diff -r fd16c54261b3 -r 489c9b5090e2 hotspot/src/share/vm/opto/vectornode.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hotspot/src/share/vm/opto/vectornode.cpp Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,478 @@ +/* + * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + */ + +#include "incls/_precompiled.incl" +#include "incls/_vectornode.cpp.incl" + +//------------------------------VectorNode-------------------------------------- + +// Return vector type for an element type and vector length. +const Type* VectorNode::vect_type(BasicType elt_bt, uint len) { + assert(len <= VectorNode::max_vlen(elt_bt), "len in range"); + switch(elt_bt) { + case T_BOOLEAN: + case T_BYTE: + switch(len) { + case 2: return TypeInt::CHAR; + case 4: return TypeInt::INT; + case 8: return TypeLong::LONG; + } + break; + case T_CHAR: + case T_SHORT: + switch(len) { + case 2: return TypeInt::INT; + case 4: return TypeLong::LONG; + } + break; + case T_INT: + switch(len) { + case 2: return TypeLong::LONG; + } + break; + case T_LONG: + break; + case T_FLOAT: + switch(len) { + case 2: return Type::DOUBLE; + } + break; + case T_DOUBLE: + break; + } + ShouldNotReachHere(); + return NULL; +} + +// Scalar promotion +VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) { + BasicType bt = opd_t->array_element_basic_type(); + assert(vlen <= VectorNode::max_vlen(bt), "vlen in range"); + switch (bt) { + case T_BOOLEAN: + case T_BYTE: + if (vlen == 16) return new (C, 2) Replicate16BNode(s); + if (vlen == 8) return new (C, 2) Replicate8BNode(s); + if (vlen == 4) return new (C, 2) Replicate4BNode(s); + break; + case T_CHAR: + if (vlen == 8) return new (C, 2) Replicate8CNode(s); + if (vlen == 4) return new (C, 2) Replicate4CNode(s); + if (vlen == 2) return new (C, 2) Replicate2CNode(s); + break; + case T_SHORT: + if (vlen == 8) return new (C, 2) Replicate8SNode(s); + if (vlen == 4) return new (C, 2) Replicate4SNode(s); + if (vlen == 2) return new (C, 2) Replicate2SNode(s); + break; + case T_INT: + if (vlen == 4) return new (C, 2) Replicate4INode(s); + if (vlen == 2) return new (C, 2) Replicate2INode(s); + break; + case T_LONG: + if (vlen == 2) return new (C, 2) Replicate2LNode(s); + break; + case T_FLOAT: + if (vlen == 4) return new (C, 2) Replicate4FNode(s); + if (vlen == 2) return new (C, 2) Replicate2FNode(s); + break; + case T_DOUBLE: + if (vlen == 2) return new (C, 2) Replicate2DNode(s); + break; + } + ShouldNotReachHere(); + return NULL; +} + +// Return initial Pack node. Additional operands added with add_opd() calls. +PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) { + BasicType bt = opd_t->array_element_basic_type(); + switch (bt) { + case T_BOOLEAN: + case T_BYTE: + return new (C, 2) PackBNode(s); + case T_CHAR: + return new (C, 2) PackCNode(s); + case T_SHORT: + return new (C, 2) PackSNode(s); + case T_INT: + return new (C, 2) PackINode(s); + case T_LONG: + return new (C, 2) PackLNode(s); + case T_FLOAT: + return new (C, 2) PackFNode(s); + case T_DOUBLE: + return new (C, 2) PackDNode(s); + } + ShouldNotReachHere(); + return NULL; +} + +// Create a binary tree form for Packs. [lo, hi) (half-open) range +Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) { + int ct = hi - lo; + assert(is_power_of_2(ct), "power of 2"); + int mid = lo + ct/2; + Node* n1 = ct == 2 ? in(lo) : binaryTreePack(C, lo, mid); + Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi ); + int rslt_bsize = ct * type2aelembytes[elt_basic_type()]; + if (bottom_type()->is_floatingpoint()) { + switch (rslt_bsize) { + case 8: return new (C, 3) PackFNode(n1, n2); + case 16: return new (C, 3) PackDNode(n1, n2); + } + } else { + assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long"); + switch (rslt_bsize) { + case 2: return new (C, 3) Pack2x1BNode(n1, n2); + case 4: return new (C, 3) Pack2x2BNode(n1, n2); + case 8: return new (C, 3) PackINode(n1, n2); + case 16: return new (C, 3) PackLNode(n1, n2); + } + } + ShouldNotReachHere(); + return NULL; +} + +// Return the vector operator for the specified scalar operation +// and vector length. One use is to check if the code generator +// supports the vector operation. +int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) { + BasicType bt = opd_t->array_element_basic_type(); + if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt))) + return 0; // unimplemented + switch (sopc) { + case Op_AddI: + switch (bt) { + case T_BOOLEAN: + case T_BYTE: return Op_AddVB; + case T_CHAR: return Op_AddVC; + case T_SHORT: return Op_AddVS; + case T_INT: return Op_AddVI; + } + ShouldNotReachHere(); + case Op_AddL: + assert(bt == T_LONG, "must be"); + return Op_AddVL; + case Op_AddF: + assert(bt == T_FLOAT, "must be"); + return Op_AddVF; + case Op_AddD: + assert(bt == T_DOUBLE, "must be"); + return Op_AddVD; + case Op_SubI: + switch (bt) { + case T_BOOLEAN: + case T_BYTE: return Op_SubVB; + case T_CHAR: return Op_SubVC; + case T_SHORT: return Op_SubVS; + case T_INT: return Op_SubVI; + } + ShouldNotReachHere(); + case Op_SubL: + assert(bt == T_LONG, "must be"); + return Op_SubVL; + case Op_SubF: + assert(bt == T_FLOAT, "must be"); + return Op_SubVF; + case Op_SubD: + assert(bt == T_DOUBLE, "must be"); + return Op_SubVD; + case Op_MulF: + assert(bt == T_FLOAT, "must be"); + return Op_MulVF; + case Op_MulD: + assert(bt == T_DOUBLE, "must be"); + return Op_MulVD; + case Op_DivF: + assert(bt == T_FLOAT, "must be"); + return Op_DivVF; + case Op_DivD: + assert(bt == T_DOUBLE, "must be"); + return Op_DivVD; + case Op_LShiftI: + switch (bt) { + case T_BOOLEAN: + case T_BYTE: return Op_LShiftVB; + case T_CHAR: return Op_LShiftVC; + case T_SHORT: return Op_LShiftVS; + case T_INT: return Op_LShiftVI; + } + ShouldNotReachHere(); + case Op_URShiftI: + switch (bt) { + case T_BOOLEAN: + case T_BYTE: return Op_URShiftVB; + case T_CHAR: return Op_URShiftVC; + case T_SHORT: return Op_URShiftVS; + case T_INT: return Op_URShiftVI; + } + ShouldNotReachHere(); + case Op_AndI: + case Op_AndL: + return Op_AndV; + case Op_OrI: + case Op_OrL: + return Op_OrV; + case Op_XorI: + case Op_XorL: + return Op_XorV; + + case Op_LoadB: + case Op_LoadC: + case Op_LoadS: + case Op_LoadI: + case Op_LoadL: + case Op_LoadF: + case Op_LoadD: + return VectorLoadNode::opcode(sopc, vlen); + + case Op_StoreB: + case Op_StoreC: + case Op_StoreI: + case Op_StoreL: + case Op_StoreF: + case Op_StoreD: + return VectorStoreNode::opcode(sopc, vlen); + } + return 0; // Unimplemented +} + +// Helper for above. +int VectorLoadNode::opcode(int sopc, uint vlen) { + switch (sopc) { + case Op_LoadB: + switch (vlen) { + case 2: return 0; // Unimplemented + case 4: return Op_Load4B; + case 8: return Op_Load8B; + case 16: return Op_Load16B; + } + break; + case Op_LoadC: + switch (vlen) { + case 2: return Op_Load2C; + case 4: return Op_Load4C; + case 8: return Op_Load8C; + } + break; + case Op_LoadS: + switch (vlen) { + case 2: return Op_Load2S; + case 4: return Op_Load4S; + case 8: return Op_Load8S; + } + break; + case Op_LoadI: + switch (vlen) { + case 2: return Op_Load2I; + case 4: return Op_Load4I; + } + break; + case Op_LoadL: + if (vlen == 2) return Op_Load2L; + break; + case Op_LoadF: + switch (vlen) { + case 2: return Op_Load2F; + case 4: return Op_Load4F; + } + break; + case Op_LoadD: + if (vlen == 2) return Op_Load2D; + break; + } + return 0; // Unimplemented +} + +// Helper for above +int VectorStoreNode::opcode(int sopc, uint vlen) { + switch (sopc) { + case Op_StoreB: + switch (vlen) { + case 2: return 0; // Unimplemented + case 4: return Op_Store4B; + case 8: return Op_Store8B; + case 16: return Op_Store16B; + } + break; + case Op_StoreC: + switch (vlen) { + case 2: return Op_Store2C; + case 4: return Op_Store4C; + case 8: return Op_Store8C; + } + break; + case Op_StoreI: + switch (vlen) { + case 2: return Op_Store2I; + case 4: return Op_Store4I; + } + break; + case Op_StoreL: + if (vlen == 2) return Op_Store2L; + break; + case Op_StoreF: + switch (vlen) { + case 2: return Op_Store2F; + case 4: return Op_Store4F; + } + break; + case Op_StoreD: + if (vlen == 2) return Op_Store2D; + break; + } + return 0; // Unimplemented +} + +// Return the vector version of a scalar operation node. +VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) { + int vopc = opcode(sopc, vlen, opd_t); + + switch (vopc) { + case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen); + case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen); + case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen); + case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen); + case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen); + case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen); + case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen); + + case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen); + case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen); + case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen); + case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen); + case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen); + case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen); + case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen); + + case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen); + case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen); + + case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen); + case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen); + + case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen); + case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen); + case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen); + case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen); + + case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen); + case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen); + case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen); + case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen); + + case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type()); + case Op_OrV: return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type()); + case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type()); + } + ShouldNotReachHere(); + return NULL; +} + +// Return the vector version of a scalar load node. +VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem, + Node* adr, const TypePtr* atyp, uint vlen) { + int vopc = opcode(opc, vlen); + + switch(vopc) { + case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp); + case Op_Load8B: return new (C, 3) Load8BNode(ctl, mem, adr, atyp); + case Op_Load4B: return new (C, 3) Load4BNode(ctl, mem, adr, atyp); + + case Op_Load8C: return new (C, 3) Load8CNode(ctl, mem, adr, atyp); + case Op_Load4C: return new (C, 3) Load4CNode(ctl, mem, adr, atyp); + case Op_Load2C: return new (C, 3) Load2CNode(ctl, mem, adr, atyp); + + case Op_Load8S: return new (C, 3) Load8SNode(ctl, mem, adr, atyp); + case Op_Load4S: return new (C, 3) Load4SNode(ctl, mem, adr, atyp); + case Op_Load2S: return new (C, 3) Load2SNode(ctl, mem, adr, atyp); + + case Op_Load4I: return new (C, 3) Load4INode(ctl, mem, adr, atyp); + case Op_Load2I: return new (C, 3) Load2INode(ctl, mem, adr, atyp); + + case Op_Load2L: return new (C, 3) Load2LNode(ctl, mem, adr, atyp); + + case Op_Load4F: return new (C, 3) Load4FNode(ctl, mem, adr, atyp); + case Op_Load2F: return new (C, 3) Load2FNode(ctl, mem, adr, atyp); + + case Op_Load2D: return new (C, 3) Load2DNode(ctl, mem, adr, atyp); + } + ShouldNotReachHere(); + return NULL; +} + +// Return the vector version of a scalar store node. +VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem, + Node* adr, const TypePtr* atyp, VectorNode* val, + uint vlen) { + int vopc = opcode(opc, vlen); + + switch(vopc) { + case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val); + case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val); + case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val); + + case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val); + case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val); + case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val); + + case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val); + case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val); + + case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val); + + case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val); + case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val); + + case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val); + } + ShouldNotReachHere(); + return NULL; +} + +// Extract a scalar element of vector. +Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) { + BasicType bt = opd_t->array_element_basic_type(); + assert(position < VectorNode::max_vlen(bt), "pos in range"); + ConINode* pos = ConINode::make(C, (int)position); + switch (bt) { + case T_BOOLEAN: + case T_BYTE: + return new (C, 3) ExtractBNode(v, pos); + case T_CHAR: + return new (C, 3) ExtractCNode(v, pos); + case T_SHORT: + return new (C, 3) ExtractSNode(v, pos); + case T_INT: + return new (C, 3) ExtractINode(v, pos); + case T_LONG: + return new (C, 3) ExtractLNode(v, pos); + case T_FLOAT: + return new (C, 3) ExtractFNode(v, pos); + case T_DOUBLE: + return new (C, 3) ExtractDNode(v, pos); + } + ShouldNotReachHere(); + return NULL; +}