diff -r 17d415c7180f -r 6da7a2a1e3d6 jdk/src/share/native/sun/security/ec/ec2_mont.c --- a/jdk/src/share/native/sun/security/ec/ec2_mont.c Wed Oct 07 14:14:45 2009 -0700 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,296 +0,0 @@ -/* ********************************************************************* - * - * Sun elects to have this file available under and governed by the - * Mozilla Public License Version 1.1 ("MPL") (see - * http://www.mozilla.org/MPL/ for full license text). For the avoidance - * of doubt and subject to the following, Sun also elects to allow - * licensees to use this file under the MPL, the GNU General Public - * License version 2 only or the Lesser General Public License version - * 2.1 only. Any references to the "GNU General Public License version 2 - * or later" or "GPL" in the following shall be construed to mean the - * GNU General Public License version 2 only. Any references to the "GNU - * Lesser General Public License version 2.1 or later" or "LGPL" in the - * following shall be construed to mean the GNU Lesser General Public - * License version 2.1 only. However, the following notice accompanied - * the original version of this file: - * - * Version: MPL 1.1/GPL 2.0/LGPL 2.1 - * - * The contents of this file are subject to the Mozilla Public License Version - * 1.1 (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * http://www.mozilla.org/MPL/ - * - * Software distributed under the License is distributed on an "AS IS" basis, - * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License - * for the specific language governing rights and limitations under the - * License. - * - * The Original Code is the elliptic curve math library for binary polynomial field curves. - * - * The Initial Developer of the Original Code is - * Sun Microsystems, Inc. - * Portions created by the Initial Developer are Copyright (C) 2003 - * the Initial Developer. All Rights Reserved. - * - * Contributor(s): - * Sheueling Chang-Shantz , - * Stephen Fung , and - * Douglas Stebila , Sun Microsystems Laboratories. - * - * Alternatively, the contents of this file may be used under the terms of - * either the GNU General Public License Version 2 or later (the "GPL"), or - * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), - * in which case the provisions of the GPL or the LGPL are applicable instead - * of those above. If you wish to allow use of your version of this file only - * under the terms of either the GPL or the LGPL, and not to allow others to - * use your version of this file under the terms of the MPL, indicate your - * decision by deleting the provisions above and replace them with the notice - * and other provisions required by the GPL or the LGPL. If you do not delete - * the provisions above, a recipient may use your version of this file under - * the terms of any one of the MPL, the GPL or the LGPL. - * - *********************************************************************** */ -/* - * Copyright 2007 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -#pragma ident "%Z%%M% %I% %E% SMI" - -#include "ec2.h" -#include "mplogic.h" -#include "mp_gf2m.h" -#ifndef _KERNEL -#include -#endif - -/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery - * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J. - * and Dahab, R. "Fast multiplication on elliptic curves over GF(2^m) - * without precomputation". modified to not require precomputation of - * c=b^{2^{m-1}}. */ -static mp_err -gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group, int kmflag) -{ - mp_err res = MP_OKAY; - mp_int t1; - - MP_DIGITS(&t1) = 0; - MP_CHECKOK(mp_init(&t1, kmflag)); - - MP_CHECKOK(group->meth->field_sqr(x, x, group->meth)); - MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth)); - MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth)); - MP_CHECKOK(group->meth->field_sqr(x, x, group->meth)); - MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth)); - MP_CHECKOK(group->meth-> - field_mul(&group->curveb, &t1, &t1, group->meth)); - MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth)); - - CLEANUP: - mp_clear(&t1); - return res; -} - -/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in - * Montgomery projective coordinates. Uses algorithm Madd in appendix of - * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation". */ -static mp_err -gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2, - const ECGroup *group, int kmflag) -{ - mp_err res = MP_OKAY; - mp_int t1, t2; - - MP_DIGITS(&t1) = 0; - MP_DIGITS(&t2) = 0; - MP_CHECKOK(mp_init(&t1, kmflag)); - MP_CHECKOK(mp_init(&t2, kmflag)); - - MP_CHECKOK(mp_copy(x, &t1)); - MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth)); - MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth)); - MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth)); - MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth)); - MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth)); - MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth)); - MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth)); - - CLEANUP: - mp_clear(&t1); - mp_clear(&t2); - return res; -} - -/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) - * using Montgomery point multiplication algorithm Mxy() in appendix of - * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over - * GF(2^m) without precomputation". Returns: 0 on error 1 if return value - * should be the point at infinity 2 otherwise */ -static int -gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1, - mp_int *x2, mp_int *z2, const ECGroup *group) -{ - mp_err res = MP_OKAY; - int ret = 0; - mp_int t3, t4, t5; - - MP_DIGITS(&t3) = 0; - MP_DIGITS(&t4) = 0; - MP_DIGITS(&t5) = 0; - MP_CHECKOK(mp_init(&t3, FLAG(x2))); - MP_CHECKOK(mp_init(&t4, FLAG(x2))); - MP_CHECKOK(mp_init(&t5, FLAG(x2))); - - if (mp_cmp_z(z1) == 0) { - mp_zero(x2); - mp_zero(z2); - ret = 1; - goto CLEANUP; - } - - if (mp_cmp_z(z2) == 0) { - MP_CHECKOK(mp_copy(x, x2)); - MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth)); - ret = 2; - goto CLEANUP; - } - - MP_CHECKOK(mp_set_int(&t5, 1)); - if (group->meth->field_enc) { - MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth)); - } - - MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth)); - - MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth)); - MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth)); - MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth)); - MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth)); - MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth)); - - MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth)); - MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth)); - MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth)); - MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth)); - MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth)); - - MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth)); - MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth)); - MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth)); - MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth)); - MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth)); - - MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth)); - MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth)); - - ret = 2; - - CLEANUP: - mp_clear(&t3); - mp_clear(&t4); - mp_clear(&t5); - if (res == MP_OKAY) { - return ret; - } else { - return 0; - } -} - -/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R. "Fast - * multiplication on elliptic curves over GF(2^m) without - * precomputation". Elliptic curve points P and R can be identical. Uses - * Montgomery projective coordinates. */ -mp_err -ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py, - mp_int *rx, mp_int *ry, const ECGroup *group) -{ - mp_err res = MP_OKAY; - mp_int x1, x2, z1, z2; - int i, j; - mp_digit top_bit, mask; - - MP_DIGITS(&x1) = 0; - MP_DIGITS(&x2) = 0; - MP_DIGITS(&z1) = 0; - MP_DIGITS(&z2) = 0; - MP_CHECKOK(mp_init(&x1, FLAG(n))); - MP_CHECKOK(mp_init(&x2, FLAG(n))); - MP_CHECKOK(mp_init(&z1, FLAG(n))); - MP_CHECKOK(mp_init(&z2, FLAG(n))); - - /* if result should be point at infinity */ - if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) { - MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry)); - goto CLEANUP; - } - - MP_CHECKOK(mp_copy(px, &x1)); /* x1 = px */ - MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */ - MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth)); /* z2 = - * x1^2 = - * px^2 */ - MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth)); - MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth)); /* x2 - * = - * px^4 - * + - * b - */ - - /* find top-most bit and go one past it */ - i = MP_USED(n) - 1; - j = MP_DIGIT_BIT - 1; - top_bit = 1; - top_bit <<= MP_DIGIT_BIT - 1; - mask = top_bit; - while (!(MP_DIGITS(n)[i] & mask)) { - mask >>= 1; - j--; - } - mask >>= 1; - j--; - - /* if top most bit was at word break, go to next word */ - if (!mask) { - i--; - j = MP_DIGIT_BIT - 1; - mask = top_bit; - } - - for (; i >= 0; i--) { - for (; j >= 0; j--) { - if (MP_DIGITS(n)[i] & mask) { - MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n))); - MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n))); - } else { - MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n))); - MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n))); - } - mask >>= 1; - } - j = MP_DIGIT_BIT - 1; - mask = top_bit; - } - - /* convert out of "projective" coordinates */ - i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group); - if (i == 0) { - res = MP_BADARG; - goto CLEANUP; - } else if (i == 1) { - MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry)); - } else { - MP_CHECKOK(mp_copy(&x2, rx)); - MP_CHECKOK(mp_copy(&z2, ry)); - } - - CLEANUP: - mp_clear(&x1); - mp_clear(&x2); - mp_clear(&z1); - mp_clear(&z2); - return res; -}