diff -r fd16c54261b3 -r 489c9b5090e2 hotspot/src/share/vm/opto/memnode.hpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hotspot/src/share/vm/opto/memnode.hpp Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,1062 @@ +/* + * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + */ + +// Portions of code courtesy of Clifford Click + +class MultiNode; +class PhaseCCP; +class PhaseTransform; + +//------------------------------MemNode---------------------------------------- +// Load or Store, possibly throwing a NULL pointer exception +class MemNode : public Node { +protected: +#ifdef ASSERT + const TypePtr* _adr_type; // What kind of memory is being addressed? +#endif + virtual uint size_of() const; // Size is bigger (ASSERT only) +public: + enum { Control, // When is it safe to do this load? + Memory, // Chunk of memory is being loaded from + Address, // Actually address, derived from base + ValueIn, // Value to store + OopStore // Preceeding oop store, only in StoreCM + }; +protected: + MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at ) + : Node(c0,c1,c2 ) { + init_class_id(Class_Mem); + debug_only(_adr_type=at; adr_type();) + } + MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 ) + : Node(c0,c1,c2,c3) { + init_class_id(Class_Mem); + debug_only(_adr_type=at; adr_type();) + } + MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4) + : Node(c0,c1,c2,c3,c4) { + init_class_id(Class_Mem); + debug_only(_adr_type=at; adr_type();) + } + + // Helpers for the optimizer. Documented in memnode.cpp. + static bool detect_ptr_independence(Node* p1, AllocateNode* a1, + Node* p2, AllocateNode* a2, + PhaseTransform* phase); + static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast); + +public: + // This one should probably be a phase-specific function: + static bool detect_dominating_control(Node* dom, Node* sub); + + // Is this Node a MemNode or some descendent? Default is YES. + virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp ); + + virtual const class TypePtr *adr_type() const; // returns bottom_type of address + + // Shared code for Ideal methods: + Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL. + + // Helper function for adr_type() implementations. + static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL); + + // Raw access function, to allow copying of adr_type efficiently in + // product builds and retain the debug info for debug builds. + const TypePtr *raw_adr_type() const { +#ifdef ASSERT + return _adr_type; +#else + return 0; +#endif + } + + // Map a load or store opcode to its corresponding store opcode. + // (Return -1 if unknown.) + virtual int store_Opcode() const { return -1; } + + // What is the type of the value in memory? (T_VOID mean "unspecified".) + virtual BasicType memory_type() const = 0; + virtual int memory_size() const { return type2aelembytes[memory_type()]; } + + // Search through memory states which precede this node (load or store). + // Look for an exact match for the address, with no intervening + // aliased stores. + Node* find_previous_store(PhaseTransform* phase); + + // Can this node (load or store) accurately see a stored value in + // the given memory state? (The state may or may not be in(Memory).) + Node* can_see_stored_value(Node* st, PhaseTransform* phase) const; + +#ifndef PRODUCT + static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st); + virtual void dump_spec(outputStream *st) const; +#endif +}; + +//------------------------------LoadNode--------------------------------------- +// Load value; requires Memory and Address +class LoadNode : public MemNode { +protected: + virtual uint cmp( const Node &n ) const; + virtual uint size_of() const; // Size is bigger + const Type* const _type; // What kind of value is loaded? +public: + + LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt ) + : MemNode(c,mem,adr,at), _type(rt) { + init_class_id(Class_Load); + } + + // Polymorphic factory method: + static LoadNode* make( Compile *C, Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, BasicType bt ); + + virtual uint hash() const; // Check the type + + // Handle algebraic identities here. If we have an identity, return the Node + // we are equivalent to. We look for Load of a Store. + virtual Node *Identity( PhaseTransform *phase ); + + // If the load is from Field memory and the pointer is non-null, we can + // zero out the control input. + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + + // Compute a new Type for this node. Basically we just do the pre-check, + // then call the virtual add() to set the type. + virtual const Type *Value( PhaseTransform *phase ) const; + + virtual uint ideal_reg() const; + virtual const Type *bottom_type() const; + // Following method is copied from TypeNode: + void set_type(const Type* t) { + assert(t != NULL, "sanity"); + debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); + *(const Type**)&_type = t; // cast away const-ness + // If this node is in the hash table, make sure it doesn't need a rehash. + assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); + } + const Type* type() const { assert(_type != NULL, "sanity"); return _type; }; + + // Do not match memory edge + virtual uint match_edge(uint idx) const; + + // Map a load opcode to its corresponding store opcode. + virtual int store_Opcode() const = 0; + +#ifndef PRODUCT + virtual void dump_spec(outputStream *st) const; +#endif +protected: + const Type* load_array_final_field(const TypeKlassPtr *tkls, + ciKlass* klass) const; +}; + +//------------------------------LoadBNode-------------------------------------- +// Load a byte (8bits signed) from memory +class LoadBNode : public LoadNode { +public: + LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE ) + : LoadNode(c,mem,adr,at,ti) {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return Op_RegI; } + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual int store_Opcode() const { return Op_StoreB; } + virtual BasicType memory_type() const { return T_BYTE; } +}; + +//------------------------------LoadCNode-------------------------------------- +// Load a char (16bits unsigned) from memory +class LoadCNode : public LoadNode { +public: + LoadCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR ) + : LoadNode(c,mem,adr,at,ti) {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return Op_RegI; } + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual int store_Opcode() const { return Op_StoreC; } + virtual BasicType memory_type() const { return T_CHAR; } +}; + +//------------------------------LoadINode-------------------------------------- +// Load an integer from memory +class LoadINode : public LoadNode { +public: + LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT ) + : LoadNode(c,mem,adr,at,ti) {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return Op_RegI; } + virtual int store_Opcode() const { return Op_StoreI; } + virtual BasicType memory_type() const { return T_INT; } +}; + +//------------------------------LoadRangeNode---------------------------------- +// Load an array length from the array +class LoadRangeNode : public LoadINode { +public: + LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS ) + : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {} + virtual int Opcode() const; + virtual const Type *Value( PhaseTransform *phase ) const; + virtual Node *Identity( PhaseTransform *phase ); +}; + +//------------------------------LoadLNode-------------------------------------- +// Load a long from memory +class LoadLNode : public LoadNode { + virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; } + virtual uint cmp( const Node &n ) const { + return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access + && LoadNode::cmp(n); + } + virtual uint size_of() const { return sizeof(*this); } + const bool _require_atomic_access; // is piecewise load forbidden? + +public: + LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, + const TypeLong *tl = TypeLong::LONG, + bool require_atomic_access = false ) + : LoadNode(c,mem,adr,at,tl) + , _require_atomic_access(require_atomic_access) + {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return Op_RegL; } + virtual int store_Opcode() const { return Op_StoreL; } + virtual BasicType memory_type() const { return T_LONG; } + bool require_atomic_access() { return _require_atomic_access; } + static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt); +#ifndef PRODUCT + virtual void dump_spec(outputStream *st) const { + LoadNode::dump_spec(st); + if (_require_atomic_access) st->print(" Atomic!"); + } +#endif +}; + +//------------------------------LoadL_unalignedNode---------------------------- +// Load a long from unaligned memory +class LoadL_unalignedNode : public LoadLNode { +public: + LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at ) + : LoadLNode(c,mem,adr,at) {} + virtual int Opcode() const; +}; + +//------------------------------LoadFNode-------------------------------------- +// Load a float (64 bits) from memory +class LoadFNode : public LoadNode { +public: + LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT ) + : LoadNode(c,mem,adr,at,t) {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return Op_RegF; } + virtual int store_Opcode() const { return Op_StoreF; } + virtual BasicType memory_type() const { return T_FLOAT; } +}; + +//------------------------------LoadDNode-------------------------------------- +// Load a double (64 bits) from memory +class LoadDNode : public LoadNode { +public: + LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE ) + : LoadNode(c,mem,adr,at,t) {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return Op_RegD; } + virtual int store_Opcode() const { return Op_StoreD; } + virtual BasicType memory_type() const { return T_DOUBLE; } +}; + +//------------------------------LoadD_unalignedNode---------------------------- +// Load a double from unaligned memory +class LoadD_unalignedNode : public LoadDNode { +public: + LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at ) + : LoadDNode(c,mem,adr,at) {} + virtual int Opcode() const; +}; + +//------------------------------LoadPNode-------------------------------------- +// Load a pointer from memory (either object or array) +class LoadPNode : public LoadNode { +public: + LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t ) + : LoadNode(c,mem,adr,at,t) {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return Op_RegP; } + virtual int store_Opcode() const { return Op_StoreP; } + virtual BasicType memory_type() const { return T_ADDRESS; } + // depends_only_on_test is almost always true, and needs to be almost always + // true to enable key hoisting & commoning optimizations. However, for the + // special case of RawPtr loads from TLS top & end, the control edge carries + // the dependence preventing hoisting past a Safepoint instead of the memory + // edge. (An unfortunate consequence of having Safepoints not set Raw + // Memory; itself an unfortunate consequence of having Nodes which produce + // results (new raw memory state) inside of loops preventing all manner of + // other optimizations). Basically, it's ugly but so is the alternative. + // See comment in macro.cpp, around line 125 expand_allocate_common(). + virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; } +}; + +//------------------------------LoadKlassNode---------------------------------- +// Load a Klass from an object +class LoadKlassNode : public LoadPNode { +public: + LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk = TypeKlassPtr::OBJECT ) + : LoadPNode(c,mem,adr,at,tk) {} + virtual int Opcode() const; + virtual const Type *Value( PhaseTransform *phase ) const; + virtual Node *Identity( PhaseTransform *phase ); + virtual bool depends_only_on_test() const { return true; } +}; + +//------------------------------LoadSNode-------------------------------------- +// Load a short (16bits signed) from memory +class LoadSNode : public LoadNode { +public: + LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT ) + : LoadNode(c,mem,adr,at,ti) {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return Op_RegI; } + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual int store_Opcode() const { return Op_StoreC; } + virtual BasicType memory_type() const { return T_SHORT; } +}; + +//------------------------------StoreNode-------------------------------------- +// Store value; requires Store, Address and Value +class StoreNode : public MemNode { +protected: + virtual uint cmp( const Node &n ) const; + virtual bool depends_only_on_test() const { return false; } + + Node *Ideal_masked_input (PhaseGVN *phase, uint mask); + Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits); + +public: + StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) + : MemNode(c,mem,adr,at,val) { + init_class_id(Class_Store); + } + StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store ) + : MemNode(c,mem,adr,at,val,oop_store) { + init_class_id(Class_Store); + } + + // Polymorphic factory method: + static StoreNode* make( Compile *C, Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, BasicType bt ); + + virtual uint hash() const; // Check the type + + // If the store is to Field memory and the pointer is non-null, we can + // zero out the control input. + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + + // Compute a new Type for this node. Basically we just do the pre-check, + // then call the virtual add() to set the type. + virtual const Type *Value( PhaseTransform *phase ) const; + + // Check for identity function on memory (Load then Store at same address) + virtual Node *Identity( PhaseTransform *phase ); + + // Do not match memory edge + virtual uint match_edge(uint idx) const; + + virtual const Type *bottom_type() const; // returns Type::MEMORY + + // Map a store opcode to its corresponding own opcode, trivially. + virtual int store_Opcode() const { return Opcode(); } + + // have all possible loads of the value stored been optimized away? + bool value_never_loaded(PhaseTransform *phase) const; +}; + +//------------------------------StoreBNode------------------------------------- +// Store byte to memory +class StoreBNode : public StoreNode { +public: + StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {} + virtual int Opcode() const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual BasicType memory_type() const { return T_BYTE; } +}; + +//------------------------------StoreCNode------------------------------------- +// Store char/short to memory +class StoreCNode : public StoreNode { +public: + StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {} + virtual int Opcode() const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual BasicType memory_type() const { return T_CHAR; } +}; + +//------------------------------StoreINode------------------------------------- +// Store int to memory +class StoreINode : public StoreNode { +public: + StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {} + virtual int Opcode() const; + virtual BasicType memory_type() const { return T_INT; } +}; + +//------------------------------StoreLNode------------------------------------- +// Store long to memory +class StoreLNode : public StoreNode { + virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; } + virtual uint cmp( const Node &n ) const { + return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access + && StoreNode::cmp(n); + } + virtual uint size_of() const { return sizeof(*this); } + const bool _require_atomic_access; // is piecewise store forbidden? + +public: + StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, + bool require_atomic_access = false ) + : StoreNode(c,mem,adr,at,val) + , _require_atomic_access(require_atomic_access) + {} + virtual int Opcode() const; + virtual BasicType memory_type() const { return T_LONG; } + bool require_atomic_access() { return _require_atomic_access; } + static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val); +#ifndef PRODUCT + virtual void dump_spec(outputStream *st) const { + StoreNode::dump_spec(st); + if (_require_atomic_access) st->print(" Atomic!"); + } +#endif +}; + +//------------------------------StoreFNode------------------------------------- +// Store float to memory +class StoreFNode : public StoreNode { +public: + StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {} + virtual int Opcode() const; + virtual BasicType memory_type() const { return T_FLOAT; } +}; + +//------------------------------StoreDNode------------------------------------- +// Store double to memory +class StoreDNode : public StoreNode { +public: + StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {} + virtual int Opcode() const; + virtual BasicType memory_type() const { return T_DOUBLE; } +}; + +//------------------------------StorePNode------------------------------------- +// Store pointer to memory +class StorePNode : public StoreNode { +public: + StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {} + virtual int Opcode() const; + virtual BasicType memory_type() const { return T_ADDRESS; } +}; + +//------------------------------StoreCMNode----------------------------------- +// Store card-mark byte to memory for CM +// The last StoreCM before a SafePoint must be preserved and occur after its "oop" store +// Preceeding equivalent StoreCMs may be eliminated. +class StoreCMNode : public StoreNode { +public: + StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store ) : StoreNode(c,mem,adr,at,val,oop_store) {} + virtual int Opcode() const; + virtual Node *Identity( PhaseTransform *phase ); + virtual const Type *Value( PhaseTransform *phase ) const; + virtual BasicType memory_type() const { return T_VOID; } // unspecific +}; + +//------------------------------LoadPLockedNode--------------------------------- +// Load-locked a pointer from memory (either object or array). +// On Sparc & Intel this is implemented as a normal pointer load. +// On PowerPC and friends it's a real load-locked. +class LoadPLockedNode : public LoadPNode { +public: + LoadPLockedNode( Node *c, Node *mem, Node *adr ) + : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {} + virtual int Opcode() const; + virtual int store_Opcode() const { return Op_StorePConditional; } + virtual bool depends_only_on_test() const { return true; } +}; + +//------------------------------LoadLLockedNode--------------------------------- +// Load-locked a pointer from memory (either object or array). +// On Sparc & Intel this is implemented as a normal long load. +class LoadLLockedNode : public LoadLNode { +public: + LoadLLockedNode( Node *c, Node *mem, Node *adr ) + : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {} + virtual int Opcode() const; + virtual int store_Opcode() const { return Op_StoreLConditional; } +}; + +//------------------------------SCMemProjNode--------------------------------------- +// This class defines a projection of the memory state of a store conditional node. +// These nodes return a value, but also update memory. +class SCMemProjNode : public ProjNode { +public: + enum {SCMEMPROJCON = (uint)-2}; + SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { } + virtual int Opcode() const; + virtual bool is_CFG() const { return false; } + virtual const Type *bottom_type() const {return Type::MEMORY;} + virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();} + virtual uint ideal_reg() const { return 0;} // memory projections don't have a register + virtual const Type *Value( PhaseTransform *phase ) const; +#ifndef PRODUCT + virtual void dump_spec(outputStream *st) const {}; +#endif +}; + +//------------------------------LoadStoreNode--------------------------- +class LoadStoreNode : public Node { +public: + enum { + ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode + }; + LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex); + virtual bool depends_only_on_test() const { return false; } + virtual const Type *bottom_type() const { return TypeInt::BOOL; } + virtual uint ideal_reg() const { return Op_RegI; } + virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; } +}; + +//------------------------------StorePConditionalNode--------------------------- +// Conditionally store pointer to memory, if no change since prior +// load-locked. Sets flags for success or failure of the store. +class StorePConditionalNode : public LoadStoreNode { +public: + StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { } + virtual int Opcode() const; + // Produces flags + virtual uint ideal_reg() const { return Op_RegFlags; } +}; + +//------------------------------StoreLConditionalNode--------------------------- +// Conditionally store long to memory, if no change since prior +// load-locked. Sets flags for success or failure of the store. +class StoreLConditionalNode : public LoadStoreNode { +public: + StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { } + virtual int Opcode() const; +}; + + +//------------------------------CompareAndSwapLNode--------------------------- +class CompareAndSwapLNode : public LoadStoreNode { +public: + CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { } + virtual int Opcode() const; +}; + + +//------------------------------CompareAndSwapINode--------------------------- +class CompareAndSwapINode : public LoadStoreNode { +public: + CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { } + virtual int Opcode() const; +}; + + +//------------------------------CompareAndSwapPNode--------------------------- +class CompareAndSwapPNode : public LoadStoreNode { +public: + CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { } + virtual int Opcode() const; +}; + +//------------------------------ClearArray------------------------------------- +class ClearArrayNode: public Node { +public: + ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base ) : Node(ctrl,arymem,word_cnt,base) {} + virtual int Opcode() const; + virtual const Type *bottom_type() const { return Type::MEMORY; } + // ClearArray modifies array elements, and so affects only the + // array memory addressed by the bottom_type of its base address. + virtual const class TypePtr *adr_type() const; + virtual Node *Identity( PhaseTransform *phase ); + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual uint match_edge(uint idx) const; + + // Clear the given area of an object or array. + // The start offset must always be aligned mod BytesPerInt. + // The end offset must always be aligned mod BytesPerLong. + // Return the new memory. + static Node* clear_memory(Node* control, Node* mem, Node* dest, + intptr_t start_offset, + intptr_t end_offset, + PhaseGVN* phase); + static Node* clear_memory(Node* control, Node* mem, Node* dest, + intptr_t start_offset, + Node* end_offset, + PhaseGVN* phase); + static Node* clear_memory(Node* control, Node* mem, Node* dest, + Node* start_offset, + Node* end_offset, + PhaseGVN* phase); +}; + +//------------------------------StrComp------------------------------------- +class StrCompNode: public Node { +public: + StrCompNode(Node *control, + Node* char_array_mem, + Node* value_mem, + Node* count_mem, + Node* offset_mem, + Node* s1, Node* s2): Node(control, + char_array_mem, + value_mem, + count_mem, + offset_mem, + s1, s2) {}; + virtual int Opcode() const; + virtual bool depends_only_on_test() const { return false; } + virtual const Type* bottom_type() const { return TypeInt::INT; } + // a StrCompNode (conservatively) aliases with everything: + virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; } + virtual uint match_edge(uint idx) const; + virtual uint ideal_reg() const { return Op_RegI; } + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); +}; + +//------------------------------MemBar----------------------------------------- +// There are different flavors of Memory Barriers to match the Java Memory +// Model. Monitor-enter and volatile-load act as Aquires: no following ref +// can be moved to before them. We insert a MemBar-Acquire after a FastLock or +// volatile-load. Monitor-exit and volatile-store act as Release: no +// preceeding ref can be moved to after them. We insert a MemBar-Release +// before a FastUnlock or volatile-store. All volatiles need to be +// serialized, so we follow all volatile-stores with a MemBar-Volatile to +// seperate it from any following volatile-load. +class MemBarNode: public MultiNode { + virtual uint hash() const ; // { return NO_HASH; } + virtual uint cmp( const Node &n ) const ; // Always fail, except on self + + virtual uint size_of() const { return sizeof(*this); } + // Memory type this node is serializing. Usually either rawptr or bottom. + const TypePtr* _adr_type; + +public: + enum { + Precedent = TypeFunc::Parms // optional edge to force precedence + }; + MemBarNode(Compile* C, int alias_idx, Node* precedent); + virtual int Opcode() const = 0; + virtual const class TypePtr *adr_type() const { return _adr_type; } + virtual const Type *Value( PhaseTransform *phase ) const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual uint match_edge(uint idx) const { return 0; } + virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; } + virtual Node *match( const ProjNode *proj, const Matcher *m ); + // Factory method. Builds a wide or narrow membar. + // Optional 'precedent' becomes an extra edge if not null. + static MemBarNode* make(Compile* C, int opcode, + int alias_idx = Compile::AliasIdxBot, + Node* precedent = NULL); +}; + +// "Acquire" - no following ref can move before (but earlier refs can +// follow, like an early Load stalled in cache). Requires multi-cpu +// visibility. Inserted after a volatile load or FastLock. +class MemBarAcquireNode: public MemBarNode { +public: + MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent) + : MemBarNode(C, alias_idx, precedent) {} + virtual int Opcode() const; +}; + +// "Release" - no earlier ref can move after (but later refs can move +// up, like a speculative pipelined cache-hitting Load). Requires +// multi-cpu visibility. Inserted before a volatile store or FastUnLock. +class MemBarReleaseNode: public MemBarNode { +public: + MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent) + : MemBarNode(C, alias_idx, precedent) {} + virtual int Opcode() const; +}; + +// Ordering between a volatile store and a following volatile load. +// Requires multi-CPU visibility? +class MemBarVolatileNode: public MemBarNode { +public: + MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent) + : MemBarNode(C, alias_idx, precedent) {} + virtual int Opcode() const; +}; + +// Ordering within the same CPU. Used to order unsafe memory references +// inside the compiler when we lack alias info. Not needed "outside" the +// compiler because the CPU does all the ordering for us. +class MemBarCPUOrderNode: public MemBarNode { +public: + MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent) + : MemBarNode(C, alias_idx, precedent) {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return 0; } // not matched in the AD file +}; + +// Isolation of object setup after an AllocateNode and before next safepoint. +// (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.) +class InitializeNode: public MemBarNode { + friend class AllocateNode; + + bool _is_complete; + +public: + enum { + Control = TypeFunc::Control, + Memory = TypeFunc::Memory, // MergeMem for states affected by this op + RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address + RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP) + }; + + InitializeNode(Compile* C, int adr_type, Node* rawoop); + virtual int Opcode() const; + virtual uint size_of() const { return sizeof(*this); } + virtual uint ideal_reg() const { return 0; } // not matched in the AD file + virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress + + // Manage incoming memory edges via a MergeMem on in(Memory): + Node* memory(uint alias_idx); + + // The raw memory edge coming directly from the Allocation. + // The contents of this memory are *always* all-zero-bits. + Node* zero_memory() { return memory(Compile::AliasIdxRaw); } + + // Return the corresponding allocation for this initialization (or null if none). + // (Note: Both InitializeNode::allocation and AllocateNode::initialization + // are defined in graphKit.cpp, which sets up the bidirectional relation.) + AllocateNode* allocation(); + + // Anything other than zeroing in this init? + bool is_non_zero(); + + // An InitializeNode must completed before macro expansion is done. + // Completion requires that the AllocateNode must be followed by + // initialization of the new memory to zero, then to any initializers. + bool is_complete() { return _is_complete; } + + // Mark complete. (Must not yet be complete.) + void set_complete(PhaseGVN* phase); + +#ifdef ASSERT + // ensure all non-degenerate stores are ordered and non-overlapping + bool stores_are_sane(PhaseTransform* phase); +#endif //ASSERT + + // See if this store can be captured; return offset where it initializes. + // Return 0 if the store cannot be moved (any sort of problem). + intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase); + + // Capture another store; reformat it to write my internal raw memory. + // Return the captured copy, else NULL if there is some sort of problem. + Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase); + + // Find captured store which corresponds to the range [start..start+size). + // Return my own memory projection (meaning the initial zero bits) + // if there is no such store. Return NULL if there is a problem. + Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase); + + // Called when the associated AllocateNode is expanded into CFG. + Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, + intptr_t header_size, Node* size_in_bytes, + PhaseGVN* phase); + + private: + void remove_extra_zeroes(); + + // Find out where a captured store should be placed (or already is placed). + int captured_store_insertion_point(intptr_t start, int size_in_bytes, + PhaseTransform* phase); + + static intptr_t get_store_offset(Node* st, PhaseTransform* phase); + + Node* make_raw_address(intptr_t offset, PhaseTransform* phase); + + bool detect_init_independence(Node* n, bool st_is_pinned, int& count); + + void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes, + PhaseGVN* phase); + + intptr_t find_next_fullword_store(uint i, PhaseGVN* phase); +}; + +//------------------------------MergeMem--------------------------------------- +// (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.) +class MergeMemNode: public Node { + virtual uint hash() const ; // { return NO_HASH; } + virtual uint cmp( const Node &n ) const ; // Always fail, except on self + friend class MergeMemStream; + MergeMemNode(Node* def); // clients use MergeMemNode::make + +public: + // If the input is a whole memory state, clone it with all its slices intact. + // Otherwise, make a new memory state with just that base memory input. + // In either case, the result is a newly created MergeMem. + static MergeMemNode* make(Compile* C, Node* base_memory); + + virtual int Opcode() const; + virtual Node *Identity( PhaseTransform *phase ); + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual uint ideal_reg() const { return NotAMachineReg; } + virtual uint match_edge(uint idx) const { return 0; } + virtual const RegMask &out_RegMask() const; + virtual const Type *bottom_type() const { return Type::MEMORY; } + virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; } + // sparse accessors + // Fetch the previously stored "set_memory_at", or else the base memory. + // (Caller should clone it if it is a phi-nest.) + Node* memory_at(uint alias_idx) const; + // set the memory, regardless of its previous value + void set_memory_at(uint alias_idx, Node* n); + // the "base" is the memory that provides the non-finite support + Node* base_memory() const { return in(Compile::AliasIdxBot); } + // warning: setting the base can implicitly set any of the other slices too + void set_base_memory(Node* def); + // sentinel value which denotes a copy of the base memory: + Node* empty_memory() const { return in(Compile::AliasIdxTop); } + static Node* make_empty_memory(); // where the sentinel comes from + bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); } + // hook for the iterator, to perform any necessary setup + void iteration_setup(const MergeMemNode* other = NULL); + // push sentinels until I am at least as long as the other (semantic no-op) + void grow_to_match(const MergeMemNode* other); + bool verify_sparse() const PRODUCT_RETURN0; +#ifndef PRODUCT + virtual void dump_spec(outputStream *st) const; +#endif +}; + +class MergeMemStream : public StackObj { + private: + MergeMemNode* _mm; + const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations + Node* _mm_base; // loop-invariant base memory of _mm + int _idx; + int _cnt; + Node* _mem; + Node* _mem2; + int _cnt2; + + void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) { + // subsume_node will break sparseness at times, whenever a memory slice + // folds down to a copy of the base ("fat") memory. In such a case, + // the raw edge will update to base, although it should be top. + // This iterator will recognize either top or base_memory as an + // "empty" slice. See is_empty, is_empty2, and next below. + // + // The sparseness property is repaired in MergeMemNode::Ideal. + // As long as access to a MergeMem goes through this iterator + // or the memory_at accessor, flaws in the sparseness will + // never be observed. + // + // Also, iteration_setup repairs sparseness. + assert(mm->verify_sparse(), "please, no dups of base"); + assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base"); + + _mm = mm; + _mm_base = mm->base_memory(); + _mm2 = mm2; + _cnt = mm->req(); + _idx = Compile::AliasIdxBot-1; // start at the base memory + _mem = NULL; + _mem2 = NULL; + } + +#ifdef ASSERT + Node* check_memory() const { + if (at_base_memory()) + return _mm->base_memory(); + else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top()) + return _mm->memory_at(_idx); + else + return _mm_base; + } + Node* check_memory2() const { + return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx); + } +#endif + + static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0; + void assert_synch() const { + assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx), + "no side-effects except through the stream"); + } + + public: + + // expected usages: + // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... } + // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... } + + // iterate over one merge + MergeMemStream(MergeMemNode* mm) { + mm->iteration_setup(); + init(mm); + debug_only(_cnt2 = 999); + } + // iterate in parallel over two merges + // only iterates through non-empty elements of mm2 + MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) { + assert(mm2, "second argument must be a MergeMem also"); + ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state + mm->iteration_setup(mm2); + init(mm, mm2); + _cnt2 = mm2->req(); + } +#ifdef ASSERT + ~MergeMemStream() { + assert_synch(); + } +#endif + + MergeMemNode* all_memory() const { + return _mm; + } + Node* base_memory() const { + assert(_mm_base == _mm->base_memory(), "no update to base memory, please"); + return _mm_base; + } + const MergeMemNode* all_memory2() const { + assert(_mm2 != NULL, ""); + return _mm2; + } + bool at_base_memory() const { + return _idx == Compile::AliasIdxBot; + } + int alias_idx() const { + assert(_mem, "must call next 1st"); + return _idx; + } + + const TypePtr* adr_type() const { + return Compile::current()->get_adr_type(alias_idx()); + } + + const TypePtr* adr_type(Compile* C) const { + return C->get_adr_type(alias_idx()); + } + bool is_empty() const { + assert(_mem, "must call next 1st"); + assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel"); + return _mem->is_top(); + } + bool is_empty2() const { + assert(_mem2, "must call next 1st"); + assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel"); + return _mem2->is_top(); + } + Node* memory() const { + assert(!is_empty(), "must not be empty"); + assert_synch(); + return _mem; + } + // get the current memory, regardless of empty or non-empty status + Node* force_memory() const { + assert(!is_empty() || !at_base_memory(), ""); + // Use _mm_base to defend against updates to _mem->base_memory(). + Node *mem = _mem->is_top() ? _mm_base : _mem; + assert(mem == check_memory(), ""); + return mem; + } + Node* memory2() const { + assert(_mem2 == check_memory2(), ""); + return _mem2; + } + void set_memory(Node* mem) { + if (at_base_memory()) { + // Note that this does not change the invariant _mm_base. + _mm->set_base_memory(mem); + } else { + _mm->set_memory_at(_idx, mem); + } + _mem = mem; + assert_synch(); + } + + // Recover from a side effect to the MergeMemNode. + void set_memory() { + _mem = _mm->in(_idx); + } + + bool next() { return next(false); } + bool next2() { return next(true); } + + bool next_non_empty() { return next_non_empty(false); } + bool next_non_empty2() { return next_non_empty(true); } + // next_non_empty2 can yield states where is_empty() is true + + private: + // find the next item, which might be empty + bool next(bool have_mm2) { + assert((_mm2 != NULL) == have_mm2, "use other next"); + assert_synch(); + if (++_idx < _cnt) { + // Note: This iterator allows _mm to be non-sparse. + // It behaves the same whether _mem is top or base_memory. + _mem = _mm->in(_idx); + if (have_mm2) + _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop); + return true; + } + return false; + } + + // find the next non-empty item + bool next_non_empty(bool have_mm2) { + while (next(have_mm2)) { + if (!is_empty()) { + // make sure _mem2 is filled in sensibly + if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory(); + return true; + } else if (have_mm2 && !is_empty2()) { + return true; // is_empty() == true + } + } + return false; + } +}; + +//------------------------------Prefetch--------------------------------------- + +// Non-faulting prefetch load. Prefetch for many reads. +class PrefetchReadNode : public Node { +public: + PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return NotAMachineReg; } + virtual uint match_edge(uint idx) const { return idx==2; } + virtual const Type *bottom_type() const { return Type::ABIO; } +}; + +// Non-faulting prefetch load. Prefetch for many reads & many writes. +class PrefetchWriteNode : public Node { +public: + PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {} + virtual int Opcode() const; + virtual uint ideal_reg() const { return NotAMachineReg; } + virtual uint match_edge(uint idx) const { return idx==2; } + virtual const Type *bottom_type() const { return Type::ABIO; } +};