diff -r fd16c54261b3 -r 489c9b5090e2 hotspot/src/share/vm/c1/c1_Runtime1.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hotspot/src/share/vm/c1/c1_Runtime1.cpp Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,1194 @@ +/* + * Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + */ + +#include "incls/_precompiled.incl" +#include "incls/_c1_Runtime1.cpp.incl" + + +// Implementation of StubAssembler + +StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) { + _name = name; + _must_gc_arguments = false; + _frame_size = no_frame_size; + _num_rt_args = 0; + _stub_id = stub_id; +} + + +void StubAssembler::set_info(const char* name, bool must_gc_arguments) { + _name = name; + _must_gc_arguments = must_gc_arguments; +} + + +void StubAssembler::set_frame_size(int size) { + if (_frame_size == no_frame_size) { + _frame_size = size; + } + assert(_frame_size == size, "can't change the frame size"); +} + + +void StubAssembler::set_num_rt_args(int args) { + if (_num_rt_args == 0) { + _num_rt_args = args; + } + assert(_num_rt_args == args, "can't change the number of args"); +} + +// Implementation of Runtime1 + +bool Runtime1::_is_initialized = false; +CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids]; +const char *Runtime1::_blob_names[] = { + RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME) +}; + +#ifndef PRODUCT +// statistics +int Runtime1::_generic_arraycopy_cnt = 0; +int Runtime1::_primitive_arraycopy_cnt = 0; +int Runtime1::_oop_arraycopy_cnt = 0; +int Runtime1::_arraycopy_slowcase_cnt = 0; +int Runtime1::_new_type_array_slowcase_cnt = 0; +int Runtime1::_new_object_array_slowcase_cnt = 0; +int Runtime1::_new_instance_slowcase_cnt = 0; +int Runtime1::_new_multi_array_slowcase_cnt = 0; +int Runtime1::_monitorenter_slowcase_cnt = 0; +int Runtime1::_monitorexit_slowcase_cnt = 0; +int Runtime1::_patch_code_slowcase_cnt = 0; +int Runtime1::_throw_range_check_exception_count = 0; +int Runtime1::_throw_index_exception_count = 0; +int Runtime1::_throw_div0_exception_count = 0; +int Runtime1::_throw_null_pointer_exception_count = 0; +int Runtime1::_throw_class_cast_exception_count = 0; +int Runtime1::_throw_incompatible_class_change_error_count = 0; +int Runtime1::_throw_array_store_exception_count = 0; +int Runtime1::_throw_count = 0; +#endif + +BufferBlob* Runtime1::_buffer_blob = NULL; + +// Simple helper to see if the caller of a runtime stub which +// entered the VM has been deoptimized + +static bool caller_is_deopted() { + JavaThread* thread = JavaThread::current(); + RegisterMap reg_map(thread, false); + frame runtime_frame = thread->last_frame(); + frame caller_frame = runtime_frame.sender(®_map); + assert(caller_frame.is_compiled_frame(), "must be compiled"); + return caller_frame.is_deoptimized_frame(); +} + +// Stress deoptimization +static void deopt_caller() { + if ( !caller_is_deopted()) { + JavaThread* thread = JavaThread::current(); + RegisterMap reg_map(thread, false); + frame runtime_frame = thread->last_frame(); + frame caller_frame = runtime_frame.sender(®_map); + VM_DeoptimizeFrame deopt(thread, caller_frame.id()); + VMThread::execute(&deopt); + assert(caller_is_deopted(), "Must be deoptimized"); + } +} + + +BufferBlob* Runtime1::get_buffer_blob() { + // Allocate code buffer space only once + BufferBlob* blob = _buffer_blob; + if (blob == NULL) { + // setup CodeBuffer. Preallocate a BufferBlob of size + // NMethodSizeLimit plus some extra space for constants. + int code_buffer_size = desired_max_code_buffer_size() + desired_max_constant_size(); + blob = BufferBlob::create("Compiler1 temporary CodeBuffer", + code_buffer_size); + guarantee(blob != NULL, "must create initial code buffer"); + _buffer_blob = blob; + } + return _buffer_blob; +} + +void Runtime1::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) { + // Preinitialize the consts section to some large size: + int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo)); + char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size); + code->insts()->initialize_shared_locs((relocInfo*)locs_buffer, + locs_buffer_size / sizeof(relocInfo)); + code->initialize_consts_size(desired_max_constant_size()); + // Call stubs + deopt/exception handler + code->initialize_stubs_size((call_stub_estimate * LIR_Assembler::call_stub_size) + + LIR_Assembler::exception_handler_size + + LIR_Assembler::deopt_handler_size); +} + + +void Runtime1::generate_blob_for(StubID id) { + assert(0 <= id && id < number_of_ids, "illegal stub id"); + ResourceMark rm; + // create code buffer for code storage + CodeBuffer code(get_buffer_blob()->instructions_begin(), + get_buffer_blob()->instructions_size()); + + setup_code_buffer(&code, 0); + + // create assembler for code generation + StubAssembler* sasm = new StubAssembler(&code, name_for(id), id); + // generate code for runtime stub + OopMapSet* oop_maps; + oop_maps = generate_code_for(id, sasm); + assert(oop_maps == NULL || sasm->frame_size() != no_frame_size, + "if stub has an oop map it must have a valid frame size"); + +#ifdef ASSERT + // Make sure that stubs that need oopmaps have them + switch (id) { + // These stubs don't need to have an oopmap + case dtrace_object_alloc_id: + case slow_subtype_check_id: + case fpu2long_stub_id: + case unwind_exception_id: +#ifndef TIERED + case counter_overflow_id: // Not generated outside the tiered world +#endif +#ifdef SPARC + case handle_exception_nofpu_id: // Unused on sparc +#endif + break; + + // All other stubs should have oopmaps + default: + assert(oop_maps != NULL, "must have an oopmap"); + } +#endif + + // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned) + sasm->align(BytesPerWord); + // make sure all code is in code buffer + sasm->flush(); + // create blob - distinguish a few special cases + CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id), + &code, + CodeOffsets::frame_never_safe, + sasm->frame_size(), + oop_maps, + sasm->must_gc_arguments()); + // install blob + assert(blob != NULL, "blob must exist"); + _blobs[id] = blob; +} + + +void Runtime1::initialize() { + // Warning: If we have more than one compilation running in parallel, we + // need a lock here with the current setup (lazy initialization). + if (!is_initialized()) { + _is_initialized = true; + + // platform-dependent initialization + initialize_pd(); + // generate stubs + for (int id = 0; id < number_of_ids; id++) generate_blob_for((StubID)id); + // printing +#ifndef PRODUCT + if (PrintSimpleStubs) { + ResourceMark rm; + for (int id = 0; id < number_of_ids; id++) { + _blobs[id]->print(); + if (_blobs[id]->oop_maps() != NULL) { + _blobs[id]->oop_maps()->print(); + } + } + } +#endif + } +} + + +CodeBlob* Runtime1::blob_for(StubID id) { + assert(0 <= id && id < number_of_ids, "illegal stub id"); + if (!is_initialized()) initialize(); + return _blobs[id]; +} + + +const char* Runtime1::name_for(StubID id) { + assert(0 <= id && id < number_of_ids, "illegal stub id"); + return _blob_names[id]; +} + +const char* Runtime1::name_for_address(address entry) { + for (int id = 0; id < number_of_ids; id++) { + if (entry == entry_for((StubID)id)) return name_for((StubID)id); + } + +#define FUNCTION_CASE(a, f) \ + if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f + + FUNCTION_CASE(entry, os::javaTimeMillis); + FUNCTION_CASE(entry, os::javaTimeNanos); + FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end); + FUNCTION_CASE(entry, SharedRuntime::d2f); + FUNCTION_CASE(entry, SharedRuntime::d2i); + FUNCTION_CASE(entry, SharedRuntime::d2l); + FUNCTION_CASE(entry, SharedRuntime::dcos); + FUNCTION_CASE(entry, SharedRuntime::dexp); + FUNCTION_CASE(entry, SharedRuntime::dlog); + FUNCTION_CASE(entry, SharedRuntime::dlog10); + FUNCTION_CASE(entry, SharedRuntime::dpow); + FUNCTION_CASE(entry, SharedRuntime::drem); + FUNCTION_CASE(entry, SharedRuntime::dsin); + FUNCTION_CASE(entry, SharedRuntime::dtan); + FUNCTION_CASE(entry, SharedRuntime::f2i); + FUNCTION_CASE(entry, SharedRuntime::f2l); + FUNCTION_CASE(entry, SharedRuntime::frem); + FUNCTION_CASE(entry, SharedRuntime::l2d); + FUNCTION_CASE(entry, SharedRuntime::l2f); + FUNCTION_CASE(entry, SharedRuntime::ldiv); + FUNCTION_CASE(entry, SharedRuntime::lmul); + FUNCTION_CASE(entry, SharedRuntime::lrem); + FUNCTION_CASE(entry, SharedRuntime::lrem); + FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry); + FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit); + FUNCTION_CASE(entry, trace_block_entry); + +#undef FUNCTION_CASE + + return ""; +} + + +JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass)) + NOT_PRODUCT(_new_instance_slowcase_cnt++;) + + assert(oop(klass)->is_klass(), "not a class"); + instanceKlassHandle h(thread, klass); + h->check_valid_for_instantiation(true, CHECK); + // make sure klass is initialized + h->initialize(CHECK); + // allocate instance and return via TLS + oop obj = h->allocate_instance(CHECK); + thread->set_vm_result(obj); +JRT_END + + +JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length)) + NOT_PRODUCT(_new_type_array_slowcase_cnt++;) + // Note: no handle for klass needed since they are not used + // anymore after new_typeArray() and no GC can happen before. + // (This may have to change if this code changes!) + assert(oop(klass)->is_klass(), "not a class"); + BasicType elt_type = typeArrayKlass::cast(klass)->element_type(); + oop obj = oopFactory::new_typeArray(elt_type, length, CHECK); + thread->set_vm_result(obj); + // This is pretty rare but this runtime patch is stressful to deoptimization + // if we deoptimize here so force a deopt to stress the path. + if (DeoptimizeALot) { + deopt_caller(); + } + +JRT_END + + +JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length)) + NOT_PRODUCT(_new_object_array_slowcase_cnt++;) + + // Note: no handle for klass needed since they are not used + // anymore after new_objArray() and no GC can happen before. + // (This may have to change if this code changes!) + assert(oop(array_klass)->is_klass(), "not a class"); + klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass(); + objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK); + thread->set_vm_result(obj); + // This is pretty rare but this runtime patch is stressful to deoptimization + // if we deoptimize here so force a deopt to stress the path. + if (DeoptimizeALot) { + deopt_caller(); + } +JRT_END + + +JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims)) + NOT_PRODUCT(_new_multi_array_slowcase_cnt++;) + + assert(oop(klass)->is_klass(), "not a class"); + assert(rank >= 1, "rank must be nonzero"); +#ifdef _LP64 +// In 64 bit mode, the sizes are stored in the top 32 bits +// of each 64 bit stack entry. +// dims is actually an intptr_t * because the arguments +// are pushed onto a 64 bit stack. +// We must create an array of jints to pass to multi_allocate. +// We reuse the current stack because it will be popped +// after this bytecode is completed. + if ( rank > 1 ) { + int index; + for ( index = 1; index < rank; index++ ) { // First size is ok + dims[index] = dims[index*2]; + } + } +#endif + oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); + thread->set_vm_result(obj); +JRT_END + + +JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id)) + tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id); +JRT_END + + +JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread)) + THROW(vmSymbolHandles::java_lang_ArrayStoreException()); +JRT_END + + +JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread)) + if (JvmtiExport::can_post_exceptions()) { + vframeStream vfst(thread, true); + address bcp = vfst.method()->bcp_from(vfst.bci()); + JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop()); + } +JRT_END + +#ifdef TIERED +JRT_ENTRY(void, Runtime1::counter_overflow(JavaThread* thread, int bci)) + RegisterMap map(thread, false); + frame fr = thread->last_frame().sender(&map); + nmethod* nm = (nmethod*) fr.cb(); + assert(nm!= NULL && nm->is_nmethod(), "what?"); + methodHandle method(thread, nm->method()); + if (bci == 0) { + // invocation counter overflow + if (!Tier1CountOnly) { + CompilationPolicy::policy()->method_invocation_event(method, CHECK); + } else { + method()->invocation_counter()->reset(); + } + } else { + if (!Tier1CountOnly) { + // Twe have a bci but not the destination bci and besides a backedge + // event is more for OSR which we don't want here. + CompilationPolicy::policy()->method_invocation_event(method, CHECK); + } else { + method()->backedge_counter()->reset(); + } + } +JRT_END +#endif // TIERED + +extern void vm_exit(int code); + +// Enter this method from compiled code handler below. This is where we transition +// to VM mode. This is done as a helper routine so that the method called directly +// from compiled code does not have to transition to VM. This allows the entry +// method to see if the nmethod that we have just looked up a handler for has +// been deoptimized while we were in the vm. This simplifies the assembly code +// cpu directories. +// +// We are entering here from exception stub (via the entry method below) +// If there is a compiled exception handler in this method, we will continue there; +// otherwise we will unwind the stack and continue at the caller of top frame method +// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to +// control the area where we can allow a safepoint. After we exit the safepoint area we can +// check to see if the handler we are going to return is now in a nmethod that has +// been deoptimized. If that is the case we return the deopt blob +// unpack_with_exception entry instead. This makes life for the exception blob easier +// because making that same check and diverting is painful from assembly language. +// + + +JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm)) + + Handle exception(thread, ex); + nm = CodeCache::find_nmethod(pc); + assert(nm != NULL, "this is not an nmethod"); + // Adjust the pc as needed/ + if (nm->is_deopt_pc(pc)) { + RegisterMap map(thread, false); + frame exception_frame = thread->last_frame().sender(&map); + // if the frame isn't deopted then pc must not correspond to the caller of last_frame + assert(exception_frame.is_deoptimized_frame(), "must be deopted"); + pc = exception_frame.pc(); + } +#ifdef ASSERT + assert(exception.not_null(), "NULL exceptions should be handled by throw_exception"); + assert(exception->is_oop(), "just checking"); + // Check that exception is a subclass of Throwable, otherwise we have a VerifyError + if (!(exception->is_a(SystemDictionary::throwable_klass()))) { + if (ExitVMOnVerifyError) vm_exit(-1); + ShouldNotReachHere(); + } +#endif + + // Check the stack guard pages and reenable them if necessary and there is + // enough space on the stack to do so. Use fast exceptions only if the guard + // pages are enabled. + bool guard_pages_enabled = thread->stack_yellow_zone_enabled(); + if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); + + if (JvmtiExport::can_post_exceptions()) { + // To ensure correct notification of exception catches and throws + // we have to deoptimize here. If we attempted to notify the + // catches and throws during this exception lookup it's possible + // we could deoptimize on the way out of the VM and end back in + // the interpreter at the throw site. This would result in double + // notifications since the interpreter would also notify about + // these same catches and throws as it unwound the frame. + + RegisterMap reg_map(thread); + frame stub_frame = thread->last_frame(); + frame caller_frame = stub_frame.sender(®_map); + + // We don't really want to deoptimize the nmethod itself since we + // can actually continue in the exception handler ourselves but I + // don't see an easy way to have the desired effect. + VM_DeoptimizeFrame deopt(thread, caller_frame.id()); + VMThread::execute(&deopt); + + return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); + } + + // ExceptionCache is used only for exceptions at call and not for implicit exceptions + if (guard_pages_enabled) { + address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); + if (fast_continuation != NULL) { + if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL; + return fast_continuation; + } + } + + // If the stack guard pages are enabled, check whether there is a handler in + // the current method. Otherwise (guard pages disabled), force an unwind and + // skip the exception cache update (i.e., just leave continuation==NULL). + address continuation = NULL; + if (guard_pages_enabled) { + + // New exception handling mechanism can support inlined methods + // with exception handlers since the mappings are from PC to PC + + // debugging support + // tracing + if (TraceExceptions) { + ttyLocker ttyl; + ResourceMark rm; + tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x", + exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread); + } + // for AbortVMOnException flag + NOT_PRODUCT(Exceptions::debug_check_abort(exception)); + + // Clear out the exception oop and pc since looking up an + // exception handler can cause class loading, which might throw an + // exception and those fields are expected to be clear during + // normal bytecode execution. + thread->set_exception_oop(NULL); + thread->set_exception_pc(NULL); + + continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false); + // If an exception was thrown during exception dispatch, the exception oop may have changed + thread->set_exception_oop(exception()); + thread->set_exception_pc(pc); + + // the exception cache is used only by non-implicit exceptions + if (continuation == NULL) { + nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler()); + } else { + nm->add_handler_for_exception_and_pc(exception, pc, continuation); + } + } + + thread->set_vm_result(exception()); + + if (TraceExceptions) { + ttyLocker ttyl; + ResourceMark rm; + tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT, + thread, continuation, pc); + } + + return continuation; +JRT_END + +// Enter this method from compiled code only if there is a Java exception handler +// in the method handling the exception +// We are entering here from exception stub. We don't do a normal VM transition here. +// We do it in a helper. This is so we can check to see if the nmethod we have just +// searched for an exception handler has been deoptimized in the meantime. +address Runtime1::exception_handler_for_pc(JavaThread* thread) { + oop exception = thread->exception_oop(); + address pc = thread->exception_pc(); + // Still in Java mode + debug_only(ResetNoHandleMark rnhm); + nmethod* nm = NULL; + address continuation = NULL; + { + // Enter VM mode by calling the helper + + ResetNoHandleMark rnhm; + continuation = exception_handler_for_pc_helper(thread, exception, pc, nm); + } + // Back in JAVA, use no oops DON'T safepoint + + // Now check to see if the nmethod we were called from is now deoptimized. + // If so we must return to the deopt blob and deoptimize the nmethod + + if (nm != NULL && caller_is_deopted()) { + continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); + } + + return continuation; +} + + +JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index)) + NOT_PRODUCT(_throw_range_check_exception_count++;) + Events::log("throw_range_check"); + char message[jintAsStringSize]; + sprintf(message, "%d", index); + SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); +JRT_END + + +JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index)) + NOT_PRODUCT(_throw_index_exception_count++;) + Events::log("throw_index"); + char message[16]; + sprintf(message, "%d", index); + SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message); +JRT_END + + +JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread)) + NOT_PRODUCT(_throw_div0_exception_count++;) + SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); +JRT_END + + +JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread)) + NOT_PRODUCT(_throw_null_pointer_exception_count++;) + SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); +JRT_END + + +JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object)) + NOT_PRODUCT(_throw_class_cast_exception_count++;) + ResourceMark rm(thread); + char* message = SharedRuntime::generate_class_cast_message( + thread, Klass::cast(object->klass())->external_name()); + SharedRuntime::throw_and_post_jvmti_exception( + thread, vmSymbols::java_lang_ClassCastException(), message); +JRT_END + + +JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread)) + NOT_PRODUCT(_throw_incompatible_class_change_error_count++;) + ResourceMark rm(thread); + SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError()); +JRT_END + + +JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock)) + NOT_PRODUCT(_monitorenter_slowcase_cnt++;) + if (PrintBiasedLockingStatistics) { + Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); + } + Handle h_obj(thread, obj); + assert(h_obj()->is_oop(), "must be NULL or an object"); + if (UseBiasedLocking) { + // Retry fast entry if bias is revoked to avoid unnecessary inflation + ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK); + } else { + if (UseFastLocking) { + // When using fast locking, the compiled code has already tried the fast case + assert(obj == lock->obj(), "must match"); + ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD); + } else { + lock->set_obj(obj); + ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD); + } + } +JRT_END + + +JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock)) + NOT_PRODUCT(_monitorexit_slowcase_cnt++;) + assert(thread == JavaThread::current(), "threads must correspond"); + assert(thread->last_Java_sp(), "last_Java_sp must be set"); + // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown + EXCEPTION_MARK; + + oop obj = lock->obj(); + assert(obj->is_oop(), "must be NULL or an object"); + if (UseFastLocking) { + // When using fast locking, the compiled code has already tried the fast case + ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD); + } else { + ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD); + } +JRT_END + + +static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) { + Bytecode_field* field_access = Bytecode_field_at(caller(), caller->bcp_from(bci)); + // This can be static or non-static field access + Bytecodes::Code code = field_access->code(); + + // We must load class, initialize class and resolvethe field + FieldAccessInfo result; // initialize class if needed + constantPoolHandle constants(THREAD, caller->constants()); + LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL); + return result.klass()(); +} + + +// +// This routine patches sites where a class wasn't loaded or +// initialized at the time the code was generated. It handles +// references to classes, fields and forcing of initialization. Most +// of the cases are straightforward and involving simply forcing +// resolution of a class, rewriting the instruction stream with the +// needed constant and replacing the call in this function with the +// patched code. The case for static field is more complicated since +// the thread which is in the process of initializing a class can +// access it's static fields but other threads can't so the code +// either has to deoptimize when this case is detected or execute a +// check that the current thread is the initializing thread. The +// current +// +// Patches basically look like this: +// +// +// patch_site: jmp patch stub ;; will be patched +// continue: ... +// ... +// ... +// ... +// +// They have a stub which looks like this: +// +// ;; patch body +// movl , reg (for class constants) +// movl [reg1 + ], reg (for field offsets) +// movl reg, [reg1 + ] (for field offsets) +// +// patch_stub: call Runtime1::patch_code (through a runtime stub) +// jmp patch_site +// +// +// A normal patch is done by rewriting the patch body, usually a move, +// and then copying it into place over top of the jmp instruction +// being careful to flush caches and doing it in an MP-safe way. The +// constants following the patch body are used to find various pieces +// of the patch relative to the call site for Runtime1::patch_code. +// The case for getstatic and putstatic is more complicated because +// getstatic and putstatic have special semantics when executing while +// the class is being initialized. getstatic/putstatic on a class +// which is being_initialized may be executed by the initializing +// thread but other threads have to block when they execute it. This +// is accomplished in compiled code by executing a test of the current +// thread against the initializing thread of the class. It's emitted +// as boilerplate in their stub which allows the patched code to be +// executed before it's copied back into the main body of the nmethod. +// +// being_init: get_thread( +// cmpl [reg1 + ], +// jne patch_stub +// movl [reg1 + ], reg (for field offsets) +// movl reg, [reg1 + ] (for field offsets) +// jmp continue +// +// patch_stub: jmp Runtim1::patch_code (through a runtime stub) +// jmp patch_site +// +// If the class is being initialized the patch body is rewritten and +// the patch site is rewritten to jump to being_init, instead of +// patch_stub. Whenever this code is executed it checks the current +// thread against the intializing thread so other threads will enter +// the runtime and end up blocked waiting the class to finish +// initializing inside the calls to resolve_field below. The +// initializing class will continue on it's way. Once the class is +// fully_initialized, the intializing_thread of the class becomes +// NULL, so the next thread to execute this code will fail the test, +// call into patch_code and complete the patching process by copying +// the patch body back into the main part of the nmethod and resume +// executing. +// +// + +JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id )) + NOT_PRODUCT(_patch_code_slowcase_cnt++;) + + ResourceMark rm(thread); + RegisterMap reg_map(thread, false); + frame runtime_frame = thread->last_frame(); + frame caller_frame = runtime_frame.sender(®_map); + + // last java frame on stack + vframeStream vfst(thread, true); + assert(!vfst.at_end(), "Java frame must exist"); + + methodHandle caller_method(THREAD, vfst.method()); + // Note that caller_method->code() may not be same as caller_code because of OSR's + // Note also that in the presence of inlining it is not guaranteed + // that caller_method() == caller_code->method() + + + int bci = vfst.bci(); + + Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc()); + + Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code(); + +#ifndef PRODUCT + // this is used by assertions in the access_field_patching_id + BasicType patch_field_type = T_ILLEGAL; +#endif // PRODUCT + bool deoptimize_for_volatile = false; + int patch_field_offset = -1; + KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code + Handle load_klass(THREAD, NULL); // oop needed by load_klass_patching code + if (stub_id == Runtime1::access_field_patching_id) { + + Bytecode_field* field_access = Bytecode_field_at(caller_method(), caller_method->bcp_from(bci)); + FieldAccessInfo result; // initialize class if needed + Bytecodes::Code code = field_access->code(); + constantPoolHandle constants(THREAD, caller_method->constants()); + LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK); + patch_field_offset = result.field_offset(); + + // If we're patching a field which is volatile then at compile it + // must not have been know to be volatile, so the generated code + // isn't correct for a volatile reference. The nmethod has to be + // deoptimized so that the code can be regenerated correctly. + // This check is only needed for access_field_patching since this + // is the path for patching field offsets. load_klass is only + // used for patching references to oops which don't need special + // handling in the volatile case. + deoptimize_for_volatile = result.access_flags().is_volatile(); + +#ifndef PRODUCT + patch_field_type = result.field_type(); +#endif + } else if (stub_id == Runtime1::load_klass_patching_id) { + oop k; + switch (code) { + case Bytecodes::_putstatic: + case Bytecodes::_getstatic: + { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK); + // Save a reference to the class that has to be checked for initialization + init_klass = KlassHandle(THREAD, klass); + k = klass; + } + break; + case Bytecodes::_new: + { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci)); + k = caller_method->constants()->klass_at(bnew->index(), CHECK); + } + break; + case Bytecodes::_multianewarray: + { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci)); + k = caller_method->constants()->klass_at(mna->index(), CHECK); + } + break; + case Bytecodes::_instanceof: + { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci)); + k = caller_method->constants()->klass_at(io->index(), CHECK); + } + break; + case Bytecodes::_checkcast: + { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci)); + k = caller_method->constants()->klass_at(cc->index(), CHECK); + } + break; + case Bytecodes::_anewarray: + { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci)); + klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK); + k = Klass::cast(ek)->array_klass(CHECK); + } + break; + case Bytecodes::_ldc: + case Bytecodes::_ldc_w: + { + Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method(), + caller_method->bcp_from(bci)); + klassOop resolved = caller_method->constants()->klass_at(cc->index(), CHECK); + // ldc wants the java mirror. + k = resolved->klass_part()->java_mirror(); + } + break; + default: Unimplemented(); + } + // convert to handle + load_klass = Handle(THREAD, k); + } else { + ShouldNotReachHere(); + } + + if (deoptimize_for_volatile) { + // At compile time we assumed the field wasn't volatile but after + // loading it turns out it was volatile so we have to throw the + // compiled code out and let it be regenerated. + if (TracePatching) { + tty->print_cr("Deoptimizing for patching volatile field reference"); + } + VM_DeoptimizeFrame deopt(thread, caller_frame.id()); + VMThread::execute(&deopt); + + // Return to the now deoptimized frame. + } + + + // Now copy code back + + { + MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag); + // + // Deoptimization may have happened while we waited for the lock. + // In that case we don't bother to do any patching we just return + // and let the deopt happen + if (!caller_is_deopted()) { + NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc()); + address instr_pc = jump->jump_destination(); + NativeInstruction* ni = nativeInstruction_at(instr_pc); + if (ni->is_jump() ) { + // the jump has not been patched yet + // The jump destination is slow case and therefore not part of the stubs + // (stubs are only for StaticCalls) + + // format of buffer + // .... + // instr byte 0 <-- copy_buff + // instr byte 1 + // .. + // instr byte n-1 + // n + // .... <-- call destination + + address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset(); + unsigned char* byte_count = (unsigned char*) (stub_location - 1); + unsigned char* byte_skip = (unsigned char*) (stub_location - 2); + unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3); + address copy_buff = stub_location - *byte_skip - *byte_count; + address being_initialized_entry = stub_location - *being_initialized_entry_offset; + if (TracePatching) { + tty->print_cr(" Patching %s at bci %d at address 0x%x (%s)", Bytecodes::name(code), bci, + instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass"); + nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc()); + assert(caller_code != NULL, "nmethod not found"); + + // NOTE we use pc() not original_pc() because we already know they are + // identical otherwise we'd have never entered this block of code + + OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc()); + assert(map != NULL, "null check"); + map->print(); + tty->cr(); + + Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); + } + // depending on the code below, do_patch says whether to copy the patch body back into the nmethod + bool do_patch = true; + if (stub_id == Runtime1::access_field_patching_id) { + // The offset may not be correct if the class was not loaded at code generation time. + // Set it now. + NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff); + assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type"); + assert(patch_field_offset >= 0, "illegal offset"); + n_move->add_offset_in_bytes(patch_field_offset); + } else if (stub_id == Runtime1::load_klass_patching_id) { + // If a getstatic or putstatic is referencing a klass which + // isn't fully initialized, the patch body isn't copied into + // place until initialization is complete. In this case the + // patch site is setup so that any threads besides the + // initializing thread are forced to come into the VM and + // block. + do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) || + instanceKlass::cast(init_klass())->is_initialized(); + NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc); + if (jump->jump_destination() == being_initialized_entry) { + assert(do_patch == true, "initialization must be complete at this point"); + } else { + // patch the instruction + NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff); + assert(n_copy->data() == 0, "illegal init value"); + assert(load_klass() != NULL, "klass not set"); + n_copy->set_data((intx) (load_klass())); + + if (TracePatching) { + Disassembler::decode(copy_buff, copy_buff + *byte_count, tty); + } + +#ifdef SPARC + // Update the oop location in the nmethod with the proper + // oop. When the code was generated, a NULL was stuffed + // in the oop table and that table needs to be update to + // have the right value. On intel the value is kept + // directly in the instruction instead of in the oop + // table, so set_data above effectively updated the value. + nmethod* nm = CodeCache::find_nmethod(instr_pc); + assert(nm != NULL, "invalid nmethod_pc"); + RelocIterator oops(nm, copy_buff, copy_buff + 1); + bool found = false; + while (oops.next() && !found) { + if (oops.type() == relocInfo::oop_type) { + oop_Relocation* r = oops.oop_reloc(); + oop* oop_adr = r->oop_addr(); + *oop_adr = load_klass(); + r->fix_oop_relocation(); + found = true; + } + } + assert(found, "the oop must exist!"); +#endif + + } + } else { + ShouldNotReachHere(); + } + if (do_patch) { + // replace instructions + // first replace the tail, then the call + for (int i = NativeCall::instruction_size; i < *byte_count; i++) { + address ptr = copy_buff + i; + int a_byte = (*ptr) & 0xFF; + address dst = instr_pc + i; + *(unsigned char*)dst = (unsigned char) a_byte; + } + ICache::invalidate_range(instr_pc, *byte_count); + NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff); + + if (stub_id == Runtime1::load_klass_patching_id) { + // update relocInfo to oop + nmethod* nm = CodeCache::find_nmethod(instr_pc); + assert(nm != NULL, "invalid nmethod_pc"); + + // The old patch site is now a move instruction so update + // the reloc info so that it will get updated during + // future GCs. + RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1)); + relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc, + relocInfo::none, relocInfo::oop_type); +#ifdef SPARC + // Sparc takes two relocations for an oop so update the second one. + address instr_pc2 = instr_pc + NativeMovConstReg::add_offset; + RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1); + relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, + relocInfo::none, relocInfo::oop_type); +#endif + } + + } else { + ICache::invalidate_range(copy_buff, *byte_count); + NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry); + } + } + } + } +JRT_END + +// +// Entry point for compiled code. We want to patch a nmethod. +// We don't do a normal VM transition here because we want to +// know after the patching is complete and any safepoint(s) are taken +// if the calling nmethod was deoptimized. We do this by calling a +// helper method which does the normal VM transition and when it +// completes we can check for deoptimization. This simplifies the +// assembly code in the cpu directories. +// +int Runtime1::move_klass_patching(JavaThread* thread) { +// +// NOTE: we are still in Java +// + Thread* THREAD = thread; + debug_only(NoHandleMark nhm;) + { + // Enter VM mode + + ResetNoHandleMark rnhm; + patch_code(thread, load_klass_patching_id); + } + // Back in JAVA, use no oops DON'T safepoint + + // Return true if calling code is deoptimized + + return caller_is_deopted(); +} + +// +// Entry point for compiled code. We want to patch a nmethod. +// We don't do a normal VM transition here because we want to +// know after the patching is complete and any safepoint(s) are taken +// if the calling nmethod was deoptimized. We do this by calling a +// helper method which does the normal VM transition and when it +// completes we can check for deoptimization. This simplifies the +// assembly code in the cpu directories. +// + +int Runtime1::access_field_patching(JavaThread* thread) { +// +// NOTE: we are still in Java +// + Thread* THREAD = thread; + debug_only(NoHandleMark nhm;) + { + // Enter VM mode + + ResetNoHandleMark rnhm; + patch_code(thread, access_field_patching_id); + } + // Back in JAVA, use no oops DON'T safepoint + + // Return true if calling code is deoptimized + + return caller_is_deopted(); +JRT_END + + +JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id)) + // for now we just print out the block id + tty->print("%d ", block_id); +JRT_END + + +// fast and direct copy of arrays; returning -1, means that an exception may be thrown +// and we did not copy anything +JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length)) +#ifndef PRODUCT + _generic_arraycopy_cnt++; // Slow-path oop array copy +#endif + + enum { + ac_failed = -1, // arraycopy failed + ac_ok = 0 // arraycopy succeeded + }; + + if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed; + if (!dst->is_array() || !src->is_array()) return ac_failed; + if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed; + if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed; + + if (length == 0) return ac_ok; + if (src->is_typeArray()) { + const klassOop klass_oop = src->klass(); + if (klass_oop != dst->klass()) return ac_failed; + typeArrayKlass* klass = typeArrayKlass::cast(klass_oop); + const int l2es = klass->log2_element_size(); + const int ihs = klass->array_header_in_bytes() / wordSize; + char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es); + char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es); + // Potential problem: memmove is not guaranteed to be word atomic + // Revisit in Merlin + memmove(dst_addr, src_addr, length << l2es); + return ac_ok; + } else if (src->is_objArray() && dst->is_objArray()) { + oop* src_addr = objArrayOop(src)->obj_at_addr(src_pos); + oop* dst_addr = objArrayOop(dst)->obj_at_addr(dst_pos); + // For performance reasons, we assume we are using a card marking write + // barrier. The assert will fail if this is not the case. + // Note that we use the non-virtual inlineable variant of write_ref_array. + BarrierSet* bs = Universe::heap()->barrier_set(); + assert(bs->has_write_ref_array_opt(), + "Barrier set must have ref array opt"); + if (src == dst) { + // same object, no check + Copy::conjoint_oops_atomic(src_addr, dst_addr, length); + bs->write_ref_array(MemRegion((HeapWord*)dst_addr, + (HeapWord*)(dst_addr + length))); + return ac_ok; + } else { + klassOop bound = objArrayKlass::cast(dst->klass())->element_klass(); + klassOop stype = objArrayKlass::cast(src->klass())->element_klass(); + if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) { + // Elements are guaranteed to be subtypes, so no check necessary + Copy::conjoint_oops_atomic(src_addr, dst_addr, length); + bs->write_ref_array(MemRegion((HeapWord*)dst_addr, + (HeapWord*)(dst_addr + length))); + return ac_ok; + } + } + } + return ac_failed; +JRT_END + + +JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length)) +#ifndef PRODUCT + _primitive_arraycopy_cnt++; +#endif + + if (length == 0) return; + // Not guaranteed to be word atomic, but that doesn't matter + // for anything but an oop array, which is covered by oop_arraycopy. + Copy::conjoint_bytes(src, dst, length); +JRT_END + +JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num)) +#ifndef PRODUCT + _oop_arraycopy_cnt++; +#endif + + if (num == 0) return; + Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num); + BarrierSet* bs = Universe::heap()->barrier_set(); + bs->write_ref_array(MemRegion(dst, dst + num)); +JRT_END + + +#ifndef PRODUCT +void Runtime1::print_statistics() { + tty->print_cr("C1 Runtime statistics:"); + tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr); + tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr); + tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr); + tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr); + tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr); + tty->print_cr(" _generic_arraycopy_cnt: %d", _generic_arraycopy_cnt); + tty->print_cr(" _primitive_arraycopy_cnt: %d", _primitive_arraycopy_cnt); + tty->print_cr(" _oop_arraycopy_cnt: %d", _oop_arraycopy_cnt); + tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt); + + tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt); + tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt); + tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt); + tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt); + tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt); + tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt); + tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt); + + tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count); + tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count); + tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count); + tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count); + tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count); + tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count); + tty->print_cr(" _throw_array_store_exception_count: %d:", _throw_array_store_exception_count); + tty->print_cr(" _throw_count: %d:", _throw_count); + + SharedRuntime::print_ic_miss_histogram(); + tty->cr(); +} +#endif // PRODUCT