() const { return _all.cards_occupied(); } + + size_t max_rs_mem_sz() const { return _max_rs_mem_sz; } + HeapRegion* max_rs_mem_sz_region() const { return _max_rs_mem_sz_region; } + + size_t _max_code_root_mem_sz; + HeapRegion* _max_code_root_mem_sz_region; + + size_t total_code_root_mem_sz() const { return _all.code_root_mem_size(); } + size_t total_code_root_elems() const { return _all.code_root_elems(); } + + size_t max_code_root_mem_sz() const { return _max_code_root_mem_sz; } + HeapRegion* max_code_root_mem_sz_region() const { return _max_code_root_mem_sz_region; } + +public: + HRRSStatsIter() : _all("All"), _young("Young"), _humongous("Humongous"), + _free("Free"), _old("Old"), _max_code_root_mem_sz_region(NULL), _max_rs_mem_sz_region(NULL), + _max_rs_mem_sz(0), _max_code_root_mem_sz(0) + {} + + bool doHeapRegion(HeapRegion* r) { + HeapRegionRemSet* hrrs = r->rem_set(); + + // HeapRegionRemSet::mem_size() includes the + // size of the strong code roots + size_t rs_mem_sz = hrrs->mem_size(); + if (rs_mem_sz > _max_rs_mem_sz) { + _max_rs_mem_sz = rs_mem_sz; + _max_rs_mem_sz_region = r; + } + size_t occupied_cards = hrrs->occupied(); + size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size(); + if (code_root_mem_sz > max_code_root_mem_sz()) { + _max_code_root_mem_sz = code_root_mem_sz; + _max_code_root_mem_sz_region = r; + } + size_t code_root_elems = hrrs->strong_code_roots_list_length(); + + RegionTypeCounter* current = NULL; + if (r->is_free()) { + current = &_free; + } else if (r->is_young()) { + current = &_young; + } else if (r->is_humongous()) { + current = &_humongous; + } else if (r->is_old()) { + current = &_old; + } else { + ShouldNotReachHere(); + } + current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems); + _all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems); + + return false; + } + + void print_summary_on(outputStream* out) { + RegionTypeCounter* counters[] = { &_young, &_humongous, &_free, &_old, NULL }; + + out->print_cr(" Current rem set statistics"); + out->print_cr(" Total per region rem sets sizes = " SIZE_FORMAT "%s." + " Max = " SIZE_FORMAT "%s.", + byte_size_in_proper_unit(total_rs_mem_sz()), + proper_unit_for_byte_size(total_rs_mem_sz()), + byte_size_in_proper_unit(max_rs_mem_sz()), + proper_unit_for_byte_size(max_rs_mem_sz())); + for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { + (*current)->print_rs_mem_info_on(out, total_rs_mem_sz()); + } + + out->print_cr(" Static structures = " SIZE_FORMAT "%s," + " free_lists = " SIZE_FORMAT "%s.", + byte_size_in_proper_unit(HeapRegionRemSet::static_mem_size()), + proper_unit_for_byte_size(HeapRegionRemSet::static_mem_size()), + byte_size_in_proper_unit(HeapRegionRemSet::fl_mem_size()), + proper_unit_for_byte_size(HeapRegionRemSet::fl_mem_size())); + + out->print_cr(" " SIZE_FORMAT " occupied cards represented.", + total_cards_occupied()); + for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { + (*current)->print_cards_occupied_info_on(out, total_cards_occupied()); + } + + // Largest sized rem set region statistics + HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set(); + out->print_cr(" Region with largest rem set = " HR_FORMAT ", " + "size = " SIZE_FORMAT "%s, occupied = " SIZE_FORMAT "%s.", + HR_FORMAT_PARAMS(max_rs_mem_sz_region()), + byte_size_in_proper_unit(rem_set->mem_size()), + proper_unit_for_byte_size(rem_set->mem_size()), + byte_size_in_proper_unit(rem_set->occupied()), + proper_unit_for_byte_size(rem_set->occupied())); + // Strong code root statistics + HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set(); + out->print_cr(" Total heap region code root sets sizes = " SIZE_FORMAT "%s." + " Max = " SIZE_FORMAT "%s.", + byte_size_in_proper_unit(total_code_root_mem_sz()), + proper_unit_for_byte_size(total_code_root_mem_sz()), + byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()), + proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size())); + for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { + (*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz()); + } + + out->print_cr(" " SIZE_FORMAT " code roots represented.", + total_code_root_elems()); + for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { + (*current)->print_code_root_elems_info_on(out, total_code_root_elems()); + } + + out->print_cr(" Region with largest amount of code roots = " HR_FORMAT ", " + "size = " SIZE_FORMAT "%s, num_elems = " SIZE_FORMAT ".", + HR_FORMAT_PARAMS(max_code_root_mem_sz_region()), + byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()), + proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()), + max_code_root_rem_set->strong_code_roots_list_length()); + } +}; + +void G1RemSetSummary::print_on(outputStream* out) { + out->print_cr(" Recent concurrent refinement statistics"); + out->print_cr(" Processed " SIZE_FORMAT " cards concurrently", num_conc_refined_cards()); + out->print_cr(" Of " SIZE_FORMAT " completed buffers:", num_processed_buf_total()); + out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) by concurrent RS threads.", + num_processed_buf_total(), + percent_of(num_processed_buf_rs_threads(), num_processed_buf_total())); + out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) by mutator threads.", + num_processed_buf_mutator(), + percent_of(num_processed_buf_mutator(), num_processed_buf_total())); + out->print_cr(" Did " SIZE_FORMAT " coarsenings.", num_coarsenings()); + out->print_cr(" Concurrent RS threads times (s)"); + out->print(" "); + for (uint i = 0; i < _num_vtimes; i++) { + out->print(" %5.2f", rs_thread_vtime(i)); + } + out->cr(); + out->print_cr(" Concurrent sampling threads times (s)"); + out->print_cr(" %5.2f", sampling_thread_vtime()); + + HRRSStatsIter blk; + G1CollectedHeap::heap()->heap_region_iterate(&blk); + blk.print_summary_on(out); +}